Bioactive strontium ions/ginsenoside Rg1–incorporated biodegradable silk fibroin-gelatin scaffold promoted challenging osteoporotic bone regeneration

Autogenous healing of osteoporotic fractures is challenging, as the regenerative capacity of bone tissues is impaired by estrogen reduction and existed pro-inflammatory cytokines. In this study, a biofunctional ginsenoside Rg1 and strontium-containing mineral (SrHPO4, SrP)-incorporated biodegradable...

Full description

Saved in:
Bibliographic Details
Published inMaterials today bio Vol. 12; p. 100141
Main Authors Wu, Tingting, Liu, Wenping, Huang, Shusen, Chen, Jiwen, He, Fupo, Wang, Huajun, Zheng, Xiaofei, Li, Zhenyan, Zhang, Huantian, Zha, Zhengang, Lin, Zefeng, Chen, Yuanfeng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2590-0064
2590-0064
DOI10.1016/j.mtbio.2021.100141

Cover

Loading…
Abstract Autogenous healing of osteoporotic fractures is challenging, as the regenerative capacity of bone tissues is impaired by estrogen reduction and existed pro-inflammatory cytokines. In this study, a biofunctional ginsenoside Rg1 and strontium-containing mineral (SrHPO4, SrP)-incorporated biodegradable silk fibroin-gelatin (SG) scaffold (Rg1/SrP/SG) was developed to stimulate the osteoporotic bone repair. The incorporation of 15 wt% SrP significantly enhanced the mechanical strength, stimulated the osteogenic differentiation of mouse bone marrow mesenchymal stem cells, and suppressed the osteoclastogenesis of RAW264.7 in a concentration-related manner. The loading of Rg1 in SG and 15SrP/SG scaffolds obviously promoted the angiogenesis of human umbilical vein endothelial cells via activating the expression of vascular endothelial growth factor and basic fibroblast growth factor genes and proteins. The bioactive strontium ions (Sr2+) and Rg1 released from the scaffolds together mediated lipopolysaccharide-treated macrophages polarizing into M2 type. They downregulated the expression of inflammatory-related genes (interleukin (IL)-1β, tumor necrosis factor α, and IL-6) and stimulated the expression of genes related to anti-inflammation (Arginase and IL-10) as well as bone repair (BMP-2 and PDGF-BB) in the macrophages. The in vivo results also displayed that SrP and Rg1 significantly promoted the bone repair effect of SG scaffolds in osteoporotic critical-sized calvarial defects. Besides, the degradation rate of the scaffolds was close to the bone regeneration rate. Therefore, the simultaneous addition of SrP and Rg1 is a promising way for facilitating the osteoporotic bone repair activity of SG scaffolds via promoting the osteogenesis and angiogenesis, as well as inhibiting the osteoclastogenesis and inflammation. [Display omitted]
AbstractList Autogenous healing of osteoporotic fractures is challenging, as the regenerative capacity of bone tissues is impaired by estrogen reduction and existed pro-inflammatory cytokines. In this study, a biofunctional ginsenoside Rg1 and strontium-containing mineral (SrHPO4, SrP)-incorporated biodegradable silk fibroin-gelatin (SG) scaffold (Rg1/SrP/SG) was developed to stimulate the osteoporotic bone repair. The incorporation of 15 wt% SrP significantly enhanced the mechanical strength, stimulated the osteogenic differentiation of mouse bone marrow mesenchymal stem cells, and suppressed the osteoclastogenesis of RAW264.7 in a concentration-related manner. The loading of Rg1 in SG and 15SrP/SG scaffolds obviously promoted the angiogenesis of human umbilical vein endothelial cells via activating the expression of vascular endothelial growth factor and basic fibroblast growth factor genes and proteins. The bioactive strontium ions (Sr2+) and Rg1 released from the scaffolds together mediated lipopolysaccharide-treated macrophages polarizing into M2 type. They downregulated the expression of inflammatory-related genes (interleukin (IL)-1β, tumor necrosis factor α, and IL-6) and stimulated the expression of genes related to anti-inflammation (Arginase and IL-10) as well as bone repair (BMP-2 and PDGF-BB) in the macrophages. The in vivo results also displayed that SrP and Rg1 significantly promoted the bone repair effect of SG scaffolds in osteoporotic critical-sized calvarial defects. Besides, the degradation rate of the scaffolds was close to the bone regeneration rate. Therefore, the simultaneous addition of SrP and Rg1 is a promising way for facilitating the osteoporotic bone repair activity of SG scaffolds via promoting the osteogenesis and angiogenesis, as well as inhibiting the osteoclastogenesis and inflammation. [Display omitted]
Autogenous healing of osteoporotic fractures is challenging, as the regenerative capacity of bone tissues is impaired by estrogen reduction and existed pro-inflammatory cytokines. In this study, a biofunctional ginsenoside Rg1 and strontium-containing mineral (SrHPO4, SrP)-incorporated biodegradable silk fibroin-gelatin (SG) scaffold (Rg1/SrP/SG) was developed to stimulate the osteoporotic bone repair. The incorporation of 15 wt% SrP significantly enhanced the mechanical strength, stimulated the osteogenic differentiation of mouse bone marrow mesenchymal stem cells, and suppressed the osteoclastogenesis of RAW264.7 in a concentration-related manner. The loading of Rg1 in SG and 15SrP/SG scaffolds obviously promoted the angiogenesis of human umbilical vein endothelial cells via activating the expression of vascular endothelial growth factor and basic fibroblast growth factor genes and proteins. The bioactive strontium ions (Sr2+) and Rg1 released from the scaffolds together mediated lipopolysaccharide-treated macrophages polarizing into M2 type. They downregulated the expression of inflammatory-related genes (interleukin (IL)-1β, tumor necrosis factor α, and IL-6) and stimulated the expression of genes related to anti-inflammation (Arginase and IL-10) as well as bone repair (BMP-2 and PDGF-BB) in the macrophages. The in vivo results also displayed that SrP and Rg1 significantly promoted the bone repair effect of SG scaffolds in osteoporotic critical-sized calvarial defects. Besides, the degradation rate of the scaffolds was close to the bone regeneration rate. Therefore, the simultaneous addition of SrP and Rg1 is a promising way for facilitating the osteoporotic bone repair activity of SG scaffolds via promoting the osteogenesis and angiogenesis, as well as inhibiting the osteoclastogenesis and inflammation.Autogenous healing of osteoporotic fractures is challenging, as the regenerative capacity of bone tissues is impaired by estrogen reduction and existed pro-inflammatory cytokines. In this study, a biofunctional ginsenoside Rg1 and strontium-containing mineral (SrHPO4, SrP)-incorporated biodegradable silk fibroin-gelatin (SG) scaffold (Rg1/SrP/SG) was developed to stimulate the osteoporotic bone repair. The incorporation of 15 wt% SrP significantly enhanced the mechanical strength, stimulated the osteogenic differentiation of mouse bone marrow mesenchymal stem cells, and suppressed the osteoclastogenesis of RAW264.7 in a concentration-related manner. The loading of Rg1 in SG and 15SrP/SG scaffolds obviously promoted the angiogenesis of human umbilical vein endothelial cells via activating the expression of vascular endothelial growth factor and basic fibroblast growth factor genes and proteins. The bioactive strontium ions (Sr2+) and Rg1 released from the scaffolds together mediated lipopolysaccharide-treated macrophages polarizing into M2 type. They downregulated the expression of inflammatory-related genes (interleukin (IL)-1β, tumor necrosis factor α, and IL-6) and stimulated the expression of genes related to anti-inflammation (Arginase and IL-10) as well as bone repair (BMP-2 and PDGF-BB) in the macrophages. The in vivo results also displayed that SrP and Rg1 significantly promoted the bone repair effect of SG scaffolds in osteoporotic critical-sized calvarial defects. Besides, the degradation rate of the scaffolds was close to the bone regeneration rate. Therefore, the simultaneous addition of SrP and Rg1 is a promising way for facilitating the osteoporotic bone repair activity of SG scaffolds via promoting the osteogenesis and angiogenesis, as well as inhibiting the osteoclastogenesis and inflammation.
Autogenous healing of osteoporotic fractures is challenging, as the regenerative capacity of bone tissues is impaired by estrogen reduction and existed pro-inflammatory cytokines. In this study, a biofunctional ginsenoside Rg1 and strontium-containing mineral (SrHPO 4 , SrP)-incorporated biodegradable silk fibroin-gelatin (SG) scaffold (Rg1/SrP/SG) was developed to stimulate the osteoporotic bone repair. The incorporation of 15 wt% SrP significantly enhanced the mechanical strength, stimulated the osteogenic differentiation of mouse bone marrow mesenchymal stem cells, and suppressed the osteoclastogenesis of RAW264.7 in a concentration-related manner. The loading of Rg1 in SG and 15SrP/SG scaffolds obviously promoted the angiogenesis of human umbilical vein endothelial cells via activating the expression of vascular endothelial growth factor and basic fibroblast growth factor genes and proteins. The bioactive strontium ions (Sr 2+ ) and Rg1 released from the scaffolds together mediated lipopolysaccharide-treated macrophages polarizing into M2 type. They downregulated the expression of inflammatory-related genes (interleukin (IL)-1β, tumor necrosis factor α, and IL-6) and stimulated the expression of genes related to anti-inflammation (Arginase and IL-10) as well as bone repair (BMP-2 and PDGF-BB) in the macrophages. The in vivo results also displayed that SrP and Rg1 significantly promoted the bone repair effect of SG scaffolds in osteoporotic critical-sized calvarial defects. Besides, the degradation rate of the scaffolds was close to the bone regeneration rate. Therefore, the simultaneous addition of SrP and Rg1 is a promising way for facilitating the osteoporotic bone repair activity of SG scaffolds via promoting the osteogenesis and angiogenesis, as well as inhibiting the osteoclastogenesis and inflammation. Image 1
Autogenous healing of osteoporotic fractures is challenging, as the regenerative capacity of bone tissues is impaired by estrogen reduction and existed pro-inflammatory cytokines. In this study, a biofunctional ginsenoside Rg1 and strontium-containing mineral (SrHPO4, SrP)-incorporated biodegradable silk fibroin-gelatin (SG) scaffold (Rg1/SrP/SG) was developed to stimulate the osteoporotic bone repair. The incorporation of 15 wt% SrP significantly enhanced the mechanical strength, stimulated the osteogenic differentiation of mouse bone marrow mesenchymal stem cells, and suppressed the osteoclastogenesis of RAW264.7 in a concentration-related manner. The loading of Rg1 in SG and 15SrP/SG scaffolds obviously promoted the angiogenesis of human umbilical vein endothelial cells via activating the expression of vascular endothelial growth factor and basic fibroblast growth factor genes and proteins. The bioactive strontium ions (Sr2+) and Rg1 released from the scaffolds together mediated lipopolysaccharide-treated macrophages polarizing into M2 type. They downregulated the expression of inflammatory-related genes (interleukin (IL)-1β, tumor necrosis factor α, and IL-6) and stimulated the expression of genes related to anti-inflammation (Arginase and IL-10) as well as bone repair (BMP-2 and PDGF-BB) in the macrophages. The in vivo results also displayed that SrP and Rg1 significantly promoted the bone repair effect of SG scaffolds in osteoporotic critical-sized calvarial defects. Besides, the degradation rate of the scaffolds was close to the bone regeneration rate. Therefore, the simultaneous addition of SrP and Rg1 is a promising way for facilitating the osteoporotic bone repair activity of SG scaffolds via promoting the osteogenesis and angiogenesis, as well as inhibiting the osteoclastogenesis and inflammation.
ArticleNumber 100141
Author Wang, Huajun
Lin, Zefeng
Wu, Tingting
Li, Zhenyan
Chen, Yuanfeng
Liu, Wenping
Zheng, Xiaofei
Huang, Shusen
Zha, Zhengang
Chen, Jiwen
He, Fupo
Zhang, Huantian
Author_xml – sequence: 1
  givenname: Tingting
  surname: Wu
  fullname: Wu, Tingting
  organization: National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Medicine and Health, Guangdong Academy of Sciences, Guangzhou, 510500, China
– sequence: 2
  givenname: Wenping
  surname: Liu
  fullname: Liu, Wenping
  organization: Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
– sequence: 3
  givenname: Shusen
  surname: Huang
  fullname: Huang, Shusen
  organization: Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
– sequence: 4
  givenname: Jiwen
  surname: Chen
  fullname: Chen, Jiwen
  organization: Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
– sequence: 5
  givenname: Fupo
  surname: He
  fullname: He, Fupo
  organization: School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
– sequence: 6
  givenname: Huajun
  surname: Wang
  fullname: Wang, Huajun
  organization: Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
– sequence: 7
  givenname: Xiaofei
  surname: Zheng
  fullname: Zheng, Xiaofei
  organization: Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
– sequence: 8
  givenname: Zhenyan
  surname: Li
  fullname: Li, Zhenyan
  organization: Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
– sequence: 9
  givenname: Huantian
  surname: Zhang
  fullname: Zhang, Huantian
  email: zhanghuantian@jnu.edu.cn
  organization: Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
– sequence: 10
  givenname: Zhengang
  surname: Zha
  fullname: Zha, Zhengang
  organization: Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
– sequence: 11
  givenname: Zefeng
  orcidid: 0000-0002-0734-6990
  surname: Lin
  fullname: Lin, Zefeng
  email: lzefeng_scut@126.com
  organization: Guangdong Key Lab of Orthopedic Technology and Implant, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
– sequence: 12
  givenname: Yuanfeng
  surname: Chen
  fullname: Chen, Yuanfeng
  email: chenyuanfeng@gdph.org.cn
  organization: Research Center of Medical Science, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
BookMark eNp9kktuFDEQhlsoiISQE7DpJZuZ-NntXoAEEY9IkZAQrC0_qjse3PZge0bKDs7AhkNwKi7AFfDMBImwyMpWVf1flcv_4-YoxABN8xSjJUa4O18t56JdXBJEcI0gzPCD5oTwAS0Q6tjRP_fj5iznFUKI9ANDaHjUHFPWUUI7dtL8eOWiMsVtoc0lxVDcZm5dDPl8ciFDiNlZaD9M-NfX7y6YmNYxqQK2rc0tTElZpX3VOv-5_f3zm07RhcUEXhUX2mzUOEZv23WKc9ypzLXyHkJlT23MBWLFxeJMq-vz2gQTBKj8OsCT5uGofIaz2_O0-fTm9ceLd4ur928vL15eLQxHpCzogAihioHqrcZcc0wtx6PFGLgwgnPUixFrbaGmFB4JKIUFBTUoRKnm9LS5PHBtVCu5Tm5W6UZG5eQ-ENMkVaoTepAdZ6PArDYbgGlLNBtNz7QQFo0d721lvTiw1hs9gzUQSlL-DvRuJrhrOcWtFEwIimkFPLsFpPhlA7nI2WUD3qsAcZMl4QINVJAe19LhUGpSzDnBKI0r-81VsvMSI7kzilzJvVHkzijyYJSqpf9p_454v-r5QQX1O7YOkszGQTBgXQJT6r7cvfo_KIbgnw
CitedBy_id crossref_primary_10_2147_JIR_S502604
crossref_primary_10_3389_fbioe_2023_1252574
crossref_primary_10_1088_1748_605X_ac65cc
crossref_primary_10_3390_bioengineering12020201
crossref_primary_10_32604_or_2023_031134
crossref_primary_10_3389_fgene_2022_1036233
crossref_primary_10_1016_j_envpol_2024_125267
crossref_primary_10_1016_j_xplc_2023_100591
crossref_primary_10_1111_prd_12533
crossref_primary_10_1016_j_compositesb_2024_111256
crossref_primary_10_3389_fbioe_2022_915181
crossref_primary_10_1016_j_ijbiomac_2023_129099
crossref_primary_10_3390_bioengineering10040414
crossref_primary_10_3389_fcell_2022_1083983
crossref_primary_10_3389_fbioe_2022_928799
crossref_primary_10_1039_D4RA00075G
crossref_primary_10_3389_fgene_2022_1006151
crossref_primary_10_3389_fgene_2024_1402771
Cites_doi 10.1016/j.actbio.2017.08.015
10.1111/sms.13354
10.1016/j.apmt.2016.09.007
10.1016/j.carbpol.2018.06.093
10.2165/10481900-000000000-00000
10.1016/j.bioactmat.2020.03.008
10.5152/eurjrheum.2016.048
10.1016/j.msec.2017.07.034
10.1002/adhm.201900123
10.1039/D1TB00768H
10.1016/j.bioactmat.2020.08.030
10.3389/fphar.2020.588259
10.1002/smtd.201900237
10.1088/1748-605X/ab052d
10.1016/j.msec.2019.110116
10.1016/j.jgr.2017.01.008
10.1016/j.apmt.2020.100615
10.1016/j.phrs.2020.104630
10.1016/j.msec.2016.05.087
10.1038/s41577-019-0178-8
10.1016/j.msec.2021.112354
10.4049/jimmunol.181.2.1232
10.1016/j.biomaterials.2019.119645
10.1021/acsami.6b10378
10.1021/acsami.9b01532
10.1002/jbmr.2245
10.1016/j.biomaterials.2010.01.124
10.1007/s10456-011-9235-z
10.1016/j.abb.2014.07.006
10.1126/sciadv.abg3089
10.1002/adma.201701089
10.3390/nu12113565
10.1016/j.bone.2020.115477
10.1186/s13063-016-1410-5
10.1155/2017/8602573
10.1016/j.msec.2020.110757
10.4049/jimmunol.1002579
10.1016/j.phymed.2013.08.021
10.1016/j.biomaterials.2020.119962
10.1039/C5TB00621J
10.1155/2014/305071
10.1002/adfm.201302958
10.1002/jbmr.2269
10.1016/j.mtbio.2020.100078
10.18632/aging.202241
10.1039/C8TB02526F
10.1002/JPER.19-0561
10.1016/j.bone.2007.08.043
10.1016/j.msec.2015.12.087
10.1016/j.biomaterials.2018.06.004
10.1016/S0140-6736(14)61347-7
10.1016/j.jmbbm.2016.09.029
10.1016/j.biomaterials.2012.06.021
10.1093/geront/gnw002
10.1016/j.spinee.2020.07.014
ContentType Journal Article
Copyright 2021 The Author(s)
2021 The Author(s).
2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: 2021 The Author(s).
– notice: 2021 The Author(s) 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.mtbio.2021.100141
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-0064
ExternalDocumentID oai_doaj_org_article_654f814a4e9e4bd2b4fc74b88d0f657d
PMC8488313
10_1016_j_mtbio_2021_100141
S2590006421000491
GroupedDBID 0SF
6I.
AAEDW
AAFTH
AALRI
AAXUO
ACLIJ
AEXQZ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
RPM
SSZ
0R~
53G
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
7X8
5PM
ID FETCH-LOGICAL-c502t-390223a4ea7db15b513d51fd11e58c855078f1bbdeb51a1f2eaa183ea9a033b53
IEDL.DBID DOA
ISSN 2590-0064
IngestDate Wed Aug 27 01:25:52 EDT 2025
Thu Aug 21 18:36:38 EDT 2025
Fri Jul 11 11:29:06 EDT 2025
Tue Jul 01 03:52:21 EDT 2025
Thu Apr 24 23:44:15 EDT 2025
Tue Jul 25 20:58:55 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Strontium ions
Ginsenoside Rg1
Angiogenesis
Osteoporotic bone repair
Inflammation inhibition
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-390223a4ea7db15b513d51fd11e58c855078f1bbdeb51a1f2eaa183ea9a033b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors contributed equally to this article.
ORCID 0000-0002-0734-6990
OpenAccessLink https://doaj.org/article/654f814a4e9e4bd2b4fc74b88d0f657d
PMID 34632364
PQID 2580938271
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_654f814a4e9e4bd2b4fc74b88d0f657d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8488313
proquest_miscellaneous_2580938271
crossref_citationtrail_10_1016_j_mtbio_2021_100141
crossref_primary_10_1016_j_mtbio_2021_100141
elsevier_sciencedirect_doi_10_1016_j_mtbio_2021_100141
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Materials today bio
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Bonnelye, Chabadel, Saltel (bib43) 2008; 42
Shi, Sun, Hu, Ren, Cheng, Li, Duan, Fu, Zhang, Chen, Ao (bib13) 2017; 29
Porter, Imperio, Wen, Meyers, McKittrick (bib37) 2014; 24
Perez, Mestres (bib44) 2016; 61
Shimada, Ishikawa, Endo, Jo, Kotani, Kiuchi, Kuniyoshi, Ohtori (bib8) 2017; 2017
Luo, Wang, Liu, Ma, Luo, Zheng, Lu, Zhou, Zheng, Zhang, Wang, Sha, Chen (bib29) 2020; 13
Chang, Raggatt, Alexander, Kuliwaba, Fazzalari, Schroder, Maylin, Ripoll, Hume, Pettit (bib51) 2008; 181
Tang, Yu, Wang, Liu, Pan, Wang, Liu (bib47) 2020; 232
Gu, Fan, Yin (bib50) 2014
Sun, Ma, Zhao, Jin, Zhang, Ma, Qiang, Wang, Deng, Yang, Zhao, Liang, Zhou, Li, Wang (bib53) 2021; 6
O'Donnell, Scheid, West, Souza (bib7) 2019; 29
Ma, Chen, Wu, Hu, Huang, Wang, Dai (bib40) 2021; 9
Asuncion, Goh, Toh (bib24) 2016; 67
Fang, Wang, Hu, Li, Zou, Xie, Zhou (bib15) 2021; 128
Mao, Xia, Jiang, Liu, Jiang, Wu, Fang (bib16) 2017; 61
Du, Cheng, Zhu, Ling, Rg1 (bib33) 2011; 187
Tian, Shi, Wei, Qin, Ni, Zhang, Li, Wang (bib30) 2016; 17
García de Frutos, González-Tartière, Coll Bonet, Ubierna Garcés, Del Arco Churruca, Rivas García, Matamalas Adrover, Saló Bru, Velazquez, Vila-Canet, García-Lopez, Vives, Codinach, Rodriguez, Bagó Granell, Càceres Palou (bib9) 2020; 20
Chen, Wu, Huang, Suen, Cheng, Li, Hou, She, Zhang, Wang, Zheng, Zha (bib11) 2019; 11
Wu, Yang, Lu, He, Zhang, Shi, Lin, Ye (bib42) 2019; 14
Zeng, Guo, Sun, Deng, Ning, Xie (bib18) 2020; 5
Luetchford, Chaudhuri, De Bank (bib36) 2020; 106
Prince, Wu, Guo, Luis, Robledo, O'Donnell, Sullivan (bib2) 2015; 385
Zhang, Li, Ma, Liu, Wang, Zhang, Li, Li, Yang (bib31) 2020; 11
Wright, Looker, Saag, Curtis, Delzell, Randall, Dawson-Hughes (bib4) 2014; 29
Yuan, Raucci, Fan, Zhu, Yang, Zhang, Santin, Ambrosio (bib17) 2018; 6
Diao, Ding, Huang, Fu, Zou, Li, Zhao, Mao, Wang (bib45) 2019; 3
Sakai, Yoshii, Sakurai, Horii, Nagasuna (bib12) 2020; 8
Barbour, Lui, Ensrud, Hillier, LeBlanc, Ing, Hochberg, Cauley (bib6) 2014; 29
Leung, Ng, Tang, Wong, Wong, Wong (bib48) 2011; 14
Xu, Yang, Ma, Chen, Liu, Liu, Cai, Xu, Chi (bib25) 2019; 8
Briggs, Cross, Hoy, Sanchez-Riera, Fiona, Blyth, Anthony (bib1) 2016; 56
Wang, Wei, Zhang, Yang, Qu, Luo, He (bib49) 2014; 21
Zhang, Cheng, Miron, Shi, Cheng (bib14) 2012; 33
Deeks, Dhillon (bib19) 2010; 70
Zhao, Lei, Li, Mo, Wang, Chen, Chen (bib41) 2018; 178
Bhattacharjee, Naskar, Maiti, Bhattacharya, Kundu (bib10) 2016; 5
Wang, Wang, Yuan, Jia, Zhang, Jiang, Huang, Pang, Cao, Wang, An, Wang, Huang, Yuan, Yan (bib22) 2020; 247
Alolga, Nuer-Allornuvor, Kuugbee, Yin, Ma (bib34) 2020; 152
Wang, Barrera, Dauer, Gu, Andreopoulos, Huang (bib38) 2017; 65
Wu, Chen, Liu, Tong, Suen, Huang, Hou, She, Zhang, Zheng (bib55) 2020; 111
Sozen, Ozisik, Basaran (bib3) 2017; 4
Wu, Xia, Zhou, Ma, Zhang, Jiang, Lin, Xu, Jiang (bib27) 2015; 3
Shi, Gu, Liu, Wang, Peng (bib28) 2011; 39
Zheng, Cao, Liu, Wu, Zeng, Hu, Zhang, Jiang (bib39) 2018; 199
Qian, Lu, Zhang, Liu, Wang, Yu, Li, Shi, Ye (bib56) 2020; 19
Usategui-Martín, Lendinez-Tortajada, Pérez-Castrillón, Briongos-Figuero, Abadía-Otero, Martín-Vallejo, Lara-Hernandez, Chaves, García-Garcia, Martín-Escudero (bib5) 2020; 138
Park, Kim, Jin, Choi, Choi, Choi, Huh, Jeong (bib35) 2020; 12
Shi, Wu, Zhang, Ye, Zeng, Liu, Tao, Ye, Zhou (bib21) 2017; 81
Mohanan, Subramaniyam, Mathiyalagan, Yang (bib32) 2018; 42
Chen, Wang, Luca Mainardi, Talò, McCarthy, John, Teusink, Liu, Xie (bib46) 2021; 7
Tsukasaki, Takayanagi (bib52) 2019; 19
Miranda, Napimoga, De Franco, Marins, Malta, Pontes, Morelli, Duarte (bib20) 2020; 91
Saran, Piperni, Chatterjee (bib23) 2014; 561
Chang, Liao, Hsu, Fang, Chen, Lin (bib26) 2010; 31
Zhang, Zhao, Huang, Fu, Li, Chen (bib54) 2016; 8
Prince (10.1016/j.mtbio.2021.100141_bib2) 2015; 385
Perez (10.1016/j.mtbio.2021.100141_bib44) 2016; 61
Wright (10.1016/j.mtbio.2021.100141_bib4) 2014; 29
Briggs (10.1016/j.mtbio.2021.100141_bib1) 2016; 56
Zhang (10.1016/j.mtbio.2021.100141_bib14) 2012; 33
Zheng (10.1016/j.mtbio.2021.100141_bib39) 2018; 199
Bonnelye (10.1016/j.mtbio.2021.100141_bib43) 2008; 42
Usategui-Martín (10.1016/j.mtbio.2021.100141_bib5) 2020; 138
Chen (10.1016/j.mtbio.2021.100141_bib46) 2021; 7
Wu (10.1016/j.mtbio.2021.100141_bib42) 2019; 14
Fang (10.1016/j.mtbio.2021.100141_bib15) 2021; 128
Shi (10.1016/j.mtbio.2021.100141_bib28) 2011; 39
Zhang (10.1016/j.mtbio.2021.100141_bib31) 2020; 11
Luetchford (10.1016/j.mtbio.2021.100141_bib36) 2020; 106
Zeng (10.1016/j.mtbio.2021.100141_bib18) 2020; 5
Zhao (10.1016/j.mtbio.2021.100141_bib41) 2018; 178
Gu (10.1016/j.mtbio.2021.100141_bib50) 2014
Tian (10.1016/j.mtbio.2021.100141_bib30) 2016; 17
Chen (10.1016/j.mtbio.2021.100141_bib11) 2019; 11
Tsukasaki (10.1016/j.mtbio.2021.100141_bib52) 2019; 19
Luo (10.1016/j.mtbio.2021.100141_bib29) 2020; 13
Wang (10.1016/j.mtbio.2021.100141_bib22) 2020; 247
Barbour (10.1016/j.mtbio.2021.100141_bib6) 2014; 29
Alolga (10.1016/j.mtbio.2021.100141_bib34) 2020; 152
Miranda (10.1016/j.mtbio.2021.100141_bib20) 2020; 91
Yuan (10.1016/j.mtbio.2021.100141_bib17) 2018; 6
Leung (10.1016/j.mtbio.2021.100141_bib48) 2011; 14
Shi (10.1016/j.mtbio.2021.100141_bib13) 2017; 29
Wang (10.1016/j.mtbio.2021.100141_bib49) 2014; 21
Shi (10.1016/j.mtbio.2021.100141_bib21) 2017; 81
Wu (10.1016/j.mtbio.2021.100141_bib27) 2015; 3
Sozen (10.1016/j.mtbio.2021.100141_bib3) 2017; 4
Asuncion (10.1016/j.mtbio.2021.100141_bib24) 2016; 67
Porter (10.1016/j.mtbio.2021.100141_bib37) 2014; 24
Chang (10.1016/j.mtbio.2021.100141_bib26) 2010; 31
Ma (10.1016/j.mtbio.2021.100141_bib40) 2021; 9
Diao (10.1016/j.mtbio.2021.100141_bib45) 2019; 3
Du (10.1016/j.mtbio.2021.100141_bib33) 2011; 187
Deeks (10.1016/j.mtbio.2021.100141_bib19) 2010; 70
Park (10.1016/j.mtbio.2021.100141_bib35) 2020; 12
García de Frutos (10.1016/j.mtbio.2021.100141_bib9) 2020; 20
Wang (10.1016/j.mtbio.2021.100141_bib38) 2017; 65
Zhang (10.1016/j.mtbio.2021.100141_bib54) 2016; 8
Saran (10.1016/j.mtbio.2021.100141_bib23) 2014; 561
Tang (10.1016/j.mtbio.2021.100141_bib47) 2020; 232
Wu (10.1016/j.mtbio.2021.100141_bib55) 2020; 111
Qian (10.1016/j.mtbio.2021.100141_bib56) 2020; 19
Shimada (10.1016/j.mtbio.2021.100141_bib8) 2017; 2017
Chang (10.1016/j.mtbio.2021.100141_bib51) 2008; 181
O'Donnell (10.1016/j.mtbio.2021.100141_bib7) 2019; 29
Bhattacharjee (10.1016/j.mtbio.2021.100141_bib10) 2016; 5
Mao (10.1016/j.mtbio.2021.100141_bib16) 2017; 61
Xu (10.1016/j.mtbio.2021.100141_bib25) 2019; 8
Sun (10.1016/j.mtbio.2021.100141_bib53) 2021; 6
Mohanan (10.1016/j.mtbio.2021.100141_bib32) 2018; 42
Sakai (10.1016/j.mtbio.2021.100141_bib12) 2020; 8
References_xml – volume: 181
  start-page: 1232
  year: 2008
  end-page: 1244
  ident: bib51
  article-title: Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo
  publication-title: J. Immunol.
– volume: 128
  start-page: 112354
  year: 2021
  ident: bib15
  article-title: Strontium mineralized silk fibroin porous microcarriers with enhanced osteogenesis as injectable bone tissue engineering vehicles
  publication-title: Mater. Sci. Eng. C
– volume: 11
  start-page: 14608
  year: 2019
  end-page: 14618
  ident: bib11
  article-title: Sustained release SDF-1 alpha/TGF-beta 1-loaded silk fibroin-porous gelatin scaffold promotes cartilage repair
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 35005
  year: 2019
  ident: bib42
  article-title: Strontium ranelate simultaneously improves the radiopacity and osteogenesis of calcium phosphate cement
  publication-title: Biomed. Mater.
– volume: 39
  start-page: 1306
  year: 2011
  end-page: 1318
  ident: bib28
  article-title: Ginsenoside Rg1 enhances endothelial progenitor cell angiogenic potency and prevents senescence in vitro
  publication-title: J. Int. Med. Res.
– volume: 13
  start-page: 1132
  year: 2020
  end-page: 1152
  ident: bib29
  article-title: Ginsenoside RG1 enhances the paracrine effects of bone marrow-derived mesenchymal stem cells on radiation induced intestinal injury
  publication-title: Aging
– volume: 20
  start-page: 1899
  year: 2020
  end-page: 1910
  ident: bib9
  article-title: Randomized clinical trial: expanded autologous bone marrow mesenchymal cells combined with allogeneic bone tissue, compared with autologous iliac crest graft in lumbar fusion surgery
  publication-title: Spine J.
– volume: 5
  start-page: 52
  year: 2016
  end-page: 67
  ident: bib10
  article-title: Investigating the potential of combined growth factors delivery, from non-mulberry silk fibroin grafted poly(ϵ-caprolactone)/hydroxyapatite nanofibrous scaffold, in bone tissue engineering
  publication-title: App. Mater. Today
– volume: 3
  year: 2019
  ident: bib45
  article-title: Bone defect model dependent optimal pore sizes of 3D-plotted beta-tricalcium phosphate scaffolds for bone regeneration
  publication-title: Small Methods
– volume: 3
  start-page: 4871
  year: 2015
  end-page: 4883
  ident: bib27
  article-title: Evaluation of osteogenesis and angiogenesis of icariin loaded on micro/nano hybrid structured hydroxyapatite granules as a local drug delivery system for femoral defect repair
  publication-title: J. Mater. Chem. B
– volume: 8
  start-page: 1900123
  year: 2019
  ident: bib25
  article-title: Bionic poly(γ-glutamic acid) electrospun fibrous scaffolds for preventing hypertrophic scars
  publication-title: Adv. Healthcare Mater.
– volume: 4
  start-page: 46
  year: 2017
  end-page: 56
  ident: bib3
  article-title: An overview and management of osteoporosis
  publication-title: European J. Rheumatol.
– volume: 29
  start-page: 544
  year: 2019
  end-page: 553
  ident: bib7
  article-title: Impaired vascular function in exercising anovulatory premenopausal women is associated with low bone mineral density
  publication-title: Scand. J. Med. Sci. Sports
– volume: 138
  start-page: 115477
  year: 2020
  ident: bib5
  article-title: Polymorphisms in genes involved in inflammation, the NF-kB pathway and the renin-angiotensin-aldosterone system are associated with the risk of osteoporotic fracture. The Hortega Follow-up Study
  publication-title: Bone
– volume: 61
  start-page: 217
  year: 2017
  end-page: 232
  ident: bib16
  article-title: The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration
  publication-title: Acta Biomater.
– volume: 19
  start-page: 626
  year: 2019
  end-page: 642
  ident: bib52
  article-title: Osteoimmunology: evolving concepts in bone-immune interactions in health and disease
  publication-title: Nat. Rev. Immunol.
– volume: 561
  start-page: 109
  year: 2014
  end-page: 117
  ident: bib23
  article-title: Role of angiogenesis in bone repair
  publication-title: Arch. Biochem. Biophys.
– volume: 11
  start-page: 588259
  year: 2020
  ident: bib31
  article-title: Ginsenoside rg1-notoginsenoside R1-protocatechuic aldehyde reduces atherosclerosis and attenuates low-shear stress-induced vascular endothelial cell dysfunction
  publication-title: Front. Pharmacol.
– volume: 19
  start-page: 100615
  year: 2020
  ident: bib56
  article-title: Promoting bone regeneration of calcium phosphate cement by addition of PLGA microspheres and zinc silicate via synergistic effect of in-situ pore generation, bioactive ion stimulation and macrophage immunomodulation
  publication-title: App. Mater. Today
– volume: 247
  start-page: 119962
  year: 2020
  ident: bib22
  article-title: Degradation and osteogenic induction of a SrHPO4-coated Mg–Nd–Zn–Zr alloy intramedullary nail in a rat femoral shaft fracture model
  publication-title: Biomaterials
– volume: 2017
  year: 2017
  ident: bib8
  article-title: Treatment of atypical ulnar fractures associated with long-term bisphosphonate therapy for osteoporosis: autogenous bone graft with internal fixation
  publication-title: Case Reports Orthopedics
– volume: 42
  start-page: 129
  year: 2008
  end-page: 138
  ident: bib43
  article-title: Pierre Jurdic, Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro
  publication-title: Bone
– volume: 31
  start-page: 4048
  year: 2010
  end-page: 4055
  ident: bib26
  article-title: A poly(propylene fumarate) – calcium phosphate based angiogenic injectable bone cement for femoral head osteonecrosis
  publication-title: Biomaterials
– volume: 178
  start-page: 36
  year: 2018
  end-page: 47
  ident: bib41
  article-title: Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes
  publication-title: Biomaterials
– volume: 9
  start-page: 6600
  year: 2021
  end-page: 6613
  ident: bib40
  article-title: Effects of bioactive strontium-substituted hydroxyapatite on osseointegration of polyethylene terephthalate artificial ligaments
  publication-title: J. Mater. Chem. B
– volume: 42
  start-page: 123
  year: 2018
  end-page: 132
  ident: bib32
  article-title: Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions
  publication-title: J. Ginseng Res.
– volume: 21
  start-page: 177
  year: 2014
  end-page: 183
  ident: bib49
  article-title: Ginsenoside Rg1 of Panax ginseng stimulates the proliferation, odontogenic/osteogenic differentiation and gene expression profiles of human dental pulp stem cells
  publication-title: Phytomedicine
– volume: 6
  start-page: 7974
  year: 2018
  end-page: 7984
  ident: bib17
  article-title: Injectable strontium-doped hydroxyapatite integrated with phosphoserine-tethered poly(epsilon-lysine) dendrons for osteoporotic bone defect repair
  publication-title: J. Mater. Chem. B
– volume: 5
  start-page: 435
  year: 2020
  end-page: 446
  ident: bib18
  article-title: Osteoblastic and anti-osteoclastic activities of strontium-substituted silicocarnotite ceramics: in vitro and in vivo studies
  publication-title: Bioactive Mater.
– volume: 7
  start-page: eabg3089
  year: 2021
  ident: bib46
  article-title: Biomaterials with structural hierarchy and controlled 3D nanotopography guide endogenous bone regeneration
  publication-title: Sci. Adv.
– volume: 111
  start-page: 110757
  year: 2020
  ident: bib55
  article-title: Ginsenoside Rb1/TGF-β1 loaded biodegradable silk fibroin-gelatin porous scaffolds for inflammation inhibition and cartilage regeneration
  publication-title: Mater. Sci. Eng. C
– volume: 17
  start-page: 281
  year: 2016
  ident: bib30
  article-title: The efficacy and safety of Fufangdanshen tablets (Radix Salviae miltiorrhizae formula tablets) for mild to moderate vascular dementia: a study protocol for a randomized controlled trial
  publication-title: Trials
– volume: 29
  year: 2017
  ident: bib13
  article-title: Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo
  publication-title: Adv. Mater.
– volume: 14
  start-page: 515
  year: 2011
  end-page: 522
  ident: bib48
  article-title: Ginsenoside-Rg1 mediates a hypoxia-independent upregulation of hypoxia-inducible factor-1 alpha to promote angiogenesis
  publication-title: Angiogenesis
– volume: 81
  start-page: 8
  year: 2017
  end-page: 12
  ident: bib21
  article-title: Biocompatible β-SrHPO4 clusters with dandelion-like structure as an alternative drug carrier
  publication-title: Mater. Sci. Eng. C
– volume: 232
  start-page: 119645
  year: 2020
  ident: bib47
  article-title: Enhancement and orchestration of osteogenesis and angiogenesis by a dual-modular design of growth factors delivery scaffolds and 26SCS decoration
  publication-title: Biomaterials
– volume: 106
  start-page: 110116
  year: 2020
  ident: bib36
  article-title: Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering
  publication-title: Mater. Sci. Eng. C
– volume: 385
  start-page: 549
  year: 2015
  end-page: 562
  ident: bib2
  article-title: Salim Yusuf, the burden of disease in older people and implications for health policy and practice
  publication-title: Lancet
– volume: 61
  start-page: 922
  year: 2016
  end-page: 939
  ident: bib44
  article-title: Role of pore size and morphology in musculo-skeletal tissue regeneration
  publication-title: Mater. Sci. Eng. C
– volume: 6
  start-page: 757
  year: 2021
  end-page: 769
  ident: bib53
  article-title: Three-dimensional bioprinting of multicell-laden scaffolds containing bone morphogenic protein-4 for promoting M2 macrophage polarization and accelerating bone defect repair in diabetes mellitus
  publication-title: Bioact Mater
– volume: 8
  start-page: 30747
  year: 2016
  end-page: 30758
  ident: bib54
  article-title: Strontium-Substituted submicrometer bioactive glasses modulate macrophage responses for improved bone regeneration
  publication-title: ACS Appl. Mater. Interfaces
– year: 2014
  ident: bib50
  article-title: The study of mechanisms of protective effect of Rg1 against arthritis by inhibiting osteoclast differentiation and maturation in CIA mice
  publication-title: Mediat. Inflamm.
– volume: 67
  start-page: 646
  year: 2016
  end-page: 656
  ident: bib24
  article-title: Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing
  publication-title: Mater. Sci. Eng. C
– volume: 8
  start-page: 100078
  year: 2020
  ident: bib12
  article-title: Silk fibroin nanofibers: a promising ink additive for extrusion three-dimensional bioprinting
  publication-title: Materials Today Bio
– volume: 70
  start-page: 733
  year: 2010
  end-page: 759
  ident: bib19
  article-title: Strontium ranelate: a review of its use in the treatment of postmenopausal osteoporosis
  publication-title: Drugs
– volume: 56
  start-page: S243
  year: 2016
  end-page: S255
  ident: bib1
  article-title: Woolf, lyn march, musculoskeletal health conditions represent a global threat to healthy aging: a report for the 2015 world health organization world report on ageing and health
  publication-title: Gerontol.
– volume: 152
  start-page: 104630
  year: 2020
  ident: bib34
  article-title: Ginsenoside Rg1 and the control of inflammation implications for the therapy of type 2 diabetes: a review of scientific findings and call for further research
  publication-title: Pharmacol. Res.
– volume: 12
  year: 2020
  ident: bib35
  article-title: Scopolin attenuates osteoporotic bone loss in ovariectomized mice
  publication-title: Nutrients
– volume: 33
  start-page: 6698
  year: 2012
  end-page: 6708
  ident: bib14
  article-title: Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects
  publication-title: Biomaterials
– volume: 199
  start-page: 244
  year: 2018
  end-page: 255
  ident: bib39
  article-title: Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering
  publication-title: Carbohydr. Polym.
– volume: 91
  start-page: 1465
  year: 2020
  end-page: 1474
  ident: bib20
  article-title: Strontium ranelate improves alveolar bone healing in estrogen-deficient rats
  publication-title: J. Periodontol.
– volume: 29
  start-page: 2057
  year: 2014
  end-page: 2064
  ident: bib6
  article-title: For the study of osteoporotic fractures research group, inflammatory markers and risk of hip fracture in older white women: the study of osteoporotic fractures
  publication-title: J. Bone Miner. Res.
– volume: 187
  start-page: 942
  year: 2011
  end-page: 950
  ident: bib33
  article-title: A novel glucocorticoid receptor agonist of plant origin, maintains glucocorticoid efficacy with reduced side effects
  publication-title: J. Immunol.
– volume: 29
  start-page: 2520
  year: 2014
  end-page: 2526
  ident: bib4
  article-title: The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine
  publication-title: J. Bone Miner. Res.
– volume: 24
  start-page: 1978
  year: 2014
  end-page: 1987
  ident: bib37
  article-title: Bioinspired scaffolds with varying pore architectures and mechanical properties
  publication-title: Adv. Funct. Mater.
– volume: 65
  start-page: 657
  year: 2017
  end-page: 664
  ident: bib38
  article-title: Systematic characterization of porosity and mass transport and mechanical properties of porous polyurethane scaffolds
  publication-title: J.Mech.Behavior Biomed. Mater.
– volume: 61
  start-page: 217
  year: 2017
  ident: 10.1016/j.mtbio.2021.100141_bib16
  article-title: The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.08.015
– volume: 29
  start-page: 544
  year: 2019
  ident: 10.1016/j.mtbio.2021.100141_bib7
  article-title: Impaired vascular function in exercising anovulatory premenopausal women is associated with low bone mineral density
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1111/sms.13354
– volume: 5
  start-page: 52
  year: 2016
  ident: 10.1016/j.mtbio.2021.100141_bib10
  article-title: Investigating the potential of combined growth factors delivery, from non-mulberry silk fibroin grafted poly(ϵ-caprolactone)/hydroxyapatite nanofibrous scaffold, in bone tissue engineering
  publication-title: App. Mater. Today
  doi: 10.1016/j.apmt.2016.09.007
– volume: 199
  start-page: 244
  year: 2018
  ident: 10.1016/j.mtbio.2021.100141_bib39
  article-title: Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.06.093
– volume: 70
  start-page: 733
  year: 2010
  ident: 10.1016/j.mtbio.2021.100141_bib19
  article-title: Strontium ranelate: a review of its use in the treatment of postmenopausal osteoporosis
  publication-title: Drugs
  doi: 10.2165/10481900-000000000-00000
– volume: 5
  start-page: 435
  year: 2020
  ident: 10.1016/j.mtbio.2021.100141_bib18
  article-title: Osteoblastic and anti-osteoclastic activities of strontium-substituted silicocarnotite ceramics: in vitro and in vivo studies
  publication-title: Bioactive Mater.
  doi: 10.1016/j.bioactmat.2020.03.008
– volume: 4
  start-page: 46
  year: 2017
  ident: 10.1016/j.mtbio.2021.100141_bib3
  article-title: An overview and management of osteoporosis
  publication-title: European J. Rheumatol.
  doi: 10.5152/eurjrheum.2016.048
– volume: 81
  start-page: 8
  year: 2017
  ident: 10.1016/j.mtbio.2021.100141_bib21
  article-title: Biocompatible β-SrHPO4 clusters with dandelion-like structure as an alternative drug carrier
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2017.07.034
– volume: 8
  start-page: 1900123
  year: 2019
  ident: 10.1016/j.mtbio.2021.100141_bib25
  article-title: Bionic poly(γ-glutamic acid) electrospun fibrous scaffolds for preventing hypertrophic scars
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201900123
– volume: 9
  start-page: 6600
  year: 2021
  ident: 10.1016/j.mtbio.2021.100141_bib40
  article-title: Effects of bioactive strontium-substituted hydroxyapatite on osseointegration of polyethylene terephthalate artificial ligaments
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D1TB00768H
– volume: 6
  start-page: 757
  year: 2021
  ident: 10.1016/j.mtbio.2021.100141_bib53
  article-title: Three-dimensional bioprinting of multicell-laden scaffolds containing bone morphogenic protein-4 for promoting M2 macrophage polarization and accelerating bone defect repair in diabetes mellitus
  publication-title: Bioact Mater
  doi: 10.1016/j.bioactmat.2020.08.030
– volume: 11
  start-page: 588259
  year: 2020
  ident: 10.1016/j.mtbio.2021.100141_bib31
  article-title: Ginsenoside rg1-notoginsenoside R1-protocatechuic aldehyde reduces atherosclerosis and attenuates low-shear stress-induced vascular endothelial cell dysfunction
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2020.588259
– volume: 3
  year: 2019
  ident: 10.1016/j.mtbio.2021.100141_bib45
  article-title: Bone defect model dependent optimal pore sizes of 3D-plotted beta-tricalcium phosphate scaffolds for bone regeneration
  publication-title: Small Methods
  doi: 10.1002/smtd.201900237
– volume: 14
  start-page: 35005
  year: 2019
  ident: 10.1016/j.mtbio.2021.100141_bib42
  article-title: Strontium ranelate simultaneously improves the radiopacity and osteogenesis of calcium phosphate cement
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-605X/ab052d
– volume: 106
  start-page: 110116
  year: 2020
  ident: 10.1016/j.mtbio.2021.100141_bib36
  article-title: Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.110116
– volume: 42
  start-page: 123
  year: 2018
  ident: 10.1016/j.mtbio.2021.100141_bib32
  article-title: Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2017.01.008
– volume: 19
  start-page: 100615
  year: 2020
  ident: 10.1016/j.mtbio.2021.100141_bib56
  article-title: Promoting bone regeneration of calcium phosphate cement by addition of PLGA microspheres and zinc silicate via synergistic effect of in-situ pore generation, bioactive ion stimulation and macrophage immunomodulation
  publication-title: App. Mater. Today
  doi: 10.1016/j.apmt.2020.100615
– volume: 152
  start-page: 104630
  year: 2020
  ident: 10.1016/j.mtbio.2021.100141_bib34
  article-title: Ginsenoside Rg1 and the control of inflammation implications for the therapy of type 2 diabetes: a review of scientific findings and call for further research
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2020.104630
– volume: 67
  start-page: 646
  year: 2016
  ident: 10.1016/j.mtbio.2021.100141_bib24
  article-title: Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.05.087
– volume: 19
  start-page: 626
  year: 2019
  ident: 10.1016/j.mtbio.2021.100141_bib52
  article-title: Osteoimmunology: evolving concepts in bone-immune interactions in health and disease
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-019-0178-8
– volume: 128
  start-page: 112354
  year: 2021
  ident: 10.1016/j.mtbio.2021.100141_bib15
  article-title: Strontium mineralized silk fibroin porous microcarriers with enhanced osteogenesis as injectable bone tissue engineering vehicles
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2021.112354
– volume: 181
  start-page: 1232
  year: 2008
  ident: 10.1016/j.mtbio.2021.100141_bib51
  article-title: Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.2.1232
– volume: 232
  start-page: 119645
  year: 2020
  ident: 10.1016/j.mtbio.2021.100141_bib47
  article-title: Enhancement and orchestration of osteogenesis and angiogenesis by a dual-modular design of growth factors delivery scaffolds and 26SCS decoration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119645
– volume: 8
  start-page: 30747
  year: 2016
  ident: 10.1016/j.mtbio.2021.100141_bib54
  article-title: Strontium-Substituted submicrometer bioactive glasses modulate macrophage responses for improved bone regeneration
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10378
– volume: 11
  start-page: 14608
  year: 2019
  ident: 10.1016/j.mtbio.2021.100141_bib11
  article-title: Sustained release SDF-1 alpha/TGF-beta 1-loaded silk fibroin-porous gelatin scaffold promotes cartilage repair
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b01532
– volume: 29
  start-page: 2057
  year: 2014
  ident: 10.1016/j.mtbio.2021.100141_bib6
  article-title: For the study of osteoporotic fractures research group, inflammatory markers and risk of hip fracture in older white women: the study of osteoporotic fractures
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2245
– volume: 31
  start-page: 4048
  year: 2010
  ident: 10.1016/j.mtbio.2021.100141_bib26
  article-title: A poly(propylene fumarate) – calcium phosphate based angiogenic injectable bone cement for femoral head osteonecrosis
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.01.124
– volume: 14
  start-page: 515
  year: 2011
  ident: 10.1016/j.mtbio.2021.100141_bib48
  article-title: Ginsenoside-Rg1 mediates a hypoxia-independent upregulation of hypoxia-inducible factor-1 alpha to promote angiogenesis
  publication-title: Angiogenesis
  doi: 10.1007/s10456-011-9235-z
– volume: 561
  start-page: 109
  year: 2014
  ident: 10.1016/j.mtbio.2021.100141_bib23
  article-title: Role of angiogenesis in bone repair
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2014.07.006
– volume: 7
  start-page: eabg3089
  year: 2021
  ident: 10.1016/j.mtbio.2021.100141_bib46
  article-title: Biomaterials with structural hierarchy and controlled 3D nanotopography guide endogenous bone regeneration
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abg3089
– volume: 29
  year: 2017
  ident: 10.1016/j.mtbio.2021.100141_bib13
  article-title: Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701089
– volume: 12
  year: 2020
  ident: 10.1016/j.mtbio.2021.100141_bib35
  article-title: Scopolin attenuates osteoporotic bone loss in ovariectomized mice
  publication-title: Nutrients
  doi: 10.3390/nu12113565
– volume: 138
  start-page: 115477
  year: 2020
  ident: 10.1016/j.mtbio.2021.100141_bib5
  article-title: Polymorphisms in genes involved in inflammation, the NF-kB pathway and the renin-angiotensin-aldosterone system are associated with the risk of osteoporotic fracture. The Hortega Follow-up Study
  publication-title: Bone
  doi: 10.1016/j.bone.2020.115477
– volume: 17
  start-page: 281
  year: 2016
  ident: 10.1016/j.mtbio.2021.100141_bib30
  article-title: The efficacy and safety of Fufangdanshen tablets (Radix Salviae miltiorrhizae formula tablets) for mild to moderate vascular dementia: a study protocol for a randomized controlled trial
  publication-title: Trials
  doi: 10.1186/s13063-016-1410-5
– volume: 2017
  year: 2017
  ident: 10.1016/j.mtbio.2021.100141_bib8
  article-title: Treatment of atypical ulnar fractures associated with long-term bisphosphonate therapy for osteoporosis: autogenous bone graft with internal fixation
  publication-title: Case Reports Orthopedics
  doi: 10.1155/2017/8602573
– volume: 111
  start-page: 110757
  year: 2020
  ident: 10.1016/j.mtbio.2021.100141_bib55
  article-title: Ginsenoside Rb1/TGF-β1 loaded biodegradable silk fibroin-gelatin porous scaffolds for inflammation inhibition and cartilage regeneration
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2020.110757
– volume: 187
  start-page: 942
  year: 2011
  ident: 10.1016/j.mtbio.2021.100141_bib33
  article-title: A novel glucocorticoid receptor agonist of plant origin, maintains glucocorticoid efficacy with reduced side effects
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1002579
– volume: 21
  start-page: 177
  year: 2014
  ident: 10.1016/j.mtbio.2021.100141_bib49
  article-title: Ginsenoside Rg1 of Panax ginseng stimulates the proliferation, odontogenic/osteogenic differentiation and gene expression profiles of human dental pulp stem cells
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2013.08.021
– volume: 247
  start-page: 119962
  year: 2020
  ident: 10.1016/j.mtbio.2021.100141_bib22
  article-title: Degradation and osteogenic induction of a SrHPO4-coated Mg–Nd–Zn–Zr alloy intramedullary nail in a rat femoral shaft fracture model
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.119962
– volume: 3
  start-page: 4871
  year: 2015
  ident: 10.1016/j.mtbio.2021.100141_bib27
  article-title: Evaluation of osteogenesis and angiogenesis of icariin loaded on micro/nano hybrid structured hydroxyapatite granules as a local drug delivery system for femoral defect repair
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB00621J
– year: 2014
  ident: 10.1016/j.mtbio.2021.100141_bib50
  article-title: The study of mechanisms of protective effect of Rg1 against arthritis by inhibiting osteoclast differentiation and maturation in CIA mice
  publication-title: Mediat. Inflamm.
  doi: 10.1155/2014/305071
– volume: 24
  start-page: 1978
  year: 2014
  ident: 10.1016/j.mtbio.2021.100141_bib37
  article-title: Bioinspired scaffolds with varying pore architectures and mechanical properties
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201302958
– volume: 29
  start-page: 2520
  year: 2014
  ident: 10.1016/j.mtbio.2021.100141_bib4
  article-title: The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2269
– volume: 8
  start-page: 100078
  year: 2020
  ident: 10.1016/j.mtbio.2021.100141_bib12
  article-title: Silk fibroin nanofibers: a promising ink additive for extrusion three-dimensional bioprinting
  publication-title: Materials Today Bio
  doi: 10.1016/j.mtbio.2020.100078
– volume: 13
  start-page: 1132
  year: 2020
  ident: 10.1016/j.mtbio.2021.100141_bib29
  article-title: Ginsenoside RG1 enhances the paracrine effects of bone marrow-derived mesenchymal stem cells on radiation induced intestinal injury
  publication-title: Aging
  doi: 10.18632/aging.202241
– volume: 39
  start-page: 1306
  year: 2011
  ident: 10.1016/j.mtbio.2021.100141_bib28
  article-title: Ginsenoside Rg1 enhances endothelial progenitor cell angiogenic potency and prevents senescence in vitro
  publication-title: J. Int. Med. Res.
– volume: 6
  start-page: 7974
  year: 2018
  ident: 10.1016/j.mtbio.2021.100141_bib17
  article-title: Injectable strontium-doped hydroxyapatite integrated with phosphoserine-tethered poly(epsilon-lysine) dendrons for osteoporotic bone defect repair
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB02526F
– volume: 91
  start-page: 1465
  year: 2020
  ident: 10.1016/j.mtbio.2021.100141_bib20
  article-title: Strontium ranelate improves alveolar bone healing in estrogen-deficient rats
  publication-title: J. Periodontol.
  doi: 10.1002/JPER.19-0561
– volume: 42
  start-page: 129
  year: 2008
  ident: 10.1016/j.mtbio.2021.100141_bib43
  article-title: Pierre Jurdic, Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro
  publication-title: Bone
  doi: 10.1016/j.bone.2007.08.043
– volume: 61
  start-page: 922
  year: 2016
  ident: 10.1016/j.mtbio.2021.100141_bib44
  article-title: Role of pore size and morphology in musculo-skeletal tissue regeneration
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.12.087
– volume: 178
  start-page: 36
  year: 2018
  ident: 10.1016/j.mtbio.2021.100141_bib41
  article-title: Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.06.004
– volume: 385
  start-page: 549
  year: 2015
  ident: 10.1016/j.mtbio.2021.100141_bib2
  article-title: Salim Yusuf, the burden of disease in older people and implications for health policy and practice
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)61347-7
– volume: 65
  start-page: 657
  year: 2017
  ident: 10.1016/j.mtbio.2021.100141_bib38
  article-title: Systematic characterization of porosity and mass transport and mechanical properties of porous polyurethane scaffolds
  publication-title: J.Mech.Behavior Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.09.029
– volume: 33
  start-page: 6698
  year: 2012
  ident: 10.1016/j.mtbio.2021.100141_bib14
  article-title: Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.06.021
– volume: 56
  start-page: S243
  year: 2016
  ident: 10.1016/j.mtbio.2021.100141_bib1
  article-title: Woolf, lyn march, musculoskeletal health conditions represent a global threat to healthy aging: a report for the 2015 world health organization world report on ageing and health
  publication-title: Gerontol.
  doi: 10.1093/geront/gnw002
– volume: 20
  start-page: 1899
  year: 2020
  ident: 10.1016/j.mtbio.2021.100141_bib9
  article-title: Randomized clinical trial: expanded autologous bone marrow mesenchymal cells combined with allogeneic bone tissue, compared with autologous iliac crest graft in lumbar fusion surgery
  publication-title: Spine J.
  doi: 10.1016/j.spinee.2020.07.014
SSID ssj0002794009
Score 2.334366
Snippet Autogenous healing of osteoporotic fractures is challenging, as the regenerative capacity of bone tissues is impaired by estrogen reduction and existed...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100141
SubjectTerms Angiogenesis
Full Length
Ginsenoside Rg1
Inflammation inhibition
Osteoporotic bone repair
Strontium ions
Title Bioactive strontium ions/ginsenoside Rg1–incorporated biodegradable silk fibroin-gelatin scaffold promoted challenging osteoporotic bone regeneration
URI https://dx.doi.org/10.1016/j.mtbio.2021.100141
https://www.proquest.com/docview/2580938271
https://pubmed.ncbi.nlm.nih.gov/PMC8488313
https://doaj.org/article/654f814a4e9e4bd2b4fc74b88d0f657d
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT3BA_IqlUBmJIxHxX36OFFFVSHBAVOrN8sTOkrJNqt3sHZ6BCw_BU_ECvAIzTlIll3LhGjvxbGYy86098w1jL6GoJI6kCQiQia7KPIEcRBKykAIh7FxRgfOHj9npmX5_bs5nrb4oJ2ygBx5e3OvM6LoQ2ulQBg1egq6rXENR-LTOTO7J-2LMm_2ZuojHadTwm7Avwnsqnc70RDkUk7sue2io9E-KSEKkxSIsRfb-RXSaoc9l7uQsGJ3cY3dHFMnfDNLfZ7dC-4DdmXELPmQ_j5vORWfGd7Td3Tf7Sx6PqWmLmSjCGx_4p7X4_e0HMTQMhMbBcxTZE4OEp6Iqvms2X_mfX99h2zVtso6pcy3fVa6uu43nVzGbD--qxqYsuDanupEOH9ehdBy6NvBtWEd6a7KCR-zs5N3nt6fJ2IYhqUwq-0SVGOcVKsDlHoQBI5Q3ovZCBFNUkRCtqAWADzjkRC2Dc-gogitdqhQY9ZgdtLjWE8Zlivivhhxhj9CQagdAhbzodnwdjIIVk5MWbDVylFOrjI2dktEubFSdJdXZQXUr9ur6pquBouPm6cek3uupxK8dL6DV2dHq7L-sbsWyyTjsCFUGCIKPam5e_cVkShY_ZDqdcW3o9jsrTZGWqpA5zskXNrYQdTnSNl8iJXiBflgJ9fR__LZDdpsEHhLpnrGDfrsPzxF59XAUP7KjuCX2F17KNF8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioactive+strontium+ions%2Fginsenoside+Rg1%E2%80%93incorporated+biodegradable+silk+%EF%AC%81broin-gelatin+scaffold+promoted+challenging+osteoporotic+bone+regeneration&rft.jtitle=Materials+today+bio&rft.au=Tingting+Wu&rft.au=Wenping+Liu&rft.au=Shusen+Huang&rft.au=Jiwen+Chen&rft.date=2021-09-01&rft.pub=Elsevier&rft.issn=2590-0064&rft.eissn=2590-0064&rft.volume=12&rft.spage=100141&rft_id=info:doi/10.1016%2Fj.mtbio.2021.100141&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_654f814a4e9e4bd2b4fc74b88d0f657d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0064&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0064&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0064&client=summon