Predicting traffic propagation flow in urban road network with multi-graph convolutional network
Traffic volume propagating from upstream road link to downstream road link is the key parameter for designing intersection signal timing scheme. Recent works successfully used graph convolutional network (GCN) and specific time-series model to forecast traffic flow by capturing the spatial–temporal...
Saved in:
Published in | Complex & intelligent systems Vol. 10; no. 1; pp. 23 - 35 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2024
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traffic volume propagating from upstream road link to downstream road link is the key parameter for designing intersection signal timing scheme. Recent works successfully used graph convolutional network (GCN) and specific time-series model to forecast traffic flow by capturing the spatial–temporal features. However, accurately predicting traffic propagation flow (
tpf
) is challenging, since the classical GCN model only considers the influence of adjacent road link. In complex urban road network, specific traffic propagation flow (
tpf
) is affected by various spatial features, such as adjacent
tpf
, which influences from
tpf
with same upstream link and
tpf
with same downstream link. Thus, we proposed a multi-graph learning-based model named TPP-GCN (traffic propagation prediction-graph convolutional network) in this paper to predict the traffic propagation flow in urban road network. The TPP-GCN model captures not only the temporal features but also multi-spatial features based on multi-layer convolution. We validated the model using real-world traffic flow data derived from taxi GPS data in Shenzhen, China. Finally, we compare and evaluate the proposed model with the existing models across several prediction scales. |
---|---|
AbstractList | Abstract Traffic volume propagating from upstream road link to downstream road link is the key parameter for designing intersection signal timing scheme. Recent works successfully used graph convolutional network (GCN) and specific time-series model to forecast traffic flow by capturing the spatial–temporal features. However, accurately predicting traffic propagation flow (tpf) is challenging, since the classical GCN model only considers the influence of adjacent road link. In complex urban road network, specific traffic propagation flow (tpf) is affected by various spatial features, such as adjacent tpf, which influences from tpf with same upstream link and tpf with same downstream link. Thus, we proposed a multi-graph learning-based model named TPP-GCN (traffic propagation prediction-graph convolutional network) in this paper to predict the traffic propagation flow in urban road network. The TPP-GCN model captures not only the temporal features but also multi-spatial features based on multi-layer convolution. We validated the model using real-world traffic flow data derived from taxi GPS data in Shenzhen, China. Finally, we compare and evaluate the proposed model with the existing models across several prediction scales. Traffic volume propagating from upstream road link to downstream road link is the key parameter for designing intersection signal timing scheme. Recent works successfully used graph convolutional network (GCN) and specific time-series model to forecast traffic flow by capturing the spatial–temporal features. However, accurately predicting traffic propagation flow ( tpf ) is challenging, since the classical GCN model only considers the influence of adjacent road link. In complex urban road network, specific traffic propagation flow ( tpf ) is affected by various spatial features, such as adjacent tpf , which influences from tpf with same upstream link and tpf with same downstream link. Thus, we proposed a multi-graph learning-based model named TPP-GCN (traffic propagation prediction-graph convolutional network) in this paper to predict the traffic propagation flow in urban road network. The TPP-GCN model captures not only the temporal features but also multi-spatial features based on multi-layer convolution. We validated the model using real-world traffic flow data derived from taxi GPS data in Shenzhen, China. Finally, we compare and evaluate the proposed model with the existing models across several prediction scales. Traffic volume propagating from upstream road link to downstream road link is the key parameter for designing intersection signal timing scheme. Recent works successfully used graph convolutional network (GCN) and specific time-series model to forecast traffic flow by capturing the spatial–temporal features. However, accurately predicting traffic propagation flow (tpf) is challenging, since the classical GCN model only considers the influence of adjacent road link. In complex urban road network, specific traffic propagation flow (tpf) is affected by various spatial features, such as adjacent tpf, which influences from tpf with same upstream link and tpf with same downstream link. Thus, we proposed a multi-graph learning-based model named TPP-GCN (traffic propagation prediction-graph convolutional network) in this paper to predict the traffic propagation flow in urban road network. The TPP-GCN model captures not only the temporal features but also multi-spatial features based on multi-layer convolution. We validated the model using real-world traffic flow data derived from taxi GPS data in Shenzhen, China. Finally, we compare and evaluate the proposed model with the existing models across several prediction scales. |
Author | Yang, Haiqiang Li, Zihan Qi, Yashuai |
Author_xml | – sequence: 1 givenname: Haiqiang orcidid: 0000-0003-2073-0433 surname: Yang fullname: Yang, Haiqiang email: yanghaiqiang@qdu.edu.cn organization: Institute for Future, School of Automation, Qingdao University, Shandong Key Laboratory of Industrial Control Technology – sequence: 2 givenname: Zihan surname: Li fullname: Li, Zihan organization: College of Physics, Qingdao University – sequence: 3 givenname: Yashuai surname: Qi fullname: Qi, Yashuai organization: College of Electronics and Information, Qingdao University |
BookMark | eNp9kU9rFTEUxYNUsNZ-AVcB19GbZDKZWUrxT6GgC13HO5lkmuc0eSYZH-2nd94bi-CiELghnN_h5pyX5Cym6Ah5zeEtB9DvSgO60QyEZMCh79nDM3IueN-xFpQ8O9171ijZviCXpewAgGvdSRDn5MfX7MZga4gTrRm9D5buc9rjhDWkSP2cDjREuuQBI80JRxpdPaT8kx5CvaV3y1wDmzLub6lN8XealyOH86PsFXnucS7u8u-8IN8_fvh29ZndfPl0ffX-hlkFojLZduhsJ6zAwQluRyEEOL2OznvZY--Uapyz0h_PMPhOC8vBWY6dkhLkBbnefMeEO7PP4Q7zvUkYzOkh5clgrsHOzqAGlNiC5HpslOVDa32vm4ZzsCAbv3q92bzWJH4trlSzS0teP1WM6EWjdCuVWlXdprI5lZKdNzbUU2prkGE2HMyxHrPVY9Z6zKke87Ci4j_0ceEnIblBZRXHyeV_Wz1B_QEkTaah |
CitedBy_id | crossref_primary_10_3390_su16156442 crossref_primary_10_1007_s10668_024_05013_6 crossref_primary_10_1016_j_inoche_2024_112572 crossref_primary_10_1016_j_aej_2024_06_093 crossref_primary_10_3390_su16114542 crossref_primary_10_1016_j_aei_2024_102519 crossref_primary_10_3390_electronics13010212 crossref_primary_10_1007_s11082_023_06061_4 crossref_primary_10_1007_s11082_023_06065_0 crossref_primary_10_3390_sym16060670 crossref_primary_10_1007_s10723_024_09762_6 crossref_primary_10_1109_ACCESS_2024_3409420 crossref_primary_10_1007_s10586_024_04563_8 