Predicting traffic propagation flow in urban road network with multi-graph convolutional network

Traffic volume propagating from upstream road link to downstream road link is the key parameter for designing intersection signal timing scheme. Recent works successfully used graph convolutional network (GCN) and specific time-series model to forecast traffic flow by capturing the spatial–temporal...

Full description

Saved in:
Bibliographic Details
Published inComplex & intelligent systems Vol. 10; no. 1; pp. 23 - 35
Main Authors Yang, Haiqiang, Li, Zihan, Qi, Yashuai
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2024
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traffic volume propagating from upstream road link to downstream road link is the key parameter for designing intersection signal timing scheme. Recent works successfully used graph convolutional network (GCN) and specific time-series model to forecast traffic flow by capturing the spatial–temporal features. However, accurately predicting traffic propagation flow ( tpf ) is challenging, since the classical GCN model only considers the influence of adjacent road link. In complex urban road network, specific traffic propagation flow ( tpf ) is affected by various spatial features, such as adjacent tpf , which influences from tpf with same upstream link and tpf with same downstream link. Thus, we proposed a multi-graph learning-based model named TPP-GCN (traffic propagation prediction-graph convolutional network) in this paper to predict the traffic propagation flow in urban road network. The TPP-GCN model captures not only the temporal features but also multi-spatial features based on multi-layer convolution. We validated the model using real-world traffic flow data derived from taxi GPS data in Shenzhen, China. Finally, we compare and evaluate the proposed model with the existing models across several prediction scales.
AbstractList Abstract Traffic volume propagating from upstream road link to downstream road link is the key parameter for designing intersection signal timing scheme. Recent works successfully used graph convolutional network (GCN) and specific time-series model to forecast traffic flow by capturing the spatial–temporal features. However, accurately predicting traffic propagation flow (tpf) is challenging, since the classical GCN model only considers the influence of adjacent road link. In complex urban road network, specific traffic propagation flow (tpf) is affected by various spatial features, such as adjacent tpf, which influences from tpf with same upstream link and tpf with same downstream link. Thus, we proposed a multi-graph learning-based model named TPP-GCN (traffic propagation prediction-graph convolutional network) in this paper to predict the traffic propagation flow in urban road network. The TPP-GCN model captures not only the temporal features but also multi-spatial features based on multi-layer convolution. We validated the model using real-world traffic flow data derived from taxi GPS data in Shenzhen, China. Finally, we compare and evaluate the proposed model with the existing models across several prediction scales.
Traffic volume propagating from upstream road link to downstream road link is the key parameter for designing intersection signal timing scheme. Recent works successfully used graph convolutional network (GCN) and specific time-series model to forecast traffic flow by capturing the spatial–temporal features. However, accurately predicting traffic propagation flow ( tpf ) is challenging, since the classical GCN model only considers the influence of adjacent road link. In complex urban road network, specific traffic propagation flow ( tpf ) is affected by various spatial features, such as adjacent tpf , which influences from tpf with same upstream link and tpf with same downstream link. Thus, we proposed a multi-graph learning-based model named TPP-GCN (traffic propagation prediction-graph convolutional network) in this paper to predict the traffic propagation flow in urban road network. The TPP-GCN model captures not only the temporal features but also multi-spatial features based on multi-layer convolution. We validated the model using real-world traffic flow data derived from taxi GPS data in Shenzhen, China. Finally, we compare and evaluate the proposed model with the existing models across several prediction scales.
Traffic volume propagating from upstream road link to downstream road link is the key parameter for designing intersection signal timing scheme. Recent works successfully used graph convolutional network (GCN) and specific time-series model to forecast traffic flow by capturing the spatial–temporal features. However, accurately predicting traffic propagation flow (tpf) is challenging, since the classical GCN model only considers the influence of adjacent road link. In complex urban road network, specific traffic propagation flow (tpf) is affected by various spatial features, such as adjacent tpf, which influences from tpf with same upstream link and tpf with same downstream link. Thus, we proposed a multi-graph learning-based model named TPP-GCN (traffic propagation prediction-graph convolutional network) in this paper to predict the traffic propagation flow in urban road network. The TPP-GCN model captures not only the temporal features but also multi-spatial features based on multi-layer convolution. We validated the model using real-world traffic flow data derived from taxi GPS data in Shenzhen, China. Finally, we compare and evaluate the proposed model with the existing models across several prediction scales.
