Description of a Riboflavin Biosynthetic Gene Variant Prevalent in the Phylum Proteobacteria

Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commer...

Full description

Saved in:
Bibliographic Details
Published inJournal of Bacteriology Vol. 195; no. 24; pp. 5479 - 5486
Main Authors Brutinel, Evan D., Dean, Antony M., Gralnick, Jeffrey A.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.12.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JB .asm.org, visit: JB       
AbstractList Riboflavin (vitamin B2) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular redox reactions. Microorganisms synthesize flavins de novo to fulfill nutritional requirements, but it is becoming increasingly clear that flavins play a wider role in cellular physiology than was previously appreciated. Flavins mediate diverse processes beyond the cytoplasmic membrane, including iron acquisition, extracellular respiration, and interspecies interactions. While investigating the regulation of flavin electron shuttle biosynthesis in the Gram-negative gammaproteobacterium Shewanella oneidensis, we discovered that a riboflavin biosynthetic gene (ribBA) annotated as encoding a bifunctional 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase/GTP cyclohydrolase II does not possess both functions. The novel gene, renamed ribBX here, encodes an amino-terminal DHBP synthase domain. The carboxy-terminal end of RibBX not only lacks GTP cyclohydrolase II activity but also has evolved a different function altogether in S. oneidensis, regulating the activity of the DHBP synthase domain. Phylogenetic analysis revealed that the misannotation of ribBX as ribBA is rampant throughout the phylum Proteobacteria (40% of 2,173 annotated ribBA genes) and that ribBX emerged early in the evolution of this group of microorganisms. We examined the functionality of representative ribBX genes from Beta-, Gamma-, and Epsilonproteobacteria and found that, consistent with sequence-based predictions, the encoded GTP cyclohydrolase II domains lack catalytic activity. The persistence of ribBX in the genomes of so many phylogenetically divergent bacterial species lends weight to the argument that ribBX has evolved a function which lends a selective advantage to the host.
Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JB .asm.org, visit: JB       
Riboflavin (vitamin B2) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular redox reactions. Microorganisms synthesize flavins de novo to fulfill nutritional requirements, but it is becoming increasingly clear that flavins play a wider role in cellular physiology than was previously appreciated. Flavins mediate diverse processes beyond the cytoplasmic membrane, including iron acquisition, extracellular respiration, and interspecies interactions. While investigating the regulation of flavin electron shuttle biosynthesis in the Gram-negative gammaproteobacterium Shewanella oneidensis, we discovered that a riboflavin biosynthetic gene (ribBA) annotated as encoding a bifunctional 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase/GTP cyclohydrolase II does not possess both functions. The novel gene, renamed ribBX here, encodes an amino-terminal DHBP synthase domain. The carboxy-terminal end of RibBX not only lacks GTP cyclohydrolase II activity but also has evolved a different function altogether in S. oneidensis, regulating the activity of the DHBP synthase domain. Phylogenetic analysis revealed that the misannotation of ribBX as ribBA is rampant throughout the phylum Proteobacteria (40% of 2,173 annotated ribBA genes) and that ribBX emerged early in the evolution of this group of microorganisms. We examined the functionality of representative ribBX genes from Beta-, Gamma-, and Epsilonproteobacteria and found that, consistent with sequence-based predictions, the encoded GTP cyclohydrolase II domains lack catalytic activity. The persistence of ribBX in the genomes of so many phylogenetically divergent bacterial species lends weight to the argument that ribBX has evolved a function which lends a selective advantage to the host.Riboflavin (vitamin B2) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular redox reactions. Microorganisms synthesize flavins de novo to fulfill nutritional requirements, but it is becoming increasingly clear that flavins play a wider role in cellular physiology than was previously appreciated. Flavins mediate diverse processes beyond the cytoplasmic membrane, including iron acquisition, extracellular respiration, and interspecies interactions. While investigating the regulation of flavin electron shuttle biosynthesis in the Gram-negative gammaproteobacterium Shewanella oneidensis, we discovered that a riboflavin biosynthetic gene (ribBA) annotated as encoding a bifunctional 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase/GTP cyclohydrolase II does not possess both functions. The novel gene, renamed ribBX here, encodes an amino-terminal DHBP synthase domain. The carboxy-terminal end of RibBX not only lacks GTP cyclohydrolase II activity but also has evolved a different function altogether in S. oneidensis, regulating the activity of the DHBP synthase domain. Phylogenetic analysis revealed that the misannotation of ribBX as ribBA is rampant throughout the phylum Proteobacteria (40% of 2,173 annotated ribBA genes) and that ribBX emerged early in the evolution of this group of microorganisms. We examined the functionality of representative ribBX genes from Beta-, Gamma-, and Epsilonproteobacteria and found that, consistent with sequence-based predictions, the encoded GTP cyclohydrolase II domains lack catalytic activity. The persistence of ribBX in the genomes of so many phylogenetically divergent bacterial species lends weight to the argument that ribBX has evolved a function which lends a selective advantage to the host.
Riboflavin (vitamin B 2 ) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular redox reactions. Microorganisms synthesize flavins de novo to fulfill nutritional requirements, but it is becoming increasingly clear that flavins play a wider role in cellular physiology than was previously appreciated. Flavins mediate diverse processes beyond the cytoplasmic membrane, including iron acquisition, extracellular respiration, and interspecies interactions. While investigating the regulation of flavin electron shuttle biosynthesis in the Gram-negative gammaproteobacterium Shewanella oneidensis , we discovered that a riboflavin biosynthetic gene ( ribBA ) annotated as encoding a bifunctional 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase/GTP cyclohydrolase II does not possess both functions. The novel gene, renamed ribBX here, encodes an amino-terminal DHBP synthase domain. The carboxy-terminal end of RibBX not only lacks GTP cyclohydrolase II activity but also has evolved a different function altogether in S. oneidensis , regulating the activity of the DHBP synthase domain. Phylogenetic analysis revealed that the misannotation of ribBX as ribBA is rampant throughout the phylum Proteobacteria (40% of 2,173 annotated ribBA genes) and that ribBX emerged early in the evolution of this group of microorganisms. We examined the functionality of representative ribBX genes from Beta -, Gamma -, and Epsilonproteobacteria and found that, consistent with sequence-based predictions, the encoded GTP cyclohydrolase II domains lack catalytic activity. The persistence of ribBX in the genomes of so many phylogenetically divergent bacterial species lends weight to the argument that ribBX has evolved a function which lends a selective advantage to the host.
Riboflavin (vitamin B2) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular redox reactions. Microorganisms synthesize flavins de novo to fulfill nutritional requirements, but it is becoming increasingly clear that flavins play a wider role in cellular physiology than was previously appreciated. Flavins mediate diverse processes beyond the cytoplasmic membrane, including iron acquisition, extracellular respiration, and interspecies interactions. While investigating the regulation of flavin electron shuttle biosynthesis in the Gram-negative gammaproteobacterium Shewanella oneidensis, we discovered that a riboflavin biosynthetic gene (ribBA) annotated as encoding a bifunctional 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase/GTP cyclohydrolase II does not possess both functions. The novel gene, renamed ribBX here, encodes an amino-terminal DHBP synthase domain. The carboxy-terminal end of RibBX not only lacks GTP cyclohydrolase II activity but also has evolved a different function altogether in S. oneidensis, regulating the activity of the DHBP synthase domain. Phylogenetic analysis revealed that the misannotation of ribBX as ribBA is rampant throughout the phylum Proteobacteria (40% of 2,173 annotated ribBA genes) and that ribBX emerged early in the evolution of this group of microorganisms. We examined the functionality of representative ribBX genes from Beta-, Gamma-, and Epsilonproteobacteria and found that, consistent with sequence-based predictions, the encoded GTP cyclohydrolase II domains lack catalytic activity. The persistence of ribBX in the genomes of so many phylogenetically divergent bacterial species lends weight to the argument that ribBX has evolved a function which lends a selective advantage to the host. [PUBLICATION ABSTRACT]
Author Antony M. Dean
Jeffrey A. Gralnick
Evan D. Brutinel
Author_xml – sequence: 1
  givenname: Evan D.
  surname: Brutinel
  fullname: Brutinel, Evan D.
  organization: BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
– sequence: 2
  givenname: Antony M.
  surname: Dean
  fullname: Dean, Antony M.
  organization: BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA, Department of Ecology, Evolution & Behavior, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
– sequence: 3
  givenname: Jeffrey A.
  surname: Gralnick
  fullname: Gralnick, Jeffrey A.
  organization: BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA, Department of Microbiology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24097946$$D View this record in MEDLINE/PubMed
BookMark eNqNkt1rFDEUxYNU7Lb65LsM-iLI1Hx_vBTcqtVSsIj6JIQkm-lkmU3WZGZl_3uzbitaBH1KyP3dwzm59wgcxBQ9AI8RPEEIy5cX8xMIOUMtIvfADEEuWikJPgAzCDFqFVLkEByVsoQQUcrwA3CIKVRCUT4DX1_74nJYjyHFJnWNaT4Gm7rBbEJs5iGVbRx7PwbXnPvomy8mBxPH5ir7jRl8vVWsAs1Vvx2mVX1Po0_WuNFX8CG435mh-Ec35zH4_PbNp7N37eWH8_dnry5bxyAeW4YxZgZCR7yprgjHgnmxsJBYTrC1dgEFMk7YjiNOhCVK0QV1jnvJFHYdOQane931ZFd-4aqvbAa9zmFl8lYnE_SflRh6fZ02mkipOMZV4PmNQE7fJl9GvQrF-WEw0aepaMSFZFgSLv8D5RQpySj7N0o5klxRCCv67A66TFOO9dN2FBVSKYUq9eT3nL8C3o6zAmgPuJxKyb7TLoxmN9saOwwaQb1bGX0x1z9XRiNSe17c6bmV_Tv9dE_34br_HrLXpqz00mqkWPWhGRWK_ACAMctM
CODEN JOBAAY
CitedBy_id crossref_primary_10_1042_BJ20141237
crossref_primary_10_1111_1462_2920_15066
crossref_primary_10_1016_j_bioactmat_2024_01_007
crossref_primary_10_1021_acs_est_6b04640
crossref_primary_10_1080_1040841X_2016_1192578
crossref_primary_10_1007_s00203_015_1154_8
crossref_primary_10_1094_MPMI_11_13_0338_R
crossref_primary_10_1186_s13099_017_0159_z
crossref_primary_10_1039_D1EM00108F
crossref_primary_10_1146_annurev_micro_032221_023725
crossref_primary_10_1111_imcb_12057
crossref_primary_10_1016_j_chembiol_2019_02_011
crossref_primary_10_1128_msystems_01259_24
crossref_primary_10_1002_bit_28172
crossref_primary_10_1094_MPMI_34_1
crossref_primary_10_1186_s13099_017_0214_9
crossref_primary_10_1094_MPMI_07_20_0209_R
crossref_primary_10_1007_s00248_018_1214_0
crossref_primary_10_1016_j_bioelechem_2019_04_022
crossref_primary_10_1021_acs_est_1c03713
crossref_primary_10_1080_21505594_2023_2187025
Cites_doi 10.1073/pnas.86.7.2172
10.1093/nar/gkh340
10.1073/pnas.0710525105
10.1093/molbev/msp259
10.1007/0-387-30746-X_45
10.1038/nprot.2009.2
10.1073/pnas.212628899
10.1016/S0076-6879(02)58087-3
10.1073/pnas.96.22.12275
10.1073/pnas.231323598
10.1094/MPMI.2002.15.5.456
10.1093/nar/gkn201
10.1111/j.1365-2958.2012.08196.x
10.1128/AEM.00935-10
10.1128/AEM.01919-07
10.1093/bioinformatics/btl446
10.1016/S0969-2126(00)00550-5
10.1128/JB.00925-09
10.1128/AEM.01460-12
10.1038/sj.jim.2900590
10.1128/jb.174.12.4050-4056.1992
10.1093/nar/gkf433
10.1094/MPMI-21-9-1184
10.1128/MMBR.00030-10
10.1111/j.1365-2958.2010.07353.x
10.1074/jbc.M507725200
10.1128/AEM.01387-07
10.1128/AEM.32.6.781-791.1976
10.1146/annurev.micro.61.080706.093257
ContentType Journal Article
Copyright Copyright American Society for Microbiology Dec 2013
Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology
Copyright_xml – notice: Copyright American Society for Microbiology Dec 2013
– notice: Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1128/JB.00651-13
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Genetics Abstracts

MEDLINE - Academic
CrossRef
Genetics Abstracts

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1067-8832
1098-5530
EndPage 5486
ExternalDocumentID PMC3889622
3145452931
24097946
10_1128_JB_00651_13
jb_195_24_5479
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
0R~
18M
29J
2WC
39C
4.4
53G
5GY
5RE
5VS
79B
85S
AAGFI
AAYXX
ABPPZ
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
L7B
O9-
OK1
P-S
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
YQT
YR2
YZZ
ZCA
~02
~KM
.GJ
186
1VV
3O-
8WZ
9M8
A6W
ADXHL
AFFDN
AFFNX
AGCDD
AI.
AIDAL
AJUXI
C1A
CGR
CUY
CVF
ECM
EIF
MVM
NHB
NPM
OHT
P-O
QZG
VH1
WHG
Y6R
ZCG
ZGI
ZXP
ZY4
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c502t-52225a00c3ea79436275e7db03b632bbbd071ac7bf61637b3994d4cc6e8592cf3
ISSN 0021-9193
1098-5530
IngestDate Thu Aug 21 13:48:31 EDT 2025
Fri Jul 11 12:10:24 EDT 2025
Fri Jul 11 01:09:41 EDT 2025
Fri Jul 11 07:51:04 EDT 2025
Mon Jun 30 08:38:12 EDT 2025
Mon Jul 21 06:04:29 EDT 2025
Thu Apr 24 22:51:33 EDT 2025
Tue Jul 01 03:26:25 EDT 2025
Wed May 18 15:26:54 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c502t-52225a00c3ea79436275e7db03b632bbbd071ac7bf61637b3994d4cc6e8592cf3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://jb.asm.org/content/jb/195/24/5479.full.pdf
PMID 24097946
PQID 1464789991
PQPubID 40724
PageCount 8
ParticipantIDs crossref_citationtrail_10_1128_JB_00651_13
highwire_asm_jb_195_24_5479
proquest_miscellaneous_1678528368
proquest_miscellaneous_1664198545
crossref_primary_10_1128_JB_00651_13
pubmed_primary_24097946
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3889622
proquest_miscellaneous_1461869400
proquest_journals_1464789991
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of Bacteriology
PublicationTitleAlternate J Bacteriol
PublicationYear 2013
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References Yang G (e_1_3_3_11_2) 2002; 15
Liao DI (e_1_3_3_30_2) 2001; 9
Jones DT (e_1_3_3_26_2) 1992; 8
Boretskii Iu R (e_1_3_3_35_2) 1992; 57
e_1_3_3_16_2
Schramek N (e_1_3_3_33_2) 2001; 276
e_1_3_3_19_2
Bandrin SV (e_1_3_3_17_2) 1983; 19
e_1_3_3_18_2
Brutinel ED (e_1_3_3_28_2) 2012; 86
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_10_2
Hümbelin M (e_1_3_3_13_2) 1999; 22
Kelly MJ (e_1_3_3_31_2) 2001; 98
Fassbinder F (e_1_3_3_3_2) 2000; 191
e_1_3_3_6_2
Nealson KH (e_1_3_3_15_2) 2006
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_9_2
Daines DA (e_1_3_3_21_2) 2002; 358
e_1_3_3_27_2
Ren J (e_1_3_3_29_2) 2005; 280
e_1_3_3_24_2
e_1_3_3_23_2
Winkler WC (e_1_3_3_14_2) 2002; 99
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
Rajamani S (e_1_3_3_12_2) 2008; 21
e_1_3_3_22_2
12456892 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15908-13
19247286 - Nat Protoc. 2009;4(3):363-71
21646432 - Microbiol Mol Biol Rev. 2011 Jun;75(2):321-60
16115872 - J Biol Chem. 2005 Nov 4;280(44):36912-9
18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23
12136096 - Nucleic Acids Res. 2002 Jul 15;30(14):3141-51
11342130 - Structure. 2001 Jan 10;9(1):11-8
1391211 - Biokhimiia. 1992 Jul;57(7):1021-30
22925268 - Mol Microbiol. 2012 Oct;86(2):273-83
1597419 - J Bacteriol. 1992 Jun;174(12):4050-6
18440982 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9
11553632 - J Biol Chem. 2001 Nov 23;276(47):44157-62
15034147 - Nucleic Acids Res. 2004;32(5):1792-7
16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90
12036276 - Mol Plant Microbe Interact. 2002 May;15(5):456-62
20807196 - Mol Microbiol. 2010 Oct;78(2):519-32
827241 - Appl Environ Microbiol. 1976 Dec;32(6):781-91
20833792 - Appl Environ Microbiol. 2010 Nov;76(21):7356-8
22843516 - Appl Environ Microbiol. 2012 Oct;78(19):6987-95
17965203 - Appl Environ Microbiol. 2007 Dec;73(24):7819-25
10535912 - Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12275-80
2648393 - Proc Natl Acad Sci U S A. 1989 Apr;86(7):2172-5
19897659 - J Bacteriol. 2010 Jan;192(2):467-74
6315532 - Genetika. 1983 Sep;19(9):1419-25
11687623 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13025-30
11024263 - FEMS Microbiol Lett. 2000 Oct 15;191(2):191-7
19854763 - Mol Biol Evol. 2010 Feb;27(2):221-4
18700823 - Mol Plant Microbe Interact. 2008 Sep;21(9):1184-92
18035608 - Annu Rev Microbiol. 2007;61:237-58
12474385 - Methods Enzymol. 2002;358:153-61
1633570 - Comput Appl Biosci. 1992 Jun;8(3):275-82
18316736 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3968-73
References_xml – ident: e_1_3_3_20_2
  doi: 10.1073/pnas.86.7.2172
– ident: e_1_3_3_23_2
  doi: 10.1093/nar/gkh340
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.0710525105
– ident: e_1_3_3_24_2
  doi: 10.1093/molbev/msp259
– volume: 8
  start-page: 275
  year: 1992
  ident: e_1_3_3_26_2
  article-title: The rapid generation of mutation data matrices from protein sequences
  publication-title: Comput. Appl. Biosci.
– start-page: 1133
  volume-title: Prokaryotes
  year: 2006
  ident: e_1_3_3_15_2
  doi: 10.1007/0-387-30746-X_45
– ident: e_1_3_3_32_2
  doi: 10.1038/nprot.2009.2
– volume: 99
  start-page: 15908
  year: 2002
  ident: e_1_3_3_14_2
  article-title: An mRNA structure that controls gene expression by binding FMN
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.212628899
– volume: 358
  start-page: 153
  year: 2002
  ident: e_1_3_3_21_2
  article-title: Use of LexA-based system to identify protein-protein interactions in vivo
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(02)58087-3
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.96.22.12275
– volume: 276
  start-page: 44157
  year: 2001
  ident: e_1_3_3_33_2
  article-title: Biosynthesis of riboflavin. Single turnover kinetic analysis of GTP cyclohydrolase II
  publication-title: J. Biol. Chem.
– volume: 98
  start-page: 13025
  year: 2001
  ident: e_1_3_3_31_2
  article-title: The NMR structure of the 47-kDa dimeric enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase and ligand binding studies reveal the location of the active site
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.231323598
– volume: 15
  start-page: 456
  year: 2002
  ident: e_1_3_3_11_2
  article-title: Roles for riboflavin in the Sinorhizobium-alfalfa association
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI.2002.15.5.456
– ident: e_1_3_3_22_2
  doi: 10.1093/nar/gkn201
– volume: 86
  start-page: 273
  year: 2012
  ident: e_1_3_3_28_2
  article-title: Anomalies of the anaerobic tricarboxylic acid cycle in Shewanella oneidensis revealed by Tn-seq
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2012.08196.x
– ident: e_1_3_3_5_2
  doi: 10.1128/AEM.00935-10
– ident: e_1_3_3_4_2
  doi: 10.1128/AEM.01919-07
– ident: e_1_3_3_25_2
  doi: 10.1093/bioinformatics/btl446
– volume: 19
  start-page: 1419
  year: 1983
  ident: e_1_3_3_17_2
  article-title: 3 linkage groups of the genes of riboflavin biosynthesis in Escherichia coli
  publication-title: Genetika
– volume: 9
  start-page: 11
  year: 2001
  ident: e_1_3_3_30_2
  article-title: Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase of riboflavin biosynthesis
  publication-title: Structure
  doi: 10.1016/S0969-2126(00)00550-5
– ident: e_1_3_3_6_2
  doi: 10.1128/JB.00925-09
– ident: e_1_3_3_9_2
  doi: 10.1128/AEM.01460-12
– volume: 22
  start-page: 1
  year: 1999
  ident: e_1_3_3_13_2
  article-title: GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1038/sj.jim.2900590
– ident: e_1_3_3_34_2
  doi: 10.1128/jb.174.12.4050-4056.1992
– ident: e_1_3_3_27_2
  doi: 10.1093/nar/gkf433
– volume: 21
  start-page: 1184
  year: 2008
  ident: e_1_3_3_12_2
  article-title: The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-21-9-1184
– ident: e_1_3_3_2_2
  doi: 10.1128/MMBR.00030-10
– volume: 191
  start-page: 191
  year: 2000
  ident: e_1_3_3_3_2
  article-title: Structural and functional analysis of the riboflavin synthesis genes encoding GTP cyclohydrolase II (ribA), DHBP synthase (ribBA), riboflavin synthase (ribC), and riboflavin deaminase/reductase (ribD) from Helicobacter pylori strain P1. FEMS Microbiol
  publication-title: Lett.
– ident: e_1_3_3_19_2
  doi: 10.1111/j.1365-2958.2010.07353.x
– volume: 280
  start-page: 36912
  year: 2005
  ident: e_1_3_3_29_2
  article-title: GTP cyclohydrolase II structure and mechanism
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M507725200
– ident: e_1_3_3_7_2
  doi: 10.1128/AEM.01387-07
– ident: e_1_3_3_18_2
  doi: 10.1128/AEM.32.6.781-791.1976
– ident: e_1_3_3_16_2
  doi: 10.1146/annurev.micro.61.080706.093257
– volume: 57
  start-page: 1021
  year: 1992
  ident: e_1_3_3_35_2
  article-title: Purification and properties of GTP-cyclohydrolase from Bacillus subtilis
  publication-title: Biokhimiia
– reference: 11687623 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13025-30
– reference: 1391211 - Biokhimiia. 1992 Jul;57(7):1021-30
– reference: 1597419 - J Bacteriol. 1992 Jun;174(12):4050-6
– reference: 1633570 - Comput Appl Biosci. 1992 Jun;8(3):275-82
– reference: 16115872 - J Biol Chem. 2005 Nov 4;280(44):36912-9
– reference: 18700823 - Mol Plant Microbe Interact. 2008 Sep;21(9):1184-92
– reference: 21646432 - Microbiol Mol Biol Rev. 2011 Jun;75(2):321-60
– reference: 11342130 - Structure. 2001 Jan 10;9(1):11-8
– reference: 20833792 - Appl Environ Microbiol. 2010 Nov;76(21):7356-8
– reference: 19854763 - Mol Biol Evol. 2010 Feb;27(2):221-4
– reference: 19247286 - Nat Protoc. 2009;4(3):363-71
– reference: 12474385 - Methods Enzymol. 2002;358:153-61
– reference: 12456892 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15908-13
– reference: 18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23
– reference: 18035608 - Annu Rev Microbiol. 2007;61:237-58
– reference: 2648393 - Proc Natl Acad Sci U S A. 1989 Apr;86(7):2172-5
– reference: 10535912 - Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12275-80
– reference: 22843516 - Appl Environ Microbiol. 2012 Oct;78(19):6987-95
– reference: 17965203 - Appl Environ Microbiol. 2007 Dec;73(24):7819-25
– reference: 18440982 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9
– reference: 20807196 - Mol Microbiol. 2010 Oct;78(2):519-32
– reference: 22925268 - Mol Microbiol. 2012 Oct;86(2):273-83
– reference: 6315532 - Genetika. 1983 Sep;19(9):1419-25
– reference: 12136096 - Nucleic Acids Res. 2002 Jul 15;30(14):3141-51
– reference: 18316736 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3968-73
– reference: 19897659 - J Bacteriol. 2010 Jan;192(2):467-74
– reference: 16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90
– reference: 12036276 - Mol Plant Microbe Interact. 2002 May;15(5):456-62
– reference: 11024263 - FEMS Microbiol Lett. 2000 Oct 15;191(2):191-7
– reference: 11553632 - J Biol Chem. 2001 Nov 23;276(47):44157-62
– reference: 827241 - Appl Environ Microbiol. 1976 Dec;32(6):781-91
– reference: 15034147 - Nucleic Acids Res. 2004;32(5):1792-7
SSID ssj0014452
Score 2.2279108
Snippet Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
Riboflavin (vitamin B 2 ) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular...
Riboflavin (vitamin B2) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5479
SubjectTerms Bacteriology
Biosynthesis
Biosynthetic Pathways - genetics
catalytic activity
cell membranes
Cytoplasm
epsilon-Proteobacteria
Evolution, Molecular
flavin-adenine dinucleotide
genes
Genomes
Gram-negative bacteria
GTP cyclohydrolase I
guanosine triphosphate
interspecific competition
Intramolecular Transferases - genetics
Intramolecular Transferases - metabolism
Microorganisms
nutrient requirements
Nutrition
Nutritional requirements
Phylogenetics
Phylogeny
prediction
Protein Structure, Tertiary
Proteobacteria
Proteobacteria - enzymology
Proteobacteria - genetics
Redox reactions
Riboflavin - biosynthesis
Sequence Homology, Amino Acid
Shewanella oneidensis
Vitamin B
Title Description of a Riboflavin Biosynthetic Gene Variant Prevalent in the Phylum Proteobacteria
URI http://jb.asm.org/content/195/24/5479.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24097946
https://www.proquest.com/docview/1464789991
https://www.proquest.com/docview/1461869400
https://www.proquest.com/docview/1664198545
https://www.proquest.com/docview/1678528368
https://pubmed.ncbi.nlm.nih.gov/PMC3889622
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBehY7CXse957YYGfVpwFsuyJD-2-yqBjjHakYeBkWyZZmTOaJKx7K_fnS0rdslKtxcTrLMd636S7uS73xFyKLH4SYnBrWnEQm5sEaZagteaG6VKJWJpMd_59KM4OeeTaTIdDH51opbWKzPKf-_MK_kfrcI50Ctmyf6DZv1N4QT8Bv3CETQMxxvpGJxGP-jrPMfPM1jU5vrnrMIik8tNBeYdMrIiufTwC7jF0I8YdQF_AmMAXIzjp4vNHOPhkbIBhndN36z_YrW65t5mPOBjBcZqvZmMlvnw7cjbx1a3HAWLajM89Q0fLvW8clXcXTbZ8GjU3YOI4k48R5sTEMG02dQ6HNlmKkWmUixK1Jtrm4qaDlSMd6bOhDdVZdwyDJ6U2D3FM0xbmBxjRF4ShVG8Xcnar_dXFjgfdlg7PExlk-OsvjjDcse3GDgYdZr41AcHgZeZOJ755r1cZidc_Lrz5L4t0_JL7_JVrobcdmyYs3vkrlMjPWqQdJ8MbPWA3G7KkW4ekq8dPNFFSTXd4ol28UQRT9ThiXo8URADAdrgifbx9Iicv3939uYkdNU3wjwZs1WY4E6AHo_z2GpkEUQ6aysLM46NiJkxpgDrVOfSlAJsemnA0uUFz3NhVZKyvIwfk71qUdmnhOZalbKAVqZjDvdT0ihj08LYWJbgYQTkVduPWe6o6bFCyjzbobGAHHrhHw0jy26x_VYhmV5-z76ZDMCXMZ4h0AJy0OoocwN6iV4wlwo9poC89M0w3eI3NF3ZxbqWwSJusPJdIyMEj1IFvsl1MlIhr5JQAXnSQMO_DUMOupSLgMgeaLwAUsL3W6rZRU0NHyuVCsae3ayP9smd7Wg-IHury7V9Djb2yryoh8Mf2YbQVA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Description+of+a+Riboflavin+Biosynthetic+Gene+Variant+Prevalent+in+the+Phylum+Proteobacteria&rft.jtitle=Journal+of+bacteriology&rft.au=Brutinel%2C+Evan+D.&rft.au=Dean%2C+Antony+M.&rft.au=Gralnick%2C+Jeffrey+A.&rft.date=2013-12-01&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=195&rft.issue=24&rft.spage=5479&rft.epage=5486&rft_id=info:doi/10.1128%2FJB.00651-13&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JB_00651_13
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon