Genome-Wide Analysis of Histone Modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. Japonica

While previous studies have shown that histone modifications could influence plant growth and devel- opment by regulating gene transcription, knowledge about the relationships between these modifications and gene expression is still limited. This study used chromatin immunoprecipitation followed by...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant Vol. 6; no. 5; pp. 1463 - 1472
Main Authors Du, Zhou, Li, Hui, Wei, Qiang, Zhao, Xin, Wang, Chunchao, Zhu, Qilin, Yi, Xin, Xu, Wenying, Liu, X. Shirley, Jin, Weiwei, Su, Zhen
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.09.2013
Cell Press
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While previous studies have shown that histone modifications could influence plant growth and devel- opment by regulating gene transcription, knowledge about the relationships between these modifications and gene expression is still limited. This study used chromatin immunoprecipitation followed by high-throughput sequencing (ChlP-Seq), to investigate the genome-wide distribution of four histone modifications: di and trimethylation of H3K4 (H3K4me2 and H3K4me3) and acylation of H3K9 and H3K27 (H3K9ac and H3K27ac) in Oryza sativa L. japonica. By analyz- ing published DNase-Seq data, this study explored DNase-Hypersensitive (DH) sites along the rice genome. The histone marks appeared mainly in generic regions and were enriched around the transcription start sites (TSSs) of genes. This analysis demonstrated that the four histone modifications and the DH sites were all associated with active transcription. Furthermore, the four histone modifications were highly concurrent with transcript regions-a promising feature that was used to predict missing genes in the rice gene annotation. The predictions were further validated by experimentally confirming the transcription of two predicted missing genes. Moreover, a sequence motif analysis was constructed in order to identify the DH sites and many putative transcription factor binding sites.
AbstractList SUMMARY H3K4me2/3, H3K9ac, and H3K27ac investigated by ChIP-Seq showed enrichment in generic regions and transcription start sites, and associated with active transcription in rice. They were used to discover unannotated genes and to predict transcription factor binding sites together with DNase-Seq data. While previous studies have shown that histone modifications could influence plant growth and development by regulating gene transcription, knowledge about the relationships between these modifications and gene expression is still limited. This study used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq), to investigate the genome-wide distribution of four histone modifications: di and trimethylation of H3K4 (H3K4me2 and H3K4me3) and acylation of H3K9 and H3K27 (H3K9ac and H3K27ac) in Oryza sativa L. japonica. By analyzing published DNase-Seq data, this study explored DNase-Hypersensitive (DH) sites along the rice genome. The histone marks appeared mainly in generic regions and were enriched around the transcription start sites (TSSs) of genes. This analysis demonstrated that the four histone modifications and the DH sites were all associated with active transcription. Furthermore, the four histone modifications were highly concurrent with transcript regions--a promising feature that was used to predict missing genes in the rice gene annotation. The predictions were further validated by experimentally confirming the transcription of two predicted missing genes. Moreover, a sequence motif analysis was constructed in order to identify the DH sites and many putative transcription factor binding sites. [PUBLICATION ABSTRACT]
While previous studies have shown that histone modifications could influence plant growth and development by regulating gene transcription, knowledge about the relationships between these modifications and gene expression is still limited. This study used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq), to investigate the genome-wide distribution of four histone modifications: di and trimethylation of H3K4 (H3K4me2 and H3K4me3) and acylation of H3K9 and H3K27 (H3K9ac and H3K27ac) in Oryza sativa L. japonica. By analyzing published DNase-Seq data, this study explored DNase-Hypersensitive (DH) sites along the rice genome. The histone marks appeared mainly in generic regions and were enriched around the transcription start sites (TSSs) of genes. This analysis demonstrated that the four histone modifications and the DH sites were all associated with active transcription. Furthermore, the four histone modifications were highly concurrent with transcript regions—a promising feature that was used to predict missing genes in the rice gene annotation. The predictions were further validated by experimentally confirming the transcription of two predicted missing genes. Moreover, a sequence motif analysis was constructed in order to identify the DH sites and many putative transcription factor binding sites.H3K4me2/3, H3K9ac, and H3K27ac investigated by ChIP-Seq showed enrichment in generic regions and transcription start sites, and associated with active transcription in rice. They were used to discover unannotated genes and to predict transcription factor binding sites together with DNase-Seq data.
While previous studies have shown that histone modifications could influence plant growth and development by regulating gene transcription, knowledge about the relationships between these modifications and gene expression is still limited. This study used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq), to investigate the genome-wide distribution of four histone modifications: di and trimethylation of H3K4 (H3K4me2 and H3K4me3) and acylation of H3K9 and H3K27 (H3K9ac and H3K27ac) in Oryza sativa L. japonica. By analyzing published DNase-Seq data, this study explored DNase-Hypersensitive (DH) sites along the rice genome. The histone marks appeared mainly in generic regions and were enriched around the transcription start sites (TSSs) of genes. This analysis demonstrated that the four histone modifications and the DH sites were all associated with active transcription. Furthermore, the four histone modifications were highly concurrent with transcript regions—a promising feature that was used to predict missing genes in the rice gene annotation. The predictions were further validated by experimentally confirming the transcription of two predicted missing genes. Moreover, a sequence motif analysis was constructed in order to identify the DH sites and many putative transcription factor binding sites. H3K4me2/3, H3K9ac, and H3K27ac investigated by ChIP-Seq showed enrichment in generic regions and transcription start sites, and associated with active transcription in rice. They were used to discover unannotated genes and to predict transcription factor binding sites together with DNase-Seq data.
While previous studies have shown that histone modifications could influence plant growth and development by regulating gene transcription, knowledge about the relationships between these modifications and gene expression is still limited. This study used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq), to investigate the genome-wide distribution of four histone modifications: di and trimethylation of H3K4 (H3K4me2 and H3K4me3) and acylation of H3K9 and H3K27 (H3K9ac and H3K27ac) in Oryza sativa L. japonica. By analyzing published DNase-Seq data, this study explored DNase-Hypersensitive (DH) sites along the rice genome. The histone marks appeared mainly in generic regions and were enriched around the transcription start sites (TSSs) of genes. This analysis demonstrated that the four histone modifications and the DH sites were all associated with active transcription. Furthermore, the four histone modifications were highly concurrent with transcript regions-a promising feature that was used to predict missing genes in the rice gene annotation. The predictions were further validated by experimentally confirming the transcription of two predicted missing genes. Moreover, a sequence motif analysis was constructed in order to identify the DH sites and many putative transcription factor binding sites.
