Description of a Riboflavin Biosynthetic Gene Variant Prevalent in the Phylum Proteobacteria
Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commer...
Saved in:
Published in | Journal of Bacteriology Vol. 195; no. 24; pp. 5479 - 5486 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
JB
About
JB
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JB
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0021-9193
Online ISSN:
1098-5530
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JB
.asm.org, visit:
JB
|
---|---|
AbstractList | Riboflavin (vitamin B2) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular redox reactions. Microorganisms synthesize flavins de novo to fulfill nutritional requirements, but it is becoming increasingly clear that flavins play a wider role in cellular physiology than was previously appreciated. Flavins mediate diverse processes beyond the cytoplasmic membrane, including iron acquisition, extracellular respiration, and interspecies interactions. While investigating the regulation of flavin electron shuttle biosynthesis in the Gram-negative gammaproteobacterium Shewanella oneidensis, we discovered that a riboflavin biosynthetic gene (ribBA) annotated as encoding a bifunctional 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase/GTP cyclohydrolase II does not possess both functions. The novel gene, renamed ribBX here, encodes an amino-terminal DHBP synthase domain. The carboxy-terminal end of RibBX not only lacks GTP cyclohydrolase II activity but also has evolved a different function altogether in S. oneidensis, regulating the activity of the DHBP synthase domain. Phylogenetic analysis revealed that the misannotation of ribBX as ribBA is rampant throughout the phylum Proteobacteria (40% of 2,173 annotated ribBA genes) and that ribBX emerged early in the evolution of this group of microorganisms. We examined the functionality of representative ribBX genes from Beta-, Gamma-, and Epsilonproteobacteria and found that, consistent with sequence-based predictions, the encoded GTP cyclohydrolase II domains lack catalytic activity. The persistence of ribBX in the genomes of so many phylogenetically divergent bacterial species lends weight to the argument that ribBX has evolved a function which lends a selective advantage to the host. Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: JB Riboflavin (vitamin B2) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular redox reactions. Microorganisms synthesize flavins de novo to fulfill nutritional requirements, but it is becoming increasingly clear that flavins play a wider role in cellular physiology than was previously appreciated. Flavins mediate diverse processes beyond the cytoplasmic membrane, including iron acquisition, extracellular respiration, and interspecies interactions. While investigating the regulation of flavin electron shuttle biosynthesis in the Gram-negative gammaproteobacterium Shewanella oneidensis, we discovered that a riboflavin biosynthetic gene (ribBA) annotated as encoding a bifunctional 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase/GTP cyclohydrolase II does not possess both functions. The novel gene, renamed ribBX here, encodes an amino-terminal DHBP synthase domain. The carboxy-terminal end of RibBX not only lacks GTP cyclohydrolase II activity but also has evolved a different function altogether in S. oneidensis, regulating the activity of the DHBP synthase domain. Phylogenetic analysis revealed that the misannotation of ribBX as ribBA is rampant throughout the phylum Proteobacteria (40% of 2,173 annotated ribBA genes) and that ribBX emerged early in the evolution of this group of microorganisms. We examined the functionality of representative ribBX genes from Beta-, Gamma-, and Epsilonproteobacteria and found that, consistent with sequence-based predictions, the encoded GTP cyclohydrolase II domains lack catalytic activity. The persistence of ribBX in the genomes of so many phylogenetically divergent bacterial species lends weight to the argument that ribBX has evolved a function which lends a selective advantage to the host.Riboflavin (vitamin B2) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular redox reactions. Microorganisms synthesize flavins de novo to fulfill nutritional requirements, but it is becoming increasingly clear that flavins play a wider role in cellular physiology than was previously appreciated. Flavins mediate diverse processes beyond the cytoplasmic membrane, including iron acquisition, extracellular respiration, and interspecies interactions. While investigating the regulation of flavin electron shuttle biosynthesis in the Gram-negative gammaproteobacterium Shewanella oneidensis, we discovered that a riboflavin biosynthetic gene (ribBA) annotated as encoding a bifunctional 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase/GTP cyclohydrolase II does not possess both functions. The novel gene, renamed ribBX here, encodes an amino-terminal DHBP synthase domain. The carboxy-terminal end of RibBX not only lacks GTP cyclohydrolase II activity but also has evolved a different function altogether in S. oneidensis, regulating the activity of the DHBP synthase domain. Phylogenetic analysis revealed that the misannotation of ribBX as ribBA is rampant throughout the phylum Proteobacteria (40% of 2,173 annotated ribBA genes) and that ribBX emerged early in the evolution of this group of microorganisms. We examined the functionality of representative ribBX genes from Beta-, Gamma-, and Epsilonproteobacteria and found that, consistent with sequence-based predictions, the encoded GTP cyclohydrolase II domains lack catalytic activity. The persistence of ribBX in the genomes of so many phylogenetically divergent bacterial species lends weight to the argument that ribBX has evolved a function which lends a selective advantage to the host. Riboflavin (vitamin B 2 ) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular redox reactions. Microorganisms synthesize flavins de novo to fulfill nutritional requirements, but it is becoming increasingly clear that flavins play a wider role in cellular physiology than was previously appreciated. Flavins mediate diverse processes beyond the cytoplasmic membrane, including iron acquisition, extracellular respiration, and interspecies interactions. While investigating the regulation of flavin electron shuttle biosynthesis in the Gram-negative gammaproteobacterium Shewanella oneidensis , we discovered that a riboflavin biosynthetic gene ( ribBA ) annotated as encoding a bifunctional 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase/GTP cyclohydrolase II does not possess both functions. The novel gene, renamed ribBX here, encodes an amino-terminal DHBP synthase domain. The carboxy-terminal end of RibBX not only lacks GTP cyclohydrolase II activity but also has evolved a different function altogether in S. oneidensis , regulating the activity of the DHBP synthase domain. Phylogenetic analysis revealed that the misannotation of ribBX as ribBA is rampant throughout the phylum Proteobacteria (40% of 2,173 annotated ribBA genes) and that ribBX emerged early in the evolution of this group of microorganisms. We examined the functionality of representative ribBX genes from Beta -, Gamma -, and Epsilonproteobacteria and found that, consistent with sequence-based predictions, the encoded GTP cyclohydrolase II domains lack catalytic activity. The persistence of ribBX in the genomes of so many phylogenetically divergent bacterial species lends weight to the argument that ribBX has evolved a function which lends a selective advantage to the host. Riboflavin (vitamin B2) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular redox reactions. Microorganisms synthesize flavins de novo to fulfill nutritional requirements, but it is becoming increasingly clear that flavins play a wider role in cellular physiology than was previously appreciated. Flavins mediate diverse processes beyond the cytoplasmic membrane, including iron acquisition, extracellular respiration, and interspecies interactions. While investigating the regulation of flavin electron shuttle biosynthesis in the Gram-negative gammaproteobacterium Shewanella oneidensis, we discovered that a riboflavin biosynthetic gene (ribBA) annotated as encoding a bifunctional 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase/GTP cyclohydrolase II does not possess both functions. The novel gene, renamed ribBX here, encodes an amino-terminal DHBP synthase domain. The carboxy-terminal end of RibBX not only lacks GTP cyclohydrolase II activity but also has evolved a different function altogether in S. oneidensis, regulating the activity of the DHBP synthase domain. Phylogenetic analysis revealed that the misannotation of ribBX as ribBA is rampant throughout the phylum Proteobacteria (40% of 2,173 annotated ribBA genes) and that ribBX emerged early in the evolution of this group of microorganisms. We examined the functionality of representative ribBX genes from Beta-, Gamma-, and Epsilonproteobacteria and found that, consistent with sequence-based predictions, the encoded GTP cyclohydrolase II domains lack catalytic activity. The persistence of ribBX in the genomes of so many phylogenetically divergent bacterial species lends weight to the argument that ribBX has evolved a function which lends a selective advantage to the host. [PUBLICATION ABSTRACT] |
Author | Antony M. Dean Jeffrey A. Gralnick Evan D. Brutinel |
Author_xml | – sequence: 1 givenname: Evan D. surname: Brutinel fullname: Brutinel, Evan D. organization: BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA – sequence: 2 givenname: Antony M. surname: Dean fullname: Dean, Antony M. organization: BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA, Department of Ecology, Evolution & Behavior, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA – sequence: 3 givenname: Jeffrey A. surname: Gralnick fullname: Gralnick, Jeffrey A. organization: BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA, Department of Microbiology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24097946$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt1rFDEUxYNU7Lb65LsM-iLI1Hx_vBTcqtVSsIj6JIQkm-lkmU3WZGZl_3uzbitaBH1KyP3dwzm59wgcxBQ9AI8RPEEIy5cX8xMIOUMtIvfADEEuWikJPgAzCDFqFVLkEByVsoQQUcrwA3CIKVRCUT4DX1_74nJYjyHFJnWNaT4Gm7rBbEJs5iGVbRx7PwbXnPvomy8mBxPH5ir7jRl8vVWsAs1Vvx2mVX1Po0_WuNFX8CG435mh-Ec35zH4_PbNp7N37eWH8_dnry5bxyAeW4YxZgZCR7yprgjHgnmxsJBYTrC1dgEFMk7YjiNOhCVK0QV1jnvJFHYdOQane931ZFd-4aqvbAa9zmFl8lYnE_SflRh6fZ02mkipOMZV4PmNQE7fJl9GvQrF-WEw0aepaMSFZFgSLv8D5RQpySj7N0o5klxRCCv67A66TFOO9dN2FBVSKYUq9eT3nL8C3o6zAmgPuJxKyb7TLoxmN9saOwwaQb1bGX0x1z9XRiNSe17c6bmV_Tv9dE_34br_HrLXpqz00mqkWPWhGRWK_ACAMctM |
CODEN | JOBAAY |
CitedBy_id | crossref_primary_10_1042_BJ20141237 crossref_primary_10_1111_1462_2920_15066 crossref_primary_10_1016_j_bioactmat_2024_01_007 crossref_primary_10_1021_acs_est_6b04640 crossref_primary_10_1080_1040841X_2016_1192578 crossref_primary_10_1007_s00203_015_1154_8 crossref_primary_10_1094_MPMI_11_13_0338_R crossref_primary_10_1186_s13099_017_0159_z crossref_primary_10_1039_D1EM00108F crossref_primary_10_1146_annurev_micro_032221_023725 crossref_primary_10_1111_imcb_12057 crossref_primary_10_1016_j_chembiol_2019_02_011 crossref_primary_10_1128_msystems_01259_24 crossref_primary_10_1002_bit_28172 crossref_primary_10_1094_MPMI_34_1 crossref_primary_10_1186_s13099_017_0214_9 crossref_primary_10_1094_MPMI_07_20_0209_R crossref_primary_10_1007_s00248_018_1214_0 crossref_primary_10_1016_j_bioelechem_2019_04_022 crossref_primary_10_1021_acs_est_1c03713 crossref_primary_10_1080_21505594_2023_2187025 |
Cites_doi | 10.1073/pnas.86.7.2172 10.1093/nar/gkh340 10.1073/pnas.0710525105 10.1093/molbev/msp259 10.1007/0-387-30746-X_45 10.1038/nprot.2009.2 10.1073/pnas.212628899 10.1016/S0076-6879(02)58087-3 10.1073/pnas.96.22.12275 10.1073/pnas.231323598 10.1094/MPMI.2002.15.5.456 10.1093/nar/gkn201 10.1111/j.1365-2958.2012.08196.x 10.1128/AEM.00935-10 10.1128/AEM.01919-07 10.1093/bioinformatics/btl446 10.1016/S0969-2126(00)00550-5 10.1128/JB.00925-09 10.1128/AEM.01460-12 10.1038/sj.jim.2900590 10.1128/jb.174.12.4050-4056.1992 10.1093/nar/gkf433 10.1094/MPMI-21-9-1184 10.1128/MMBR.00030-10 10.1111/j.1365-2958.2010.07353.x 10.1074/jbc.M507725200 10.1128/AEM.01387-07 10.1128/AEM.32.6.781-791.1976 10.1146/annurev.micro.61.080706.093257 |
ContentType | Journal Article |
Copyright | Copyright American Society for Microbiology Dec 2013 Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology |
Copyright_xml | – notice: Copyright American Society for Microbiology Dec 2013 – notice: Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1128/JB.00651-13 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic CrossRef Genetics Abstracts AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1067-8832 1098-5530 |
EndPage | 5486 |
ExternalDocumentID | PMC3889622 3145452931 24097946 10_1128_JB_00651_13 jb_195_24_5479 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 0R~ 18M 29J 2WC 39C 4.4 53G 5GY 5RE 5VS 79B 85S AAGFI AAYXX ABPPZ ACGFO ACGOD ACNCT ACPRK ADBBV AENEX AFRAH AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CITATION CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 L7B O9- OK1 P-S P2P PQQKQ RHI RNS RPM RSF RXW TAE TR2 UHB UKR UPT W8F WH7 WOQ X7M YQT YR2 YZZ ZCA ~02 ~KM .GJ 186 1VV 3O- 8WZ 9M8 A6W ADXHL AFFDN AFFNX AGCDD AI. AIDAL AJUXI C1A CGR CUY CVF ECM EIF MVM NHB NPM OHT P-O QZG VH1 WHG Y6R ZCG ZGI ZXP ZY4 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c502t-52225a00c3ea79436275e7db03b632bbbd071ac7bf61637b3994d4cc6e8592cf3 |
ISSN | 0021-9193 1098-5530 |
IngestDate | Thu Aug 21 13:48:31 EDT 2025 Fri Jul 11 12:10:24 EDT 2025 Fri Jul 11 01:09:41 EDT 2025 Fri Jul 11 07:51:04 EDT 2025 Mon Jun 30 08:38:12 EDT 2025 Mon Jul 21 06:04:29 EDT 2025 Thu Apr 24 22:51:33 EDT 2025 Tue Jul 01 03:26:25 EDT 2025 Wed May 18 15:26:54 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c502t-52225a00c3ea79436275e7db03b632bbbd071ac7bf61637b3994d4cc6e8592cf3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://jb.asm.org/content/jb/195/24/5479.full.pdf |
PMID | 24097946 |
PQID | 1464789991 |
PQPubID | 40724 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1128_JB_00651_13 highwire_asm_jb_195_24_5479 proquest_miscellaneous_1678528368 proquest_miscellaneous_1664198545 crossref_primary_10_1128_JB_00651_13 pubmed_primary_24097946 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3889622 proquest_miscellaneous_1461869400 proquest_journals_1464789991 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of Bacteriology |
PublicationTitleAlternate | J Bacteriol |
PublicationYear | 2013 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | Yang G (e_1_3_3_11_2) 2002; 15 Liao DI (e_1_3_3_30_2) 2001; 9 Jones DT (e_1_3_3_26_2) 1992; 8 Boretskii Iu R (e_1_3_3_35_2) 1992; 57 e_1_3_3_16_2 Schramek N (e_1_3_3_33_2) 2001; 276 e_1_3_3_19_2 Bandrin SV (e_1_3_3_17_2) 1983; 19 e_1_3_3_18_2 Brutinel ED (e_1_3_3_28_2) 2012; 86 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_10_2 Hümbelin M (e_1_3_3_13_2) 1999; 22 Kelly MJ (e_1_3_3_31_2) 2001; 98 Fassbinder F (e_1_3_3_3_2) 2000; 191 e_1_3_3_6_2 Nealson KH (e_1_3_3_15_2) 2006 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_9_2 Daines DA (e_1_3_3_21_2) 2002; 358 e_1_3_3_27_2 Ren J (e_1_3_3_29_2) 2005; 280 e_1_3_3_24_2 e_1_3_3_23_2 Winkler WC (e_1_3_3_14_2) 2002; 99 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_4_2 Rajamani S (e_1_3_3_12_2) 2008; 21 e_1_3_3_22_2 12456892 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15908-13 19247286 - Nat Protoc. 2009;4(3):363-71 21646432 - Microbiol Mol Biol Rev. 2011 Jun;75(2):321-60 16115872 - J Biol Chem. 2005 Nov 4;280(44):36912-9 18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23 12136096 - Nucleic Acids Res. 2002 Jul 15;30(14):3141-51 11342130 - Structure. 2001 Jan 10;9(1):11-8 1391211 - Biokhimiia. 1992 Jul;57(7):1021-30 22925268 - Mol Microbiol. 2012 Oct;86(2):273-83 1597419 - J Bacteriol. 1992 Jun;174(12):4050-6 18440982 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9 11553632 - J Biol Chem. 2001 Nov 23;276(47):44157-62 15034147 - Nucleic Acids Res. 2004;32(5):1792-7 16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90 12036276 - Mol Plant Microbe Interact. 2002 May;15(5):456-62 20807196 - Mol Microbiol. 2010 Oct;78(2):519-32 827241 - Appl Environ Microbiol. 1976 Dec;32(6):781-91 20833792 - Appl Environ Microbiol. 2010 Nov;76(21):7356-8 22843516 - Appl Environ Microbiol. 2012 Oct;78(19):6987-95 17965203 - Appl Environ Microbiol. 2007 Dec;73(24):7819-25 10535912 - Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12275-80 2648393 - Proc Natl Acad Sci U S A. 1989 Apr;86(7):2172-5 19897659 - J Bacteriol. 2010 Jan;192(2):467-74 6315532 - Genetika. 1983 Sep;19(9):1419-25 11687623 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13025-30 11024263 - FEMS Microbiol Lett. 2000 Oct 15;191(2):191-7 19854763 - Mol Biol Evol. 2010 Feb;27(2):221-4 18700823 - Mol Plant Microbe Interact. 2008 Sep;21(9):1184-92 18035608 - Annu Rev Microbiol. 2007;61:237-58 12474385 - Methods Enzymol. 2002;358:153-61 1633570 - Comput Appl Biosci. 1992 Jun;8(3):275-82 18316736 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3968-73 |
References_xml | – ident: e_1_3_3_20_2 doi: 10.1073/pnas.86.7.2172 – ident: e_1_3_3_23_2 doi: 10.1093/nar/gkh340 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.0710525105 – ident: e_1_3_3_24_2 doi: 10.1093/molbev/msp259 – volume: 8 start-page: 275 year: 1992 ident: e_1_3_3_26_2 article-title: The rapid generation of mutation data matrices from protein sequences publication-title: Comput. Appl. Biosci. – start-page: 1133 volume-title: Prokaryotes year: 2006 ident: e_1_3_3_15_2 doi: 10.1007/0-387-30746-X_45 – ident: e_1_3_3_32_2 doi: 10.1038/nprot.2009.2 – volume: 99 start-page: 15908 year: 2002 ident: e_1_3_3_14_2 article-title: An mRNA structure that controls gene expression by binding FMN publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.212628899 – volume: 358 start-page: 153 year: 2002 ident: e_1_3_3_21_2 article-title: Use of LexA-based system to identify protein-protein interactions in vivo publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(02)58087-3 – ident: e_1_3_3_10_2 doi: 10.1073/pnas.96.22.12275 – volume: 276 start-page: 44157 year: 2001 ident: e_1_3_3_33_2 article-title: Biosynthesis of riboflavin. Single turnover kinetic analysis of GTP cyclohydrolase II publication-title: J. Biol. Chem. – volume: 98 start-page: 13025 year: 2001 ident: e_1_3_3_31_2 article-title: The NMR structure of the 47-kDa dimeric enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase and ligand binding studies reveal the location of the active site publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.231323598 – volume: 15 start-page: 456 year: 2002 ident: e_1_3_3_11_2 article-title: Roles for riboflavin in the Sinorhizobium-alfalfa association publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI.2002.15.5.456 – ident: e_1_3_3_22_2 doi: 10.1093/nar/gkn201 – volume: 86 start-page: 273 year: 2012 ident: e_1_3_3_28_2 article-title: Anomalies of the anaerobic tricarboxylic acid cycle in Shewanella oneidensis revealed by Tn-seq publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2012.08196.x – ident: e_1_3_3_5_2 doi: 10.1128/AEM.00935-10 – ident: e_1_3_3_4_2 doi: 10.1128/AEM.01919-07 – ident: e_1_3_3_25_2 doi: 10.1093/bioinformatics/btl446 – volume: 19 start-page: 1419 year: 1983 ident: e_1_3_3_17_2 article-title: 3 linkage groups of the genes of riboflavin biosynthesis in Escherichia coli publication-title: Genetika – volume: 9 start-page: 11 year: 2001 ident: e_1_3_3_30_2 article-title: Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase of riboflavin biosynthesis publication-title: Structure doi: 10.1016/S0969-2126(00)00550-5 – ident: e_1_3_3_6_2 doi: 10.1128/JB.00925-09 – ident: e_1_3_3_9_2 doi: 10.1128/AEM.01460-12 – volume: 22 start-page: 1 year: 1999 ident: e_1_3_3_13_2 article-title: GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1038/sj.jim.2900590 – ident: e_1_3_3_34_2 doi: 10.1128/jb.174.12.4050-4056.1992 – ident: e_1_3_3_27_2 doi: 10.1093/nar/gkf433 – volume: 21 start-page: 1184 year: 2008 ident: e_1_3_3_12_2 article-title: The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-21-9-1184 – ident: e_1_3_3_2_2 doi: 10.1128/MMBR.00030-10 – volume: 191 start-page: 191 year: 2000 ident: e_1_3_3_3_2 article-title: Structural and functional analysis of the riboflavin synthesis genes encoding GTP cyclohydrolase II (ribA), DHBP synthase (ribBA), riboflavin synthase (ribC), and riboflavin deaminase/reductase (ribD) from Helicobacter pylori strain P1. FEMS Microbiol publication-title: Lett. – ident: e_1_3_3_19_2 doi: 10.1111/j.1365-2958.2010.07353.x – volume: 280 start-page: 36912 year: 2005 ident: e_1_3_3_29_2 article-title: GTP cyclohydrolase II structure and mechanism publication-title: J. Biol. Chem. doi: 10.1074/jbc.M507725200 – ident: e_1_3_3_7_2 doi: 10.1128/AEM.01387-07 – ident: e_1_3_3_18_2 doi: 10.1128/AEM.32.6.781-791.1976 – ident: e_1_3_3_16_2 doi: 10.1146/annurev.micro.61.080706.093257 – volume: 57 start-page: 1021 year: 1992 ident: e_1_3_3_35_2 article-title: Purification and properties of GTP-cyclohydrolase from Bacillus subtilis publication-title: Biokhimiia – reference: 11687623 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13025-30 – reference: 1391211 - Biokhimiia. 1992 Jul;57(7):1021-30 – reference: 1597419 - J Bacteriol. 1992 Jun;174(12):4050-6 – reference: 1633570 - Comput Appl Biosci. 1992 Jun;8(3):275-82 – reference: 16115872 - J Biol Chem. 2005 Nov 4;280(44):36912-9 – reference: 18700823 - Mol Plant Microbe Interact. 2008 Sep;21(9):1184-92 – reference: 21646432 - Microbiol Mol Biol Rev. 2011 Jun;75(2):321-60 – reference: 11342130 - Structure. 2001 Jan 10;9(1):11-8 – reference: 20833792 - Appl Environ Microbiol. 2010 Nov;76(21):7356-8 – reference: 19854763 - Mol Biol Evol. 2010 Feb;27(2):221-4 – reference: 19247286 - Nat Protoc. 2009;4(3):363-71 – reference: 12474385 - Methods Enzymol. 2002;358:153-61 – reference: 12456892 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15908-13 – reference: 18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23 – reference: 18035608 - Annu Rev Microbiol. 2007;61:237-58 – reference: 2648393 - Proc Natl Acad Sci U S A. 1989 Apr;86(7):2172-5 – reference: 10535912 - Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12275-80 – reference: 22843516 - Appl Environ Microbiol. 2012 Oct;78(19):6987-95 – reference: 17965203 - Appl Environ Microbiol. 2007 Dec;73(24):7819-25 – reference: 18440982 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9 – reference: 20807196 - Mol Microbiol. 2010 Oct;78(2):519-32 – reference: 22925268 - Mol Microbiol. 2012 Oct;86(2):273-83 – reference: 6315532 - Genetika. 1983 Sep;19(9):1419-25 – reference: 12136096 - Nucleic Acids Res. 2002 Jul 15;30(14):3141-51 – reference: 18316736 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3968-73 – reference: 19897659 - J Bacteriol. 2010 Jan;192(2):467-74 – reference: 16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90 – reference: 12036276 - Mol Plant Microbe Interact. 2002 May;15(5):456-62 – reference: 11024263 - FEMS Microbiol Lett. 2000 Oct 15;191(2):191-7 – reference: 11553632 - J Biol Chem. 2001 Nov 23;276(47):44157-62 – reference: 827241 - Appl Environ Microbiol. 1976 Dec;32(6):781-91 – reference: 15034147 - Nucleic Acids Res. 2004;32(5):1792-7 |
SSID | ssj0014452 |
Score | 2.2279108 |
Snippet | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... Riboflavin (vitamin B 2 ) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular... Riboflavin (vitamin B2) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5479 |
SubjectTerms | Bacteriology Biosynthesis Biosynthetic Pathways - genetics catalytic activity cell membranes Cytoplasm epsilon-Proteobacteria Evolution, Molecular flavin-adenine dinucleotide genes Genomes Gram-negative bacteria GTP cyclohydrolase I guanosine triphosphate interspecific competition Intramolecular Transferases - genetics Intramolecular Transferases - metabolism Microorganisms nutrient requirements Nutrition Nutritional requirements Phylogenetics Phylogeny prediction Protein Structure, Tertiary Proteobacteria Proteobacteria - enzymology Proteobacteria - genetics Redox reactions Riboflavin - biosynthesis Sequence Homology, Amino Acid Shewanella oneidensis Vitamin B |
Title | Description of a Riboflavin Biosynthetic Gene Variant Prevalent in the Phylum Proteobacteria |
URI | http://jb.asm.org/content/195/24/5479.abstract https://www.ncbi.nlm.nih.gov/pubmed/24097946 https://www.proquest.com/docview/1464789991 https://www.proquest.com/docview/1461869400 https://www.proquest.com/docview/1664198545 https://www.proquest.com/docview/1678528368 https://pubmed.ncbi.nlm.nih.gov/PMC3889622 |
Volume | 195 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBehY7CXse957YYGfVpwFsuyJD-2-yqBjjHakYeBkWyZZmTOaJKx7K_fnS0rdslKtxcTrLMd636S7uS73xFyKLH4SYnBrWnEQm5sEaZagteaG6VKJWJpMd_59KM4OeeTaTIdDH51opbWKzPKf-_MK_kfrcI50Ctmyf6DZv1N4QT8Bv3CETQMxxvpGJxGP-jrPMfPM1jU5vrnrMIik8tNBeYdMrIiufTwC7jF0I8YdQF_AmMAXIzjp4vNHOPhkbIBhndN36z_YrW65t5mPOBjBcZqvZmMlvnw7cjbx1a3HAWLajM89Q0fLvW8clXcXTbZ8GjU3YOI4k48R5sTEMG02dQ6HNlmKkWmUixK1Jtrm4qaDlSMd6bOhDdVZdwyDJ6U2D3FM0xbmBxjRF4ShVG8Xcnar_dXFjgfdlg7PExlk-OsvjjDcse3GDgYdZr41AcHgZeZOJ755r1cZidc_Lrz5L4t0_JL7_JVrobcdmyYs3vkrlMjPWqQdJ8MbPWA3G7KkW4ekq8dPNFFSTXd4ol28UQRT9ThiXo8URADAdrgifbx9Iicv3939uYkdNU3wjwZs1WY4E6AHo_z2GpkEUQ6aysLM46NiJkxpgDrVOfSlAJsemnA0uUFz3NhVZKyvIwfk71qUdmnhOZalbKAVqZjDvdT0ihj08LYWJbgYQTkVduPWe6o6bFCyjzbobGAHHrhHw0jy26x_VYhmV5-z76ZDMCXMZ4h0AJy0OoocwN6iV4wlwo9poC89M0w3eI3NF3ZxbqWwSJusPJdIyMEj1IFvsl1MlIhr5JQAXnSQMO_DUMOupSLgMgeaLwAUsL3W6rZRU0NHyuVCsae3ayP9smd7Wg-IHury7V9Djb2yryoh8Mf2YbQVA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Description+of+a+Riboflavin+Biosynthetic+Gene+Variant+Prevalent+in+the+Phylum+Proteobacteria&rft.jtitle=Journal+of+bacteriology&rft.au=Brutinel%2C+Evan+D.&rft.au=Dean%2C+Antony+M.&rft.au=Gralnick%2C+Jeffrey+A.&rft.date=2013-12-01&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=195&rft.issue=24&rft.spage=5479&rft.epage=5486&rft_id=info:doi/10.1128%2FJB.00651-13&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JB_00651_13 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon |