Immature Brain Cortical Neurons Have Low Transcriptional Competence to Activate Antiviral Defences and Control RNA Virus Infections

Abstract Virus infections of the central nervous system (CNS) cause important diseases of humans and animals. As in other tissues, innate antiviral responses mediated by type I interferons (IFNs) are crucially important in controlling CNS virus infections. The maturity of neuronal populations is an...

Full description

Saved in:
Bibliographic Details
Published inJournal of innate immunity Vol. 15; no. 1; pp. 50 - 66
Main Authors Narayanan, Divya, Moily, Nagaraj, McQuilten, Hayley A., Kedzierska, Katherine, Mackenzie, Jason M., Kedzierski, Lukasz, Fazakerley, John K.
Format Journal Article
LanguageEnglish
Published Basel, Switzerland Karger Publishers 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Virus infections of the central nervous system (CNS) cause important diseases of humans and animals. As in other tissues, innate antiviral responses mediated by type I interferons (IFNs) are crucially important in controlling CNS virus infections. The maturity of neuronal populations is an established critical factor determining the outcome of CNS virus infection. Using primary cultures of mouse cortical neurons, we investigated the relationships between neuronal maturation, type I IFN responses, and the outcome of Semliki Forest virus infection. The virus replicated better, infected more cells, and produced higher titres of infectious viruses in immature neurons. Complete transcriptome analysis demonstrated that resting immature neurons have low transcriptional competence to mount antiviral responses. They had no detectable transcription of the genes Ddx58 and Ifih1, which encode key RNA virus cytoplasmic sensors RIG-I and MDA5, and very low expression of genes encoding key regulators of associated signalling pathways. Upon infection, immature neurons failed to mount an antiviral response as evidenced by their failure to produce chemokines, IFNs, and other cytokines. Treatment of immature neurons with exogenous IFNβ prior to infection resulted in antiviral responses and lower levels of virus replication and infectious virus production. In contrast, resting mature neurons generated a robust antiviral response. This was augmented by pretreatment with IFNβ. Infection of mature neurons derived from IFNAR−/− mice did not make an antiviral response and replicated virus to high levels.
AbstractList Virus infections of the central nervous system (CNS) cause important diseases of humans and animals. As in other tissues, innate antiviral responses mediated by type I interferons (IFNs) are crucially important in controlling CNS virus infections. The maturity of neuronal populations is an established critical factor determining the outcome of CNS virus infection. Using primary cultures of mouse cortical neurons, we investigated the relationships between neuronal maturation, type I IFN responses, and the outcome of Semliki Forest virus infection. The virus replicated better, infected more cells, and produced higher titres of infectious viruses in immature neurons. Complete transcriptome analysis demonstrated that resting immature neurons have low transcriptional competence to mount antiviral responses. They had no detectable transcription of the genes Ddx58 and Ifih1, which encode key RNA virus cytoplasmic sensors RIG-I and MDA5, and very low expression of genes encoding key regulators of associated signalling pathways. Upon infection, immature neurons failed to mount an antiviral response as evidenced by their failure to produce chemokines, IFNs, and other cytokines. Treatment of immature neurons with exogenous IFNβ prior to infection resulted in antiviral responses and lower levels of virus replication and infectious virus production. In contrast, resting mature neurons generated a robust antiviral response. This was augmented by pretreatment with IFNβ. Infection of mature neurons derived from IFNAR−/− mice did not make an antiviral response and replicated virus to high levels.
Virus infections of the central nervous system (CNS) cause important diseases of humans and animals. As in other tissues, innate antiviral responses mediated by type I interferons (IFNs) are crucially important in controlling CNS virus infections. The maturity of neuronal populations is an established critical factor determining the outcome of CNS virus infection. Using primary cultures of mouse cortical neurons, we investigated the relationships between neuronal maturation, type I IFN responses, and the outcome of Semliki Forest virus infection. The virus replicated better, infected more cells, and produced higher titres of infectious viruses in immature neurons. Complete transcriptome analysis demonstrated that resting immature neurons have low transcriptional competence to mount antiviral responses. They had no detectable transcription of the genes Ddx58 and Ifih1, which encode key RNA virus cytoplasmic sensors RIG-I and MDA5, and very low expression of genes encoding key regulators of associated signalling pathways. Upon infection, immature neurons failed to mount an antiviral response as evidenced by their failure to produce chemokines, IFNs, and other cytokines. Treatment of immature neurons with exogenous IFNβ prior to infection resulted in antiviral responses and lower levels of virus replication and infectious virus production. In contrast, resting mature neurons generated a robust antiviral response. This was augmented by pretreatment with IFNβ. Infection of mature neurons derived from IFNAR-/- mice did not make an antiviral response and replicated virus to high levels.
Abstract Virus infections of the central nervous system (CNS) cause important diseases of humans and animals. As in other tissues, innate antiviral responses mediated by type I interferons (IFNs) are crucially important in controlling CNS virus infections. The maturity of neuronal populations is an established critical factor determining the outcome of CNS virus infection. Using primary cultures of mouse cortical neurons, we investigated the relationships between neuronal maturation, type I IFN responses, and the outcome of Semliki Forest virus infection. The virus replicated better, infected more cells, and produced higher titres of infectious viruses in immature neurons. Complete transcriptome analysis demonstrated that resting immature neurons have low transcriptional competence to mount antiviral responses. They had no detectable transcription of the genes Ddx58 and Ifih1, which encode key RNA virus cytoplasmic sensors RIG-I and MDA5, and very low expression of genes encoding key regulators of associated signalling pathways. Upon infection, immature neurons failed to mount an antiviral response as evidenced by their failure to produce chemokines, IFNs, and other cytokines. Treatment of immature neurons with exogenous IFNβ prior to infection resulted in antiviral responses and lower levels of virus replication and infectious virus production. In contrast, resting mature neurons generated a robust antiviral response. This was augmented by pretreatment with IFNβ. Infection of mature neurons derived from IFNAR−/− mice did not make an antiviral response and replicated virus to high levels.
Author McQuilten, Hayley A.
Narayanan, Divya
Moily, Nagaraj
Kedzierski, Lukasz
Kedzierska, Katherine
Fazakerley, John K.
Mackenzie, Jason M.
Author_xml – sequence: 1
  givenname: Divya
  orcidid: 0000-0001-9916-0685
  surname: Narayanan
  fullname: Narayanan, Divya
– sequence: 2
  givenname: Nagaraj
  surname: Moily
  fullname: Moily, Nagaraj
– sequence: 3
  givenname: Hayley A.
  orcidid: 0000-0002-7089-5300
  surname: McQuilten
  fullname: McQuilten, Hayley A.
– sequence: 4
  givenname: Katherine
  surname: Kedzierska
  fullname: Kedzierska, Katherine
– sequence: 5
  givenname: Jason M.
  orcidid: 0000-0001-6613-8350
  surname: Mackenzie
  fullname: Mackenzie, Jason M.
– sequence: 6
  givenname: Lukasz
  orcidid: 0000-0003-0203-1057
  surname: Kedzierski
  fullname: Kedzierski, Lukasz
  email: *Lukasz Kedzierski, lukaszk@unimelb.edu.au, John K. Fazakerley, john.fazakerley@unimelb.edu.au
– sequence: 7
  givenname: John K.
  orcidid: 0000-0001-7071-105X
  surname: Fazakerley
  fullname: Fazakerley, John K.
  email: *Lukasz Kedzierski, lukaszk@unimelb.edu.au, John K. Fazakerley, john.fazakerley@unimelb.edu.au
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35738238$$D View this record in MEDLINE/PubMed
BookMark eNptkUFv1DAQRi1URNuFA3eELHGBw4LtOI73uCyFBq0WCRXELZrYkyolsVPbacWZP06WlJw4eeR580aj75ycOO-QkOecveU837xjjOUiFxv-iJxxpcRac6FPlpr_OCXnMd4wpqTcFE_IaZYXmRaZPiO_y76HNAak7wO0ju58SK2Bjh5wDN5Fegl3SPf-nl4FcNGEdkitdxOw8_2ACZ1BmjzdmtTeQUK6dVPRhgn4gM2xGyk4O9EuBd_Rr4ct_d6GMdLSNWiOrviUPG6gi_js4V2Rbx8vrnaX6_2XT-Vuu1-bnIm0lnldFyKznFtlwBgolK0LlQOzgCwDVdRcyUZK2YCW9cYKlNBopmqrsalVtiLl7LUebqohtD2EX5WHtvr74cN1BcfrO6y0zjOGDFEByJrBhstCMRDMoK1ByMn1enYNwd-OGFPVt9Fg14FDP8ZKKM2Z1MXkWZE3M2qCjzFgs6zmrDrmVy35TezLB-1Y92gX8l9gE_BiBn5CuMawAMv8q_-2P5eHmagG22R_ALrZraU
CitedBy_id crossref_primary_10_1111_imcb_12625
Cites_doi 10.1097/00004647-200208000-00005
10.1038/s41579-018-0020-5
10.1038/nature04734
10.1016/bs.aivir.2020.06.002
10.1128/JVI.00935-08
10.1128/MMBR.00024-13
10.1093/nar/gkv007
10.1128/JVI.01305-0710.1128/JVI.01305-07
10.1371/journal.pone.0058813
10.1016/s0065-3527(01)56005-4
10.1073/pnas.0602460103
10.1016/j.cell.2015.12.032
10.1016/j.virol.2007.10.025
10.1128/jvi.76.22.11688-11703.2002
10.1371/journal.ppat.0030106
10.12688/f1000research.7563.2
10.1099/vir.0.053850-0
10.1093/bioinformatics/btw623
10.1128/JVI.02394-14
10.1016/j.micinf.2011.11.015
10.1080/13550280802482583
10.3389/fimmu.2018.02180
10.1371/journal.ppat.1003610
10.1128/JVI.79.21.13350-13361.2005
10.1007/978-1-59745-394-3_24
10.1055/s-0038-1647247
10.1038/nmeth.4197
10.4049/jimmunol.0904133
10.1089/jir.2010.0107
10.3389/fcimb.2021.628275
10.1128/JVI.79.9.5374-5385.2005
10.1128/JVI.01576-15
10.1038/nm.3108
10.1016/j.antiviral.2016.03.010
10.1038/s41577-020-0288-3
10.1099/vir.0.82436-0
10.1016/j.immuni.2013.05.007
10.1136/jnnp.68.4.405
10.1006/viro.1993.1414
10.1371/journal.pone.0021761
ContentType Journal Article
Copyright 2022 The Author(s). Published by S. Karger AG, Basel
2022 The Author(s). Published by S. Karger AG, Basel.
Copyright_xml – notice: 2022 The Author(s). Published by S. Karger AG, Basel
– notice: 2022 The Author(s). Published by S. Karger AG, Basel.
DBID M--
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOA
DOI 10.1159/000525291
DatabaseName Karger Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: M--
  name: Karger Open Access(OpenAccess)
  url: https://www.karger.com/OpenAccess
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1662-8128
EndPage 66
ExternalDocumentID oai_doaj_org_article_88530e0ee6aa4b0a914760a20cedba24
10_1159_000525291
35738238
525291
Genre Journal Article
GroupedDBID ---
0~B
3O.
4.4
53G
5GY
8UI
AAYIC
ABDBF
ABPAZ
ACGFO
ACGFS
ACPRK
ACPSR
ADBBV
ADFRT
AENEX
AEYAO
AHMBA
ALDHI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZPMC
CYUIP
E0A
EAP
EBS
ESX
EX3
F5P
FB.
GROUPED_DOAJ
HYE
HZ~
IAO
IHR
IY7
KUZGX
M--
M7P
N9A
O1H
O9-
OK1
P2P
RKO
RPM
SJN
UJ6
WOW
0~5
3V.
7RV
7X7
88E
8AO
8FE
8FH
8FI
8FJ
ABUWG
AFJJK
AFKRA
AOIJS
BBNVY
BENPR
BHPHI
BKEYQ
BPHCQ
BVXVI
CAG
CCPQU
CGR
COF
CUY
CVF
ECM
EIF
EJD
FYUFA
HCIFZ
HMCUK
ITC
LK8
M1P
NAPCQ
NPM
PQQKQ
PROAC
PSQYO
UKHRP
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c502t-45bb723d11d6cacca76db765a0dae03a67b164f444fa84b9d2e4af806bd8efb63
IEDL.DBID M--
ISSN 1662-811X
IngestDate Tue Oct 22 15:16:04 EDT 2024
Sat Oct 05 04:32:22 EDT 2024
Fri Dec 06 02:11:57 EST 2024
Sat Nov 02 12:28:01 EDT 2024
Sat Aug 31 21:00:33 EDT 2024
Thu Aug 29 12:04:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Alphavirus
Innate immunity
Interferon
Neuron
Language English
License This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC). Usage and distribution for commercial purposes requires written permission.
2022 The Author(s). Published by S. Karger AG, Basel.
https://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-45bb723d11d6cacca76db765a0dae03a67b164f444fa84b9d2e4af806bd8efb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9916-0685
0000-0002-7089-5300
0000-0001-7071-105X
0000-0001-6613-8350
0000-0003-0203-1057
OpenAccessLink https://karger.com/doi/10.1159/000525291
PMID 35738238
PQID 2681048785
PQPubID 23479
PageCount 17
ParticipantIDs pubmed_primary_35738238
crossref_primary_10_1159_000525291
doaj_primary_oai_doaj_org_article_88530e0ee6aa4b0a914760a20cedba24
proquest_miscellaneous_2681048785
karger_primary_525291
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Switzerland
PublicationTitle Journal of innate immunity
PublicationTitleAlternate J Innate Immun
PublicationYear 2023
Publisher Karger Publishers
Publisher_xml – name: Karger Publishers
References Lesuisse C, Martin LJ. Immature and mature cortical neurons engage different apoptotic mechanisms involving caspase-3 and the mitogen-activated protein kinase pathway. J Cereb Blood Flow Metab. 2002 Aug;22(8):935–50.
Fredericksen BL, Keller BC, Fornek J, Katze MG, GaleMJr. Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol. 2008 Jan;82(2):609–16.
Laureti M, Narayanan D, Rodriguez-Andres J, Fazakerley JK, Kedzierski L. Flavivirus receptors: diversity, identity, and cell entry. Front Immunol. 2018;9:2180.
Mostafavi S, Yoshida H, Moodley D, LeBoité H, Rothamel K, Raj T, . Parsing the interferon transcriptional network and its disease associations. Cell. 2016 Jan 28;164(3):564–78.
Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, . Zika virus: history, emergence, biology, and prospects for control. Antiviral Res. 2016 Jun;130:69–80.
Perng YC, Lenschow DJ. ISG15 in antiviral immunity and beyond. Nat Rev Microbiol. 2018 Jul;16(7):423–39.
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017 Apr;14(4):417–9.
Daffis S, Samuel MA, Keller BC, Gale MJr, DiamondMS. Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and -independent mechanisms. PLoS Pathog. 2007 Jul 27;3(7):e106.
Fazakerley JK, Pathak S, Scallan M, Amor S, Dyson H. Replication of the A7(74) strain of Semliki Forest virus is restricted in neurons. Virology. 1993 Aug;195(2):627–37.
Shen Z, Wei L, Yu ZB, Yao ZY, Cheng J, Wang YT, . The roles of TRIMs in antiviral innate immune signaling. Front Cell Infect Microbiol. 2021;11:628275.
Baxter VK, Heise MT. Immunopathogenesis of alphaviruses. Adv Virus Res. 2020;107:315–82.
Peltier DC, Simms A, Farmer JR, Miller DJ. Human neuronal cells possess functional cytoplasmic and TLR-mediated innate immune pathways influenced by phosphatidylinositol-3 kinase signaling. J Immunol. 2010 Jun 15;184(12):7010–21.
Nikonov A, Mölder T, Sikut R, Kiiver K, Männik A, Toots U, . RIG-I and MDA-5 detection of viral RNA-dependent RNA polymerase activity restricts positive-strand RNA virus replication. PLoS Pathog. 2013;9(9):e1003610.
Goubau D, Deddouche S, Reis e Sousa C. Cytosolic sensing of viruses. Immunity. 2013 May 23;38(5):855–69.
Alhamdoosh M, Ng M, Wilson NJ, Sheridan JM, Huynh H, Wilson MJ, . Combining multiple tools outperforms individual methods in gene set enrichment analyses. Bioinformatics. 2017 Feb 1;33(3):414–24.
Muñoz LS, Garcia MA, Gordon-Lipkin E, Parra B, Pardo CA. Emerging viral infections and their impact on the Global Burden of Neurological Disease. Semin Neurol. 2018 Apr;38(2):163–75.
Castorena KM, Peltier DC, Peng W, Miller DJ. Maturation-dependent responses of human neuronal cells to western equine encephalitis virus infection and type I interferons. Virology. 2008 Mar 1;372(1):208–20.
Lindenbach BD. Measuring HCV infectivity produced in cell culture and in vivo. Methods Mol Biol. 2009;510:329–36.
Fragkoudis R, Tamberg N, Siu R, Kiiver K, Kohl A, Merits A, . Neurons and oligodendrocytes in the mouse brain differ in their ability to replicate Semliki Forest virus. J Neurovirol. 2009 Jan;15(1):57–70.
Nazmi A, Dutta K, Basu A. RIG-I mediates innate immune response in mouse neurons following Japanese encephalitis virus infection. PLoS One. 2011;6(6):e21761.
Solomon T, Dung NM, Kneen R, Gainsborough M, Vaughn DW, Khanh VT. Japanese encephalitis. J Neurol Neurosurg Psychiatry. 2000 Apr;68(4):405–15.
Rehwinkel J, Gack MU. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol. 2020 Sep;20(9):537–51.
Mäkelä SM, Österlund P, Westenius V, Latvala S, Diamond MS, GaleMJr, . RIG-I signaling is essential for influenza B virus-induced rapid interferon gene expression. J Virol. 2015 Dec;89(23):12014–25.
Samuel MA, Diamond MS. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol. 2005 Nov;79(21):13350–61.
Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, . Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006 May 4;441(7089):101–5.
Kristiansen H, Gad HH, Eskildsen-Larsen S, Despres P, Hartmann R. The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities. J Interferon Cytokine Res. 2011 Jan;31(1):41–7.
Burdeinick-Kerr R, Griffin DE. Gamma interferon-dependent, noncytolytic clearance of sindbis virus infection from neurons in vitro. J Virol. 2005 May;79(9):5374–85.
Delhaye S, Paul S, Blakqori G, Minet M, Weber F, Staeheli P, . Neurons produce type I interferon during viral encephalitis. Proc Natl Acad Sci U S A. 2006 May 16;103(20):7835–40.
Verhelst J, Hulpiau P, Saelens X. Mx proteins: antiviral gatekeepers that restrain the uninvited. Microbiol Mol Biol Rev. 2013 Dec;77(4):551–66.
Farmer JR, Altschaefl KM, O'Shea KS, Miller DJ. Activation of the type I interferon pathway is enhanced in response to human neuronal differentiation. PLoS One. 2013;8(3):e58813.
Cho H, Proll SC, Szretter KJ, Katze MG, Gale MJr, DiamondMS. Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses. Nat Med. 2013 Apr;19(4):458–64.
Fazakerley JK. Neurovirology and developmental neurobiology. Adv Virus Res. 2001;56:73–124.
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, . limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 Apr 20;43(7):e47.
Babraham Bioinformatics. FastQC A quality control tool for high throughput sequence data. 2019.
Tamberg N, Lulla V, Fragkoudis R, Lulla A, Fazakerley JK, Merits A. Insertion of EGFP into the replicase gene of Semliki Forest virus results in a novel, genetically stable marker virus. J Gen Virol. 2007 Apr;88(Pt 4):1225–30.
Mattijssen S, Pruijn GJ. Viperin, a key player in the antiviral response. Microbes Infect. 2012 May;14(5):419–26.
Daffis S, Samuel MA, Suthar MS, GaleMJr, Diamond MS. Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol. 2008 Nov;82(21):10349–58.
Schultz KL, Vernon PS, Griffin DE. Differentiation of neurons restricts Arbovirus replication and increases expression of the alpha isoform of IRF-7. J Virol. 2015 Jan;89(1):48–60.
Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521.
Labrada L, Liang XH, Zheng W, Johnston C, Levine B. Age-dependent resistance to lethal alphavirus encephalitis in mice: analysis of gene expression in the central nervous system and identification of a novel interferon-inducible protective gene, mouse ISG12. J Virol. 2002 Nov;76(22):11688–703.
Schnettler E, Donald CL, Human S, Watson M, Siu RWC, McFarlane M, . Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells. J Gen Virol. 2013 Jul;94(Pt 7):1680–9.
ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref20
  doi: 10.1097/00004647-200208000-00005
– ident: ref31
  doi: 10.1038/s41579-018-0020-5
– ident: ref34
  doi: 10.1038/nature04734
– ident: ref16
  doi: 10.1016/bs.aivir.2020.06.002
– ident: ref7
  doi: 10.1128/JVI.00935-08
– ident: ref30
  doi: 10.1128/MMBR.00024-13
– ident: ref24
  doi: 10.1093/nar/gkv007
– ident: ref35
  doi: 10.1128/JVI.01305-0710.1128/JVI.01305-07
– ident: ref11
  doi: 10.1371/journal.pone.0058813
– ident: ref5
  doi: 10.1016/s0065-3527(01)56005-4
– ident: ref13
  doi: 10.1073/pnas.0602460103
– ident: ref27
  doi: 10.1016/j.cell.2015.12.032
– ident: ref10
  doi: 10.1016/j.virol.2007.10.025
– ident: ref15
  doi: 10.1128/jvi.76.22.11688-11703.2002
– ident: ref14
  doi: 10.1371/journal.ppat.0030106
– ident: ref23
  doi: 10.12688/f1000research.7563.2
– ident: ref26
  doi: 10.1099/vir.0.053850-0
– ident: ref25
  doi: 10.1093/bioinformatics/btw623
– ident: ref12
  doi: 10.1128/JVI.02394-14
– ident: ref29
  doi: 10.1016/j.micinf.2011.11.015
– ident: ref21
  doi: 10.1080/13550280802482583
– ident: ref3
  doi: 10.3389/fimmu.2018.02180
– ident: ref38
  doi: 10.1371/journal.ppat.1003610
– ident: ref9
  doi: 10.1128/JVI.79.21.13350-13361.2005
– ident: ref19
  doi: 10.1007/978-1-59745-394-3_24
– ident: ref1
  doi: 10.1055/s-0038-1647247
– ident: ref22
  doi: 10.1038/nmeth.4197
– ident: ref6
  doi: 10.4049/jimmunol.0904133
– ident: ref28
  doi: 10.1089/jir.2010.0107
– ident: ref32
  doi: 10.3389/fcimb.2021.628275
– ident: ref8
  doi: 10.1128/JVI.79.9.5374-5385.2005
– ident: ref37
  doi: 10.1128/JVI.01576-15
– ident: ref33
  doi: 10.1038/nm.3108
– ident: ref2
  doi: 10.1016/j.antiviral.2016.03.010
– ident: ref40
  doi: 10.1038/s41577-020-0288-3
– ident: ref17
  doi: 10.1099/vir.0.82436-0
– ident: ref36
  doi: 10.1016/j.immuni.2013.05.007
– ident: ref4
  doi: 10.1136/jnnp.68.4.405
– ident: ref18
  doi: 10.1006/viro.1993.1414
– ident: ref39
  doi: 10.1371/journal.pone.0021761
SSID ssj0064497
Score 2.3701768
Snippet Abstract Virus infections of the central nervous system (CNS) cause important diseases of humans and animals. As in other tissues, innate antiviral responses...
Virus infections of the central nervous system (CNS) cause important diseases of humans and animals. As in other tissues, innate antiviral responses mediated...
SourceID doaj
proquest
crossref
pubmed
karger
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 50
SubjectTerms alphavirus
Animals
Antiviral Agents
Brain
Humans
Immunity, Innate
innate immunity
interferon
Interferon Type I
Mice
neuron
Neurons
Research Article
RNA Virus Infections
Virus Diseases
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuiNICKQUZxHWF7fgjOW4Xqt0K9oAo2ls0jicSQk2q7C4VZ_44_kgiQKp66dWxLMsz9puxJ-8R8s66wjXW-p2GhU9QCp-nWAQ9g_CGhGXprAx_I39e6-WlvNiozV9SX6EmLNEDp4V7X3g8YcgQNYC0DEoujWYgWI3OgkhMoEyMyVQ6gz3IJ1kVrf0sON8MnEIeu6OKnVCi5P8gUSTs9yj0I9Rf97eHmxF2zp-Qx0O8SOdpnofkAbZPycOkIPnriPxeXV1Fak56FrQe6KLr4-U0jaQb7ZYu4SfST90NjaA0HhG-w2IKmOmuo_M6ypwhnbdBTqL3HT5gE2usKbSOLlJFO_2yntNv3_v9lq6GKq52e0wuzz9-XSxng67CrFZM7GZSWWtE7jh3ugZvQqOdNVoBc4AsB22sT6IaKWUDhbSlEyihKZj2hsXG6vwZOWi7Fl8QakDkIA06bpg0RlnH89rnYGVIRXLNM_J2XOPqOtFnVDHtUGU1GSIjZ2H1pw6B8To2eD-oBj-o7vKDjBwn203DjIOf_td-sVqnT9W1azLyZrR05TdWeC2BFrv9thKBqS04r8rI8-QC0xC5MuH9tDi5j5m_JI-Chn261zklB7t-j698pLOzr6NT_wE4tvot
  priority: 102
  providerName: Directory of Open Access Journals
Title Immature Brain Cortical Neurons Have Low Transcriptional Competence to Activate Antiviral Defences and Control RNA Virus Infections
URI https://karger.com/doi/10.1159/000525291
https://www.ncbi.nlm.nih.gov/pubmed/35738238
https://search.proquest.com/docview/2681048785
https://doaj.org/article/88530e0ee6aa4b0a914760a20cedba24
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9QwELZQEVUvFdACKaUyqNdIjuNHctwuVLsV7AHRam_ROJ4ghJpU2d0izv3j-JFEKlKvjmNLnrFnxjP-PkLOjS1sY4zbaVi4AKVwcYpBUCn4HBKWpTXCv0b-tlKLa3G1luvhvsO_hfnt658DNOqELeAMbqCe45L7Z-rPucdQ80V6aTqeuc6oRxoVpdysWbYeMIQe_XpA9nOpfd6reGSEAla_M0Bx6qc9zWBxLl-Sw8FVpLMo21fkGbavyYtIHvn3iDwsb28DKie98DQPdN714V6aBryNdkMXcI_0a_eHBns0ng6uw3zylem2o7M6MJwhnbWeSaJ3HT5jE8qrKbSWzmMxO_2-mtGbX_1uQ5dDAVe7OSbXl19-zBfpQKmQ1pLxbSqkMZrnNsusqsFJTytrtJLALCDLQWnj4qdGCNFAIUxpOQpoCqacTLExKn9D9tquxXeEauA5CI0200xoLY3N8tqFX6WPQnKVJeTTuMbVXUTOqELEIctqkklCLvzqTx082HVo6Pqf1bB3qsK5FAwZogIQhkGZCa0YcFajNcBFQo6j7KZhxsFP_2u_Wq7ip-rONgn5OEq6cnvKJ0qgxW63qbgHafN6KxPyNqrANMSoQidPTPqeHHhG-nhLc0r2tv0OPzi_ZWvOQrx_FhT3H7gY5u4
link.rule.ids 314,780,784,864,2102,27635,27924,27925
linkProvider Karger AG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immature+Brain+Cortical+Neurons+Have+Low+Transcriptional+Competence+to+Activate+Antiviral+Defences+and+Control+RNA+Virus+Infections&rft.jtitle=Journal+of+innate+immunity&rft.au=Narayanan%2C+Divya&rft.au=Moily%2C+Nagaraj&rft.au=McQuilten%2C+Hayley+A.&rft.au=Kedzierska%2C+Katherine&rft.date=2023-01-01&rft.issn=1662-811X&rft.eissn=1662-8128&rft.volume=15&rft.issue=1&rft.spage=50&rft.epage=66&rft_id=info:doi/10.1159%2F000525291&rft_id=info%3Apmid%2F35738238&rft.externalDocID=525291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-811X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-811X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-811X&client=summon