While previous studies have shown that histone modifications could influence plant growth and development by regulating gene transcription, knowledge about the relationships between these modifications and gene expression is still limited. This study used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq), to investigate the genome-wide distribution of four histone modifications: di and trimethylation of H3K4 (H3K4me2 and H3K4me3) and acylation of H3K9 and H3K27 (H3K9ac and H3K27ac) in Oryza sativa L. japonica. By analyzing published DNase-Seq data, this study explored DNase-Hypersensitive (DH) sites along the rice genome. The histone marks appeared mainly in generic regions and were enriched around the transcription start sites (TSSs) of genes. This analysis demonstrated that the four histone modifications and the DH sites were all associated with active transcription. Furthermore, the four histone modifications were highly concurrent with transcript regions-a promising feature that was used to predict missing genes in the rice gene annotation. The predictions were further validated by experimentally confirming the transcription of two predicted missing genes. Moreover, a sequence motif analysis was constructed in order to identify the DH sites and many putative transcription factor binding sites.While previous studies have shown that histone modifications could influence plant growth and development by regulating gene transcription, knowledge about the relationships between these modifications and gene expression is still limited. This study used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq), to investigate the genome-wide distribution of four histone modifications: di and trimethylation of H3K4 (H3K4me2 and H3K4me3) and acylation of H3K9 and H3K27 (H3K9ac and H3K27ac) in Oryza sativa L. japonica. By analyzing published DNase-Seq data, this study explored DNase-Hypersensitive (DH) sites along the rice genome. The histone marks appeared mainly in generic regions and were enriched around the transcription start sites (TSSs) of genes. This analysis demonstrated that the four histone modifications and the DH sites were all associated with active transcription. Furthermore, the four histone modifications were highly concurrent with transcript regions-a promising feature that was used to predict missing genes in the rice gene annotation. The predictions were further validated by experimentally confirming the transcription of two predicted missing genes. Moreover, a sequence motif analysis was constructed in order to identify the DH sites and many putative transcription factor binding sites.
H3K4me2/3, H3K9ac, and H3K27ac investigated by ChIP-Seq showed enrichment in generic regions and transcription start sites, and associated with active transcription in rice. They were used to discover unannotated genes and to predict transcription factor binding sites together with DNase-Seq data. While previous studies have shown that histone modifications could influence plant growth and development by regulating gene transcription, knowledge about the relationships between these modifications and gene expression is still limited. This study used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq), to investigate the genome-wide distribution of four histone modifications: di and trimethylation of H3K4 (H3K4me2 and H3K4me3) and acylation of H3K9 and H3K27 (H3K9ac and H3K27ac) in Oryza sativa L. japonica. By analyzing published DNase-Seq data, this study explored DNase-Hypersensitive (DH) sites along the rice genome. The histone marks appeared mainly in generic regions and were enriched around the transcription start sites (TSSs) of genes. This analysis demonstrated that the four histone modifications and the DH sites were all associated with active transcription. Furthermore, the four histone modifications were highly concurrent with transcript regions—a promising feature that was used to predict missing genes in the rice gene annotation. The predictions were further validated by experimentally confirming the transcription of two predicted missing genes. Moreover, a sequence motif analysis was constructed in order to identify the DH sites and many putative transcription factor binding sites.
While previous studies have shown that histone modifications could influence plant growth and devel- opment by regulating gene transcription, knowledge about the relationships between these modifications and gene expression is still limited. This study used chromatin immunoprecipitation followed by high-throughput sequencing (ChlP-Seq), to investigate the genome-wide distribution of four histone modifications: di and trimethylation of H3K4 (H3K4me2 and H3K4me3) and acylation of H3K9 and H3K27 (H3K9ac and H3K27ac) in Oryza sativa L. japonica. By analyz- ing published DNase-Seq data, this study explored DNase-Hypersensitive (DH) sites along the rice genome. The histone marks appeared mainly in generic regions and were enriched around the transcription start sites (TSSs) of genes. This analysis demonstrated that the four histone modifications and the DH sites were all associated with active transcription. Furthermore, the four histone modifications were highly concurrent with transcript regions-a promising feature that was used to predict missing genes in the rice gene annotation. The predictions were further validated by experimentally confirming the transcription of two predicted missing genes. Moreover, a sequence motif analysis was constructed in order to identify the DH sites and many putative transcription factor binding sites.
Author Zhou Du Hui Li Qiang Wei Xin Zhao Chunchao Wang Qilin Zhu Xin Yi Wenying Xua X. Shirley Liu Weiwei Jin Zhen Su
AuthorAffiliation State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize, Ministry of Agriculture, China Agricultura University, Beijing 100193, China Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, 450 Brookline Ave, Boston, MA 02215, USA These authors contributed equally to the article. Present address: Department of Bioinformatics, School of Life Sciences andTechnology, Tongji University, 1239 Siping Road, Shanghai 200092, China
Author_xml – sequence: 1
  givenname: Zhou
  surname: Du
  fullname: Du, Zhou
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
– sequence: 2
  givenname: Hui
  surname: Li
  fullname: Li, Hui
  organization: National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
– sequence: 3
  givenname: Qiang
  surname: Wei
  fullname: Wei, Qiang
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
– sequence: 4
  givenname: Xin
  surname: Zhao
  fullname: Zhao, Xin
  organization: National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
– sequence: 5
  givenname: Chunchao
  surname: Wang
  fullname: Wang, Chunchao
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
– sequence: 6
  givenname: Qilin
  surname: Zhu
  fullname: Zhu, Qilin
  organization: National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
– sequence: 7
  givenname: Xin
  surname: Yi
  fullname: Yi, Xin
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
– sequence: 8
  givenname: Wenying
  surname: Xu
  fullname: Xu, Wenying
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
– sequence: 9
  givenname: X. Shirley
  surname: Liu
  fullname: Liu, X. Shirley
  email: xsliu@jimmy.harvard.edu
  organization: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, 450 Brookline Ave, Boston, MA 02215, USA
– sequence: 10
  givenname: Weiwei
  surname: Jin
  fullname: Jin, Weiwei
  email: weiweijin@cau.edu.cn
  organization: National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
– sequence: 11
  givenname: Zhen
  surname: Su
  fullname: Su, Zhen
  email: zhensu@cau.edu.cn
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23355544$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEUhUeoiP7AghdARmxA6jT-Hc9sKlUVNEBQNyCWlmPfSV3N2FN7Eik8Cs_CO_EKuElaQVWJlY_k75x77XsPiz0fPBTFS4JPCG7YpB8mKY2Y1E-KAyIFLZu6kntZV5KXFAu6XxymdI1xheuKPSv2KWNCCM4PingBPvRQfncW0JnX3Tq5hEKLpi6NuQr6EqxrndGjCz79_vUTTdln3gM93gm2EY02x0h7e6up1AY5jy7j-odGKTtXGs1O0Cc9BJ-TnhdPW90leLE7j4pvH95_PZ-Ws8uLj-dns9IITMeSW2CY15RKyTmTTFhGeNNiWrFW1rUhgGUD8waEaGtKJG4rWmMLlNkW5tiyo-J0mzss5z1YA36MulNDdL2OaxW0U__eeHelFmGlWM0pYTwHvN0FxHCzhDSq3iUDXac9hGVSFGPMSENx_V-UcMYlp1VNM_rmAXodljH_fKYExlQIvKn96u_m77u-m1wGJlvAxJBShFYZN26mlN_iOkWwut0N1Q9quxvZ8e6B4y70MZZtWcgDWjmIKhkH3oB1EcyobHCPul7vKlwFv7hxfnFfgue1zK1T9geNQ9UC
CitedBy_id crossref_primary_10_1093_nar_gkx919
crossref_primary_10_1038_s41467_022_28453_y
crossref_primary_10_1186_s13020_021_00502_6
crossref_primary_10_1016_j_anireprosci_2014_03_012
crossref_primary_10_3390_genes10050355
crossref_primary_10_1093_nar_gky209
crossref_primary_10_3390_agronomy13020519
crossref_primary_10_1007_s11738_020_3015_6
crossref_primary_10_1186_s12870_024_05318_8
crossref_primary_10_1038_s41477_019_0589_3
crossref_primary_10_1002_pmic_201700036
crossref_primary_10_1371_journal_pgen_1008764
crossref_primary_10_1104_pp_15_00934
crossref_primary_10_1080_15592294_2015_1104446
crossref_primary_10_1186_s13072_017_0132_6
crossref_primary_10_1101_gr_220079_116
crossref_primary_10_1111_pce_13660
crossref_primary_10_7717_peerj_10811
crossref_primary_10_1007_s00299_024_03160_8
crossref_primary_10_1186_s12864_019_5609_1
crossref_primary_10_1007_s13765_016_0236_x
crossref_primary_10_1016_j_bbagrm_2016_06_006
crossref_primary_10_1093_hr_uhae259
crossref_primary_10_1007_s12038_013_9388_6
crossref_primary_10_1016_j_molp_2022_03_009
crossref_primary_10_3390_ijms232112918
crossref_primary_10_3390_ijms24119349
crossref_primary_10_18632_oncotarget_6867
crossref_primary_10_1007_s11033_020_06013_1
crossref_primary_10_1093_jxb_erab072
crossref_primary_10_1016_j_molp_2016_05_013
crossref_primary_10_1038_s41467_018_05829_7
crossref_primary_10_1016_j_csbj_2021_12_027
crossref_primary_10_1080_07391102_2014_1003198
crossref_primary_10_1093_jxb_erw119
crossref_primary_10_1016_j_plaphy_2014_11_012
crossref_primary_10_3389_fphys_2014_00211
crossref_primary_10_1038_s41598_017_09680_6
crossref_primary_10_1093_nar_gku1162
crossref_primary_10_3390_plants12152852
crossref_primary_10_3390_plants5030037
crossref_primary_10_1111_tpj_70040
crossref_primary_10_1007_s11103_017_0636_2
crossref_primary_10_1074_jbc_M114_579292
crossref_primary_10_1111_jipb_12871
crossref_primary_10_1186_s12864_022_09070_x
crossref_primary_10_1007_s11103_023_01375_z
crossref_primary_10_3389_fpls_2014_00803
crossref_primary_10_1093_hr_uhae328
crossref_primary_10_1093_jxb_erac155
crossref_primary_10_1093_pcp_pcae121
crossref_primary_10_2139_ssrn_4102874
crossref_primary_10_1016_j_plantsci_2019_03_009
crossref_primary_10_1038_s41467_019_09513_2
crossref_primary_10_1007_s00425_015_2405_2
crossref_primary_10_1093_nsr_nww042
crossref_primary_10_1111_plb_13057
crossref_primary_10_1021_acs_jafc_0c07035
crossref_primary_10_1186_s12284_019_0342_6
crossref_primary_10_1007_s11103_015_0358_2
crossref_primary_10_1111_mpp_13037
crossref_primary_10_3390_ijms232415950
crossref_primary_10_3389_fgene_2019_00306
crossref_primary_10_1016_j_ygeno_2022_110433
crossref_primary_10_3389_fgene_2020_00766
crossref_primary_10_1093_nar_gky025
crossref_primary_10_1016_j_molp_2020_12_020
crossref_primary_10_1021_acs_jafc_2c08863
crossref_primary_10_1016_j_ygeno_2015_05_005
crossref_primary_10_1007_s00122_019_03518_7
crossref_primary_10_1074_mcp_RA118_000640
crossref_primary_10_1016_j_plantsci_2018_04_010
crossref_primary_10_1093_plphys_kiae229
crossref_primary_10_1186_s12864_019_6038_x
crossref_primary_10_1186_s13072_019_0285_6
crossref_primary_10_3390_plants13152079
crossref_primary_10_3389_fpls_2015_00846
crossref_primary_10_1016_j_csbj_2021_04_068
crossref_primary_10_1038_srep08635
crossref_primary_10_1093_plcell_koaa027
crossref_primary_10_1134_S2079086423020093
crossref_primary_10_1007_s11103_020_00985_1
crossref_primary_10_1038_s41467_020_16457_5
crossref_primary_10_31857_S0042132423010106
crossref_primary_10_1016_j_bbrc_2018_04_048
crossref_primary_10_1038_s41467_024_53300_7
crossref_primary_10_1051_jbio_2017004
crossref_primary_10_3390_plants10040706
crossref_primary_10_1016_j_pbi_2020_08_007
crossref_primary_10_1093_bfgp_ely004
crossref_primary_10_1186_s13059_017_1273_4
crossref_primary_10_3389_fpls_2018_01228
crossref_primary_10_1111_nph_15897
crossref_primary_10_3389_fgene_2022_949027
crossref_primary_10_1016_j_molp_2018_01_007
crossref_primary_10_1007_s13205_020_02331_0
Cites_doi 10.1186/gb-2009-10-6-r62
10.1038/nrg2522
10.1007/s00412-011-0315-z
10.1023/A:1022567625228
10.1093/nar/gkl976
10.1186/1471-2164-12-134
10.1101/gr.116467.110
10.1038/nrg2270
10.1101/gr.229102
10.1093/bioinformatics/btp479
10.1016/j.gde.2009.02.001
10.1101/gr.121541.111
10.1046/j.1365-313X.2002.01294.x
10.1002/j.1460-2075.1993.tb06025.x
10.1073/pnas.1016071107
10.1105/tpc.110.080481
10.1101/gr.131342.111
10.1023/A:1006423324025
10.1038/nbt.1621
10.1038/ng.154
10.1105/tpc.107.056879
10.1016/j.cell.2007.05.009
10.1093/bioinformatics/btp324
10.1038/nature05915
10.1186/gb-2011-12-8-r83
10.1186/gb-2008-9-9-r137
10.1105/tpc.109.066845
10.1101/gr.5509507
10.1038/nrg2905
10.1105/tpc.109.072041
10.1046/j.1365-313X.2003.01971.x
10.1101/gr.112623.110
10.1093/genetics/163.3.1221
10.1016/j.pbi.2007.07.013
10.1007/s10142-012-0263-6
10.1186/1471-2229-10-238
10.1093/nar/gkg108
ContentType Journal Article
Copyright 2013 The Authors. All rights reserved.
The Author 2013. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.
The Author 2013. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS. 2013
Copyright_xml – notice: 2013 The Authors. All rights reserved.
– notice: The Author 2013. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.
– notice: The Author 2013. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS. 2013
DBID 2RA
92L
CQIGP
W94
WU4
~WA
6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
7S9
L.6
5PM
DOI 10.1093/mp/sst018
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
AGRICOLA

MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
DocumentTitleAlternate Genome-Wide Analysis of Histone Modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. Japonica
EISSN 1752-9867
EndPage 1472
ExternalDocumentID PMC3842134
3223572271
23355544
10_1093_mp_sst018
S1674205214602203
47523352
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM99409
– fundername: NIGMS NIH HHS
  grantid: R01 GM099409
GroupedDBID ---
--M
.2P
.I3
0R~
123
1RT
2RA
2WC
4.4
457
53G
6I.
7-5
70D
8P~
92L
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAIYJ
AAKOC
AALRI
AAOAW
AATLK
AAVLN
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABNKS
ABVKL
ABXDB
ABYKQ
ABZBJ
ACDAQ
ACGFS
ACPRK
ACRLP
ADBBV
ADEYI
ADEZE
ADFTL
ADOCK
ADZTZ
AEBSH
AEGPL
AEKER
AENEX
AEXQZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGKEF
AGUBO
AHMBA
AHXPO
AIEXJ
AIJHB
AIKHN
AITUG
AJBFU
AJOXV
AKHUL
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CKLRP
CQIGP
CS3
CW9
CZ4
DU5
E3Z
EBS
EDH
EE~
EFJIC
EFLBG
EJD
ESX
F5P
F9B
FDB
FIRID
FYGXN
GBLVA
H5~
HW0
HZ~
IOX
IXB
KOM
M-Z
M41
M49
N9A
NCXOZ
NU-
O0~
O9-
OAUVE
OK1
OVD
P2P
PQQKQ
Q1.
RCE
RD5
ROL
RW1
RXO
SPCBC
SSA
SSZ
T5K
TEORI
TR2
W8F
W94
WU4
X7H
~91
~G-
~WA
AAHBH
AAMRU
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
H13
SSH
TGP
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
K9.
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c502t-4de30482277443735d3149f0263f788c1e079eb9e55f82170f6280de23dfeb0d3
IEDL.DBID IXB
ISSN 1674-2052
1752-9867
IngestDate Thu Aug 21 14:12:56 EDT 2025
Fri Jul 11 15:15:58 EDT 2025
Thu Jul 10 17:23:05 EDT 2025
Wed Aug 13 08:20:29 EDT 2025
Mon Jul 21 06:03:26 EDT 2025
Thu Apr 24 23:06:58 EDT 2025
Tue Jul 01 01:40:44 EDT 2025
Fri Feb 23 02:27:16 EST 2024
Wed Feb 14 10:39:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords genomics
chromatin structure and remodeling
rice
gene regulation
epigenetics
bioinformatics
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-4de30482277443735d3149f0263f788c1e079eb9e55f82170f6280de23dfeb0d3
Notes 31-2013/Q
While previous studies have shown that histone modifications could influence plant growth and devel- opment by regulating gene transcription, knowledge about the relationships between these modifications and gene expression is still limited. This study used chromatin immunoprecipitation followed by high-throughput sequencing (ChlP-Seq), to investigate the genome-wide distribution of four histone modifications: di and trimethylation of H3K4 (H3K4me2 and H3K4me3) and acylation of H3K9 and H3K27 (H3K9ac and H3K27ac) in Oryza sativa L. japonica. By analyz- ing published DNase-Seq data, this study explored DNase-Hypersensitive (DH) sites along the rice genome. The histone marks appeared mainly in generic regions and were enriched around the transcription start sites (TSSs) of genes. This analysis demonstrated that the four histone modifications and the DH sites were all associated with active transcription. Furthermore, the four histone modifications were highly concurrent with transcript regions-a promising feature that was used to predict missing genes in the rice gene annotation. The predictions were further validated by experimentally confirming the transcription of two predicted missing genes. Moreover, a sequence motif analysis was constructed in order to identify the DH sites and many putative transcription factor binding sites.
bioinformatics; chromatin structure and remodeling; epigenetics; gene regulation; genomics; rice.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1674205214602203
PMID 23355544
PQID 1500255034
PQPubID 135333
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3842134
proquest_miscellaneous_2000319208
proquest_miscellaneous_1434742682
proquest_journals_1500255034
pubmed_primary_23355544
crossref_citationtrail_10_1093_mp_sst018
crossref_primary_10_1093_mp_sst018
elsevier_sciencedirect_doi_10_1093_mp_sst018
chongqing_primary_47523352
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
– name: UK
PublicationTitle Molecular plant
PublicationTitleAlternate Molecular Plant
PublicationYear 2013
Publisher Elsevier Inc
Cell Press
Oxford University Press
Publisher_xml – name: Elsevier Inc
– name: Cell Press
– name: Oxford University Press
References Zhang, Bernatavichute, Cokus, Pellegrini, Jacobsen (bib37) 2009; 10
Ha, Ng, Li (bib6) 2011; 21
Zhang, Wu, Schnable, Zeng, Freeling, Crawford, Jiang (bib36) 2011; 22
Jiang, Pugh (bib12) 2009; 10
Wang, Zang, Rosenfeld, Schones, Barski, Cuddapah, Cui, Roh, Peng, Zhang (bib35) 2008; 40
Berger (bib3) 2007; 447
Jang, Chung, Hemmes, Jung, Chua (bib11) 2011; 23
Creyghton, Cheng, Welstead, Kooistra, Carey, Steine, Hanna, Lodato, Frampton, Sharp (bib5) 2010; 107
Li, Wang, He, Ma, Su, He, Stolc, Tongprasit, Jin, Jiang (bib18) 2008; 20
Nagaki, Talbert, Zhong, Dawe, Henikoff, Jiang (bib22) 2003; 163
Shin, Liu, Manrai, Liu (bib28) 2009; 25
Li (bib17) 2009; 25
Zhang, Liu, Meyer, Eeckhoute, Johnson, Bernstein, Nusbaum, Myers, Brown, Li (bib38) 2008; 9
Wang, He, Liu, Cheng, Talbert, Jin (bib33) 2011; 120
Wang, Schones, Zhao (bib34) 2009; 19
Ouyang, Zhu, Hamilton, Lin, Campbell, Childs, Thibaud-Nissen, Malek, Lee, Zheng (bib23) 2007; 35
Kosugi, Ohashi (bib16) 2002; 30
Johannesson, Wang, Engström (bib13) 2001; 45
Song, Zhang, Grasfeder, Boyle, Giresi, Lee, Sheffield, Gräf, Huss, Keefe (bib30) 2011; 21
Meister, Williams, Monfared (bib21) 2004; 37
Barski, Cuddapah, Cui, Roh, Schones, Wang, Wei, Chepelev, Zhao (bib2) 2007; 129
Johannesson, Wang, Hanson (bib14) 2003; 51
Charron, He, Elling, Deng (bib4) 2009; 21
Zhou, Goren, Bernstein (bib39) 2010; 12
Pfluger, Wagner (bib24) 2007; 10
Itoh, Tanaka, Barrero, Yamasaki, Fujii, Hilton, Antonio, Aono, Apweiler, Bruskiewich (bib10) 2007; 17
Liu, Ortiz, Taing, Meyer, Lee, Zhang, Shin, Wong, Ma, Lei (bib19) 2011; 12
Shin, Li, Gao, Baldwin, Li (bib29) 2012; 12
Sessa, Morelli, Ruberti (bib27) 1993; 12
Ho, Bishop, Karchenko, Negre, White, Park (bib9) 2011; 12
Kent, Sugnet, Furey, Roskin, Pringle, Zahler, Haussler (bib15) 2002; 12
Schones, Zhao (bib26) 2008; 9
He, Zhu, Elling, Chen, Wang, Guo, Liang, He, Zhang, Chen (bib7) 2010; 22
Heintzman, Stuart, Hon, Fu, Ching, Hawkins, Barrera, Van Calcar, Qu, Ching (bib8) 2007; 39
Matys, Fricke, Geffers (bib20) 2003; 31
Trapnell, Williams, Pertea, Mortazavi, Kwan, van Baren, Salzberg, Wold, Pachter (bib31) 2010; 28
Aoyama, Dong, Wu, Carabelli (bib1) 1995; 7
Pique-Regi, Degner, Pai, Gaffney, Gilad, Pritchard (bib25) 2011; 21
van Dijk, Ding, Malkaram, Riethoven, Liu, Yang, Laczko, Chen, Xia, Ladunga (bib32) 2010; 10
Shin (10.1093/mp/sst018_bib28) 2009; 25
Shin (10.1093/mp/sst018_bib29) 2012; 12
Zhang (10.1093/mp/sst018_bib38) 2008; 9
Ho (10.1093/mp/sst018_bib9) 2011; 12
Zhou (10.1093/mp/sst018_bib39) 2010; 12
Sessa (10.1093/mp/sst018_bib27) 1993; 12
Barski (10.1093/mp/sst018_bib2) 2007; 129
van Dijk (10.1093/mp/sst018_bib32) 2010; 10
Kent (10.1093/mp/sst018_bib15) 2002; 12
Kosugi (10.1093/mp/sst018_bib16) 2002; 30
Li (10.1093/mp/sst018_bib17) 2009; 25
Meister (10.1093/mp/sst018_bib21) 2004; 37
Song (10.1093/mp/sst018_bib30) 2011; 21
Wang (10.1093/mp/sst018_bib33) 2011; 120
Pfluger (10.1093/mp/sst018_bib24) 2007; 10
Zhang (10.1093/mp/sst018_bib37) 2009; 10
Wang (10.1093/mp/sst018_bib34) 2009; 19
Itoh (10.1093/mp/sst018_bib10) 2007; 17
Johannesson (10.1093/mp/sst018_bib14) 2003; 51
Ouyang (10.1093/mp/sst018_bib23) 2007; 35
Berger (10.1093/mp/sst018_bib3) 2007; 447
Heintzman (10.1093/mp/sst018_bib8) 2007; 39
Jang (10.1093/mp/sst018_bib11) 2011; 23
Matys (10.1093/mp/sst018_bib20) 2003; 31
Wang (10.1093/mp/sst018_bib35) 2008; 40
Zhang (10.1093/mp/sst018_bib36) 2011; 22
Jiang (10.1093/mp/sst018_bib12) 2009; 10
Schones (10.1093/mp/sst018_bib26) 2008; 9
Liu (10.1093/mp/sst018_bib19) 2011; 12
Trapnell (10.1093/mp/sst018_bib31) 2010; 28
Pique-Regi (10.1093/mp/sst018_bib25) 2011; 21
Charron (10.1093/mp/sst018_bib4) 2009; 21
Nagaki (10.1093/mp/sst018_bib22) 2003; 163
Creyghton (10.1093/mp/sst018_bib5) 2010; 107
Li (10.1093/mp/sst018_bib18) 2008; 20
Aoyama (10.1093/mp/sst018_bib1) 1995; 7
Johannesson (10.1093/mp/sst018_bib13) 2001; 45
He (10.1093/mp/sst018_bib7) 2010; 22
Ha (10.1093/mp/sst018_bib6) 2011; 21
17145706 - Nucleic Acids Res. 2007 Jan;35(Database issue):D883-7
19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60
21859476 - Genome Biol. 2011;12(8):R83
21394438 - Chromosoma. 2011 Aug;120(4):353-65
21317377 - Plant Cell. 2011 Feb;23(2):459-70
12678559 - Plant Mol Biol. 2003 Mar;51(5):719-29
14731261 - Plant J. 2004 Feb;37(3):426-38
20086188 - Plant Cell. 2010 Jan;22(1):17-33
21324879 - Genome Res. 2011 Apr;21(4):590-8
8535134 - Plant Cell. 1995 Nov;7(11):1773-85
19299119 - Curr Opin Genet Dev. 2009 Apr;19(2):127-34
20008096 - Plant Cell. 2009 Dec;21(12):3732-48
12000681 - Plant J. 2002 May;30(3):337-48
21106759 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6
12045153 - Genome Res. 2002 Jun;12(6):996-1006
17210932 - Genome Res. 2007 Feb;17(2):175-83
17522673 - Nature. 2007 May 24;447(7143):407-12
21356108 - BMC Genomics. 2011;12:134
22110044 - Genome Res. 2012 Jan;22(1):151-62
11247607 - Plant Mol Biol. 2001 Jan;45(1):63-73
19508735 - Genome Biol. 2009;10(6):R62
18250624 - Nat Rev Genet. 2008 Mar;9(3):179-91
19689956 - Bioinformatics. 2009 Oct 1;25(19):2605-6
17277777 - Nat Genet. 2007 Mar;39(3):311-8
17512414 - Cell. 2007 May 18;129(4):823-37
18552846 - Nat Genet. 2008 Jul;40(7):897-903
18798982 - Genome Biol. 2008;9(9):R137
18263775 - Plant Cell. 2008 Feb;20(2):259-76
21750106 - Genome Res. 2011 Oct;21(10):1757-67
20436464 - Nat Biotechnol. 2010 May;28(5):511-5
21050490 - BMC Plant Biol. 2010;10:238
17884714 - Curr Opin Plant Biol. 2007 Dec;10(6):645-52
19204718 - Nat Rev Genet. 2009 Mar;10(3):161-72
22249597 - Funct Integr Genomics. 2012 Mar;12(1):119-30
21116306 - Nat Rev Genet. 2011 Jan;12(1):7-18
8253077 - EMBO J. 1993 Sep;12(9):3507-17
12663558 - Genetics. 2003 Mar;163(3):1221-5
12520026 - Nucleic Acids Res. 2003 Jan 1;31(1):374-8
21106904 - Genome Res. 2011 Mar;21(3):447-55
References_xml – volume: 31
  start-page: 374
  year: 2003
  end-page: 378
  ident: bib20
  article-title: TRANSFAC®: transcriptional regulation, from patterns to profiles
  publication-title: Nucleic Acids Res
– volume: 9
  start-page: R137
  year: 2008
  ident: bib38
  article-title: Model-based analysis of ChIP-Seq (MACS)
  publication-title: Genome Biol
– volume: 21
  start-page: 590
  year: 2011
  end-page: 598
  ident: bib6
  article-title: Coordinated histone modifications are associated with gene expression variation within and between species
  publication-title: Genome Res
– volume: 9
  start-page: 179
  year: 2008
  end-page: 191
  ident: bib26
  article-title: Genome-wide approaches to studying chromatin modifications
  publication-title: Nat. Rev. Genet
– volume: 129
  start-page: 823
  year: 2007
  end-page: 837
  ident: bib2
  article-title: High-resolution profiling of histone methylations in the human genome
  publication-title: Cell
– volume: 17
  start-page: 175
  year: 2007
  end-page: 183
  ident: bib10
  article-title: Curated genome annotation of
  publication-title: Genome Res
– volume: 30
  start-page: 337
  year: 2002
  end-page: 348
  ident: bib16
  article-title: DNA binding and dimerization specificity and potential targets for the TCP protein family
  publication-title: Plant J
– volume: 37
  start-page: 426
  year: 2004
  end-page: 438
  ident: bib21
  article-title: Definition and interactions of a positive regulatory element of the
  publication-title: Plant J
– volume: 19
  start-page: 127
  year: 2009
  end-page: 134
  ident: bib34
  article-title: Characterization of human epigenomes
  publication-title: Curr. Opin. Genet. Dev
– volume: 107
  start-page: 21931
  year: 2010
  end-page: 21936
  ident: bib5
  article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state
  publication-title: Proc. Natl Acad. Sci. U S A
– volume: 12
  start-page: 134
  year: 2011
  ident: bib9
  article-title: ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis
  publication-title: BMC Genomics
– volume: 20
  start-page: 259
  year: 2008
  end-page: 276
  ident: bib18
  article-title: High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression
  publication-title: Plant Cell
– volume: 447
  start-page: 407
  year: 2007
  end-page: 412
  ident: bib3
  article-title: The complex language of chromatin regulation during transcription
  publication-title: Nature
– volume: 22
  start-page: 17
  year: 2010
  end-page: 33
  ident: bib7
  article-title: Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids
  publication-title: Plant Cell
– volume: 12
  start-page: 7
  year: 2010
  end-page: 18
  ident: bib39
  article-title: Charting histone modifications and the functional organization of mammalian genomes
  publication-title: Nat. Rev. Genet
– volume: 28
  start-page: 511
  year: 2010
  end-page: 515
  ident: bib31
  article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat. Biotechnol
– volume: 10
  start-page: 238
  year: 2010
  ident: bib32
  article-title: Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in
  publication-title: BMC Plant Biol
– volume: 7
  start-page: 1773
  year: 1995
  end-page: 1785
  ident: bib1
  article-title: Ectopic expression of the
  publication-title: Plant Cell
– volume: 21
  start-page: 3732
  year: 2009
  end-page: 3748
  ident: bib4
  article-title: Dynamic landscapes of four histone modifications during deetiolation in
  publication-title: Plant Cell
– volume: 21
  start-page: 1757
  year: 2011
  end-page: 1767
  ident: bib30
  article-title: Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity
  publication-title: Genome Res
– volume: 12
  start-page: 3507
  year: 1993
  end-page: 3517
  ident: bib27
  article-title: The Athb-1 and –2 HD-Zip domains homodimerize forming complexes of different DNA binding specificities
  publication-title: EMBO J
– volume: 163
  start-page: 1221
  year: 2003
  end-page: 1225
  ident: bib22
  article-title: Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of
  publication-title: Genetics
– volume: 10
  start-page: 161
  year: 2009
  end-page: 172
  ident: bib12
  article-title: Nucleosome positioning and gene regulation: advances through genomics
  publication-title: Nat. Rev. Genet
– volume: 22
  start-page: 151
  year: 2011
  end-page: 162
  ident: bib36
  article-title: High-resolution mapping of open chromatin in the rice genome
  publication-title: Genome Res
– volume: 35
  start-page: D883
  year: 2007
  end-page: D887
  ident: bib23
  article-title: The TIGR Rice Genome Annotation Resource: improvements and new features
  publication-title: Nucleic Acids Res
– volume: 10
  start-page: R62
  year: 2009
  ident: bib37
  article-title: Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in
  publication-title: Genome Biol
– volume: 12
  start-page: R83
  year: 2011
  ident: bib19
  article-title: Cistrome: an integrative platform for transcriptional regulation studies
  publication-title: Genome Biol
– volume: 12
  start-page: 996
  year: 2002
  end-page: 1006
  ident: bib15
  article-title: The human genome browser at UCSC
  publication-title: Genome Res
– volume: 39
  start-page: 311
  year: 2007
  end-page: 318
  ident: bib8
  article-title: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome
  publication-title: Nature
– volume: 25
  start-page: 2605
  year: 2009
  end-page: 2606
  ident: bib28
  article-title: CEAS:
  publication-title: Bioinformatics
– volume: 12
  start-page: 119
  year: 2012
  end-page: 130
  ident: bib29
  article-title: Genome-wide ChIP-seq mapping and analysis reveal butyrate-induced acetylation of H3K9 and H3K27 correlated with transcription activity in bovine cells
  publication-title: Funct. Integr. Genomics
– volume: 23
  start-page: 459
  year: 2011
  end-page: 470
  ident: bib11
  article-title: Rapid and reversible light-mediated chromatin modifications of
  publication-title: Plant Cell
– volume: 120
  start-page: 353
  year: 2011
  end-page: 365
  ident: bib33
  article-title: Characterization of CENH3 proteins and centromere-associated DNA sequences in diploid and allotetraploid Brassica species
  publication-title: Chromosoma
– volume: 10
  start-page: 645
  year: 2007
  end-page: 652
  ident: bib24
  article-title: Histone modifications and dynamic regulation of genome accessibility in plants
  publication-title: Curr. Opin. Plant Biol
– volume: 45
  start-page: 63
  year: 2001
  end-page: 73
  ident: bib13
  article-title: DNA-binding and dimerization preferences of
  publication-title: Plant Mol. Biol
– volume: 51
  start-page: 719
  year: 2003
  end-page: 729
  ident: bib14
  article-title: The
  publication-title: Plant Mol. Biol
– volume: 25
  start-page: 1754
  year: 2009
  end-page: 1760
  ident: bib17
  article-title: Fast and accurate short read alignment with Burrows–Wheeler transform
  publication-title: Bioinformatics
– volume: 40
  start-page: 897
  year: 2008
  end-page: 903
  ident: bib35
  article-title: Combinatorial patterns of histone acetylations and methylations in the human genome
  publication-title: Nat. Genet
– volume: 21
  start-page: 447
  year: 2011
  end-page: 455
  ident: bib25
  article-title: Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data
  publication-title: Genome Res
– volume: 39
  start-page: 311
  year: 2007
  ident: 10.1093/mp/sst018_bib8
  article-title: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome
  publication-title: Nature
– volume: 10
  start-page: R62
  year: 2009
  ident: 10.1093/mp/sst018_bib37
  article-title: Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-6-r62
– volume: 10
  start-page: 161
  year: 2009
  ident: 10.1093/mp/sst018_bib12
  article-title: Nucleosome positioning and gene regulation: advances through genomics
  publication-title: Nat. Rev. Genet
  doi: 10.1038/nrg2522
– volume: 120
  start-page: 353
  year: 2011
  ident: 10.1093/mp/sst018_bib33
  article-title: Characterization of CENH3 proteins and centromere-associated DNA sequences in diploid and allotetraploid Brassica species
  publication-title: Chromosoma
  doi: 10.1007/s00412-011-0315-z
– volume: 51
  start-page: 719
  year: 2003
  ident: 10.1093/mp/sst018_bib14
  article-title: The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings
  publication-title: Plant Mol. Biol
  doi: 10.1023/A:1022567625228
– volume: 35
  start-page: D883
  year: 2007
  ident: 10.1093/mp/sst018_bib23
  article-title: The TIGR Rice Genome Annotation Resource: improvements and new features
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl976
– volume: 12
  start-page: 134
  year: 2011
  ident: 10.1093/mp/sst018_bib9
  article-title: ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-134
– volume: 21
  start-page: 590
  year: 2011
  ident: 10.1093/mp/sst018_bib6
  article-title: Coordinated histone modifications are associated with gene expression variation within and between species
  publication-title: Genome Res
  doi: 10.1101/gr.116467.110
– volume: 9
  start-page: 179
  year: 2008
  ident: 10.1093/mp/sst018_bib26
  article-title: Genome-wide approaches to studying chromatin modifications
  publication-title: Nat. Rev. Genet
  doi: 10.1038/nrg2270
– volume: 12
  start-page: 996
  year: 2002
  ident: 10.1093/mp/sst018_bib15
  article-title: The human genome browser at UCSC
  publication-title: Genome Res
  doi: 10.1101/gr.229102
– volume: 25
  start-page: 2605
  year: 2009
  ident: 10.1093/mp/sst018_bib28
  article-title: CEAS: cis-regulatory element annotation system
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp479
– volume: 19
  start-page: 127
  year: 2009
  ident: 10.1093/mp/sst018_bib34
  article-title: Characterization of human epigenomes
  publication-title: Curr. Opin. Genet. Dev
  doi: 10.1016/j.gde.2009.02.001
– volume: 21
  start-page: 1757
  year: 2011
  ident: 10.1093/mp/sst018_bib30
  article-title: Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity
  publication-title: Genome Res
  doi: 10.1101/gr.121541.111
– volume: 30
  start-page: 337
  year: 2002
  ident: 10.1093/mp/sst018_bib16
  article-title: DNA binding and dimerization specificity and potential targets for the TCP protein family
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2002.01294.x
– volume: 12
  start-page: 3507
  year: 1993
  ident: 10.1093/mp/sst018_bib27
  article-title: The Athb-1 and –2 HD-Zip domains homodimerize forming complexes of different DNA binding specificities
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1993.tb06025.x
– volume: 107
  start-page: 21931
  year: 2010
  ident: 10.1093/mp/sst018_bib5
  article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state
  publication-title: Proc. Natl Acad. Sci. U S A
  doi: 10.1073/pnas.1016071107
– volume: 23
  start-page: 459
  year: 2011
  ident: 10.1093/mp/sst018_bib11
  article-title: Rapid and reversible light-mediated chromatin modifications of Arabidopsis phytochrome A locus
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.080481
– volume: 22
  start-page: 151
  year: 2011
  ident: 10.1093/mp/sst018_bib36
  article-title: High-resolution mapping of open chromatin in the rice genome
  publication-title: Genome Res
  doi: 10.1101/gr.131342.111
– volume: 45
  start-page: 63
  year: 2001
  ident: 10.1093/mp/sst018_bib13
  article-title: DNA-binding and dimerization preferences of Arabidopsis homeodomain–leucine zipper transcription factors in vitro
  publication-title: Plant Mol. Biol
  doi: 10.1023/A:1006423324025
– volume: 28
  start-page: 511
  year: 2010
  ident: 10.1093/mp/sst018_bib31
  article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.1621
– volume: 40
  start-page: 897
  year: 2008
  ident: 10.1093/mp/sst018_bib35
  article-title: Combinatorial patterns of histone acetylations and methylations in the human genome
  publication-title: Nat. Genet
  doi: 10.1038/ng.154
– volume: 20
  start-page: 259
  year: 2008
  ident: 10.1093/mp/sst018_bib18
  article-title: High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.056879
– volume: 129
  start-page: 823
  year: 2007
  ident: 10.1093/mp/sst018_bib2
  article-title: High-resolution profiling of histone methylations in the human genome
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.009
– volume: 25
  start-page: 1754
  year: 2009
  ident: 10.1093/mp/sst018_bib17
  article-title: Fast and accurate short read alignment with Burrows–Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 447
  start-page: 407
  year: 2007
  ident: 10.1093/mp/sst018_bib3
  article-title: The complex language of chromatin regulation during transcription
  publication-title: Nature
  doi: 10.1038/nature05915
– volume: 12
  start-page: R83
  year: 2011
  ident: 10.1093/mp/sst018_bib19
  article-title: Cistrome: an integrative platform for transcriptional regulation studies
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-8-r83
– volume: 9
  start-page: R137
  year: 2008
  ident: 10.1093/mp/sst018_bib38
  article-title: Model-based analysis of ChIP-Seq (MACS)
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-9-r137
– volume: 21
  start-page: 3732
  year: 2009
  ident: 10.1093/mp/sst018_bib4
  article-title: Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.066845
– volume: 17
  start-page: 175
  year: 2007
  ident: 10.1093/mp/sst018_bib10
  article-title: Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana
  publication-title: Genome Res
  doi: 10.1101/gr.5509507
– volume: 12
  start-page: 7
  year: 2010
  ident: 10.1093/mp/sst018_bib39
  article-title: Charting histone modifications and the functional organization of mammalian genomes
  publication-title: Nat. Rev. Genet
  doi: 10.1038/nrg2905
– volume: 22
  start-page: 17
  year: 2010
  ident: 10.1093/mp/sst018_bib7
  article-title: Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.072041
– volume: 37
  start-page: 426
  year: 2004
  ident: 10.1093/mp/sst018_bib21
  article-title: Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2003.01971.x
– volume: 21
  start-page: 447
  year: 2011
  ident: 10.1093/mp/sst018_bib25
  article-title: Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data
  publication-title: Genome Res
  doi: 10.1101/gr.112623.110
– volume: 7
  start-page: 1773
  year: 1995
  ident: 10.1093/mp/sst018_bib1
  article-title: Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco
  publication-title: Plant Cell
– volume: 163
  start-page: 1221
  year: 2003
  ident: 10.1093/mp/sst018_bib22
  article-title: Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres
  publication-title: Genetics
  doi: 10.1093/genetics/163.3.1221
– volume: 10
  start-page: 645
  year: 2007
  ident: 10.1093/mp/sst018_bib24
  article-title: Histone modifications and dynamic regulation of genome accessibility in plants
  publication-title: Curr. Opin. Plant Biol
  doi: 10.1016/j.pbi.2007.07.013
– volume: 12
  start-page: 119
  year: 2012
  ident: 10.1093/mp/sst018_bib29
  article-title: Genome-wide ChIP-seq mapping and analysis reveal butyrate-induced acetylation of H3K9 and H3K27 correlated with transcription activity in bovine cells
  publication-title: Funct. Integr. Genomics
  doi: 10.1007/s10142-012-0263-6
– volume: 10
  start-page: 238
  year: 2010
  ident: 10.1093/mp/sst018_bib32
  article-title: Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-10-238
– volume: 31
  start-page: 374
  year: 2003
  ident: 10.1093/mp/sst018_bib20
  article-title: TRANSFAC®: transcriptional regulation, from patterns to profiles
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg108
– reference: 22110044 - Genome Res. 2012 Jan;22(1):151-62
– reference: 11247607 - Plant Mol Biol. 2001 Jan;45(1):63-73
– reference: 18250624 - Nat Rev Genet. 2008 Mar;9(3):179-91
– reference: 18263775 - Plant Cell. 2008 Feb;20(2):259-76
– reference: 8535134 - Plant Cell. 1995 Nov;7(11):1773-85
– reference: 17522673 - Nature. 2007 May 24;447(7143):407-12
– reference: 21859476 - Genome Biol. 2011;12(8):R83
– reference: 20086188 - Plant Cell. 2010 Jan;22(1):17-33
– reference: 12045153 - Genome Res. 2002 Jun;12(6):996-1006
– reference: 19204718 - Nat Rev Genet. 2009 Mar;10(3):161-72
– reference: 17210932 - Genome Res. 2007 Feb;17(2):175-83
– reference: 21356108 - BMC Genomics. 2011;12:134
– reference: 12000681 - Plant J. 2002 May;30(3):337-48
– reference: 18798982 - Genome Biol. 2008;9(9):R137
– reference: 21750106 - Genome Res. 2011 Oct;21(10):1757-67
– reference: 21050490 - BMC Plant Biol. 2010;10:238
– reference: 18552846 - Nat Genet. 2008 Jul;40(7):897-903
– reference: 8253077 - EMBO J. 1993 Sep;12(9):3507-17
– reference: 17884714 - Curr Opin Plant Biol. 2007 Dec;10(6):645-52
– reference: 21116306 - Nat Rev Genet. 2011 Jan;12(1):7-18
– reference: 19299119 - Curr Opin Genet Dev. 2009 Apr;19(2):127-34
– reference: 20436464 - Nat Biotechnol. 2010 May;28(5):511-5
– reference: 21324879 - Genome Res. 2011 Apr;21(4):590-8
– reference: 21317377 - Plant Cell. 2011 Feb;23(2):459-70
– reference: 21394438 - Chromosoma. 2011 Aug;120(4):353-65
– reference: 19508735 - Genome Biol. 2009;10(6):R62
– reference: 14731261 - Plant J. 2004 Feb;37(3):426-38
– reference: 17145706 - Nucleic Acids Res. 2007 Jan;35(Database issue):D883-7
– reference: 17512414 - Cell. 2007 May 18;129(4):823-37
– reference: 17277777 - Nat Genet. 2007 Mar;39(3):311-8
– reference: 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60
– reference: 20008096 - Plant Cell. 2009 Dec;21(12):3732-48
– reference: 12520026 - Nucleic Acids Res. 2003 Jan 1;31(1):374-8
– reference: 21106759 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6
– reference: 22249597 - Funct Integr Genomics. 2012 Mar;12(1):119-30
– reference: 12678559 - Plant Mol Biol. 2003 Mar;51(5):719-29
– reference: 12663558 - Genetics. 2003 Mar;163(3):1221-5
– reference: 19689956 - Bioinformatics. 2009 Oct 1;25(19):2605-6
– reference: 21106904 - Genome Res. 2011 Mar;21(3):447-55
SSID ssj0060863
Score 2.3621707
Snippet While previous studies have shown that histone modifications could influence plant growth and devel- opment by regulating gene transcription, knowledge about...
While previous studies have shown that histone modifications could influence plant growth and development by regulating gene transcription, knowledge about the...
SUMMARY H3K4me2/3, H3K9ac, and H3K27ac investigated by ChIP-Seq showed enrichment in generic regions and transcription start sites, and associated with active...
H3K4me2/3, H3K9ac, and H3K27ac investigated by ChIP-Seq showed enrichment in generic regions and transcription start sites, and associated with active...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
chongqing
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1463
SubjectTerms acylation
Base Sequence
binding sites
Binding Sites - genetics
bioinformatics
Chromatin
chromatin structure and remodeling
Deoxyribonucleases - metabolism
DNA Transposable Elements - genetics
epigenetics
Gene expression
gene regulation
genes
Genes, Plant - genetics
Genome, Plant - genetics
Genomes
genomics
growth and development
high-throughput nucleotide sequencing
histones
Histones - metabolism
Lysine - metabolism
Molecular Sequence Annotation
Molecular Sequence Data
Oryza - genetics
Oryza - metabolism
Oryza sativa
Plant growth
precipitin tests
prediction
Protein Processing, Post-Translational
Reproducibility of Results
Rice
Sequence Analysis, DNA
Studies
transcription (genetics)
Transcription factors
Transcription Factors - metabolism
Transcription Initiation Site
Transcription, Genetic
基因组分析
基因转录
染色质免疫沉淀
水稻基因组
粳稻
组蛋白修饰
转录因子结合位点
转录起始位点
Title Genome-Wide Analysis of Histone Modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. Japonica
URI http://lib.cqvip.com/qk/90143B/201305/47523352.html
https://dx.doi.org/10.1093/mp/sst018
https://www.ncbi.nlm.nih.gov/pubmed/23355544
https://www.proquest.com/docview/1500255034
https://www.proquest.com/docview/1434742682
https://www.proquest.com/docview/2000319208
https://pubmed.ncbi.nlm.nih.gov/PMC3842134
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqggQXxJstpTKIA4cNcW0ncbi1FWVpaTlAxd4sO3YgEuuE7hap_Hpm8hIL7YGblYwSP2bG3yQznwl5KY3xDpUXrK2I5K5hUZ5nNhLKZUlqUm4VFgqfnKazM3k0T-Yb5GCohcG0yt73dz699db9lbifzbipqvgT5s9zrD2VKZaLIuOnkKot4pvvD944BcjeJtmDcITSA7tQLuJFEy-XK4bnfdwCXxO-_oDd4rr96V_8-Xca5R_70uFdcqcHlHSv6_M9suHDfXJzvwbQd_mANO98qBc--lI5TwcCElqXtKUHCZ6e1A6Thbrvdm_oTBzLhefTviHaRm6KKTXBYZtnpqBVoB_PL38ZiqlAPw398JoemQZJds1Dcnb49vPBLOoPWYiKhPFVJJ0XYMWcAw5EmqPECQiaSgjNRAnhcbHrWZZ7m_skKRXEL6xMuWLOc-FKb5kTj8hmgP4-ITSRNgOEU0ibGukLoVLlvLKClYXlyvMJ2RqnWTcdmYaWGYTCgAIn5NUw77ro6cnxlIzvuvtNLvSi0d1yTciLUXR4zBVC02Hx9JpCadgrrhLfHhZY91a81ACWMeRiQk7I8_E22B_-VDHB1xcgI4UEPUwVv14Gy6HA1XEGr3nc6czYcRw8QDp4Q7amTaMA8n-v3wnVt5YHXCiJfHxb_zfSp-Q2b4_0wDy5bbK5Or_wzwBYrewOubH3_nh2utNa0G_MsSI2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKQSoXxJstBQziwGFDXNtJHG60omzb3XKgFXuz7NiBSGwSuluk8uuZyUsstAduVjJK_JgZf5PMfCbktTTGO1ResLYskLuGBWma2EAol0SxiblVWCg8O4knZ_JoHs03yH5fC4NplZ3vb3164627K2E3m2FdFOFnzJ_nWHsqYywXFTfITUADCVrn4Xyvd8cxYPYmyx6kAxTv6YVSES7qcLlcMTzwYwucTfn1B2wX121Q_wLQv_Mo_9iYDu6SOx2ipO_bTt8jG768T27tVYD6Lh-Q-qMvq4UPvhTO056BhFY5bfhBSk9nlcNsofbD3Ts6Ecdy4fm4a4imkZpsTE3psM0Tk9GipJ_OL38ZirlAPw2dvqVHpkaWXfOQnB18ON2fBN0pC0EWMb4KpPMCzJhzAILIcxQ5AVFTDrGZyCE-znY9S1JvUx9FuYIAhuUxV8x5LlzuLXPiEdksob9PCI2kTQDiZNLGRvpMqFg5r6xgeWa58nxEtodp1nXLpqFlArEwwMARedPPu846fnI8JuO7bv-TC72odbtcI_JqEO0fc4XQuF88vaZRGjaLq8R3-gXWnRkvNaBljLmYkCPycrgNBoh_VUzpqwuQkUKCIsaKXy-D9VDg6ziD1zxudWboOA4eMB28IVnTpkEACcDX75TFt4YIXCiJhHzb_zfSF2Rrcjqb6unhyfFTcps353tg0twO2VydX_hngLJW9nljRb8BP5EjyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-Wide+Analysis+of+Histone+Modifications%3A+H3K4me2%2C+H3K4me3%2C+H3K9ac%2C+and+H3K27ac+in+Oryza+sativa+L.+Japonica&rft.jtitle=Molecular+plant&rft.au=Du%2C+Zhou&rft.au=Li%2C+Hui&rft.au=Wei%2C+Qiang&rft.au=Zhao%2C+Xin&rft.date=2013-09-01&rft.issn=1674-2052&rft.volume=6&rft.issue=5&rft.spage=1463&rft.epage=1472&rft_id=info:doi/10.1093%2Fmp%2Fsst018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mp_sst018
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90143B%2F90143B.jpg