Immature Brain Cortical Neurons Have Low Transcriptional Competence to Activate Antiviral Defences and Control RNA Virus Infections
Abstract Virus infections of the central nervous system (CNS) cause important diseases of humans and animals. As in other tissues, innate antiviral responses mediated by type I interferons (IFNs) are crucially important in controlling CNS virus infections. The maturity of neuronal populations is an...
Saved in:
Published in | Journal of innate immunity Vol. 15; no. 1; pp. 50 - 66 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
Karger Publishers
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Virus infections of the central nervous system (CNS) cause important diseases of humans and animals. As in other tissues, innate antiviral responses mediated by type I interferons (IFNs) are crucially important in controlling CNS virus infections. The maturity of neuronal populations is an established critical factor determining the outcome of CNS virus infection. Using primary cultures of mouse cortical neurons, we investigated the relationships between neuronal maturation, type I IFN responses, and the outcome of Semliki Forest virus infection. The virus replicated better, infected more cells, and produced higher titres of infectious viruses in immature neurons. Complete transcriptome analysis demonstrated that resting immature neurons have low transcriptional competence to mount antiviral responses. They had no detectable transcription of the genes Ddx58 and Ifih1, which encode key RNA virus cytoplasmic sensors RIG-I and MDA5, and very low expression of genes encoding key regulators of associated signalling pathways. Upon infection, immature neurons failed to mount an antiviral response as evidenced by their failure to produce chemokines, IFNs, and other cytokines. Treatment of immature neurons with exogenous IFNβ prior to infection resulted in antiviral responses and lower levels of virus replication and infectious virus production. In contrast, resting mature neurons generated a robust antiviral response. This was augmented by pretreatment with IFNβ. Infection of mature neurons derived from IFNAR−/− mice did not make an antiviral response and replicated virus to high levels. |
---|---|
AbstractList | Virus infections of the central nervous system (CNS) cause important diseases of humans and animals. As in other tissues, innate antiviral responses mediated by type I interferons (IFNs) are crucially important in controlling CNS virus infections. The maturity of neuronal populations is an established critical factor determining the outcome of CNS virus infection. Using primary cultures of mouse cortical neurons, we investigated the relationships between neuronal maturation, type I IFN responses, and the outcome of Semliki Forest virus infection. The virus replicated better, infected more cells, and produced higher titres of infectious viruses in immature neurons. Complete transcriptome analysis demonstrated that resting immature neurons have low transcriptional competence to mount antiviral responses. They had no detectable transcription of the genes Ddx58 and Ifih1, which encode key RNA virus cytoplasmic sensors RIG-I and MDA5, and very low expression of genes encoding key regulators of associated signalling pathways. Upon infection, immature neurons failed to mount an antiviral response as evidenced by their failure to produce chemokines, IFNs, and other cytokines. Treatment of immature neurons with exogenous IFNβ prior to infection resulted in antiviral responses and lower levels of virus replication and infectious virus production. In contrast, resting mature neurons generated a robust antiviral response. This was augmented by pretreatment with IFNβ. Infection of mature neurons derived from IFNAR−/− mice did not make an antiviral response and replicated virus to high levels. Virus infections of the central nervous system (CNS) cause important diseases of humans and animals. As in other tissues, innate antiviral responses mediated by type I interferons (IFNs) are crucially important in controlling CNS virus infections. The maturity of neuronal populations is an established critical factor determining the outcome of CNS virus infection. Using primary cultures of mouse cortical neurons, we investigated the relationships between neuronal maturation, type I IFN responses, and the outcome of Semliki Forest virus infection. The virus replicated better, infected more cells, and produced higher titres of infectious viruses in immature neurons. Complete transcriptome analysis demonstrated that resting immature neurons have low transcriptional competence to mount antiviral responses. They had no detectable transcription of the genes Ddx58 and Ifih1, which encode key RNA virus cytoplasmic sensors RIG-I and MDA5, and very low expression of genes encoding key regulators of associated signalling pathways. Upon infection, immature neurons failed to mount an antiviral response as evidenced by their failure to produce chemokines, IFNs, and other cytokines. Treatment of immature neurons with exogenous IFNβ prior to infection resulted in antiviral responses and lower levels of virus replication and infectious virus production. In contrast, resting mature neurons generated a robust antiviral response. This was augmented by pretreatment with IFNβ. Infection of mature neurons derived from IFNAR-/- mice did not make an antiviral response and replicated virus to high levels. Abstract Virus infections of the central nervous system (CNS) cause important diseases of humans and animals. As in other tissues, innate antiviral responses mediated by type I interferons (IFNs) are crucially important in controlling CNS virus infections. The maturity of neuronal populations is an established critical factor determining the outcome of CNS virus infection. Using primary cultures of mouse cortical neurons, we investigated the relationships between neuronal maturation, type I IFN responses, and the outcome of Semliki Forest virus infection. The virus replicated better, infected more cells, and produced higher titres of infectious viruses in immature neurons. Complete transcriptome analysis demonstrated that resting immature neurons have low transcriptional competence to mount antiviral responses. They had no detectable transcription of the genes Ddx58 and Ifih1, which encode key RNA virus cytoplasmic sensors RIG-I and MDA5, and very low expression of genes encoding key regulators of associated signalling pathways. Upon infection, immature neurons failed to mount an antiviral response as evidenced by their failure to produce chemokines, IFNs, and other cytokines. Treatment of immature neurons with exogenous IFNβ prior to infection resulted in antiviral responses and lower levels of virus replication and infectious virus production. In contrast, resting mature neurons generated a robust antiviral response. This was augmented by pretreatment with IFNβ. Infection of mature neurons derived from IFNAR−/− mice did not make an antiviral response and replicated virus to high levels. |
Author | McQuilten, Hayley A. Narayanan, Divya Moily, Nagaraj Kedzierski, Lukasz Kedzierska, Katherine Fazakerley, John K. Mackenzie, Jason M. |
Author_xml | – sequence: 1 givenname: Divya orcidid: 0000-0001-9916-0685 surname: Narayanan fullname: Narayanan, Divya – sequence: 2 givenname: Nagaraj surname: Moily fullname: Moily, Nagaraj – sequence: 3 givenname: Hayley A. orcidid: 0000-0002-7089-5300 surname: McQuilten fullname: McQuilten, Hayley A. – sequence: 4 givenname: Katherine surname: Kedzierska fullname: Kedzierska, Katherine – sequence: 5 givenname: Jason M. orcidid: 0000-0001-6613-8350 surname: Mackenzie fullname: Mackenzie, Jason M. – sequence: 6 givenname: Lukasz orcidid: 0000-0003-0203-1057 surname: Kedzierski fullname: Kedzierski, Lukasz email: *Lukasz Kedzierski, lukaszk@unimelb.edu.au, John K. Fazakerley, john.fazakerley@unimelb.edu.au – sequence: 7 givenname: John K. orcidid: 0000-0001-7071-105X surname: Fazakerley fullname: Fazakerley, John K. email: *Lukasz Kedzierski, lukaszk@unimelb.edu.au, John K. Fazakerley, john.fazakerley@unimelb.edu.au |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35738238$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUFv1DAQRi1URNuFA3eELHGBw4LtOI73uCyFBq0WCRXELZrYkyolsVPbacWZP06WlJw4eeR580aj75ycOO-QkOecveU837xjjOUiFxv-iJxxpcRac6FPlpr_OCXnMd4wpqTcFE_IaZYXmRaZPiO_y76HNAak7wO0ju58SK2Bjh5wDN5Fegl3SPf-nl4FcNGEdkitdxOw8_2ACZ1BmjzdmtTeQUK6dVPRhgn4gM2xGyk4O9EuBd_Rr4ct_d6GMdLSNWiOrviUPG6gi_js4V2Rbx8vrnaX6_2XT-Vuu1-bnIm0lnldFyKznFtlwBgolK0LlQOzgCwDVdRcyUZK2YCW9cYKlNBopmqrsalVtiLl7LUebqohtD2EX5WHtvr74cN1BcfrO6y0zjOGDFEByJrBhstCMRDMoK1ByMn1enYNwd-OGFPVt9Fg14FDP8ZKKM2Z1MXkWZE3M2qCjzFgs6zmrDrmVy35TezLB-1Y92gX8l9gE_BiBn5CuMawAMv8q_-2P5eHmagG22R_ALrZraU |
CitedBy_id | crossref_primary_10_1111_imcb_12625 |
Cites_doi | 10.1097/00004647-200208000-00005 10.1038/s41579-018-0020-5 10.1038/nature04734 10.1016/bs.aivir.2020.06.002 10.1128/JVI.00935-08 10.1128/MMBR.00024-13 10.1093/nar/gkv007 10.1128/JVI.01305-0710.1128/JVI.01305-07 10.1371/journal.pone.0058813 10.1016/s0065-3527(01)56005-4 10.1073/pnas.0602460103 10.1016/j.cell.2015.12.032 10.1016/j.virol.2007.10.025 10.1128/jvi.76.22.11688-11703.2002 10.1371/journal.ppat.0030106 10.12688/f1000research.7563.2 10.1099/vir.0.053850-0 10.1093/bioinformatics/btw623 10.1128/JVI.02394-14 10.1016/j.micinf.2011.11.015 10.1080/13550280802482583 10.3389/fimmu.2018.02180 10.1371/journal.ppat.1003610 10.1128/JVI.79.21.13350-13361.2005 10.1007/978-1-59745-394-3_24 10.1055/s-0038-1647247 10.1038/nmeth.4197 10.4049/jimmunol.0904133 10.1089/jir.2010.0107 10.3389/fcimb.2021.628275 10.1128/JVI.79.9.5374-5385.2005 10.1128/JVI.01576-15 10.1038/nm.3108 10.1016/j.antiviral.2016.03.010 10.1038/s41577-020-0288-3 10.1099/vir.0.82436-0 10.1016/j.immuni.2013.05.007 10.1136/jnnp.68.4.405 10.1006/viro.1993.1414 10.1371/journal.pone.0021761 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by S. Karger AG, Basel 2022 The Author(s). Published by S. Karger AG, Basel. |
Copyright_xml | – notice: 2022 The Author(s). Published by S. Karger AG, Basel – notice: 2022 The Author(s). Published by S. Karger AG, Basel. |
DBID | M-- CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 DOA |
DOI | 10.1159/000525291 |
DatabaseName | Karger Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: M-- name: Karger Open Access(OpenAccess) url: https://www.karger.com/OpenAccess sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1662-8128 |
EndPage | 66 |
ExternalDocumentID | oai_doaj_org_article_88530e0ee6aa4b0a914760a20cedba24 10_1159_000525291 35738238 525291 |
Genre | Journal Article |
GroupedDBID | --- 0~B 3O. 4.4 53G 5GY 8UI AAYIC ABDBF ABPAZ ACGFO ACGFS ACPRK ACPSR ADBBV ADFRT AENEX AEYAO AHMBA ALDHI ALIPV ALMA_UNASSIGNED_HOLDINGS AZPMC CYUIP E0A EAP EBS ESX EX3 F5P FB. GROUPED_DOAJ HYE HZ~ IAO IHR IY7 KUZGX M-- M7P N9A O1H O9- OK1 P2P RKO RPM SJN UJ6 WOW 0~5 3V. 7RV 7X7 88E 8AO 8FE 8FH 8FI 8FJ ABUWG AFJJK AFKRA AOIJS BBNVY BENPR BHPHI BKEYQ BPHCQ BVXVI CAG CCPQU CGR COF CUY CVF ECM EIF EJD FYUFA HCIFZ HMCUK ITC LK8 M1P NAPCQ NPM PQQKQ PROAC PSQYO UKHRP AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c502t-45bb723d11d6cacca76db765a0dae03a67b164f444fa84b9d2e4af806bd8efb63 |
IEDL.DBID | M-- |
ISSN | 1662-811X |
IngestDate | Tue Oct 22 15:16:04 EDT 2024 Sat Oct 05 04:32:22 EDT 2024 Fri Dec 06 02:11:57 EST 2024 Sat Nov 02 12:28:01 EDT 2024 Sat Aug 31 21:00:33 EDT 2024 Thu Aug 29 12:04:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Alphavirus Innate immunity Interferon Neuron |
Language | English |
License | This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC). Usage and distribution for commercial purposes requires written permission. 2022 The Author(s). Published by S. Karger AG, Basel. https://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-45bb723d11d6cacca76db765a0dae03a67b164f444fa84b9d2e4af806bd8efb63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9916-0685 0000-0002-7089-5300 0000-0001-7071-105X 0000-0001-6613-8350 0000-0003-0203-1057 |
OpenAccessLink | https://karger.com/doi/10.1159/000525291 |
PMID | 35738238 |
PQID | 2681048785 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmed_primary_35738238 crossref_primary_10_1159_000525291 doaj_primary_oai_doaj_org_article_88530e0ee6aa4b0a914760a20cedba24 proquest_miscellaneous_2681048785 karger_primary_525291 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Switzerland |
PublicationTitle | Journal of innate immunity |
PublicationTitleAlternate | J Innate Immun |
PublicationYear | 2023 |
Publisher | Karger Publishers |
Publisher_xml | – name: Karger Publishers |
References | Lesuisse C, Martin LJ. Immature and mature cortical neurons engage different apoptotic mechanisms involving caspase-3 and the mitogen-activated protein kinase pathway. J Cereb Blood Flow Metab. 2002 Aug;22(8):935–50. Fredericksen BL, Keller BC, Fornek J, Katze MG, GaleMJr. Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol. 2008 Jan;82(2):609–16. Laureti M, Narayanan D, Rodriguez-Andres J, Fazakerley JK, Kedzierski L. Flavivirus receptors: diversity, identity, and cell entry. Front Immunol. 2018;9:2180. Mostafavi S, Yoshida H, Moodley D, LeBoité H, Rothamel K, Raj T, . Parsing the interferon transcriptional network and its disease associations. Cell. 2016 Jan 28;164(3):564–78. Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, . Zika virus: history, emergence, biology, and prospects for control. Antiviral Res. 2016 Jun;130:69–80. Perng YC, Lenschow DJ. ISG15 in antiviral immunity and beyond. Nat Rev Microbiol. 2018 Jul;16(7):423–39. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017 Apr;14(4):417–9. Daffis S, Samuel MA, Keller BC, Gale MJr, DiamondMS. Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and -independent mechanisms. PLoS Pathog. 2007 Jul 27;3(7):e106. Fazakerley JK, Pathak S, Scallan M, Amor S, Dyson H. Replication of the A7(74) strain of Semliki Forest virus is restricted in neurons. Virology. 1993 Aug;195(2):627–37. Shen Z, Wei L, Yu ZB, Yao ZY, Cheng J, Wang YT, . The roles of TRIMs in antiviral innate immune signaling. Front Cell Infect Microbiol. 2021;11:628275. Baxter VK, Heise MT. Immunopathogenesis of alphaviruses. Adv Virus Res. 2020;107:315–82. Peltier DC, Simms A, Farmer JR, Miller DJ. Human neuronal cells possess functional cytoplasmic and TLR-mediated innate immune pathways influenced by phosphatidylinositol-3 kinase signaling. J Immunol. 2010 Jun 15;184(12):7010–21. Nikonov A, Mölder T, Sikut R, Kiiver K, Männik A, Toots U, . RIG-I and MDA-5 detection of viral RNA-dependent RNA polymerase activity restricts positive-strand RNA virus replication. PLoS Pathog. 2013;9(9):e1003610. Goubau D, Deddouche S, Reis e Sousa C. Cytosolic sensing of viruses. Immunity. 2013 May 23;38(5):855–69. Alhamdoosh M, Ng M, Wilson NJ, Sheridan JM, Huynh H, Wilson MJ, . Combining multiple tools outperforms individual methods in gene set enrichment analyses. Bioinformatics. 2017 Feb 1;33(3):414–24. Muñoz LS, Garcia MA, Gordon-Lipkin E, Parra B, Pardo CA. Emerging viral infections and their impact on the Global Burden of Neurological Disease. Semin Neurol. 2018 Apr;38(2):163–75. Castorena KM, Peltier DC, Peng W, Miller DJ. Maturation-dependent responses of human neuronal cells to western equine encephalitis virus infection and type I interferons. Virology. 2008 Mar 1;372(1):208–20. Lindenbach BD. Measuring HCV infectivity produced in cell culture and in vivo. Methods Mol Biol. 2009;510:329–36. Fragkoudis R, Tamberg N, Siu R, Kiiver K, Kohl A, Merits A, . Neurons and oligodendrocytes in the mouse brain differ in their ability to replicate Semliki Forest virus. J Neurovirol. 2009 Jan;15(1):57–70. Nazmi A, Dutta K, Basu A. RIG-I mediates innate immune response in mouse neurons following Japanese encephalitis virus infection. PLoS One. 2011;6(6):e21761. Solomon T, Dung NM, Kneen R, Gainsborough M, Vaughn DW, Khanh VT. Japanese encephalitis. J Neurol Neurosurg Psychiatry. 2000 Apr;68(4):405–15. Rehwinkel J, Gack MU. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol. 2020 Sep;20(9):537–51. Mäkelä SM, Österlund P, Westenius V, Latvala S, Diamond MS, GaleMJr, . RIG-I signaling is essential for influenza B virus-induced rapid interferon gene expression. J Virol. 2015 Dec;89(23):12014–25. Samuel MA, Diamond MS. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol. 2005 Nov;79(21):13350–61. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, . Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006 May 4;441(7089):101–5. Kristiansen H, Gad HH, Eskildsen-Larsen S, Despres P, Hartmann R. The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities. J Interferon Cytokine Res. 2011 Jan;31(1):41–7. Burdeinick-Kerr R, Griffin DE. Gamma interferon-dependent, noncytolytic clearance of sindbis virus infection from neurons in vitro. J Virol. 2005 May;79(9):5374–85. Delhaye S, Paul S, Blakqori G, Minet M, Weber F, Staeheli P, . Neurons produce type I interferon during viral encephalitis. Proc Natl Acad Sci U S A. 2006 May 16;103(20):7835–40. Verhelst J, Hulpiau P, Saelens X. Mx proteins: antiviral gatekeepers that restrain the uninvited. Microbiol Mol Biol Rev. 2013 Dec;77(4):551–66. Farmer JR, Altschaefl KM, O'Shea KS, Miller DJ. Activation of the type I interferon pathway is enhanced in response to human neuronal differentiation. PLoS One. 2013;8(3):e58813. Cho H, Proll SC, Szretter KJ, Katze MG, Gale MJr, DiamondMS. Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses. Nat Med. 2013 Apr;19(4):458–64. Fazakerley JK. Neurovirology and developmental neurobiology. Adv Virus Res. 2001;56:73–124. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, . limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 Apr 20;43(7):e47. Babraham Bioinformatics. FastQC A quality control tool for high throughput sequence data. 2019. Tamberg N, Lulla V, Fragkoudis R, Lulla A, Fazakerley JK, Merits A. Insertion of EGFP into the replicase gene of Semliki Forest virus results in a novel, genetically stable marker virus. J Gen Virol. 2007 Apr;88(Pt 4):1225–30. Mattijssen S, Pruijn GJ. Viperin, a key player in the antiviral response. Microbes Infect. 2012 May;14(5):419–26. Daffis S, Samuel MA, Suthar MS, GaleMJr, Diamond MS. Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol. 2008 Nov;82(21):10349–58. Schultz KL, Vernon PS, Griffin DE. Differentiation of neurons restricts Arbovirus replication and increases expression of the alpha isoform of IRF-7. J Virol. 2015 Jan;89(1):48–60. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521. Labrada L, Liang XH, Zheng W, Johnston C, Levine B. Age-dependent resistance to lethal alphavirus encephalitis in mice: analysis of gene expression in the central nervous system and identification of a novel interferon-inducible protective gene, mouse ISG12. J Virol. 2002 Nov;76(22):11688–703. Schnettler E, Donald CL, Human S, Watson M, Siu RWC, McFarlane M, . Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells. J Gen Virol. 2013 Jul;94(Pt 7):1680–9. ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref20 doi: 10.1097/00004647-200208000-00005 – ident: ref31 doi: 10.1038/s41579-018-0020-5 – ident: ref34 doi: 10.1038/nature04734 – ident: ref16 doi: 10.1016/bs.aivir.2020.06.002 – ident: ref7 doi: 10.1128/JVI.00935-08 – ident: ref30 doi: 10.1128/MMBR.00024-13 – ident: ref24 doi: 10.1093/nar/gkv007 – ident: ref35 doi: 10.1128/JVI.01305-0710.1128/JVI.01305-07 – ident: ref11 doi: 10.1371/journal.pone.0058813 – ident: ref5 doi: 10.1016/s0065-3527(01)56005-4 – ident: ref13 doi: 10.1073/pnas.0602460103 – ident: ref27 doi: 10.1016/j.cell.2015.12.032 – ident: ref10 doi: 10.1016/j.virol.2007.10.025 – ident: ref15 doi: 10.1128/jvi.76.22.11688-11703.2002 – ident: ref14 doi: 10.1371/journal.ppat.0030106 – ident: ref23 doi: 10.12688/f1000research.7563.2 – ident: ref26 doi: 10.1099/vir.0.053850-0 – ident: ref25 doi: 10.1093/bioinformatics/btw623 – ident: ref12 doi: 10.1128/JVI.02394-14 – ident: ref29 doi: 10.1016/j.micinf.2011.11.015 – ident: ref21 doi: 10.1080/13550280802482583 – ident: ref3 doi: 10.3389/fimmu.2018.02180 – ident: ref38 doi: 10.1371/journal.ppat.1003610 – ident: ref9 doi: 10.1128/JVI.79.21.13350-13361.2005 – ident: ref19 doi: 10.1007/978-1-59745-394-3_24 – ident: ref1 doi: 10.1055/s-0038-1647247 – ident: ref22 doi: 10.1038/nmeth.4197 – ident: ref6 doi: 10.4049/jimmunol.0904133 – ident: ref28 doi: 10.1089/jir.2010.0107 – ident: ref32 doi: 10.3389/fcimb.2021.628275 – ident: ref8 doi: 10.1128/JVI.79.9.5374-5385.2005 – ident: ref37 doi: 10.1128/JVI.01576-15 – ident: ref33 doi: 10.1038/nm.3108 – ident: ref2 doi: 10.1016/j.antiviral.2016.03.010 – ident: ref40 doi: 10.1038/s41577-020-0288-3 – ident: ref17 doi: 10.1099/vir.0.82436-0 – ident: ref36 doi: 10.1016/j.immuni.2013.05.007 – ident: ref4 doi: 10.1136/jnnp.68.4.405 – ident: ref18 doi: 10.1006/viro.1993.1414 – ident: ref39 doi: 10.1371/journal.pone.0021761 |
SSID | ssj0064497 |
Score | 2.3701768 |
Snippet | Abstract
Virus infections of the central nervous system (CNS) cause important diseases of humans and animals. As in other tissues, innate antiviral responses... Virus infections of the central nervous system (CNS) cause important diseases of humans and animals. As in other tissues, innate antiviral responses mediated... |
SourceID | doaj proquest crossref pubmed karger |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 50 |
SubjectTerms | alphavirus Animals Antiviral Agents Brain Humans Immunity, Innate innate immunity interferon Interferon Type I Mice neuron Neurons Research Article RNA Virus Infections Virus Diseases |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuiNICKQUZxHWF7fgjOW4Xqt0K9oAo2ls0jicSQk2q7C4VZ_44_kgiQKp66dWxLMsz9puxJ-8R8s66wjXW-p2GhU9QCp-nWAQ9g_CGhGXprAx_I39e6-WlvNiozV9SX6EmLNEDp4V7X3g8YcgQNYC0DEoujWYgWI3OgkhMoEyMyVQ6gz3IJ1kVrf0sON8MnEIeu6OKnVCi5P8gUSTs9yj0I9Rf97eHmxF2zp-Qx0O8SOdpnofkAbZPycOkIPnriPxeXV1Fak56FrQe6KLr4-U0jaQb7ZYu4SfST90NjaA0HhG-w2IKmOmuo_M6ypwhnbdBTqL3HT5gE2usKbSOLlJFO_2yntNv3_v9lq6GKq52e0wuzz9-XSxng67CrFZM7GZSWWtE7jh3ugZvQqOdNVoBc4AsB22sT6IaKWUDhbSlEyihKZj2hsXG6vwZOWi7Fl8QakDkIA06bpg0RlnH89rnYGVIRXLNM_J2XOPqOtFnVDHtUGU1GSIjZ2H1pw6B8To2eD-oBj-o7vKDjBwn203DjIOf_td-sVqnT9W1azLyZrR05TdWeC2BFrv9thKBqS04r8rI8-QC0xC5MuH9tDi5j5m_JI-Chn261zklB7t-j698pLOzr6NT_wE4tvot priority: 102 providerName: Directory of Open Access Journals |
Title | Immature Brain Cortical Neurons Have Low Transcriptional Competence to Activate Antiviral Defences and Control RNA Virus Infections |
URI | https://karger.com/doi/10.1159/000525291 https://www.ncbi.nlm.nih.gov/pubmed/35738238 https://search.proquest.com/docview/2681048785 https://doaj.org/article/88530e0ee6aa4b0a914760a20cedba24 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9QwELZQEVUvFdACKaUyqNdIjuNHctwuVLsV7AHRam_ROJ4ghJpU2d0izv3j-JFEKlKvjmNLnrFnxjP-PkLOjS1sY4zbaVi4AKVwcYpBUCn4HBKWpTXCv0b-tlKLa3G1luvhvsO_hfnt658DNOqELeAMbqCe45L7Z-rPucdQ80V6aTqeuc6oRxoVpdysWbYeMIQe_XpA9nOpfd6reGSEAla_M0Bx6qc9zWBxLl-Sw8FVpLMo21fkGbavyYtIHvn3iDwsb28DKie98DQPdN714V6aBryNdkMXcI_0a_eHBns0ng6uw3zylem2o7M6MJwhnbWeSaJ3HT5jE8qrKbSWzmMxO_2-mtGbX_1uQ5dDAVe7OSbXl19-zBfpQKmQ1pLxbSqkMZrnNsusqsFJTytrtJLALCDLQWnj4qdGCNFAIUxpOQpoCqacTLExKn9D9tquxXeEauA5CI0200xoLY3N8tqFX6WPQnKVJeTTuMbVXUTOqELEIctqkklCLvzqTx082HVo6Pqf1bB3qsK5FAwZogIQhkGZCa0YcFajNcBFQo6j7KZhxsFP_2u_Wq7ip-rONgn5OEq6cnvKJ0qgxW63qbgHafN6KxPyNqrANMSoQidPTPqeHHhG-nhLc0r2tv0OPzi_ZWvOQrx_FhT3H7gY5u4 |
link.rule.ids | 314,780,784,864,2102,27635,27924,27925 |
linkProvider | Karger AG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immature+Brain+Cortical+Neurons+Have+Low+Transcriptional+Competence+to+Activate+Antiviral+Defences+and+Control+RNA+Virus+Infections&rft.jtitle=Journal+of+innate+immunity&rft.au=Narayanan%2C+Divya&rft.au=Moily%2C+Nagaraj&rft.au=McQuilten%2C+Hayley+A.&rft.au=Kedzierska%2C+Katherine&rft.date=2023-01-01&rft.issn=1662-811X&rft.eissn=1662-8128&rft.volume=15&rft.issue=1&rft.spage=50&rft.epage=66&rft_id=info:doi/10.1159%2F000525291&rft_id=info%3Apmid%2F35738238&rft.externalDocID=525291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-811X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-811X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-811X&client=summon |