crossref_primary_10_1016_j_compeleceng_2024_109957 crossref_primary_10_3390_math12203247 crossref_primary_10_3389_fpsyg_2023_1335657 crossref_primary_10_1016_j_eswa_2024_126085 crossref_primary_10_1016_j_engappai_2025_110526 crossref_primary_10_2514_1_I011489 crossref_primary_10_3390_math12030450 crossref_primary_10_1109_JIOT_2024_3387927 crossref_primary_10_1016_j_heliyon_2024_e31577 crossref_primary_10_1142_S021812662550046X crossref_primary_10_3390_buildings14030583 crossref_primary_10_1007_s44196_024_00425_8 crossref_primary_10_1002_ett_5021 crossref_primary_10_1016_j_est_2025_115482 crossref_primary_10_1007_s00500_023_09619_2 crossref_primary_10_1007_s11277_024_11202_3 crossref_primary_10_1016_j_gsd_2024_101380 crossref_primary_10_1016_j_knosys_2024_112709 crossref_primary_10_1016_j_comnet_2025_111100 crossref_primary_10_1007_s12083_024_01792_x crossref_primary_10_3390_ijgi13020034 crossref_primary_10_3390_su16146239 crossref_primary_10_1109_JIOT_2024_3362851 crossref_primary_10_1016_j_ecoleng_2024_107214 crossref_primary_10_1016_j_engappai_2025_110219 crossref_primary_10_1109_TITS_2024_3373123 crossref_primary_10_1016_j_ecmx_2024_100864 |
Cites_doi | 10.1016/j.trc.2020.102674 10.1016/S1570-6672(09)60055-6 10.1016/j.pmcj.2018.07.004 10.1016/j.aei.2021.101447 10.1049/iet-its.2018.5385 10.1109/TITS.2020.2995546 10.1080/23249935.2021.1931548 10.1080/23249935.2020.1764662 10.1177/0361198120927393 10.1109/ACCESS.2019.2933319 10.3390/rs14020303 10.1016/j.eswa.2021.115712 10.1080/23249935.2020.1745927 10.1016/j.trc.2020.102619 10.1109/TITS.2021.3054840 10.1016/j.trc.2020.102620 10.1016/j.trc.2021.102977 10.1080/23249935.2019.1637966 10.1016/j.trc.2020.102785 10.1109/TII.2020.3009280 10.1016/j.aei.2022.101678 10.1109/TITS.2019.2939290 10.1109/TITS.2021.3094659 10.1145/3532611 10.1016/j.aei.2021.101482 10.1609/aaai.v34i01.5455 10.1007/s41019-020-00151-z 10.1109/TITS.2019.2935152 10.1109/ITSC.2019.8916778 10.24963/ijcai.2018/482 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/s40747-023-01099-z |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 2198-6053 |
EndPage | 35 |
ExternalDocumentID | oai_doaj_org_article_a70a3a60317d45c1b6cf9744110c034f 10_1007_s40747_023_01099_z |
GrantInformation_xml | – fundername: Key Technologies Research and Development Program grantid: 2020YFB1313604 funderid: http://dx.doi.org/10.13039/501100012165 |
GroupedDBID | 0R~ 8FE 8FG AAJSJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADINQ ADMLS AFGXO AFKRA AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON EBS EJD GROUPED_DOAJ HCIFZ IAO ISR ITC M~E OK1 P62 PIMPY PROAC RSV SOJ AASML AAYXX CITATION PHGZM PHGZT ABUWG AZQEC COVID DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c502t-368aec82c2abe21cd2220e7d228ff39a9e554eec3fc3fcbbf872c10ec1a853303 |
IEDL.DBID | DOA |
ISSN | 2199-4536 |
IngestDate | Wed Aug 27 01:26:38 EDT 2025 Sat Aug 23 14:18:48 EDT 2025 Tue Jul 01 03:42:39 EDT 2025 Thu Apr 24 23:06:10 EDT 2025 Fri Feb 21 02:42:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Traffic prediction Graph convolutional network Spatial–temporal features Traffic propagation flow |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-368aec82c2abe21cd2220e7d228ff39a9e554eec3fc3fcbbf872c10ec1a853303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2073-0433 |
OpenAccessLink | https://doaj.org/article/a70a3a60317d45c1b6cf9744110c034f |
PQID | 2924576355 |
PQPubID | 2044308 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a70a3a60317d45c1b6cf9744110c034f proquest_journals_2924576355 crossref_citationtrail_10_1007_s40747_023_01099_z crossref_primary_10_1007_s40747_023_01099_z springer_journals_10_1007_s40747_023_01099_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Complex & intelligent systems |
PublicationTitleAbbrev | Complex Intell. Syst |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
References | Guo, Liu, Yang, Wang, Fang (CR5) 2021; 17 Li, Feng, Yan, Jin, Yang, Sun, Jin, Li (CR9) 2022 Zhang, Yu, Qi, Shu, Wang (CR28) 2019; 15 Ma, Qu (CR13) 2020; 120 Nagy, Simon (CR14) 2018; 50 Hu, Wang, Sheng (CR6) 2010; 10 Jin, Gao, Wang, Wang, Wang (CR7) 2019; 7 Zhou, Yang, Zhong, Chen, Zhang (CR31) 2021; 17 CR12 CR11 Shahriari, Ghasri, Sisson, Rashidi (CR17) 2020; 16 Cui, Ke, Pu, Wang (CR2) 2020; 118 Shu, Cai, Xiong (CR18) 2022; 23 Poon, Wong, Cheng (CR15) 2022; 51 Cui, Ke, Pu, Ma, Wang (CR1) 2020; 115 Zhou, Jiang, Lin, Han, Xu, Qin (CR32) 2019; 13 Wu, Lian, Xu, Wu, Chen (CR24) 2020; 34 Yin, Wu, Wei, Shen, Qi, Yin (CR26) 2022; 23 Sun, Yang, Han, Ma, Zhang (CR19) 2020; 2674 CR3 Yang, Zhang, Li, Cui (CR25) 2022; 14 CR8 Li, Guo, Sivakumar, Dong, Krishnan (CR10) 2021; 124 Wang, Su, Ding (CR23) 2021; 22 Yuan, Li (CR27) 2021; 6 Gu, Lu, Xu, Qin, Shao, Zhang (CR4) 2020; 21 Zhao, Song, Zhang, Liu, Wang, Lin, Deng, Li (CR29) 2020; 21 Wang, Peng, Wang, Meng, Wu, Sun, Lu (CR21) 2020; 115 Zhao, Liu, Xu, Yang, Luo, Miao (CR30) 2022; 51 Zhu, Zhu, Guo, Liang, Dietze (CR33) 2021; 186 Trinh, Ngoduy, Keyvan-Ekbatani, Robertson (CR20) 2022; 18 Wang, Lv, Sheng, Sun, Zhao (CR22) 2022; 53 Rehborn, Koller, Kaufmann (CR16) 2020 W Shu (1099_CR18) 2022; 23 Y Wang (1099_CR22) 2022; 53 Z Cui (1099_CR2) 2020; 118 S Shahriari (1099_CR17) 2020; 16 X Zhao (1099_CR30) 2022; 51 J Guo (1099_CR5) 2021; 17 Z Wang (1099_CR23) 2021; 22 KH Poon (1099_CR15) 2022; 51 H Yang (1099_CR25) 2022; 14 Y Jin (1099_CR7) 2019; 7 H Rehborn (1099_CR16) 2020 T Zhou (1099_CR32) 2019; 13 Y Gu (1099_CR4) 2020; 21 F Li (1099_CR9) 2022 L Zhao (1099_CR29) 2020; 21 X Yin (1099_CR26) 2022; 23 F Zhou (1099_CR31) 2021; 17 Y Wu (1099_CR24) 2020; 34 AM Nagy (1099_CR14) 2018; 50 J Li (1099_CR10) 2021; 124 1099_CR12 H-W Wang (1099_CR21) 2020; 115 X Zhu (1099_CR33) 2021; 186 Z Cui (1099_CR1) 2020; 115 H Yuan (1099_CR27) 2021; 6 1099_CR8 X-S Trinh (1099_CR20) 2022; 18 X Hu (1099_CR6) 2010; 10 L Ma (1099_CR13) 2020; 120 T Sun (1099_CR19) 2020; 2674 1099_CR3 1099_CR11 W Zhang (1099_CR28) 2019; 15 |
References_xml | – volume: 118 year: 2020 ident: CR2 article-title: Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values publication-title: Transp Res Part C: Emerg Technol doi: 10.1016/j.trc.2020.102674 – volume: 10 start-page: 73 year: 2010 end-page: 78 ident: CR6 article-title: Urban traffic flow prediction with variable cell transmission model publication-title: J Transp Syst Eng Inf Technol doi: 10.1016/S1570-6672(09)60055-6 – volume: 50 start-page: 148 year: 2018 end-page: 163 ident: CR14 article-title: Survey on traffic prediction in smart cities publication-title: Pervasive Mob Comput doi: 10.1016/j.pmcj.2018.07.004 – volume: 51 year: 2022 ident: CR30 article-title: Heterogeneous star graph attention network for product attributes prediction publication-title: Adv Eng Inform doi: 10.1016/j.aei.2021.101447 – volume: 13 start-page: 1023 year: 2019 end-page: 1032 ident: CR32 article-title: Hybrid dual Kalman filtering model for short-term traffic flow forecasting publication-title: IET Intel Transp Syst doi: 10.1049/iet-its.2018.5385 – volume: 22 start-page: 6561 year: 2021 end-page: 6571 ident: CR23 article-title: Long-term traffic prediction based on LSTM encoder-decoder architecture publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.2995546 – ident: CR12 – volume: 18 start-page: 1127 year: 2022 end-page: 1153 ident: CR20 article-title: Incremental unscented Kalman filter for real-time traffic estimation on motorways using multi-source data publication-title: Transp A: Transp Sci doi: 10.1080/23249935.2021.1931548 – volume: 16 start-page: 1552 year: 2020 end-page: 1573 ident: CR17 article-title: Ensemble of ARIMA: combining parametric and bootstrapping technique for traffic flow prediction publication-title: Transp A: Transp Sci doi: 10.1080/23249935.2020.1764662 – volume: 2674 start-page: 78 year: 2020 end-page: 89 ident: CR19 article-title: Bidirectional spatial-temporal network for traffic prediction with multisource data publication-title: Transp Res Rec doi: 10.1177/0361198120927393 – volume: 7 start-page: 125101 year: 2019 end-page: 125112 ident: CR7 article-title: Improved manpower planning based on traffic flow forecast using a historical queuing model publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2933319 – volume: 14 start-page: 303 year: 2022 ident: CR25 article-title: Region-level traffic prediction based on temporal multi-spatial dependence graph convolutional network from GPS data publication-title: Remote Sensing doi: 10.3390/rs14020303 – ident: CR8 – volume: 186 year: 2021 ident: CR33 article-title: GL-GCN: global and local dependency guided graph convolutional networks for aspect-based sentiment classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115712 – volume: 17 start-page: 190 year: 2021 end-page: 211 ident: CR5 article-title: GPS-based citywide traffic congestion forecasting using CNN-RNN and C3D hybrid model publication-title: Transp A: Transp Sci doi: 10.1080/23249935.2020.1745927 – volume: 115 year: 2020 ident: CR21 article-title: Evaluation and prediction of transportation resilience under extreme weather events: a diffusion graph convolutional approach publication-title: Transp Res Part C: Emerg Technol doi: 10.1016/j.trc.2020.102619 – volume: 23 start-page: 4927 year: 2022 end-page: 4943 ident: CR26 article-title: Deep learning on traffic prediction: methods, analysis, and future directions publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2021.3054840 – volume: 115 year: 2020 ident: CR1 article-title: Learning traffic as a graph: a gated graph wavelet recurrent neural network for network-scale traffic prediction publication-title: Transp Res Part C: Emerg Technol doi: 10.1016/j.trc.2020.102620 – volume: 124 year: 2021 ident: CR10 article-title: Transferability improvement in short-term traffic prediction using stacked LSTM network publication-title: Transp Res Part C: Emerg Technol doi: 10.1016/j.trc.2021.102977 – volume: 15 start-page: 1688 year: 2019 end-page: 1711 ident: CR28 article-title: Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning publication-title: Transp A: Transp Sci doi: 10.1080/23249935.2019.1637966 – volume: 120 year: 2020 ident: CR13 article-title: A sequence to sequence learning based car-following model for multi-step predictions considering reaction delay publication-title: Transp Res Part C: Emerg Technol doi: 10.1016/j.trc.2020.102785 – volume: 17 start-page: 2802 year: 2021 end-page: 2812 ident: CR31 article-title: Variational graph neural networks for road traffic prediction in intelligent transportation systems publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2020.3009280 – ident: CR3 – ident: CR11 – volume: 53 year: 2022 ident: CR22 article-title: A deep spatio-temporal meta-learning model for urban traffic revitalization index prediction in the COVID-19 pandemic publication-title: Adv Eng Inform doi: 10.1016/j.aei.2022.101678 – volume: 21 start-page: 1332 year: 2020 end-page: 1342 ident: CR4 article-title: An improved Bayesian combination model for short-term traffic prediction with deep learning publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2939290 – year: 2020 ident: CR16 publication-title: Data-driven traffic engineering: understanding of traffic and applications based on three-phase traffic theory – volume: 23 start-page: 16654 year: 2022 end-page: 16665 ident: CR18 article-title: A short-term traffic flow prediction model based on an improved gate recurrent unit neural network publication-title: Trans Intell Transp Syst doi: 10.1109/TITS.2021.3094659 – year: 2022 ident: CR9 article-title: Dynamic graph convolutional recurrent network for traffic prediction: benchmark and solution publication-title: ACM Trans Knowl Discov Data doi: 10.1145/3532611 – volume: 51 start-page: 101482 year: 2022 ident: CR15 article-title: Long-time gap crowd prediction using time series deep learning models with two-dimensional single attribute inputs publication-title: Adv Eng Inform doi: 10.1016/j.aei.2021.101482 – volume: 34 start-page: 1054 year: 2020 end-page: 1061 ident: CR24 article-title: Graph convolutional networks with Markov random field reasoning for social spammer detection publication-title: Proc AAAI Conf Artif Intell doi: 10.1609/aaai.v34i01.5455 – volume: 6 start-page: 63 year: 2021 end-page: 85 ident: CR27 article-title: A survey of traffic prediction: from spatio-temporal data to intelligent transportation publication-title: Data Sci Eng doi: 10.1007/s41019-020-00151-z – volume: 21 start-page: 3848 year: 2020 end-page: 3858 ident: CR29 article-title: T-GCN: a temporal graph convolutional network for traffic prediction publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2935152 – volume: 186 year: 2021 ident: 1099_CR33 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115712 – volume: 115 year: 2020 ident: 1099_CR1 publication-title: Transp Res Part C: Emerg Technol doi: 10.1016/j.trc.2020.102620 – year: 2022 ident: 1099_CR9 publication-title: ACM Trans Knowl Discov Data doi: 10.1145/3532611 – volume: 18 start-page: 1127 year: 2022 ident: 1099_CR20 publication-title: Transp A: Transp Sci doi: 10.1080/23249935.2021.1931548 – volume: 6 start-page: 63 year: 2021 ident: 1099_CR27 publication-title: Data Sci Eng doi: 10.1007/s41019-020-00151-z – volume: 23 start-page: 16654 year: 2022 ident: 1099_CR18 publication-title: Trans Intell Transp Syst doi: 10.1109/TITS.2021.3094659 – volume: 17 start-page: 190 year: 2021 ident: 1099_CR5 publication-title: Transp A: Transp Sci doi: 10.1080/23249935.2020.1745927 – volume: 14 start-page: 303 year: 2022 ident: 1099_CR25 publication-title: Remote Sensing doi: 10.3390/rs14020303 – volume: 10 start-page: 73 year: 2010 ident: 1099_CR6 publication-title: J Transp Syst Eng Inf Technol doi: 10.1016/S1570-6672(09)60055-6 – volume: 21 start-page: 3848 year: 2020 ident: 1099_CR29 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2935152 – volume: 7 start-page: 125101 year: 2019 ident: 1099_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2933319 – ident: 1099_CR11 doi: 10.1109/ITSC.2019.8916778 – volume: 115 year: 2020 ident: 1099_CR21 publication-title: Transp Res Part C: Emerg Technol doi: 10.1016/j.trc.2020.102619 – ident: 1099_CR3 – volume: 2674 start-page: 78 year: 2020 ident: 1099_CR19 publication-title: Transp Res Rec doi: 10.1177/0361198120927393 – volume: 118 year: 2020 ident: 1099_CR2 publication-title: Transp Res Part C: Emerg Technol doi: 10.1016/j.trc.2020.102674 – volume: 50 start-page: 148 year: 2018 ident: 1099_CR14 publication-title: Pervasive Mob Comput doi: 10.1016/j.pmcj.2018.07.004 – ident: 1099_CR12 doi: 10.24963/ijcai.2018/482 – volume: 16 start-page: 1552 year: 2020 ident: 1099_CR17 publication-title: Transp A: Transp Sci doi: 10.1080/23249935.2020.1764662 – volume: 120 year: 2020 ident: 1099_CR13 publication-title: Transp Res Part C: Emerg Technol doi: 10.1016/j.trc.2020.102785 – volume: 23 start-page: 4927 year: 2022 ident: 1099_CR26 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2021.3054840 – volume-title: Data-driven traffic engineering: understanding of traffic and applications based on three-phase traffic theory year: 2020 ident: 1099_CR16 – volume: 51 year: 2022 ident: 1099_CR30 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2021.101447 – volume: 124 year: 2021 ident: 1099_CR10 publication-title: Transp Res Part C: Emerg Technol doi: 10.1016/j.trc.2021.102977 – volume: 51 start-page: 101482 year: 2022 ident: 1099_CR15 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2021.101482 – volume: 34 start-page: 1054 year: 2020 ident: 1099_CR24 publication-title: Proc AAAI Conf Artif Intell doi: 10.1609/aaai.v34i01.5455 – volume: 15 start-page: 1688 year: 2019 ident: 1099_CR28 publication-title: Transp A: Transp Sci doi: 10.1080/23249935.2019.1637966 – volume: 13 start-page: 1023 year: 2019 ident: 1099_CR32 publication-title: IET Intel Transp Syst doi: 10.1049/iet-its.2018.5385 – ident: 1099_CR8 – volume: 17 start-page: 2802 year: 2021 ident: 1099_CR31 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2020.3009280 – volume: 53 year: 2022 ident: 1099_CR22 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2022.101678 – volume: 22 start-page: 6561 year: 2021 ident: 1099_CR23 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.2995546 – volume: 21 start-page: 1332 year: 2020 ident: 1099_CR4 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2939290 |
SSID | ssj0001778302 ssib044733412 |
Score | 2.4840791 |
Snippet | Traffic volume propagating from upstream road link to downstream road link is the key parameter for designing intersection signal timing scheme. Recent works... Abstract Traffic volume propagating from upstream road link to downstream road link is the key parameter for designing intersection signal timing scheme.... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 23 |
SubjectTerms | Artificial neural networks Communications traffic Complexity Computational Intelligence Data Structures and Information Theory Engineering Graph convolutional network Multilayers Original Article Propagation Roads & highways Spatial data Spatial–temporal features Traffic flow Traffic models Traffic prediction Traffic propagation flow Traffic volume Upstream |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na90wDBfb62U7jH2y13XDh902syR2np3TWEdLGbSUsUJvnj_HoCRt3iuD_vWT_JyUDlYIBBLHMZIsyZb8E8B7EWLVBRd4DKrFBUpM3MkOZdlXTQja1U7RaeTjk9XRmfx23p6XDbd1SaucdGJW1GHwtEf-qcGFQkvoae3nyytOVaMoulpKaDyEHVTBWi9gZ__g5PT7JFFSKiFkMeB510UpAryiinN113GZY5e783k6SXDyHM0YzxEjfnPHWmVQ_zue6D_B02yTDp_Ck-JMsi9b7j-DB7F_Do-PZyTW9Qv4eTpSKIaSm9lmtAQYwbBnVCOZJSxdDH_Y755dj872bBxsYP02M5zRFi3LCYc8w1ozylAvkop_Lc1ewtnhwY-vR7xUVeC-rZoNFytto9eNb6yLTe0DeghVVHjTKYnOdhE9jBi9SHQ5l7RqfF1FX1tNqajiFSz6oY-vgXmdZFe1nkJtspUOLVtHcM247AroJ4Ql1BP1jC-Q41T54sLMYMmZ4gYpbjLFzc0SPszfXG4BN-5tvU9MmVsSWHZ-MIy_TJl7xqrKCkvltFWQOFq38gmXURI9H18JmZawN7HUlBm8NrfytoSPE5tvX_9_SLv39_YGHjXoF20Tv_dgsRmv41v0azbuXRHev-vh82U priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X_RB_MTplDz4psG2SZf2UYciguKDA99iPkEYnXQTwb_euyybH6AgFErbpA13l95d7vI7Qo6581ntjGPeyRIcFB-YETXIss0K5yqTG4m7kW_v-tdDcfNYPiaYHNwL8yN-fzYRiPDOQLOwGMRh78tkpcy5xDINg_5gLjtCSM5FUtVxfUVKhLbC2nI5dBMxSrn_-2u_6aUI3__N5vwRJo3a52qDrCezkZ7P-LxJlnyzRda-gAnC1e0CgXWyTZ7uWwzBYFIznbYagSIofAd-H5EVNIzGb_S5oa-t0Q1tx9rRZpYRTnFplsZEQxbhrClmpicJhTGkZjtkeHX5MLhmqZoCs2VWTBnvV9rbqrCFNr7IrQPLIPMSTlUIvNa1B8vCe8sDHsaEShY2z7zNdYUpqHyXdJpx4_cItVUQdVZaDLGJUhjQaDXCNIO75cA-cF2Sz2mpbIIax4oXI7UASY70V0B_Femv3rvkZNHnZQa08WfrC2TRoiWCZMcbIDsqzTmlZaa5xjLa0gkYrenbAO6TAIvHZlyELunNGazSzJ2oAhzSElH6yi45nTP98_HvQ9r_X_MDslqAfTRLAO-RzrR99Ydg30zNURTsD1qe79k priority: 102 providerName: Springer Nature |
Title | Predicting traffic propagation flow in urban road network with multi-graph convolutional network |
URI | https://link.springer.com/article/10.1007/s40747-023-01099-z https://www.proquest.com/docview/2924576355 https://doaj.org/article/a70a3a60317d45c1b6cf9744110c034f |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7a9NIeQtMH3TRddOitFbUleWUfN0s2YSEhtA3kpuoJheAtzoZCfn1mZK-bFNpeCsYCWbbFzEgzI42-AXgvQyya4AKPQVfooMTEnWpQln0hQqhd6TSdRj49m51cqNVldXkv1RfFhPXwwD3hPlldWGkpF7IOqvKlm_mENrBCteULqRLNvqjz7jlTKElKaSnVoLjzaovWBHRFmebKpuEq71nuj-foFMHIc1RfPO8U8dsHWiqD-T-wQH_bNM26aPkcdgcjks37zu_Bo9i-gGenIwLr9Uv4dt7RFgwFNbNNZwkoguGXcfrIrGDpav2TfW_ZTedsy7q1DaztI8IZLc2yHGjIM5w1o8j0QULxr0OzV3CxPPq6OOFDNgXuq0JsuJzVNvpaeGFdFKUPaBkUUWNRpyQb20S0LGL0MtHlXKq18GURfWlrCkGVr2GnXbfxDTBfJ9UUyAx0rVWlHGq0hmCa0d0KaB-ECZRb6hk_QI1TxosrM4IkZ4obpLjJFDe3E_gwvvOjB9r4a-tDYsrYkkCycwWKjhlEx_xLdCZwsGWpGUbutRHokFaE0ldN4OOWzb8e_7lL-_-jS2_hqUCrqQ8LP4CdTXcT36HVs3FTeFwvj6fwZD5ffVlheXh0dv4ZaxdC0X22mOYhcAdu-_9O |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKfYtoAPcAKLxHY2yQEhXsuWdisOrdSb61cQUpW02a0q-qP4jcw4j6pI9FYpUqTEcazx2DPjmfkG4JX0ISm99Tz4PEMDJVTcqhJ52SXC-8KmNqds5MXedH6gvh9mh2vwZ8iFobDKYU-MG7VvHJ2RvxNoKGSEnpZ9ODnlVDWKvKtDCY2OLXbC73M02Zbvt7_g_L4WYvZ1__Oc91UFuMsSseJyWpjgCuGEsUGkzqOETEKOt6KqZGnKgBI2BCcruqytily4NAkuNQWFYkrs9xbcVhIlOWWmz74N_KtULqXq1YV4xpPnBK9F9e3SsuQqeko3xuw9ReD1HIUmj_4pfnFFNsYSAlf03n9ctVECzh7A_V51ZR87XnsIa6F-BPcWI-7r8jEc_WjJ8UOh1GzVGoKnYNgzblqRAVh13JyzXzU7a62pWdsYz-ouDp3RgTCL4Y08gmgziofv1wX-tW_2BA5uhNpPYb1u6vAMmCsqVSaZI8eeypRFOVoSODQaeR61Ej-BdKCedj3AOdXZONYjNHOkuEaK60hxfTGBN-M3Jx28x7WtP9GkjC0Jmjs-aNqful_p2uSJkYaKd-de4Wjt1FVotCnUs1wiVTWBrWFKdb9fLPUld0_g7TDNl6__P6SN63t7CXfm-4tdvbu9t7MJdwVqZF3I-Rasr9qz8Bw1qpV9EdmYwdFNr5u_DV4wbA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9VAEJ8gJkYPxs_4EHEPetKGdnf72h48wIMXECEcJOG27KcxIX2kr4TIX-Wf6Mz2QzHBxANJk6bttt3Ozu7MdGZ-A_BOOJ9WzrjEuyJHA8WHxMgKedmm3LnSZKagbOTDo-neifx8mp-uwM8hFyZGuw8uyS6ngVCa6nbzwoXNMfFNEu57gvImia6d5LoPqzzwP67QaFt-2t_BEX7P-Xz362wv6esKJDZPeZuIaam9Lbnl2nieWYcyMvUF7soQRKUrjzLWeysCbcaEsuA2S73NdEnBmAKfew_uo2WUkbk3m84GDpayEEL2CkP8y1MUBLBFFe4y7KaMvtK12z_jhnSMRQRuaL5_OWujDJw_gce98sq2Om57Ciu-fgaP_oA0xKPDEQd2-RzOjhtyBFFoNWsbTXAVDN-Di1hkCBbOF1fse80uG6Nr1iy0Y3UXl87oBzGL4Y5JBNVmFB_fzxPsQ9_sBZzcCe1fwmq9qP0rYLYMskpzS44-mUuDcrUisGg0-hxqKW4C2UBLZXvAc6q7ca5GqOZIf4X0V5H-6noCH8Z7Ljq4j3-23qYhGlsSVHc8sWi-qX7mK12kWmgq5l04ib01UxvQiJOod9lUyDCB9WGAVb9-LBVHszgnrMB8Ah-HQf99-fYurf1f87fw4Hhnrr7sHx28hoccFbYuIn0dVtvm0r9Bhas1G5HHGZzd9aT6BW3kNq8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+traffic+propagation+flow+in+urban+road+network+with+multi-graph+convolutional+network&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Haiqiang+Yang&rft.au=Zihan+Li&rft.au=Yashuai+Qi&rft.date=2024-02-01&rft.pub=Springer&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=10&rft.issue=1&rft.spage=23&rft.epage=35&rft_id=info:doi/10.1007%2Fs40747-023-01099-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a70a3a60317d45c1b6cf9744110c034f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon |