Time Delays from One-Photon Transitions in the Continuum

We experimentally resolve the time delay of electron wave packets arising from one-photon transitions in the continuum. This allows us to determine and quantify the angular momentum dependence of the photoionization time delay.

Saved in:
Bibliographic Details
Published in2020 Conference on Lasers and Electro-Optics (CLEO) Vol. 7; no. 2; pp. 1 - 2
Main Authors Fuchs, Jaco, Douguet, Nicolas, Donsa, Stefan, Martin, Fernando, Burgdorfer, Joachim, Argenti, Luca, Cattaneo, Laura, Keller, Ursula
Format Conference Proceeding Journal Article
LanguageEnglish
Published OSA 20.02.2020
Subjects
Online AccessGet full text
ISSN2334-2536
2334-2536
DOI10.1364/optica.378639

Cover

Loading…
Abstract We experimentally resolve the time delay of electron wave packets arising from one-photon transitions in the continuum. This allows us to determine and quantify the angular momentum dependence of the photoionization time delay.
AbstractList We experimentally resolve the time delay of electron wave packets arising from one-photon transitions in the continuum. This allows us to determine and quantify the angular momentum dependence of the photoionization time delay.
Attosecond photoionization time delays reveal information about the potential energy landscape that an outgoing electron wavepacket probes upon ionization. In this study, we experimentally quantify the dependence of the time delay on the angular momentum of the liberated photoelectrons. For this purpose, we resolved electron quantum-path interference spectra in energy and angle using a two-color attosecond pump–probe photoionization experiment in helium. A fitting procedure of the angle-dependent interference pattern allows us to disentangle the relative phase of all four quantum pathways that are known to contribute to the final photoelectron signal. In particular, we resolve the dependence on angular momentum of the delay of one-photon transitions between continuum states, which is an essential and universal contribution to the total photoionization delay observed in attosecond pump–probe measurements. For such continuum–continuum transitions, we measure a delay between outgoing s and d electrons as large as 12 attoseconds, close to the ionization threshold in helium. Both single-active-electron and first-principles ab initio simulations confirm this observation for helium and hydrogen, demonstrating the universality of the observed delays.
Author Donsa, Stefan
Cattaneo, Laura
Keller, Ursula
Martin, Fernando
Fuchs, Jaco
Douguet, Nicolas
Argenti, Luca
Burgdorfer, Joachim
Author_xml – sequence: 1
  givenname: Jaco
  surname: Fuchs
  fullname: Fuchs, Jaco
  organization: Department of Physics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
– sequence: 2
  givenname: Nicolas
  surname: Douguet
  fullname: Douguet, Nicolas
  organization: Department of Physics, University of Central Florida, Orlando, Florida, USA
– sequence: 3
  givenname: Stefan
  surname: Donsa
  fullname: Donsa, Stefan
  organization: Institute of Theoretical Physics, Vienna University of Technology, Vienna, Austria, EU
– sequence: 4
  givenname: Fernando
  surname: Martin
  fullname: Martin, Fernando
  organization: Departamento de Química Modulo 13, Universidad Autónoma de Madrid, Madrid, Spain, EU; Condensed Matter Physics Center (IFIMAC), Universidad Autonoma de Madrid, Madrid, Spain, EU; Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Madrid, Spain, EU
– sequence: 5
  givenname: Joachim
  surname: Burgdorfer
  fullname: Burgdorfer, Joachim
  organization: Institute of Theoretical Physics, Vienna University of Technology, Vienna, Austria, EU
– sequence: 6
  givenname: Luca
  surname: Argenti
  fullname: Argenti, Luca
  organization: Department of Physics, University of Central Florida, Orlando, Florida, USA; CREOL, University of Central Florida, Orlando, Florida, USA)
– sequence: 7
  givenname: Laura
  surname: Cattaneo
  fullname: Cattaneo, Laura
  organization: Department of Physics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
– sequence: 8
  givenname: Ursula
  surname: Keller
  fullname: Keller, Ursula
  organization: Department of Physics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
BookMark eNp1ULtqwzAUVUsKTdOMnbroB5zKurIeY3GfEEgGdzayKhOBLQVJGfL3dUgppdDpnuE87jk3aOaDtwjdlWRVAmcPYZ-d0SsQkoO6QEslZKkYVJIILi7RnAKwglbAZ7_wNVqm5DrCKFAhuJoj2bjR4ic76GPCfQwj3nhbbHchB4-bqH1y2QWfsPM47yyug8_OHw7jLbrq9ZDs8vsu0MfLc1O_FevN63v9uC5MRWgumGTwKQzQXnTKGEV7ZTRjhJlKaCK06USnlaKcKJCWAO8MJ1pwpoQtK5CwQMXZ18SQUrR9u49u1PHYlqQ9LdFuts0U2J6XmPjwh29c1qcOOWo3_Ku6P6uctfYnQZWKTr_CF-ZHabc
CitedBy_id crossref_primary_10_1103_PhysRevA_111_013110
crossref_primary_10_1016_j_optcom_2021_126759
crossref_primary_10_1088_1361_6455_ad8a0b
crossref_primary_10_1103_PhysRevA_109_063117
crossref_primary_10_1038_s41467_021_27360_y
crossref_primary_10_1088_1674_1056_ad0e5d
crossref_primary_10_1103_PhysRevResearch_3_013195
crossref_primary_10_1103_PhysRevResearch_3_013270
crossref_primary_10_1103_PhysRevA_111_013119
crossref_primary_10_1103_PhysRevA_105_063110
crossref_primary_10_1007_s11467_021_1084_7
crossref_primary_10_1103_PhysRevA_107_043113
crossref_primary_10_3390_atoms10030080
crossref_primary_10_1088_1361_6455_ad7cac
crossref_primary_10_1103_PhysRevA_104_063108
crossref_primary_10_1021_acs_jpca_3c06613
crossref_primary_10_1038_s41467_022_32753_8
crossref_primary_10_1103_PhysRevA_104_043113
crossref_primary_10_1103_PhysRevA_106_033112
crossref_primary_10_1364_OE_559144
crossref_primary_10_1103_PhysRevA_109_013106
crossref_primary_10_1103_PhysRevA_110_013104
crossref_primary_10_1088_2515_7647_ac6ea5
crossref_primary_10_1103_PhysRevA_106_023116
crossref_primary_10_1103_PhysRevA_102_033112
crossref_primary_10_1103_PhysRevA_103_L011101
crossref_primary_10_1103_PhysRevA_109_013101
crossref_primary_10_1103_PhysRevA_106_053101
crossref_primary_10_1364_OE_432222
crossref_primary_10_1103_PhysRevA_107_022801
crossref_primary_10_1140_epjs_s11734_023_00815_7
crossref_primary_10_1103_PhysRevA_104_013110
crossref_primary_10_1140_epjd_s10053_024_00900_z
crossref_primary_10_1103_PhysRevLett_131_203201
crossref_primary_10_1038_s41467_024_55247_1
crossref_primary_10_1126_sciadv_adj2629
crossref_primary_10_1103_PhysRevA_108_013112
crossref_primary_10_1126_sciadv_abl7594
crossref_primary_10_1103_PhysRevA_103_013115
crossref_primary_10_1103_PhysRevA_108_013117
crossref_primary_10_1103_PhysRevA_111_033105
crossref_primary_10_1139_cjp_2023_0245
crossref_primary_10_1039_D0FD00114G
crossref_primary_10_1103_PhysRevA_103_022834
crossref_primary_10_1103_PhysRevA_110_013120
crossref_primary_10_1103_PhysRevA_108_013102
crossref_primary_10_1103_PhysRevA_109_023110
crossref_primary_10_3390_atoms9040105
crossref_primary_10_1103_PhysRevA_110_013122
crossref_primary_10_3103_S0027134923030220
crossref_primary_10_1038_s41567_022_01832_4
crossref_primary_10_1103_PhysRevX_12_011002
crossref_primary_10_1103_PhysRevResearch_5_033047
crossref_primary_10_55959_MSU0579_9392_78_2330401
crossref_primary_10_1038_s41467_022_32780_5
crossref_primary_10_1103_PhysRevLett_128_063001
crossref_primary_10_1103_PhysRevA_105_053101
crossref_primary_10_1088_1361_6455_acb188
crossref_primary_10_1103_PhysRevX_10_031070
crossref_primary_10_1364_OE_391791
Cites_doi 10.1088/0953-4075/45/18/183001
10.1103/PhysRevA.62.032706
10.1103/PhysRevA.97.063404
10.1103/PhysRevA.100.043424
10.1038/s41467-018-03009-1
10.1103/PhysRevA.94.063409
10.1103/PhysRevLett.109.083001
10.1088/0953-4075/38/15/001
10.1038/nphys3941
10.1103/PhysRevLett.118.067402
10.1007/978-3-642-37623-8_13
10.1103/PhysRevLett.117.093001
10.1126/science.aao4731
10.1103/PhysRevLett.115.133001
10.1088/0953-4075/44/8/081001
10.1103/RevModPhys.87.765
10.1126/science.1189401
10.1126/science.1090277
10.1016/S0370-1573(99)00109-X
10.1364/OE.24.029060
10.1103/PhysRevA.49.2117
10.1103/PhysRevA.88.055401
10.1103/PhysRevA.99.023413
10.1103/PhysRev.98.145
10.1038/nature06229
10.1088/0953-8984/24/17/173001
10.1103/PhysRevA.93.023429
10.1088/0953-4075/48/2/025602
10.1103/PhysRevLett.106.143002
10.1126/science.1059413
10.1038/s41567-018-0103-2
10.1038/nature09084
10.1007/s00340-002-0894-8
10.1103/PhysRevA.98.053404
10.1126/science.aao7043
10.1103/PhysRev.118.349
10.1088/1361-6455/aa7887
10.1063/1.4898017
10.1103/PhysRevLett.97.113604
10.1103/PhysRevA.96.013408
10.1103/PhysRevA.91.063406
10.1016/j.chemphys.2012.01.017
10.1103/PhysRevLett.123.133201
10.1103/PhysRevA.93.033402
10.1103/PhysRevLett.119.219901
10.1103/PhysRevA.77.043420
10.1088/0953-4075/40/7/R01
10.1103/PhysRevA.84.013416
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
AAYXX
CITATION
DOI 10.1364/optica.378639
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP) 1998-present
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISBN 9781943580767
1943580766
EISSN 2334-2536
EndPage 2
ExternalDocumentID 10_1364_OPTICA_378639
9192440
Genre orig-research
GroupedDBID 6IE
6IH
ALMA_UNASSIGNED_HOLDINGS
AMMXN
AZSQR
CBEJK
DSZJF
OAHPD
OUCGF
RIE
RIO
4.4
AAFWJ
AAWJZ
AAYXX
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
BCNDV
CITATION
EBS
GROUPED_DOAJ
M~E
OFLFD
OK1
OPJBK
ROL
ROS
TR6
ID FETCH-LOGICAL-c502t-4843d7c32f7b9cc92f9ca4404c57a07acb7ba99260938e036bc60a76497e15383
IEDL.DBID RIE
ISSN 2334-2536
IngestDate Tue Jul 01 01:58:35 EDT 2025
Thu Apr 24 23:01:43 EDT 2025
Tue May 06 03:33:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-4843d7c32f7b9cc92f9ca4404c57a07acb7ba99260938e036bc60a76497e15383
ORCID 0000-0002-8745-3832
0000-0002-1689-8041
OpenAccessLink https://opg.optica.org/viewmedia.cfm?URI=optica-7-2-154
PageCount 2
ParticipantIDs crossref_primary_10_1364_OPTICA_378639
crossref_citationtrail_10_1364_OPTICA_378639
ieee_primary_9192440
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-20
PublicationDateYYYYMMDD 2020-02-20
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-20
  day: 20
PublicationDecade 2020
PublicationTitle 2020 Conference on Lasers and Electro-Optics (CLEO)
PublicationTitleAbbrev CLEO
PublicationYear 2020
Publisher OSA
Publisher_xml – name: OSA
References Sabbar (optica-7-2-154-R6) 2015; 115
Bray (optica-7-2-154-R28) 2018; 97
Dahlström (optica-7-2-154-R21) 2012; 45
Hockett (optica-7-2-154-R26) 2017; 50
Laurent (optica-7-2-154-R33) 2012; 109
Isinger (optica-7-2-154-R13) 2017; 358
Cirelli (optica-7-2-154-R17) 2018; 9
Haber (optica-7-2-154-R49) 2011; 84
Heuser (optica-7-2-154-R16) 2016; 94
Schultze (optica-7-2-154-R10) 2010; 328
Moré (optica-7-2-154-R37) 2006
Feist (optica-7-2-154-R43) 2008; 77
Grum-Grzhimailo (optica-7-2-154-R38) 2013; 88
Cavalieri (optica-7-2-154-R9) 2007; 449
Lewenstein (optica-7-2-154-R35) 1994; 49
Tong (optica-7-2-154-R40) 2005; 38
Ossiander (optica-7-2-154-R12) 2017; 13
Miaja-Avila (optica-7-2-154-R18) 2006; 97
Vos (optica-7-2-154-R14) 2018; 360
Heinzmann (optica-7-2-154-R47) 2013; 177
Wätzel (optica-7-2-154-R24) 2015; 48
Rescigno (optica-7-2-154-R42) 2000; 62
Huppert (optica-7-2-154-R7) 2016; 117
Mairesse (optica-7-2-154-R19) 2003; 302
Cattaneo (optica-7-2-154-R15) 2018; 14
Zhao (optica-7-2-154-R29) 2018; 98
Dahlström (optica-7-2-154-R4) 2013; 414
Sabbar (optica-7-2-154-R8) 2017; 119
Vinbladh (optica-7-2-154-R45) 2019; 100
Pindzola (optica-7-2-154-R41) 2007; 40
Wigner (optica-7-2-154-R1) 1955; 98
Smith (optica-7-2-154-R2) 1960; 118
Fanciulli (optica-7-2-154-R48) 2017; 118
Pazourek (optica-7-2-154-R5) 2015; 87
Klünder (optica-7-2-154-R22) 2011; 106
Heinzmann (optica-7-2-154-R46) 2012; 24
Dörner (optica-7-2-154-R34) 2000; 330
Sabbar (optica-7-2-154-R36) 2014; 85
Paul (optica-7-2-154-R30) 2001; 292
Sansone (optica-7-2-154-R11) 2010; 465
Douguet (optica-7-2-154-R39) 2016; 93
Lucchini (optica-7-2-154-R50) 2015; 91
Nagele (optica-7-2-154-R3) 2011; 44
Cattaneo (optica-7-2-154-R20) 2016; 24
Muller (optica-7-2-154-R31) 2002; 74
Busto (optica-7-2-154-R27) 2019; 123
Ivanov (optica-7-2-154-R23) 2017; 96
Donsa (optica-7-2-154-R44) 2019; 99
Jiménez-Galán (optica-7-2-154-R32) 2016; 93
References_xml – volume: 45
  start-page: 183001
  year: 2012
  ident: optica-7-2-154-R21
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/45/18/183001
– volume: 62
  start-page: 032706
  year: 2000
  ident: optica-7-2-154-R42
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.62.032706
– volume: 97
  start-page: 63404
  year: 2018
  ident: optica-7-2-154-R28
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.063404
– volume: 100
  start-page: 043424
  year: 2019
  ident: optica-7-2-154-R45
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.100.043424
– volume: 9
  start-page: 955
  year: 2018
  ident: optica-7-2-154-R17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03009-1
– volume: 94
  start-page: 063409
  year: 2016
  ident: optica-7-2-154-R16
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.063409
– volume: 109
  start-page: 083001
  year: 2012
  ident: optica-7-2-154-R33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.083001
– volume: 38
  start-page: 2593
  year: 2005
  ident: optica-7-2-154-R40
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/38/15/001
– volume: 13
  start-page: 280
  year: 2017
  ident: optica-7-2-154-R12
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3941
– volume: 118
  start-page: 067402
  year: 2017
  ident: optica-7-2-154-R48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.067402
– volume: 177
  volume-title: Attosecond Physics
  year: 2013
  ident: optica-7-2-154-R47
  doi: 10.1007/978-3-642-37623-8_13
– volume: 117
  start-page: 093001
  year: 2016
  ident: optica-7-2-154-R7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.093001
– volume: 360
  start-page: 1326
  year: 2018
  ident: optica-7-2-154-R14
  publication-title: Science
  doi: 10.1126/science.aao4731
– volume: 115
  start-page: 133001
  year: 2015
  ident: optica-7-2-154-R6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.133001
– volume: 44
  start-page: 081001
  year: 2011
  ident: optica-7-2-154-R3
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/44/8/081001
– volume: 87
  start-page: 765
  year: 2015
  ident: optica-7-2-154-R5
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.87.765
– volume: 328
  start-page: 1658
  year: 2010
  ident: optica-7-2-154-R10
  publication-title: Science
  doi: 10.1126/science.1189401
– volume: 302
  start-page: 1540
  year: 2003
  ident: optica-7-2-154-R19
  publication-title: Science
  doi: 10.1126/science.1090277
– volume: 330
  start-page: 95
  year: 2000
  ident: optica-7-2-154-R34
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(99)00109-X
– volume: 24
  start-page: 29060
  year: 2016
  ident: optica-7-2-154-R20
  publication-title: Opt. Express
  doi: 10.1364/OE.24.029060
– volume: 49
  start-page: 2117
  year: 1994
  ident: optica-7-2-154-R35
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.49.2117
– volume: 88
  start-page: 055401
  year: 2013
  ident: optica-7-2-154-R38
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.055401
– volume: 99
  start-page: 023413
  year: 2019
  ident: optica-7-2-154-R44
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.023413
– volume: 98
  start-page: 145
  year: 1955
  ident: optica-7-2-154-R1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.98.145
– volume: 449
  start-page: 1029
  year: 2007
  ident: optica-7-2-154-R9
  publication-title: Nature
  doi: 10.1038/nature06229
– volume: 24
  start-page: 173001
  year: 2012
  ident: optica-7-2-154-R46
  publication-title: J. Phys. Condens. Matter.
  doi: 10.1088/0953-8984/24/17/173001
– volume: 93
  start-page: 023429
  year: 2016
  ident: optica-7-2-154-R32
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.93.023429
– volume: 48
  start-page: 025602
  year: 2015
  ident: optica-7-2-154-R24
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/48/2/025602
– volume: 106
  start-page: 143002
  year: 2011
  ident: optica-7-2-154-R22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.143002
– volume: 292
  start-page: 1689
  year: 2001
  ident: optica-7-2-154-R30
  publication-title: Science
  doi: 10.1126/science.1059413
– volume: 14
  start-page: 733
  year: 2018
  ident: optica-7-2-154-R15
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0103-2
– volume: 465
  start-page: 763
  year: 2010
  ident: optica-7-2-154-R11
  publication-title: Nature
  doi: 10.1038/nature09084
– volume: 74
  start-page: s17
  year: 2002
  ident: optica-7-2-154-R31
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-002-0894-8
– volume: 98
  start-page: 053404
  year: 2018
  ident: optica-7-2-154-R29
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.053404
– volume: 358
  start-page: 893
  year: 2017
  ident: optica-7-2-154-R13
  publication-title: Science
  doi: 10.1126/science.aao7043
– volume: 118
  start-page: 349
  year: 1960
  ident: optica-7-2-154-R2
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.118.349
– volume: 50
  start-page: 154002
  year: 2017
  ident: optica-7-2-154-R26
  publication-title: J. Phys. B
  doi: 10.1088/1361-6455/aa7887
– volume: 85
  start-page: 103113
  year: 2014
  ident: optica-7-2-154-R36
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4898017
– volume: 97
  start-page: 113604
  year: 2006
  ident: optica-7-2-154-R18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.113604
– volume: 96
  start-page: 13408
  year: 2017
  ident: optica-7-2-154-R23
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.96.013408
– volume: 91
  start-page: 063406
  year: 2015
  ident: optica-7-2-154-R50
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.91.063406
– start-page: 105
  volume-title: Numer. Anal.
  year: 2006
  ident: optica-7-2-154-R37
  article-title: The Levenberg–Marquardt algorithm: implementation and theory
– volume: 414
  start-page: 53
  year: 2013
  ident: optica-7-2-154-R4
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2012.01.017
– volume: 123
  start-page: 133201
  year: 2019
  ident: optica-7-2-154-R27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.133201
– volume: 93
  start-page: 033402
  year: 2016
  ident: optica-7-2-154-R39
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.93.033402
– volume: 119
  start-page: 219901
  year: 2017
  ident: optica-7-2-154-R8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.219901
– volume: 77
  start-page: 043420
  year: 2008
  ident: optica-7-2-154-R43
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.043420
– volume: 40
  start-page: R39
  year: 2007
  ident: optica-7-2-154-R41
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/40/7/R01
– volume: 84
  start-page: 013416
  year: 2011
  ident: optica-7-2-154-R49
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.013416
SSID ssib042327769
ssj0001340590
Score 2.4663286
Snippet We experimentally resolve the time delay of electron wave packets arising from one-photon transitions in the continuum. This allows us to determine and...
Attosecond photoionization time delays reveal information about the potential energy landscape that an outgoing electron wavepacket probes upon ionization. In...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Absorption
Amplitude modulation
Delay effects
Delays
Ionization
Photonics
Physics
Title Time Delays from One-Photon Transitions in the Continuum
URI https://ieeexplore.ieee.org/document/9192440
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qQfDkRyvWj7IH8dTUNNnsZM9qKYK2hxZ6K7ubDRZrKjY56K93Z5NGEQVvIcxhmCx583Zm3hByaVEtigxKX8qBJSjAYk8FinsqHaQJV1oL6botHvloxu7n0bxBevUsjDHGNZ-ZPj66Wn6y1gVelV0LZAvMEvQdS9zKWa3t2cF6IwAXlYxmyJklnXgb3A8h5rgK_BvsfNuj4mBkuE8etg6U3SPP_SJXff3xQ5vxvx4ekPbXwB6d1FB0SBomOyK7rrtTb1okxkEPemtW8n1DcaCEjjPjTZ7WNvGjDq3Kxi26zKhNCClKVi2zonhpk9nwbnoz8qqVCZ6O_CD3WMzCBHQYpKCEDXSQCi1RAlBHIH2QWoGSQlgSI8LYWPRSmvsSOBNg8N8XHpNmts7MCaFKQCRUCL6fKgaQSl8OEs44N2BTsjjpkN42ogtd6YnjWovVwhXJOFuMJ1Pr2qL8AB1yVZu_lkIafxm2MK61URXS099fn5G9ABkwDpn756SZvxXmwqYJueo6et11p-QTEJ28cA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VRQgmHi2iPD0gpiakiWPHM1AV6GtopW6R7TiioqSIJgP8euwkDRUCiS2KbjhdrHz3-e6-A7jSqOb7ykhf8o4mKBQHlnAFsUTciSMipGQ877YYkt4UP878WQ3a1SyMUipvPlO2ecxr-dFSZuaq7IYZtoA1Qd_SuO93immt9ekxFUdKCSuFND2CNe0098G2RwNiloFvAM_GJpUcSLp7MFi7UPSPvNhZKmz5-UOd8b8-7kPze2QPjSswOoCaSg5hO-_vlKsGBGbUA92pBf9YITNSgkaJssbPS536oRyvitYtNE-QTgmREa2aJ1n22oRp935y27PKpQmW9B03tXCAvYhKz42pYDrUbswkNyKA0qfcoVwKKjhjmsYwL1Aav4QkDqcEM6rM3887gnqyTNQxIMGoz4RHHScWmNKYO7wTEUyIojopC6IWtNcRDWWpKG4WWyzCvExGcDgaT7RrYfEBWnBdmb8VUhp_GTZMXCujMqQnv7--hJ3eZNAP-w_Dp1PYdQ0fNiPnzhnU0_dMneukIRUX-Vn5Ap8HvsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+Conference+on+Lasers+and+Electro-Optics+%28CLEO%29&rft.atitle=Time+Delays+from+One-Photon+Transitions+in+the+Continuum&rft.au=Fuchs%2C+Jaco&rft.au=Douguet%2C+Nicolas&rft.au=Donsa%2C+Stefan&rft.au=Martin%2C+Fernando&rft.date=2020-02-20&rft.pub=OSA&rft.spage=1&rft.epage=2&rft_id=info:doi/10.1364%2Foptica.378639&rft.externalDocID=9192440
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2334-2536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2334-2536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2334-2536&client=summon