Author Yang, Haiqiang
Li, Zihan
Qi, Yashuai
Author_xml – sequence: 1
  givenname: Haiqiang
  orcidid: 0000-0003-2073-0433
  surname: Yang
  fullname: Yang, Haiqiang
  email: yanghaiqiang@qdu.edu.cn
  organization: Institute for Future, School of Automation, Qingdao University, Shandong Key Laboratory of Industrial Control Technology
– sequence: 2
  givenname: Zihan
  surname: Li
  fullname: Li, Zihan
  organization: College of Physics, Qingdao University
– sequence: 3
  givenname: Yashuai
  surname: Qi
  fullname: Qi, Yashuai
  organization: College of Electronics and Information, Qingdao University
BookMark eNp9kU9rFTEUxYNUsNZ-AVcB19GbZDKZWUrxT6GgC13HO5lkmuc0eSYZH-2nd94bi-CiELghnN_h5pyX5Cym6Ah5zeEtB9DvSgO60QyEZMCh79nDM3IueN-xFpQ8O9171ijZviCXpewAgGvdSRDn5MfX7MZga4gTrRm9D5buc9rjhDWkSP2cDjREuuQBI80JRxpdPaT8kx5CvaV3y1wDmzLub6lN8XealyOH86PsFXnucS7u8u-8IN8_fvh29ZndfPl0ffX-hlkFojLZduhsJ6zAwQluRyEEOL2OznvZY--Uapyz0h_PMPhOC8vBWY6dkhLkBbnefMeEO7PP4Q7zvUkYzOkh5clgrsHOzqAGlNiC5HpslOVDa32vm4ZzsCAbv3q92bzWJH4trlSzS0teP1WM6EWjdCuVWlXdprI5lZKdNzbUU2prkGE2HMyxHrPVY9Z6zKke87Ci4j_0ceEnIblBZRXHyeV_Wz1B_QEkTaah
CitedBy_id crossref_primary_10_3390_su16156442
crossref_primary_10_1007_s10668_024_05013_6
crossref_primary_10_1016_j_inoche_2024_112572
crossref_primary_10_1016_j_aej_2024_06_093
crossref_primary_10_3390_su16114542
crossref_primary_10_1016_j_aei_2024_102519
crossref_primary_10_3390_electronics13010212
crossref_primary_10_1007_s11082_023_06061_4
crossref_primary_10_1007_s11082_023_06065_0
crossref_primary_10_3390_sym16060670
crossref_primary_10_1007_s10723_024_09762_6
crossref_primary_10_1109_ACCESS_2024_3409420
crossref_primary_10_1007_s10586_024_04563_8
crossref_primary_10_1016_j_compeleceng_2024_109957
crossref_primary_10_3390_math12203247
crossref_primary_10_3389_fpsyg_2023_1335657
crossref_primary_10_1016_j_eswa_2024_126085
crossref_primary_10_1016_j_engappai_2025_110526
crossref_primary_10_2514_1_I011489
crossref_primary_10_3390_math12030450
crossref_primary_10_1109_JIOT_2024_3387927
crossref_primary_10_1016_j_heliyon_2024_e31577
crossref_primary_10_1142_S021812662550046X
crossref_primary_10_3390_buildings14030583
crossref_primary_10_1007_s44196_024_00425_8
crossref_primary_10_1002_ett_5021
crossref_primary_10_1016_j_est_2025_115482
crossref_primary_10_1007_s00500_023_09619_2
crossref_primary_10_1007_s11277_024_11202_3
crossref_primary_10_1016_j_gsd_2024_101380
crossref_primary_10_1016_j_knosys_2024_112709
crossref_primary_10_1016_j_comnet_2025_111100
crossref_primary_10_1007_s12083_024_01792_x
crossref_primary_10_3390_ijgi13020034
crossref_primary_10_3390_su16146239
crossref_primary_10_1109_JIOT_2024_3362851
crossref_primary_10_1016_j_ecoleng_2024_107214
crossref_primary_10_1016_j_engappai_2025_110219
crossref_primary_10_1109_TITS_2024_3373123
crossref_primary_10_1016_j_ecmx_2024_100864
Cites_doi 10.1016/j.trc.2020.102674
10.1016/S1570-6672(09)60055-6
10.1016/j.pmcj.2018.07.004
10.1016/j.aei.2021.101447
10.1049/iet-its.2018.5385
10.1109/TITS.2020.2995546
10.1080/23249935.2021.1931548
10.1080/23249935.2020.1764662
10.1177/0361198120927393
10.1109/ACCESS.2019.2933319
10.3390/rs14020303
10.1016/j.eswa.2021.115712
10.1080/23249935.2020.1745927
10.1016/j.trc.2020.102619
10.1109/TITS.2021.3054840
10.1016/j.trc.2020.102620
10.1016/j.trc.2021.102977
10.1080/23249935.2019.1637966
10.1016/j.trc.2020.102785
10.1109/TII.2020.3009280
10.1016/j.aei.2022.101678
10.1109/TITS.2019.2939290
10.1109/TITS.2021.3094659
10.1145/3532611
10.1016/j.aei.2021.101482
10.1609/aaai.v34i01.5455
10.1007/s41019-020-00151-z
10.1109/TITS.2019.2935152
10.1109/ITSC.2019.8916778
10.24963/ijcai.2018/482
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/s40747-023-01099-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2198-6053
EndPage 35
ExternalDocumentID oai_doaj_org_article_a70a3a60317d45c1b6cf9744110c034f
10_1007_s40747_023_01099_z
GrantInformation_xml – fundername: Key Technologies Research and Development Program
  grantid: 2020YFB1313604
  funderid: http://dx.doi.org/10.13039/501100012165
GroupedDBID 0R~
8FE
8FG
AAJSJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADINQ
ADMLS
AFGXO
AFKRA
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
BAPOH
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
M~E
OK1
P62
PIMPY
PROAC
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c502t-368aec82c2abe21cd2220e7d228ff39a9e554eec3fc3fcbbf872c10ec1a853303
IEDL.DBID DOA
ISSN 2199-4536
IngestDate Wed Aug 27 01:26:38 EDT 2025
Sat Aug 23 14:18:48 EDT 2025
Tue Jul 01 03:42:39 EDT 2025
Thu Apr 24 23:06:10 EDT 2025
Fri Feb 21 02:42:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Traffic prediction
Graph convolutional network
Spatial–temporal features
Traffic propagation flow
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-368aec82c2abe21cd2220e7d228ff39a9e554eec3fc3fcbbf872c10ec1a853303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2073-0433
OpenAccessLink https://doaj.org/article/a70a3a60317d45c1b6cf9744110c034f
PQID 2924576355
PQPubID 2044308
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_a70a3a60317d45c1b6cf9744110c034f
proquest_journals_2924576355
crossref_citationtrail_10_1007_s40747_023_01099_z
crossref_primary_10_1007_s40747_023_01099_z
springer_journals_10_1007_s40747_023_01099_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Complex & intelligent systems
PublicationTitleAbbrev Complex Intell. Syst
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References Guo, Liu, Yang, Wang, Fang (CR5) 2021; 17
Li, Feng, Yan, Jin, Yang, Sun, Jin, Li (CR9) 2022
Zhang, Yu, Qi, Shu, Wang (CR28) 2019; 15
Ma, Qu (CR13) 2020; 120
Nagy, Simon (CR14) 2018; 50
Hu, Wang, Sheng (CR6) 2010; 10
Jin, Gao, Wang, Wang, Wang (CR7) 2019; 7
Zhou, Yang, Zhong, Chen, Zhang (CR31) 2021; 17
CR12
CR11
Shahriari, Ghasri, Sisson, Rashidi (CR17) 2020; 16
Cui, Ke, Pu, Wang (CR2) 2020; 118
Shu, Cai, Xiong (CR18) 2022; 23
Poon, Wong, Cheng (CR15) 2022; 51
Cui, Ke, Pu, Ma, Wang (CR1) 2020; 115
Zhou, Jiang, Lin, Han, Xu, Qin (CR32) 2019; 13
Wu, Lian, Xu, Wu, Chen (CR24) 2020; 34
Yin, Wu, Wei, Shen, Qi, Yin (CR26) 2022; 23
Sun, Yang, Han, Ma, Zhang (CR19) 2020; 2674
CR3
Yang, Zhang, Li, Cui (CR25) 2022; 14
CR8
Li, Guo, Sivakumar, Dong, Krishnan (CR10) 2021; 124
Wang, Su, Ding (CR23) 2021; 22
Yuan, Li (CR27) 2021; 6
Gu, Lu, Xu, Qin, Shao, Zhang (CR4) 2020; 21
Zhao, Song, Zhang, Liu, Wang, Lin, Deng, Li (CR29) 2020; 21
Wang, Peng, Wang, Meng, Wu, Sun, Lu (CR21) 2020; 115
Zhao, Liu, Xu, Yang, Luo, Miao (CR30) 2022; 51
Zhu, Zhu, Guo, Liang, Dietze (CR33) 2021; 186
Trinh, Ngoduy, Keyvan-Ekbatani, Robertson (CR20) 2022; 18
Wang, Lv, Sheng, Sun, Zhao (CR22) 2022; 53
Rehborn, Koller, Kaufmann (CR16) 2020
W Shu (1099_CR18) 2022; 23
Y Wang (1099_CR22) 2022; 53
Z Cui (1099_CR2) 2020; 118
S Shahriari (1099_CR17) 2020; 16
X Zhao (1099_CR30) 2022; 51
J Guo (1099_CR5) 2021; 17
Z Wang (1099_CR23) 2021; 22
KH Poon (1099_CR15) 2022; 51
H Yang (1099_CR25) 2022; 14
Y Jin (1099_CR7) 2019; 7
H Rehborn (1099_CR16) 2020
T Zhou (1099_CR32) 2019; 13
Y Gu (1099_CR4) 2020; 21
F Li (1099_CR9) 2022
L Zhao (1099_CR29) 2020; 21
X Yin (1099_CR26) 2022; 23
F Zhou (1099_CR31) 2021; 17
Y Wu (1099_CR24) 2020; 34
AM Nagy (1099_CR14) 2018; 50
J Li (1099_CR10) 2021; 124
1099_CR12
H-W Wang (1099_CR21) 2020; 115
X Zhu (1099_CR33) 2021; 186
Z Cui (1099_CR1) 2020; 115
H Yuan (1099_CR27) 2021; 6
1099_CR8
X-S Trinh (1099_CR20) 2022; 18
X Hu (1099_CR6) 2010; 10
L Ma (1099_CR13) 2020; 120
T Sun (1099_CR19) 2020; 2674
1099_CR3
1099_CR11
W Zhang (1099_CR28) 2019; 15
References_xml – volume: 118
  year: 2020
  ident: CR2
  article-title: Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values
  publication-title: Transp Res Part C: Emerg Technol
  doi: 10.1016/j.trc.2020.102674
– volume: 10
  start-page: 73
  year: 2010
  end-page: 78
  ident: CR6
  article-title: Urban traffic flow prediction with variable cell transmission model
  publication-title: J Transp Syst Eng Inf Technol
  doi: 10.1016/S1570-6672(09)60055-6
– volume: 50
  start-page: 148
  year: 2018
  end-page: 163
  ident: CR14
  article-title: Survey on traffic prediction in smart cities
  publication-title: Pervasive Mob Comput
  doi: 10.1016/j.pmcj.2018.07.004
– volume: 51
  year: 2022
  ident: CR30
  article-title: Heterogeneous star graph attention network for product attributes prediction
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2021.101447
– volume: 13
  start-page: 1023
  year: 2019
  end-page: 1032
  ident: CR32
  article-title: Hybrid dual Kalman filtering model for short-term traffic flow forecasting
  publication-title: IET Intel Transp Syst
  doi: 10.1049/iet-its.2018.5385
– volume: 22
  start-page: 6561
  year: 2021
  end-page: 6571
  ident: CR23
  article-title: Long-term traffic prediction based on LSTM encoder-decoder architecture
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.2995546
– ident: CR12
– volume: 18
  start-page: 1127
  year: 2022
  end-page: 1153
  ident: CR20
  article-title: Incremental unscented Kalman filter for real-time traffic estimation on motorways using multi-source data
  publication-title: Transp A: Transp Sci
  doi: 10.1080/23249935.2021.1931548
– volume: 16
  start-page: 1552
  year: 2020
  end-page: 1573
  ident: CR17
  article-title: Ensemble of ARIMA: combining parametric and bootstrapping technique for traffic flow prediction
  publication-title: Transp A: Transp Sci
  doi: 10.1080/23249935.2020.1764662
– volume: 2674
  start-page: 78
  year: 2020
  end-page: 89
  ident: CR19
  article-title: Bidirectional spatial-temporal network for traffic prediction with multisource data
  publication-title: Transp Res Rec
  doi: 10.1177/0361198120927393
– volume: 7
  start-page: 125101
  year: 2019
  end-page: 125112
  ident: CR7
  article-title: Improved manpower planning based on traffic flow forecast using a historical queuing model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933319
– volume: 14
  start-page: 303
  year: 2022
  ident: CR25
  article-title: Region-level traffic prediction based on temporal multi-spatial dependence graph convolutional network from GPS data
  publication-title: Remote Sensing
  doi: 10.3390/rs14020303
– ident: CR8
– volume: 186
  year: 2021
  ident: CR33
  article-title: GL-GCN: global and local dependency guided graph convolutional networks for aspect-based sentiment classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115712
– volume: 17
  start-page: 190
  year: 2021
  end-page: 211
  ident: CR5
  article-title: GPS-based citywide traffic congestion forecasting using CNN-RNN and C3D hybrid model
  publication-title: Transp A: Transp Sci
  doi: 10.1080/23249935.2020.1745927
– volume: 115
  year: 2020
  ident: CR21
  article-title: Evaluation and prediction of transportation resilience under extreme weather events: a diffusion graph convolutional approach
  publication-title: Transp Res Part C: Emerg Technol
  doi: 10.1016/j.trc.2020.102619
– volume: 23
  start-page: 4927
  year: 2022
  end-page: 4943
  ident: CR26
  article-title: Deep learning on traffic prediction: methods, analysis, and future directions
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3054840
– volume: 115
  year: 2020
  ident: CR1
  article-title: Learning traffic as a graph: a gated graph wavelet recurrent neural network for network-scale traffic prediction
  publication-title: Transp Res Part C: Emerg Technol
  doi: 10.1016/j.trc.2020.102620
– volume: 124
  year: 2021
  ident: CR10
  article-title: Transferability improvement in short-term traffic prediction using stacked LSTM network
  publication-title: Transp Res Part C: Emerg Technol
  doi: 10.1016/j.trc.2021.102977
– volume: 15
  start-page: 1688
  year: 2019
  end-page: 1711
  ident: CR28
  article-title: Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning
  publication-title: Transp A: Transp Sci
  doi: 10.1080/23249935.2019.1637966
– volume: 120
  year: 2020
  ident: CR13
  article-title: A sequence to sequence learning based car-following model for multi-step predictions considering reaction delay
  publication-title: Transp Res Part C: Emerg Technol
  doi: 10.1016/j.trc.2020.102785
– volume: 17
  start-page: 2802
  year: 2021
  end-page: 2812
  ident: CR31
  article-title: Variational graph neural networks for road traffic prediction in intelligent transportation systems
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2020.3009280
– ident: CR3
– ident: CR11
– volume: 53
  year: 2022
  ident: CR22
  article-title: A deep spatio-temporal meta-learning model for urban traffic revitalization index prediction in the COVID-19 pandemic
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101678
– volume: 21
  start-page: 1332
  year: 2020
  end-page: 1342
  ident: CR4
  article-title: An improved Bayesian combination model for short-term traffic prediction with deep learning
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2939290
– year: 2020
  ident: CR16
  publication-title: Data-driven traffic engineering: understanding of traffic and applications based on three-phase traffic theory
– volume: 23
  start-page: 16654
  year: 2022
  end-page: 16665
  ident: CR18
  article-title: A short-term traffic flow prediction model based on an improved gate recurrent unit neural network
  publication-title: Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3094659
– year: 2022
  ident: CR9
  article-title: Dynamic graph convolutional recurrent network for traffic prediction: benchmark and solution
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/3532611
– volume: 51
  start-page: 101482
  year: 2022
  ident: CR15
  article-title: Long-time gap crowd prediction using time series deep learning models with two-dimensional single attribute inputs
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2021.101482
– volume: 34
  start-page: 1054
  year: 2020
  end-page: 1061
  ident: CR24
  article-title: Graph convolutional networks with Markov random field reasoning for social spammer detection
  publication-title: Proc AAAI Conf Artif Intell
  doi: 10.1609/aaai.v34i01.5455
– volume: 6
  start-page: 63
  year: 2021
  end-page: 85
  ident: CR27
  article-title: A survey of traffic prediction: from spatio-temporal data to intelligent transportation
  publication-title: Data Sci Eng
  doi: 10.1007/s41019-020-00151-z
– volume: 21
  start-page: 3848
  year: 2020
  end-page: 3858
  ident: CR29
  article-title: T-GCN: a temporal graph convolutional network for traffic prediction
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2935152
– volume: 186
  year: 2021
  ident: 1099_CR33
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115712
– volume: 115
  year: 2020
  ident: 1099_CR1
  publication-title: Transp Res Part C: Emerg Technol
  doi: 10.1016/j.trc.2020.102620
– year: 2022
  ident: 1099_CR9
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/3532611
– volume: 18
  start-page: 1127
  year: 2022
  ident: 1099_CR20
  publication-title: Transp A: Transp Sci
  doi: 10.1080/23249935.2021.1931548
– volume: 6
  start-page: 63
  year: 2021
  ident: 1099_CR27
  publication-title: Data Sci Eng
  doi: 10.1007/s41019-020-00151-z
– volume: 23
  start-page: 16654
  year: 2022
  ident: 1099_CR18
  publication-title: Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3094659
– volume: 17
  start-page: 190
  year: 2021
  ident: 1099_CR5
  publication-title: Transp A: Transp Sci
  doi: 10.1080/23249935.2020.1745927
– volume: 14
  start-page: 303
  year: 2022
  ident: 1099_CR25
  publication-title: Remote Sensing
  doi: 10.3390/rs14020303
– volume: 10
  start-page: 73
  year: 2010
  ident: 1099_CR6
  publication-title: J Transp Syst Eng Inf Technol
  doi: 10.1016/S1570-6672(09)60055-6
– volume: 21
  start-page: 3848
  year: 2020
  ident: 1099_CR29
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2935152
– volume: 7
  start-page: 125101
  year: 2019
  ident: 1099_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933319
– ident: 1099_CR11
  doi: 10.1109/ITSC.2019.8916778
– volume: 115
  year: 2020
  ident: 1099_CR21
  publication-title: Transp Res Part C: Emerg Technol
  doi: 10.1016/j.trc.2020.102619
– ident: 1099_CR3
– volume: 2674
  start-page: 78
  year: 2020
  ident: 1099_CR19
  publication-title: Transp Res Rec
  doi: 10.1177/0361198120927393
– volume: 118
  year: 2020
  ident: 1099_CR2
  publication-title: Transp Res Part C: Emerg Technol
  doi: 10.1016/j.trc.2020.102674
– volume: 50
  start-page: 148
  year: 2018
  ident: 1099_CR14
  publication-title: Pervasive Mob Comput
  doi: 10.1016/j.pmcj.2018.07.004
– ident: 1099_CR12
  doi: 10.24963/ijcai.2018/482
– volume: 16
  start-page: 1552
  year: 2020
  ident: 1099_CR17
  publication-title: Transp A: Transp Sci
  doi: 10.1080/23249935.2020.1764662
– volume: 120
  year: 2020
  ident: 1099_CR13
  publication-title: Transp Res Part C: Emerg Technol
  doi: 10.1016/j.trc.2020.102785
– volume: 23
  start-page: 4927
  year: 2022
  ident: 1099_CR26
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3054840
– volume-title: Data-driven traffic engineering: understanding of traffic and applications based on three-phase traffic theory
  year: 2020
  ident: 1099_CR16
– volume: 51
  year: 2022
  ident: 1099_CR30
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2021.101447
– volume: 124
  year: 2021
  ident: 1099_CR10
  publication-title: Transp Res Part C: Emerg Technol
  doi: 10.1016/j.trc.2021.102977
– volume: 51
  start-page: 101482
  year: 2022
  ident: 1099_CR15
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2021.101482
– volume: 34
  start-page: 1054
  year: 2020
  ident: 1099_CR24
  publication-title: Proc AAAI Conf Artif Intell
  doi: 10.1609/aaai.v34i01.5455
– volume: 15
  start-page: 1688
  year: 2019
  ident: 1099_CR28
  publication-title: Transp A: Transp Sci
  doi: 10.1080/23249935.2019.1637966
– volume: 13
  start-page: 1023
  year: 2019
  ident: 1099_CR32
  publication-title: IET Intel Transp Syst
  doi: 10.1049/iet-its.2018.5385
– ident: 1099_CR8
– volume: 17
  start-page: 2802
  year: 2021
  ident: 1099_CR31
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2020.3009280
– volume: 53
  year: 2022
  ident: 1099_CR22
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101678
– volume: 22
  start-page: 6561
  year: 2021
  ident: 1099_CR23
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.2995546
– volume: 21
  start-page: 1332
  year: 2020
  ident: 1099_CR4
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2939290
SSID ssj0001778302
ssib044733412
Score 2.4840791
Snippet Traffic volume propagating from upstream road link to downstream road link is the key parameter for designing intersection signal timing scheme. Recent works...
Abstract Traffic volume propagating from upstream road link to downstream road link is the key parameter for designing intersection signal timing scheme....
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 23
SubjectTerms Artificial neural networks
Communications traffic
Complexity
Computational Intelligence
Data Structures and Information Theory
Engineering
Graph convolutional network
Multilayers
Original Article
Propagation
Roads & highways
Spatial data
Spatial–temporal features
Traffic flow
Traffic models
Traffic prediction
Traffic propagation flow
Traffic volume
Upstream
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na90wDBfb62U7jH2y13XDh902syR2np3TWEdLGbSUsUJvnj_HoCRt3iuD_vWT_JyUDlYIBBLHMZIsyZb8E8B7EWLVBRd4DKrFBUpM3MkOZdlXTQja1U7RaeTjk9XRmfx23p6XDbd1SaucdGJW1GHwtEf-qcGFQkvoae3nyytOVaMoulpKaDyEHVTBWi9gZ__g5PT7JFFSKiFkMeB510UpAryiinN113GZY5e783k6SXDyHM0YzxEjfnPHWmVQ_zue6D_B02yTDp_Ck-JMsi9b7j-DB7F_Do-PZyTW9Qv4eTpSKIaSm9lmtAQYwbBnVCOZJSxdDH_Y755dj872bBxsYP02M5zRFi3LCYc8w1ozylAvkop_Lc1ewtnhwY-vR7xUVeC-rZoNFytto9eNb6yLTe0DeghVVHjTKYnOdhE9jBi9SHQ5l7RqfF1FX1tNqajiFSz6oY-vgXmdZFe1nkJtspUOLVtHcM247AroJ4Ql1BP1jC-Q41T54sLMYMmZ4gYpbjLFzc0SPszfXG4BN-5tvU9MmVsSWHZ-MIy_TJl7xqrKCkvltFWQOFq38gmXURI9H18JmZawN7HUlBm8NrfytoSPE5tvX_9_SLv39_YGHjXoF20Tv_dgsRmv41v0azbuXRHev-vh82U
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X_RB_MTplDz4psG2SZf2UYciguKDA99iPkEYnXQTwb_euyybH6AgFErbpA13l95d7vI7Qo6581ntjGPeyRIcFB-YETXIss0K5yqTG4m7kW_v-tdDcfNYPiaYHNwL8yN-fzYRiPDOQLOwGMRh78tkpcy5xDINg_5gLjtCSM5FUtVxfUVKhLbC2nI5dBMxSrn_-2u_6aUI3__N5vwRJo3a52qDrCezkZ7P-LxJlnyzRda-gAnC1e0CgXWyTZ7uWwzBYFIznbYagSIofAd-H5EVNIzGb_S5oa-t0Q1tx9rRZpYRTnFplsZEQxbhrClmpicJhTGkZjtkeHX5MLhmqZoCs2VWTBnvV9rbqrCFNr7IrQPLIPMSTlUIvNa1B8vCe8sDHsaEShY2z7zNdYUpqHyXdJpx4_cItVUQdVZaDLGJUhjQaDXCNIO75cA-cF2Sz2mpbIIax4oXI7UASY70V0B_Femv3rvkZNHnZQa08WfrC2TRoiWCZMcbIDsqzTmlZaa5xjLa0gkYrenbAO6TAIvHZlyELunNGazSzJ2oAhzSElH6yi45nTP98_HvQ9r_X_MDslqAfTRLAO-RzrR99Ydg30zNURTsD1qe79k
  priority: 102
  providerName: Springer Nature
Title Predicting traffic propagation flow in urban road network with multi-graph convolutional network
URI https://link.springer.com/article/10.1007/s40747-023-01099-z
https://www.proquest.com/docview/2924576355
https://doaj.org/article/a70a3a60317d45c1b6cf9744110c034f
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7a9NIeQtMH3TRddOitFbUleWUfN0s2YSEhtA3kpuoJheAtzoZCfn1mZK-bFNpeCsYCWbbFzEgzI42-AXgvQyya4AKPQVfooMTEnWpQln0hQqhd6TSdRj49m51cqNVldXkv1RfFhPXwwD3hPlldWGkpF7IOqvKlm_mENrBCteULqRLNvqjz7jlTKElKaSnVoLjzaovWBHRFmebKpuEq71nuj-foFMHIc1RfPO8U8dsHWiqD-T-wQH_bNM26aPkcdgcjks37zu_Bo9i-gGenIwLr9Uv4dt7RFgwFNbNNZwkoguGXcfrIrGDpav2TfW_ZTedsy7q1DaztI8IZLc2yHGjIM5w1o8j0QULxr0OzV3CxPPq6OOFDNgXuq0JsuJzVNvpaeGFdFKUPaBkUUWNRpyQb20S0LGL0MtHlXKq18GURfWlrCkGVr2GnXbfxDTBfJ9UUyAx0rVWlHGq0hmCa0d0KaB-ECZRb6hk_QI1TxosrM4IkZ4obpLjJFDe3E_gwvvOjB9r4a-tDYsrYkkCycwWKjhlEx_xLdCZwsGWpGUbutRHokFaE0ldN4OOWzb8e_7lL-_-jS2_hqUCrqQ8LP4CdTXcT36HVs3FTeFwvj6fwZD5ffVlheXh0dv4ZaxdC0X22mOYhcAdu-_9O
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKfYtoAPcAKLxHY2yQEhXsuWdisOrdSb61cQUpW02a0q-qP4jcw4j6pI9FYpUqTEcazx2DPjmfkG4JX0ISm99Tz4PEMDJVTcqhJ52SXC-8KmNqds5MXedH6gvh9mh2vwZ8iFobDKYU-MG7VvHJ2RvxNoKGSEnpZ9ODnlVDWKvKtDCY2OLXbC73M02Zbvt7_g_L4WYvZ1__Oc91UFuMsSseJyWpjgCuGEsUGkzqOETEKOt6KqZGnKgBI2BCcruqytily4NAkuNQWFYkrs9xbcVhIlOWWmz74N_KtULqXq1YV4xpPnBK9F9e3SsuQqeko3xuw9ReD1HIUmj_4pfnFFNsYSAlf03n9ctVECzh7A_V51ZR87XnsIa6F-BPcWI-7r8jEc_WjJ8UOh1GzVGoKnYNgzblqRAVh13JyzXzU7a62pWdsYz-ouDp3RgTCL4Y08gmgziofv1wX-tW_2BA5uhNpPYb1u6vAMmCsqVSaZI8eeypRFOVoSODQaeR61Ej-BdKCedj3AOdXZONYjNHOkuEaK60hxfTGBN-M3Jx28x7WtP9GkjC0Jmjs-aNqful_p2uSJkYaKd-de4Wjt1FVotCnUs1wiVTWBrWFKdb9fLPUld0_g7TDNl6__P6SN63t7CXfm-4tdvbu9t7MJdwVqZF3I-Rasr9qz8Bw1qpV9EdmYwdFNr5u_DV4wbA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9VAEJ8gJkYPxs_4EHEPetKGdnf72h48wIMXECEcJOG27KcxIX2kr4TIX-Wf6Mz2QzHBxANJk6bttt3Ozu7MdGZ-A_BOOJ9WzrjEuyJHA8WHxMgKedmm3LnSZKagbOTDo-neifx8mp-uwM8hFyZGuw8uyS6ngVCa6nbzwoXNMfFNEu57gvImia6d5LoPqzzwP67QaFt-2t_BEX7P-Xz362wv6esKJDZPeZuIaam9Lbnl2nieWYcyMvUF7soQRKUrjzLWeysCbcaEsuA2S73NdEnBmAKfew_uo2WUkbk3m84GDpayEEL2CkP8y1MUBLBFFe4y7KaMvtK12z_jhnSMRQRuaL5_OWujDJw_gce98sq2Om57Ciu-fgaP_oA0xKPDEQd2-RzOjhtyBFFoNWsbTXAVDN-Di1hkCBbOF1fse80uG6Nr1iy0Y3UXl87oBzGL4Y5JBNVmFB_fzxPsQ9_sBZzcCe1fwmq9qP0rYLYMskpzS44-mUuDcrUisGg0-hxqKW4C2UBLZXvAc6q7ca5GqOZIf4X0V5H-6noCH8Z7Ljq4j3-23qYhGlsSVHc8sWi-qX7mK12kWmgq5l04ib01UxvQiJOod9lUyDCB9WGAVb9-LBVHszgnrMB8Ah-HQf99-fYurf1f87fw4Hhnrr7sHx28hoccFbYuIn0dVtvm0r9Bhas1G5HHGZzd9aT6BW3kNq8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+traffic+propagation+flow+in+urban+road+network+with+multi-graph+convolutional+network&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Haiqiang+Yang&rft.au=Zihan+Li&rft.au=Yashuai+Qi&rft.date=2024-02-01&rft.pub=Springer&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=10&rft.issue=1&rft.spage=23&rft.epage=35&rft_id=info:doi/10.1007%2Fs40747-023-01099-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a70a3a60317d45c1b6cf9744110c034f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon