De novo design of protein structure and function with RFdiffusion

There has been considerable recent progress in designing new proteins using deep-learning methods 1 – 9 . Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 620; no. 7976; pp. 1089 - 1100
Main Authors Watson, Joseph L., Juergens, David, Bennett, Nathaniel R., Trippe, Brian L., Yim, Jason, Eisenach, Helen E., Ahern, Woody, Borst, Andrew J., Ragotte, Robert J., Milles, Lukas F., Wicky, Basile I. M., Hanikel, Nikita, Pellock, Samuel J., Courbet, Alexis, Sheffler, William, Wang, Jue, Venkatesh, Preetham, Sappington, Isaac, Torres, Susana Vázquez, Lauko, Anna, De Bortoli, Valentin, Mathieu, Emile, Ovchinnikov, Sergey, Barzilay, Regina, Jaakkola, Tommi S., DiMaio, Frank, Baek, Minkyung, Baker, David
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 31.08.2023
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There has been considerable recent progress in designing new proteins using deep-learning methods 1 – 9 . Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models 10 , 11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence–structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications. Fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks yields a generative model for protein design that achieves outstanding performance on a wide range of protein structure and function design challenges.
AbstractList There has been considerable recent progress in designing new proteins using deep-learning methods 1 – 9 . Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models 10 , 11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence–structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications. Fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks yields a generative model for protein design that achieves outstanding performance on a wide range of protein structure and function design challenges.
There has been considerable recent progress in designing new proteins using deep-learning methods . Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence-structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.
There has been considerable recent progress in designing new proteins using deep-learning methods 1–9 . Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models 10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence–structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.
There has been considerable recent progress in designing new proteins using deep-learning methods. Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence-structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design ofdiverse functional proteins from simple molecular specifications.
Abstract There has been considerable recent progress in designing new proteins using deep-learning methods1–9. Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models10,11have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence–structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.
There has been considerable recent progress in designing new proteins using deep-learning methods1-9. Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence-structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.There has been considerable recent progress in designing new proteins using deep-learning methods1-9. Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence-structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.
Author Courbet, Alexis
Ragotte, Robert J.
Ovchinnikov, Sergey
Venkatesh, Preetham
Trippe, Brian L.
Watson, Joseph L.
Torres, Susana Vázquez
Sheffler, William
Sappington, Isaac
De Bortoli, Valentin
Baker, David
Wang, Jue
Borst, Andrew J.
DiMaio, Frank
Pellock, Samuel J.
Jaakkola, Tommi S.
Yim, Jason
Mathieu, Emile
Baek, Minkyung
Lauko, Anna
Eisenach, Helen E.
Bennett, Nathaniel R.
Milles, Lukas F.
Juergens, David
Wicky, Basile I. M.
Ahern, Woody
Barzilay, Regina
Hanikel, Nikita
Author_xml – sequence: 1
  givenname: Joseph L.
  surname: Watson
  fullname: Watson, Joseph L.
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington
– sequence: 2
  givenname: David
  surname: Juergens
  fullname: Juergens, David
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Graduate Program in Molecular Engineering, University of Washington
– sequence: 3
  givenname: Nathaniel R.
  orcidid: 0000-0001-8590-1454
  surname: Bennett
  fullname: Bennett, Nathaniel R.
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Graduate Program in Molecular Engineering, University of Washington
– sequence: 4
  givenname: Brian L.
  surname: Trippe
  fullname: Trippe, Brian L.
  organization: Institute for Protein Design, University of Washington, Columbia University, Department of Statistics, Irving Institute for Cancer Dynamics, Columbia University
– sequence: 5
  givenname: Jason
  orcidid: 0000-0003-0575-7400
  surname: Yim
  fullname: Yim, Jason
  organization: Institute for Protein Design, University of Washington, Massachusetts Institute of Technology
– sequence: 6
  givenname: Helen E.
  surname: Eisenach
  fullname: Eisenach, Helen E.
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington
– sequence: 7
  givenname: Woody
  surname: Ahern
  fullname: Ahern, Woody
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Paul G. Allen School of Computer Science and Engineering, University of Washington
– sequence: 8
  givenname: Andrew J.
  orcidid: 0000-0003-4297-7824
  surname: Borst
  fullname: Borst, Andrew J.
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington
– sequence: 9
  givenname: Robert J.
  surname: Ragotte
  fullname: Ragotte, Robert J.
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington
– sequence: 10
  givenname: Lukas F.
  orcidid: 0000-0001-8417-3205
  surname: Milles
  fullname: Milles, Lukas F.
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington
– sequence: 11
  givenname: Basile I. M.
  orcidid: 0000-0002-2501-7875
  surname: Wicky
  fullname: Wicky, Basile I. M.
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington
– sequence: 12
  givenname: Nikita
  orcidid: 0000-0002-3292-5070
  surname: Hanikel
  fullname: Hanikel, Nikita
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington
– sequence: 13
  givenname: Samuel J.
  orcidid: 0000-0002-7557-7985
  surname: Pellock
  fullname: Pellock, Samuel J.
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington
– sequence: 14
  givenname: Alexis
  orcidid: 0000-0003-0539-7011
  surname: Courbet
  fullname: Courbet, Alexis
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, National Centre for Scientific Research, École Normale Supérieure rue d’Ulm
– sequence: 15
  givenname: William
  surname: Sheffler
  fullname: Sheffler, William
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington
– sequence: 16
  givenname: Jue
  surname: Wang
  fullname: Wang, Jue
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington
– sequence: 17
  givenname: Preetham
  surname: Venkatesh
  fullname: Venkatesh, Preetham
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Graduate Program in Biological Physics, Structure and Design, University of Washington
– sequence: 18
  givenname: Isaac
  surname: Sappington
  fullname: Sappington, Isaac
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Graduate Program in Biological Physics, Structure and Design, University of Washington
– sequence: 19
  givenname: Susana Vázquez
  surname: Torres
  fullname: Torres, Susana Vázquez
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Graduate Program in Biological Physics, Structure and Design, University of Washington
– sequence: 20
  givenname: Anna
  surname: Lauko
  fullname: Lauko, Anna
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Graduate Program in Biological Physics, Structure and Design, University of Washington
– sequence: 21
  givenname: Valentin
  surname: De Bortoli
  fullname: De Bortoli, Valentin
  organization: National Centre for Scientific Research, École Normale Supérieure rue d’Ulm
– sequence: 22
  givenname: Emile
  surname: Mathieu
  fullname: Mathieu, Emile
  organization: Department of Engineering, University of Cambridge
– sequence: 23
  givenname: Sergey
  orcidid: 0000-0003-2774-2744
  surname: Ovchinnikov
  fullname: Ovchinnikov, Sergey
  organization: Faculty of Applied Sciences, Harvard University, John Harvard Distinguished Science Fellowship, Harvard University
– sequence: 24
  givenname: Regina
  surname: Barzilay
  fullname: Barzilay, Regina
  organization: Massachusetts Institute of Technology
– sequence: 25
  givenname: Tommi S.
  orcidid: 0000-0002-2199-0379
  surname: Jaakkola
  fullname: Jaakkola, Tommi S.
  organization: Massachusetts Institute of Technology
– sequence: 26
  givenname: Frank
  surname: DiMaio
  fullname: DiMaio, Frank
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington
– sequence: 27
  givenname: Minkyung
  orcidid: 0000-0003-3414-9404
  surname: Baek
  fullname: Baek, Minkyung
  organization: School of Biological Sciences, Seoul National University
– sequence: 28
  givenname: David
  orcidid: 0000-0001-7896-6217
  surname: Baker
  fullname: Baker, David
  email: dabaker@uw.edu
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Howard Hughes Medical Institute, University of Washington
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37433327$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2420884$$D View this record in Osti.gov
BookMark eNp9kU1vFSEYhYmpsbfVP-DCTHTTzVi-h1mZprZq0sSk0TWZgZd7aebCFZg2_nu5TutHF11B4Dkvh3OO0EGIARB6TfB7gpk6zZwIJVtMWYtl3bfqGVoR3smWS9UdoBXGVLVYMXmIjnK-wRgL0vEX6JB1nDFGuxU6-whNiLexsZD9OjTRNbsUC_jQ5JJmU-YEzRBs4-Zgio-hufNl01xfWu_cnOvBS_TcDVOGV_frMfp-efHt_HN79fXTl_Ozq9YITEtLORacg-iZIxbEwC01IxnB0pGQccQYqOhVL63BTjnoFHdWWkE7JrjsObBj9GGZu5vHLVgDoaRh0rvkt0P6qePg9f83wW_0Ot5qgmscrOd1wttlQszF62x8AbMxMQQwRVNOsVJ76OT-mRR_zJCL3vpsYJqGAHHOmtY4ac9YJyr67hF6E-cUagiVkkT1nMiuUm_-9f3H8EMHFVALYFLMOYHT1dmwz7p-w0_Vv97XrZe6da1b_65bqyqlj6QP058UsUWUKxzWkP7afkL1C5H6u70
CitedBy_id crossref_primary_10_1002_advs_202406305
crossref_primary_10_1016_j_ymeth_2025_03_008
crossref_primary_10_1093_bib_bbae644
crossref_primary_10_3390_e26070556
crossref_primary_10_1016_j_it_2025_02_013
crossref_primary_10_1016_j_apsb_2024_01_009
crossref_primary_10_1021_acs_jctc_4c00927
crossref_primary_10_1021_acs_jpcb_4c01957
crossref_primary_10_1016_j_cogsc_2025_101010
crossref_primary_10_1016_j_biomaterials_2023_122464
crossref_primary_10_1016_j_cels_2023_10_008
crossref_primary_10_1016_j_cels_2023_10_006
crossref_primary_10_3390_molecules29245923
crossref_primary_10_1016_j_str_2024_08_018
crossref_primary_10_1002_2211_5463_13855
crossref_primary_10_1089_hs_2022_0109
crossref_primary_10_1371_journal_pcbi_1012144
crossref_primary_10_1038_s42256_024_00792_z
crossref_primary_10_17537_2024_19_402
crossref_primary_10_1016_j_copbio_2025_103263
crossref_primary_10_1021_acscentsci_4c01428
crossref_primary_10_1093_nsr_nwad303
crossref_primary_10_3390_ph18020143
crossref_primary_10_1038_s41592_024_02437_w
crossref_primary_10_1016_j_crstbi_2024_100131
crossref_primary_10_1080_17460441_2023_2250721
crossref_primary_10_1126_science_adu2454
crossref_primary_10_1002_ange_202422075
crossref_primary_10_1016_j_copbio_2024_103199
crossref_primary_10_1016_j_ijbiomac_2025_140803
crossref_primary_10_1093_nsr_nwad331
crossref_primary_10_3389_fbioe_2025_1537471
crossref_primary_10_1126_sciadv_adr3239
crossref_primary_10_1002_ijch_202400006
crossref_primary_10_34133_research_0413
crossref_primary_10_1016_j_biomaterials_2024_122946
crossref_primary_10_1002_advs_202407664
crossref_primary_10_1021_jacsau_4c00228
crossref_primary_10_1186_s13321_025_00965_x
crossref_primary_10_1016_j_immuni_2024_01_015
crossref_primary_10_1016_j_xplc_2024_101195
crossref_primary_10_3390_molecules28237865
crossref_primary_10_1063_5_0194391
crossref_primary_10_1038_s41587_024_02469_9
crossref_primary_10_1126_science_adn3780
crossref_primary_10_1002_cbic_202400092
crossref_primary_10_1016_j_sbi_2025_103004
crossref_primary_10_1021_acssynbio_4c00624
crossref_primary_10_1126_sciadv_adl4000
crossref_primary_10_1021_acs_jpcb_3c04542
crossref_primary_10_59717_j_xinn_life_2024_100105
crossref_primary_10_1021_acscatal_3c02743
crossref_primary_10_1038_s41467_025_58227_1
crossref_primary_10_1038_s41594_025_01490_z
crossref_primary_10_1038_s41467_024_45461_2
crossref_primary_10_3390_diagnostics14111100
crossref_primary_10_1093_protein_gzad023
crossref_primary_10_1016_j_drudis_2024_104272
crossref_primary_10_1016_j_sbi_2025_103018
crossref_primary_10_1016_j_chempr_2024_102407
crossref_primary_10_1093_bioinformatics_btad712
crossref_primary_10_1109_TKDE_2024_3361474
crossref_primary_10_1360_TB_2024_1178
crossref_primary_10_1007_s11426_024_2469_0
crossref_primary_10_1016_j_tips_2024_01_003
crossref_primary_10_1039_D4CC00183D
crossref_primary_10_1016_j_cell_2024_12_029
crossref_primary_10_1021_acs_jcim_4c01641
crossref_primary_10_1093_protein_gzae002
crossref_primary_10_1103_PhysRevResearch_6_023006
crossref_primary_10_1089_genbio_2025_0004
crossref_primary_10_1021_acs_jctc_3c01395
crossref_primary_10_1038_s41592_024_02479_0
crossref_primary_10_1016_j_sbi_2025_103027
crossref_primary_10_1021_acsomega_3c09084
crossref_primary_10_1016_j_procbio_2025_01_013
crossref_primary_10_1016_j_medj_2024_07_026
crossref_primary_10_1016_j_str_2024_07_016
crossref_primary_10_1021_acscatal_3c02746
crossref_primary_10_1002_prot_26790
crossref_primary_10_1038_s42256_024_00838_2
crossref_primary_10_1016_j_cell_2024_05_025
crossref_primary_10_1021_acsbiomaterials_4c01986
crossref_primary_10_1038_s43586_024_00356_w
crossref_primary_10_1002_adma_202404235
crossref_primary_10_1002_aaai_12210
crossref_primary_10_1080_08830185_2024_2374546
crossref_primary_10_1016_j_meegid_2024_105626
crossref_primary_10_1093_nsr_nwae343
crossref_primary_10_1021_acs_bioconjchem_4c00079
crossref_primary_10_1089_mab_2025_85611_ed
crossref_primary_10_1371_journal_pcbi_1012136
crossref_primary_10_1039_D3LC00860F
crossref_primary_10_1016_j_jconrel_2025_113629
crossref_primary_10_1021_acs_jmedchem_4c00250
crossref_primary_10_1093_nsr_nwae348
crossref_primary_10_1039_D4DD00013G
crossref_primary_10_1039_D4EN00144C
crossref_primary_10_1093_protein_gzad016
crossref_primary_10_1002_bkcs_12840
crossref_primary_10_1093_protein_gzad012
crossref_primary_10_1038_s41467_024_55436_y
crossref_primary_10_1038_s41587_024_02422_w
crossref_primary_10_1016_j_str_2024_02_017
crossref_primary_10_1242_dev_202300
crossref_primary_10_1371_journal_pcbi_1012489
crossref_primary_10_1038_s41586_024_07813_2
crossref_primary_10_7554_eLife_100545
crossref_primary_10_1016_j_tibs_2023_12_002
crossref_primary_10_3389_fphar_2024_1426300
crossref_primary_10_7498_aps_73_20240811
crossref_primary_10_1080_0194262X_2025_2468333
crossref_primary_10_3390_biom14030339
crossref_primary_10_1016_j_bidere_2025_100004
crossref_primary_10_1016_j_bidere_2025_100005
crossref_primary_10_7498_aps_72_20231624
crossref_primary_10_1016_j_ijbiomac_2025_142293
crossref_primary_10_1016_j_bios_2025_117338
crossref_primary_10_1016_j_jmb_2025_169008
crossref_primary_10_1038_s41586_024_07687_4
crossref_primary_10_1002_prot_26611
crossref_primary_10_1038_d41586_024_00846_7
crossref_primary_10_1016_j_jpha_2025_101260
crossref_primary_10_1038_s41587_024_02127_0
crossref_primary_10_1038_s41592_023_02123_3
crossref_primary_10_1002_anie_202422075
crossref_primary_10_1016_j_xphs_2024_09_015
crossref_primary_10_1016_j_hlife_2025_01_002
crossref_primary_10_1021_acs_chemrev_4c00120
crossref_primary_10_1016_j_biotechadv_2024_108366
crossref_primary_10_1021_acs_jafc_4c02335
crossref_primary_10_1126_science_ads0018
crossref_primary_10_1038_s41592_024_02465_6
crossref_primary_10_1021_acscatal_4c04145
crossref_primary_10_1016_j_csbj_2024_06_016
crossref_primary_10_1016_j_crstbi_2025_100165
crossref_primary_10_1021_acssynbio_4c00686
crossref_primary_10_3390_su16177651
crossref_primary_10_1016_j_ijbiomac_2024_134014
crossref_primary_10_1016_j_sbi_2023_102771
crossref_primary_10_1038_s41576_024_00786_y
crossref_primary_10_1093_plcell_koae081
crossref_primary_10_1002_bmm2_12134
crossref_primary_10_1021_acsomega_4c01704
crossref_primary_10_1016_j_biotechadv_2024_108495
crossref_primary_10_1038_s41401_024_01380_y
crossref_primary_10_1126_sciadv_adr8638
crossref_primary_10_1038_s41467_024_54913_8
crossref_primary_10_1016_j_greenca_2024_05_001
crossref_primary_10_1038_s41586_024_08393_x
crossref_primary_10_1016_j_bpj_2023_12_001
crossref_primary_10_1021_acsnano_4c00829
crossref_primary_10_1111_1751_7915_70047
crossref_primary_10_1021_acs_jcim_4c02108
crossref_primary_10_1038_s41589_024_01642_0
crossref_primary_10_1016_j_csbj_2024_06_021
crossref_primary_10_15252_msb_202311933
crossref_primary_10_1038_s41587_024_02395_w
crossref_primary_10_1002_advs_202402361
crossref_primary_10_7554_eLife_91512
crossref_primary_10_3390_metabo14030154
crossref_primary_10_1021_acs_chemrev_4c00582
crossref_primary_10_1038_s41467_024_46356_y
crossref_primary_10_1016_j_cossms_2024_101158
crossref_primary_10_1016_j_sbi_2023_102746
crossref_primary_10_1016_j_bbamcr_2024_119718
crossref_primary_10_2217_nnm_2023_0362
crossref_primary_10_1021_acs_chemrev_4c00329
crossref_primary_10_1038_s41467_025_56369_w
crossref_primary_10_1002_pro_5033
crossref_primary_10_1021_acs_jcim_4c01020
crossref_primary_10_1016_j_bej_2024_109510
crossref_primary_10_1016_j_jmb_2025_169011
crossref_primary_10_1101_cshperspect_a041472
crossref_primary_10_1016_j_jmb_2025_169012
crossref_primary_10_1111_nph_20449
crossref_primary_10_1016_j_cstres_2025_01_001
crossref_primary_10_1021_acs_jctc_3c01054
crossref_primary_10_1002_wcms_1711
crossref_primary_10_1021_acssynbio_4c00109
crossref_primary_10_1038_s44222_024_00225_x
crossref_primary_10_1016_j_jinorgbio_2024_112810
crossref_primary_10_1038_s41467_024_51511_6
crossref_primary_10_3390_nu16142354
crossref_primary_10_1093_nar_gkae840
crossref_primary_10_1038_s41467_024_46574_4
crossref_primary_10_3390_ncrna11020018
crossref_primary_10_1093_nar_gkae889
crossref_primary_10_1039_D4DD00177J
crossref_primary_10_1126_sciadv_adr7338
crossref_primary_10_1038_s41586_025_08611_0
crossref_primary_10_3390_biom14091073
crossref_primary_10_1002_pro_5027
crossref_primary_10_1002_pro_5148
crossref_primary_10_1038_s42004_024_01233_z
crossref_primary_10_1016_j_ijbiomac_2024_136643
crossref_primary_10_1007_s00425_023_04292_z
crossref_primary_10_1038_s41586_024_08360_6
crossref_primary_10_1017_qrd_2024_15
crossref_primary_10_1042_BST20240833
crossref_primary_10_1038_s41586_023_06953_1
crossref_primary_10_1016_j_inffus_2025_103119
crossref_primary_10_1016_j_celrep_2023_113552
crossref_primary_10_1038_s43586_025_00383_1
crossref_primary_10_1002_pro_5013
crossref_primary_10_1021_acssynbio_4c00482
crossref_primary_10_1038_s41589_024_01679_1
crossref_primary_10_1016_j_bbadis_2024_167263
crossref_primary_10_1016_j_tim_2023_09_007
crossref_primary_10_1016_j_xcrp_2025_102466
crossref_primary_10_1021_acs_chemrev_4c00423
crossref_primary_10_1038_s41467_024_50571_y
crossref_primary_10_1016_j_biotechadv_2024_108457
crossref_primary_10_1016_j_trechm_2024_06_004
crossref_primary_10_1016_j_sbi_2024_102835
crossref_primary_10_1111_1751_7915_70072
crossref_primary_10_1016_j_cels_2024_09_006
crossref_primary_10_1126_science_adk8946
crossref_primary_10_7554_eLife_100545_3
crossref_primary_10_1002_pro_5001
crossref_primary_10_34133_bdr_0037
crossref_primary_10_1016_j_cobme_2024_100556
crossref_primary_10_1016_j_synbio_2024_12_007
crossref_primary_10_1016_j_ymthe_2025_02_021
crossref_primary_10_1021_jacsau_4c01101
crossref_primary_10_1093_bioinformatics_btae654
crossref_primary_10_3389_fimmu_2024_1412513
crossref_primary_10_3390_catal15020147
crossref_primary_10_34133_bmef_0050
crossref_primary_10_1002_2211_5463_13902
crossref_primary_10_1007_s10994_024_06575_2
crossref_primary_10_1002_biof_2045
crossref_primary_10_1021_acs_jafc_4c13201
crossref_primary_10_1002_cbic_202300863
crossref_primary_10_1038_s41589_024_01632_2
crossref_primary_10_1038_s41551_024_01251_1
crossref_primary_10_1038_s41587_023_02076_0
crossref_primary_10_1126_science_adl5364
crossref_primary_10_1021_acs_chemmater_3c02242
crossref_primary_10_1016_j_sbi_2024_102973
crossref_primary_10_1038_s41467_024_50712_3
crossref_primary_10_1002_nadc_20244143087
crossref_primary_10_1002_cbic_202300754
crossref_primary_10_1002_cbic_202401014
crossref_primary_10_3390_molecules29153512
crossref_primary_10_1021_acssynbio_3c00042
crossref_primary_10_1038_s41598_024_54508_9
crossref_primary_10_1016_j_str_2025_01_002
crossref_primary_10_1038_s42003_024_07113_5
crossref_primary_10_1002_mlf2_12157
crossref_primary_10_7554_eLife_91512_4
crossref_primary_10_1002_ange_202421686
crossref_primary_10_1038_s41392_024_01934_w
crossref_primary_10_1038_s44222_024_00264_4
crossref_primary_10_1021_acssynbio_4c00179
crossref_primary_10_1016_j_bioorg_2024_107162
crossref_primary_10_1016_j_sbi_2024_102890
crossref_primary_10_1016_j_biopha_2024_116965
crossref_primary_10_1016_j_cels_2023_06_009
crossref_primary_10_1039_D2CS00991A
crossref_primary_10_1016_j_sbi_2024_102883
crossref_primary_10_1002_anie_202318365
crossref_primary_10_1073_pnas_2422180121
crossref_primary_10_1093_bioadv_vbae099
crossref_primary_10_1016_j_synbio_2024_07_004
crossref_primary_10_1002_anie_202411461
crossref_primary_10_1021_acssynbio_4c00041
crossref_primary_10_1126_science_adp1779
crossref_primary_10_1126_science_ado9336
crossref_primary_10_1007_s00299_024_03294_9
crossref_primary_10_1103_PRXLife_2_043013
crossref_primary_10_1021_acs_est_4c02845
crossref_primary_10_1103_PRXLife_2_043012
crossref_primary_10_1016_j_ejmech_2024_116262
crossref_primary_10_1038_s41576_024_00720_2
crossref_primary_10_1038_s41586_024_07601_y
crossref_primary_10_1007_s42994_024_00152_w
crossref_primary_10_1038_s44222_023_00114_9
crossref_primary_10_1021_acs_molpharmaceut_4c00604
crossref_primary_10_1086_732852
crossref_primary_10_1016_j_tips_2024_12_002
crossref_primary_10_1063_4_0000271
crossref_primary_10_1038_s41467_025_57192_z
crossref_primary_10_3389_fcell_2024_1343106
crossref_primary_10_3390_molecules29204965
crossref_primary_10_1021_acs_chemrev_4c00055
crossref_primary_10_1016_j_cmet_2023_08_007
crossref_primary_10_3390_molecules30051116
crossref_primary_10_1002_adfm_202408870
crossref_primary_10_1016_j_jmb_2024_168818
crossref_primary_10_1038_s41586_025_08628_5
crossref_primary_10_3389_fbioe_2023_1328141
crossref_primary_10_3390_v17030417
crossref_primary_10_1038_s41597_023_02553_w
crossref_primary_10_1021_acssensors_4c00282
crossref_primary_10_1186_s40643_023_00723_7
crossref_primary_10_1038_s41467_024_46203_0
crossref_primary_10_1021_acssynbio_4c00187
crossref_primary_10_1016_j_sbi_2024_102775
crossref_primary_10_1126_science_adq2634
crossref_primary_10_1021_acs_jctc_4c00222
crossref_primary_10_1080_19336950_2024_2325032
crossref_primary_10_3389_fphar_2025_1553853
crossref_primary_10_1039_D4DD90010C
crossref_primary_10_1016_j_csbj_2024_08_029
crossref_primary_10_1038_s41565_024_01641_1
crossref_primary_10_1101_cshperspect_a041469
crossref_primary_10_1016_j_crmeth_2024_100882
crossref_primary_10_1021_acs_jcim_4c01193
crossref_primary_10_1089_genbio_2023_29114_fli
crossref_primary_10_1016_j_eml_2024_102236
crossref_primary_10_1038_s41467_024_49030_5
crossref_primary_10_1038_s43586_024_00294_7
crossref_primary_10_1016_j_antiviral_2024_105834
crossref_primary_10_1126_sciadv_adr8265
crossref_primary_10_1021_acs_jcim_4c02046
crossref_primary_10_1038_s44320_024_00016_x
crossref_primary_10_1021_acssynbio_3c00674
crossref_primary_10_1021_acs_biomac_4c01243
crossref_primary_10_1038_s41598_024_71477_1
crossref_primary_10_1111_1748_5967_70008
crossref_primary_10_1371_journal_pone_0308425
crossref_primary_10_1038_s41586_024_08435_4
crossref_primary_10_1016_j_jmb_2024_168809
crossref_primary_10_1016_j_sbi_2024_102794
crossref_primary_10_1021_acsnano_4c12599
crossref_primary_10_1093_bioadv_vbae187
crossref_primary_10_1002_wcms_1693
crossref_primary_10_1089_genbio_2024_0051
crossref_primary_10_1016_j_medp_2024_100043
crossref_primary_10_1177_15330338241275947
crossref_primary_10_1039_D3DD00218G
crossref_primary_10_1038_s41589_024_01640_2
crossref_primary_10_1016_j_isci_2025_112012
crossref_primary_10_1109_TNNLS_2024_3416328
crossref_primary_10_1002_advs_202402441
crossref_primary_10_1093_bioinformatics_btae259
crossref_primary_10_1146_annurev_chembioeng_100722_112440
crossref_primary_10_1039_D4FD00139G
crossref_primary_10_1002_smll_202406388
crossref_primary_10_1016_j_pep_2024_106623
crossref_primary_10_1002_asi_24930
crossref_primary_10_1016_j_sbi_2025_102983
crossref_primary_10_1103_PRXLife_2_033012
crossref_primary_10_1089_genbio_2024_0062
crossref_primary_10_1038_s41586_023_06728_8
crossref_primary_10_1002_anie_202421686
crossref_primary_10_1016_j_jmb_2024_168900
crossref_primary_10_1021_acs_jmedchem_4c00828
crossref_primary_10_1038_s41587_024_02516_5
crossref_primary_10_1016_j_sbi_2025_102998
crossref_primary_10_1371_journal_pcbi_1011953
crossref_primary_10_1038_s44222_024_00245_7
crossref_primary_10_1039_D3CS00972F
crossref_primary_10_1126_science_adq1741
crossref_primary_10_1073_pnas_2418918121
crossref_primary_10_1002_pro_70045
crossref_primary_10_3390_microorganisms13020458
crossref_primary_10_1038_s42256_024_00831_9
crossref_primary_10_1016_j_jmb_2024_168791
crossref_primary_10_1021_jacs_4c04618
crossref_primary_10_1073_pnas_2413465122
crossref_primary_10_1093_bib_bbae488
crossref_primary_10_1016_j_cma_2024_117224
crossref_primary_10_1038_d41586_024_00173_x
crossref_primary_10_1093_pnasnexus_pgae572
crossref_primary_10_1073_pnas_2314999121
crossref_primary_10_1016_j_jcis_2025_01_147
crossref_primary_10_1186_s12859_024_05820_8
crossref_primary_10_1055_a_2520_3833
crossref_primary_10_1038_s41551_024_01237_z
crossref_primary_10_1038_s42003_024_07218_x
crossref_primary_10_1016_j_drudis_2024_104106
crossref_primary_10_1016_j_copbio_2024_103256
crossref_primary_10_1093_bioinformatics_btaf010
crossref_primary_10_1021_acscentsci_3c01275
crossref_primary_10_2139_ssrn_4833954
crossref_primary_10_1021_acs_jcim_4c00877
crossref_primary_10_1002_pro_4762
crossref_primary_10_1016_j_copbio_2024_103126
crossref_primary_10_1007_s11426_024_2072_4
crossref_primary_10_1038_s41467_023_41717_5
crossref_primary_10_1002_pro_4991
crossref_primary_10_1016_j_tibtech_2024_10_008
crossref_primary_10_1073_pnas_2311807121
crossref_primary_10_1016_j_chempr_2024_10_013
crossref_primary_10_1016_j_addr_2024_115418
crossref_primary_10_1016_j_bioorg_2024_107108
crossref_primary_10_1080_19420862_2024_2341443
crossref_primary_10_1021_acs_jcim_4c01928
crossref_primary_10_1093_protein_gzae010
crossref_primary_10_1002_cctc_202400835
crossref_primary_10_1016_j_coelec_2024_101541
crossref_primary_10_1038_s41592_024_02516_y
crossref_primary_10_1016_j_cels_2025_101201
crossref_primary_10_1038_s44319_024_00143_4
crossref_primary_10_1126_science_adk1687
crossref_primary_10_1093_bib_bbae495
crossref_primary_10_1021_acs_iecr_4c04636
crossref_primary_10_1016_j_compbiomed_2025_109842
crossref_primary_10_3390_molecules29194626
crossref_primary_10_1021_acs_jcim_4c00975
crossref_primary_10_1021_jacs_3c11067
crossref_primary_10_1002_adhm_202402744
crossref_primary_10_1002_pro_4743
crossref_primary_10_1002_pro_4985
crossref_primary_10_1103_PRXLife_2_040001
crossref_primary_10_1038_s42256_024_00843_5
crossref_primary_10_1038_s41587_024_02466_y
crossref_primary_10_1039_D4NP00003J
crossref_primary_10_1021_acsphyschemau_4c00004
crossref_primary_10_1002_ange_202411461
crossref_primary_10_1038_s41467_024_48837_6
crossref_primary_10_1038_s41597_024_03403_z
crossref_primary_10_7498_aps_73_20231618
crossref_primary_10_1039_D4MD00869C
crossref_primary_10_1021_acscentsci_3c01488
crossref_primary_10_1016_j_mib_2024_102575
crossref_primary_10_1038_s41467_024_48000_1
crossref_primary_10_1039_D4FD00153B
crossref_primary_10_1038_d41586_024_03214_7
crossref_primary_10_1038_s41580_024_00718_y
crossref_primary_10_1016_j_cmpb_2025_108687
crossref_primary_10_1016_j_csbj_2024_09_010
crossref_primary_10_1016_j_neucom_2024_128103
crossref_primary_10_1089_mab_2025_0001
crossref_primary_10_1002_aocs_12934
crossref_primary_10_1016_j_cels_2024_11_006
crossref_primary_10_1016_j_chembiol_2024_06_001
crossref_primary_10_1016_j_eng_2025_01_002
crossref_primary_10_1021_acs_jctc_4c00315
crossref_primary_10_1016_j_drudis_2025_104300
crossref_primary_10_1152_physiol_00029_2024
crossref_primary_10_1038_s41586_025_08598_8
crossref_primary_10_1021_acs_jcim_4c00711
crossref_primary_10_1126_science_adl2528
crossref_primary_10_1038_s41467_024_49204_1
crossref_primary_10_2174_0115748936285690240101041704
crossref_primary_10_1016_j_csbj_2025_02_014
crossref_primary_10_1038_s41551_025_01365_0
crossref_primary_10_1021_jacs_4c16633
crossref_primary_10_1007_s11705_024_2500_7
crossref_primary_10_1002_pro_4958
crossref_primary_10_1093_bib_bbae307
crossref_primary_10_1016_j_tim_2024_11_001
crossref_primary_10_1002_smtd_202401455
crossref_primary_10_1002_smll_202402980
crossref_primary_10_1038_s41587_024_02133_2
crossref_primary_10_1093_bib_bbae338
crossref_primary_10_1038_s41421_024_00728_2
crossref_primary_10_1016_j_device_2024_100401
crossref_primary_10_1038_s41587_023_02115_w
crossref_primary_10_1016_j_tips_2024_07_007
crossref_primary_10_1038_s41467_025_57148_3
crossref_primary_10_1073_pnas_2409257121
crossref_primary_10_1016_j_ijbiomac_2024_131840
crossref_primary_10_1016_j_cell_2023_12_028
crossref_primary_10_3390_ijms25031798
crossref_primary_10_1021_acs_jcim_4c00928
crossref_primary_10_1021_acssynbio_4c00707
crossref_primary_10_3390_molecules30051047
crossref_primary_10_1016_j_copbio_2024_103143
crossref_primary_10_1002_ange_202318365
crossref_primary_10_1016_j_csbj_2025_02_032
crossref_primary_10_1002_pro_4936
crossref_primary_10_1093_bib_bbad358
crossref_primary_10_1042_BST20231347
crossref_primary_10_1021_acscatal_3c03417
crossref_primary_10_1038_s42256_024_00920_9
Cites_doi 10.1073/pnas.2016093117
10.1038/s41467-022-32007-7
10.1146/annurev.biophys.29.1.105
10.1126/science.abj8754
10.1016/j.cell.2020.10.043
10.1038/nature23912
10.1146/annurev.physchem.48.1.545
10.1038/nbt.3907
10.1126/science.add2187
10.1038/s41586-021-03365-x
10.1038/s41586-023-05696-3
10.1126/science.274.5289.948
10.1126/science.abc0881
10.1038/s41589-020-00699-x
10.1038/s41586-021-04184-w
10.1126/science.ade2574
10.1038/nrc991
10.1038/nature25157
10.1126/science.1089427
10.1038/nbt1166
10.1016/j.cbpa.2020.02.002
10.1371/journal.pone.0265020
10.1038/s41586-022-04654-9
10.1093/nar/gkx1012
10.1016/B978-0-12-381270-4.00019-6
10.1128/AAC.01802-15
10.1126/science.add1964
10.1073/pnas.2005412117
10.1126/science.abn2100
10.1016/j.cell.2019.01.046
10.1073/pnas.0906852107
10.1038/s41586-021-03819-2
10.1126/science.aay5051
10.1126/scitranslmed.abn1252
10.1093/nar/28.1.235
10.1021/cr030191z
10.1101/2022.12.01.518682
10.1021/ic9001237
10.1101/2021.10.11.463937
10.1101/2022.09.09.507333
10.48550/arXiv.2209.15611
10.1101/2022.07.13.499967
10.1101/2022.07.10.499510
10.1101/2023.02.24.529906
10.48550/arXiv.2205.15019
10.1038/s41467-023-38328-5
10.1101/2022.12.10.519862
10.1101/2022.07.21.500999
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
Copyright Nature Publishing Group Aug 31, 2023
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: Copyright Nature Publishing Group Aug 31, 2023
CorporateAuthor Univ. of Washington, Seattle, WA (United States)
CorporateAuthor_xml – name: Univ. of Washington, Seattle, WA (United States)
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
OTOTI
5PM
DOI 10.1038/s41586-023-06415-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
Biological Science Collection
ProQuest eLibrary (NC LIVE)
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef

Agricultural Science Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 1100
ExternalDocumentID PMC10468394
2420884
37433327
10_1038_s41586_023_06415_8
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM008268
– fundername: NIGMS NIH HHS
  grantid: T32 GM007250
– fundername: NIA NIH HHS
  grantid: U19 AG065156
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
C6C
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
K6-
KB.
KOO
L6V
L7B
LGEZI
LK5
LK8
LOTEE
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NADUK
NAPCQ
NEPJS
NXXTH
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYOK
ABAWZ
ABDBF
ABDPE
ABEFU
ABMOR
ABNNU
ABTAH
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
CGR
CUY
CVF
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
I-F
ITC
J5H
L-9
MVM
N4W
NEJ
NPM
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
TUS
UAO
UBY
UHB
USG
VOH
X7L
XOL
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZKG
ZY4
~8M
~G0
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
88A
8FD
8FK
AFKWF
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SOI
7X8
AADEA
AAEXX
ABEEJ
ABVXF
ADFPY
ADZGE
AFRQD
AGEZK
B-7
OTOTI
5PM
ID FETCH-LOGICAL-c502t-240544e593f1de5a4d2cb1bed2b11bb00e259896dc0f8fe784fd6d527354694e3
IEDL.DBID C6C
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:36:08 EDT 2025
Mon Aug 12 05:47:36 EDT 2024
Fri Jul 11 03:08:46 EDT 2025
Sat Aug 23 12:52:37 EDT 2025
Thu Apr 03 06:57:06 EDT 2025
Thu Apr 24 23:11:27 EDT 2025
Tue Jul 01 02:58:42 EDT 2025
Fri Feb 21 02:39:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7976
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-240544e593f1de5a4d2cb1bed2b11bb00e259896dc0f8fe784fd6d527354694e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0018940
USDOE Office of Science (SC)
ORCID 0000-0001-8590-1454
0000-0002-7557-7985
0000-0002-3292-5070
0000-0003-3414-9404
0000-0003-0575-7400
0000-0001-8417-3205
0000-0002-2501-7875
0000-0003-2774-2744
0000-0003-4297-7824
0000-0003-0539-7011
0000-0002-2199-0379
0000-0001-7896-6217
0000000225017875
0000000221990379
0000000305757400
0000000185901454
0000000327742744
0000000334149404
0000000342977824
0000000232925070
0000000305397011
0000000275577985
0000000184173205
0000000178966217
OpenAccessLink https://www.nature.com/articles/s41586-023-06415-8
PMID 37433327
PQID 2861894167
PQPubID 40569
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10468394
osti_scitechconnect_2420884
proquest_miscellaneous_2836293375
proquest_journals_2861894167
pubmed_primary_37433327
crossref_citationtrail_10_1038_s41586_023_06415_8
crossref_primary_10_1038_s41586_023_06415_8
springer_journals_10_1038_s41586_023_06415_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-31
PublicationDateYYYYMMDD 2023-08-31
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-31
  day: 31
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Yeh (CR56) 2023; 614
Butterfield (CR35) 2017; 552
Basanta (CR32) 2020; 117
Leaver-Fay (CR58) 2011; 487
Wicky (CR7) 2022; 378
CR37
CR31
Sesterhenn (CR38) 2020; 368
Singer (CR3) 2022; 17
Cao (CR12) 2022; 605
Jumper (CR17) 2021; 596
Chène (CR41) 2003; 3
Boyoglu-Barnum (CR47) 2021; 592
Goodsell, Olson (CR36) 2000; 29
Kussie (CR42) 1996; 274
Marcandalli (CR34) 2019; 176
CR5
CR8
CR9
Pan (CR33) 2020; 369
Silverman (CR44) 2005; 23
CR49
Walls (CR48) 2020; 183
Ribeiro (CR57) 2018; 46
Salgado (CR50) 2010; 107
Anishchenko (CR6) 2021; 600
Yang (CR39) 2021; 17
Dauparas (CR1) 2022; 378
Baek (CR18) 2021; 373
Glasgow (CR40) 2020; 117
CR19
CR16
CR15
CR14
Kuhlman (CR13) 2003; 302
CR11
Quijano-Rubio, Ulge, Walkey, Silva (CR51) 2020; 56
CR55
CR10
CR54
CR53
Berman (CR22) 2000; 28
CR29
Detalle (CR45) 2016; 60
CR28
Chevalier (CR52) 2017; 550
CR27
CR26
CR25
Onuchic, Luthey-Schulten, Wolynes (CR30) 1997; 48
Wang (CR4) 2022; 377
CR24
CR23
CR20
Lin (CR21) 2023; 379
Hunt (CR43) 2022; 14
Ferruz, Schmidt, Höcker (CR2) 2022; 13
Strauch (CR46) 2017; 35
N Ferruz (6415_CR2) 2022; 13
6415_CR10
6415_CR54
6415_CR53
6415_CR11
6415_CR55
6415_CR14
GL Butterfield (6415_CR35) 2017; 552
E-M Strauch (6415_CR46) 2017; 35
BIM Wicky (6415_CR7) 2022; 378
L Cao (6415_CR12) 2022; 605
J Dauparas (6415_CR1) 2022; 378
HM Berman (6415_CR22) 2000; 28
6415_CR16
6415_CR15
B Basanta (6415_CR32) 2020; 117
I Anishchenko (6415_CR6) 2021; 600
AC Hunt (6415_CR43) 2022; 14
6415_CR19
A Leaver-Fay (6415_CR58) 2011; 487
6415_CR20
L Detalle (6415_CR45) 2016; 60
6415_CR23
P Chène (6415_CR41) 2003; 3
6415_CR25
6415_CR24
JN Onuchic (6415_CR30) 1997; 48
F Sesterhenn (6415_CR38) 2020; 368
B Kuhlman (6415_CR13) 2003; 302
A Quijano-Rubio (6415_CR51) 2020; 56
AH-W Yeh (6415_CR56) 2023; 614
A Glasgow (6415_CR40) 2020; 117
6415_CR5
6415_CR8
6415_CR9
DS Goodsell (6415_CR36) 2000; 29
6415_CR27
6415_CR26
J Silverman (6415_CR44) 2005; 23
6415_CR29
EN Salgado (6415_CR50) 2010; 107
6415_CR28
C Yang (6415_CR39) 2021; 17
A Chevalier (6415_CR52) 2017; 550
6415_CR31
AC Walls (6415_CR48) 2020; 183
Z Lin (6415_CR21) 2023; 379
M Baek (6415_CR18) 2021; 373
6415_CR37
JM Singer (6415_CR3) 2022; 17
PH Kussie (6415_CR42) 1996; 274
AJM Ribeiro (6415_CR57) 2018; 46
X Pan (6415_CR33) 2020; 369
S Boyoglu-Barnum (6415_CR47) 2021; 592
J Jumper (6415_CR17) 2021; 596
J Marcandalli (6415_CR34) 2019; 176
6415_CR49
J Wang (6415_CR4) 2022; 377
References_xml – volume: 117
  start-page: 28046
  year: 2020
  end-page: 28055
  ident: CR40
  article-title: Engineered ACE2 receptor traps potently neutralize SARS-CoV-2
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2016093117
– ident: CR49
– volume: 13
  year: 2022
  ident: CR2
  article-title: ProtGPT2 is a deep unsupervised language model for protein design
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32007-7
– ident: CR16
– volume: 29
  start-page: 105
  year: 2000
  end-page: 153
  ident: CR36
  article-title: Structural symmetry and protein function
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.29.1.105
– volume: 373
  start-page: 871
  year: 2021
  end-page: 876
  ident: CR18
  article-title: Accurate prediction of protein structures and interactions using a three-track neural network
  publication-title: Science
  doi: 10.1126/science.abj8754
– volume: 183
  start-page: 1367
  year: 2020
  end-page: 1382.e17
  ident: CR48
  article-title: Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.043
– volume: 550
  start-page: 74
  year: 2017
  end-page: 79
  ident: CR52
  article-title: Massively parallel de novo protein design for targeted therapeutics
  publication-title: Nature
  doi: 10.1038/nature23912
– volume: 48
  start-page: 545
  year: 1997
  end-page: 600
  ident: CR30
  article-title: Theory of protein folding: the energy landscape perspective
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.48.1.545
– ident: CR29
– volume: 35
  start-page: 667
  year: 2017
  end-page: 671
  ident: CR46
  article-title: Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3907
– ident: CR54
– volume: 378
  start-page: 49
  year: 2022
  end-page: 56
  ident: CR1
  article-title: Robust deep learning-based protein sequence design using ProteinMPNN
  publication-title: Science
  doi: 10.1126/science.add2187
– ident: CR8
– ident: CR25
– volume: 592
  start-page: 623
  year: 2021
  end-page: 628
  ident: CR47
  article-title: Quadrivalent influenza nanoparticle vaccines induce broad protection
  publication-title: Nature
  doi: 10.1038/s41586-021-03365-x
– volume: 614
  start-page: 774
  year: 2023
  end-page: 780
  ident: CR56
  article-title: De novo design of luciferases using deep learning
  publication-title: Nature
  doi: 10.1038/s41586-023-05696-3
– volume: 274
  start-page: 948
  year: 1996
  end-page: 953
  ident: CR42
  article-title: Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain
  publication-title: Science
  doi: 10.1126/science.274.5289.948
– volume: 369
  start-page: 1132
  year: 2020
  end-page: 1136
  ident: CR33
  article-title: Expanding the space of protein geometries by computational design of de novo fold families
  publication-title: Science
  doi: 10.1126/science.abc0881
– ident: CR19
– volume: 17
  start-page: 492
  year: 2021
  end-page: 500
  ident: CR39
  article-title: Bottom-up de novo design of functional proteins with complex structural features
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-00699-x
– ident: CR15
– ident: CR11
– ident: CR9
– ident: CR5
– ident: CR26
– volume: 600
  start-page: 547
  year: 2021
  end-page: 552
  ident: CR6
  article-title: De novo protein design by deep network hallucination
  publication-title: Nature
  doi: 10.1038/s41586-021-04184-w
– volume: 379
  start-page: 1123
  year: 2023
  end-page: 1130
  ident: CR21
  article-title: Language models of protein sequences at the scale of evolution enable accurate structure prediction
  publication-title: Science
  doi: 10.1126/science.ade2574
– volume: 3
  start-page: 102
  year: 2003
  end-page: 109
  ident: CR41
  article-title: Inhibiting the p53-MDM2 interaction: an important target for cancer therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc991
– volume: 552
  start-page: 415
  year: 2017
  end-page: 420
  ident: CR35
  article-title: Evolution of a designed protein assembly encapsulating its own RNA genome
  publication-title: Nature
  doi: 10.1038/nature25157
– volume: 302
  start-page: 1364
  year: 2003
  end-page: 1368
  ident: CR13
  article-title: Design of a novel globular protein fold with atomic-level accuracy
  publication-title: Science
  doi: 10.1126/science.1089427
– ident: CR14
– volume: 23
  start-page: 1556
  year: 2005
  end-page: 1561
  ident: CR44
  article-title: Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1166
– volume: 56
  start-page: 119
  year: 2020
  end-page: 128
  ident: CR51
  article-title: The advent of de novo proteins for cancer immunotherapy
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2020.02.002
– ident: CR37
– ident: CR53
– volume: 17
  start-page: e0265020
  year: 2022
  ident: CR3
  article-title: Large-scale design and refinement of stable proteins using sequence-only models
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0265020
– ident: CR10
– volume: 605
  start-page: 551
  year: 2022
  end-page: 560
  ident: CR12
  article-title: Design of protein-binding proteins from the target structure alone
  publication-title: Nature
  doi: 10.1038/s41586-022-04654-9
– volume: 46
  start-page: D618
  year: 2018
  end-page: D623
  ident: CR57
  article-title: Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1012
– volume: 487
  start-page: 545
  year: 2011
  end-page: 574
  ident: CR58
  article-title: ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules
  publication-title: Methods Enzymol.
  doi: 10.1016/B978-0-12-381270-4.00019-6
– ident: CR27
– volume: 60
  start-page: 6
  year: 2016
  end-page: 13
  ident: CR45
  article-title: Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01802-15
– ident: CR23
– volume: 378
  start-page: 56
  year: 2022
  end-page: 61
  ident: CR7
  article-title: Hallucinating symmetric protein assemblies
  publication-title: Science
  doi: 10.1126/science.add1964
– volume: 117
  start-page: 22135
  year: 2020
  end-page: 22145
  ident: CR32
  article-title: An enumerative algorithm for de novo design of proteins with diverse pocket structures
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2005412117
– volume: 377
  start-page: 387
  year: 2022
  end-page: 394
  ident: CR4
  article-title: Scaffolding protein functional sites using deep learning
  publication-title: Science
  doi: 10.1126/science.abn2100
– volume: 176
  start-page: 1420
  year: 2019
  end-page: 1431.e17
  ident: CR34
  article-title: Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.046
– volume: 107
  start-page: 1827
  year: 2010
  end-page: 1832
  ident: CR50
  article-title: Metal templated design of protein interfaces
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0906852107
– ident: CR31
– volume: 596
  start-page: 583
  year: 2021
  end-page: 589
  ident: CR17
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 368
  start-page: eaay5051
  year: 2020
  ident: CR38
  article-title: De novo protein design enables the precise induction of RSV-neutralizing antibodies
  publication-title: Science
  doi: 10.1126/science.aay5051
– volume: 14
  start-page: eabn1252
  year: 2022
  ident: CR43
  article-title: Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abn1252
– volume: 28
  start-page: 235
  year: 2000
  end-page: 242
  ident: CR22
  article-title: The Protein Data Bank
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.235
– ident: CR55
– ident: CR28
– ident: CR24
– ident: CR20
– ident: 6415_CR19
  doi: 10.1126/science.abn2100
– ident: 6415_CR37
  doi: 10.1021/cr030191z
– volume: 107
  start-page: 1827
  year: 2010
  ident: 6415_CR50
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0906852107
– ident: 6415_CR28
  doi: 10.1101/2022.12.01.518682
– ident: 6415_CR49
  doi: 10.1021/ic9001237
– ident: 6415_CR31
  doi: 10.1101/2021.10.11.463937
– ident: 6415_CR55
  doi: 10.1101/2022.09.09.507333
– volume: 117
  start-page: 28046
  year: 2020
  ident: 6415_CR40
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2016093117
– volume: 614
  start-page: 774
  year: 2023
  ident: 6415_CR56
  publication-title: Nature
  doi: 10.1038/s41586-023-05696-3
– volume: 35
  start-page: 667
  year: 2017
  ident: 6415_CR46
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3907
– volume: 487
  start-page: 545
  year: 2011
  ident: 6415_CR58
  publication-title: Methods Enzymol.
  doi: 10.1016/B978-0-12-381270-4.00019-6
– volume: 378
  start-page: 49
  year: 2022
  ident: 6415_CR1
  publication-title: Science
  doi: 10.1126/science.add2187
– volume: 379
  start-page: 1123
  year: 2023
  ident: 6415_CR21
  publication-title: Science
  doi: 10.1126/science.ade2574
– ident: 6415_CR25
– ident: 6415_CR16
  doi: 10.48550/arXiv.2209.15611
– volume: 369
  start-page: 1132
  year: 2020
  ident: 6415_CR33
  publication-title: Science
  doi: 10.1126/science.abc0881
– ident: 6415_CR14
– ident: 6415_CR10
– ident: 6415_CR29
  doi: 10.1101/2022.07.13.499967
– volume: 176
  start-page: 1420
  year: 2019
  ident: 6415_CR34
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.046
– volume: 596
  start-page: 583
  year: 2021
  ident: 6415_CR17
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 14
  start-page: eabn1252
  year: 2022
  ident: 6415_CR43
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abn1252
– ident: 6415_CR9
  doi: 10.1101/2022.07.10.499510
– ident: 6415_CR53
  doi: 10.1101/2023.02.24.529906
– ident: 6415_CR24
– volume: 3
  start-page: 102
  year: 2003
  ident: 6415_CR41
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc991
– ident: 6415_CR8
  doi: 10.48550/arXiv.2205.15019
– volume: 17
  start-page: 492
  year: 2021
  ident: 6415_CR39
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-00699-x
– volume: 46
  start-page: D618
  year: 2018
  ident: 6415_CR57
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1012
– ident: 6415_CR5
– ident: 6415_CR15
– volume: 28
  start-page: 235
  year: 2000
  ident: 6415_CR22
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.235
– volume: 377
  start-page: 387
  year: 2022
  ident: 6415_CR4
  publication-title: Science
  doi: 10.1126/science.abn2100
– volume: 56
  start-page: 119
  year: 2020
  ident: 6415_CR51
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2020.02.002
– volume: 552
  start-page: 415
  year: 2017
  ident: 6415_CR35
  publication-title: Nature
  doi: 10.1038/nature25157
– ident: 6415_CR11
– volume: 592
  start-page: 623
  year: 2021
  ident: 6415_CR47
  publication-title: Nature
  doi: 10.1038/s41586-021-03365-x
– ident: 6415_CR26
  doi: 10.1038/s41467-023-38328-5
– volume: 23
  start-page: 1556
  year: 2005
  ident: 6415_CR44
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1166
– ident: 6415_CR27
– volume: 368
  start-page: eaay5051
  year: 2020
  ident: 6415_CR38
  publication-title: Science
  doi: 10.1126/science.aay5051
– volume: 274
  start-page: 948
  year: 1996
  ident: 6415_CR42
  publication-title: Science
  doi: 10.1126/science.274.5289.948
– volume: 183
  start-page: 1367
  year: 2020
  ident: 6415_CR48
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.043
– volume: 60
  start-page: 6
  year: 2016
  ident: 6415_CR45
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01802-15
– volume: 600
  start-page: 547
  year: 2021
  ident: 6415_CR6
  publication-title: Nature
  doi: 10.1038/s41586-021-04184-w
– volume: 550
  start-page: 74
  year: 2017
  ident: 6415_CR52
  publication-title: Nature
  doi: 10.1038/nature23912
– ident: 6415_CR23
– volume: 117
  start-page: 22135
  year: 2020
  ident: 6415_CR32
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2005412117
– ident: 6415_CR54
  doi: 10.1101/2022.12.10.519862
– volume: 605
  start-page: 551
  year: 2022
  ident: 6415_CR12
  publication-title: Nature
  doi: 10.1038/s41586-022-04654-9
– volume: 17
  start-page: e0265020
  year: 2022
  ident: 6415_CR3
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0265020
– volume: 302
  start-page: 1364
  year: 2003
  ident: 6415_CR13
  publication-title: Science
  doi: 10.1126/science.1089427
– volume: 29
  start-page: 105
  year: 2000
  ident: 6415_CR36
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.29.1.105
– volume: 373
  start-page: 871
  year: 2021
  ident: 6415_CR18
  publication-title: Science
  doi: 10.1126/science.abj8754
– volume: 48
  start-page: 545
  year: 1997
  ident: 6415_CR30
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.48.1.545
– volume: 13
  year: 2022
  ident: 6415_CR2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32007-7
– ident: 6415_CR20
  doi: 10.1101/2022.07.21.500999
– volume: 378
  start-page: 56
  year: 2022
  ident: 6415_CR7
  publication-title: Science
  doi: 10.1126/science.add1964
SSID ssj0005174
Score 2.759278
Snippet There has been considerable recent progress in designing new proteins using deep-learning methods 1 – 9 . Despite this progress, a general deep-learning...
There has been considerable recent progress in designing new proteins using deep-learning methods 1–9 . Despite this progress, a general deep-learning...
There has been considerable recent progress in designing new proteins using deep-learning methods . Despite this progress, a general deep-learning framework...
There has been considerable recent progress in designing new proteins using deep-learning methods. Despite this progress, a general deep-learning framework for...
There has been considerable recent progress in designing new proteins using deep-learning methods1-9. Despite this progress, a general deep-learning framework...
Abstract There has been considerable recent progress in designing new proteins using deep-learning methods1–9. Despite this progress, a general deep-learning...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1089
SubjectTerms 101/28
631/114/1305
631/114/469
631/45/612
82
82/83
Amino acid sequence
Binders
Catalytic Domain
Complexity
Cryoelectron Microscopy
Deep Learning
Design
Design specifications
Diffusion models
Electron microscopy
Hemagglutinin Glycoproteins, Influenza Virus - chemistry
Hemagglutinin Glycoproteins, Influenza Virus - metabolism
Hemagglutinin Glycoproteins, Influenza Virus - ultrastructure
Hemagglutinins
Humanities and Social Sciences
Modelling
multidisciplinary
Protein Binding
Protein structure
Proteins
Proteins - chemistry
Proteins - metabolism
Proteins - ultrastructure
Scaffolding
Science
Science & Technology - Other Topics
Science (multidisciplinary)
Structure-function relationships
Success
Topology
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SDYVeSpP0sU1SFMihpTWx9bDlUwltN6GHHkoDuQlZkmkg2Gm9m9-fGVm7y6ZpbgZLWNbMeEYzn78BOA4lHqtqV2VNKEUmvaoyK1yRtcGjdwlFE5qI8v1Rnl_I75fqMiXchgSrXH4T44fa945y5Cdcl4WuMXyoPt_8yahrFFVXUwuNJ7BdoKchSJeena0hHvdYmNNPM7nQJwM6Lk3wW-ptgNeZ3nBMkx4N7KGg81_s5L0CavRLsxfwPAWU7HTUgB3YCt0uPI3ATjfswk4y3oG9TwzTH_bg9GtgXX_bMx_xG6xvWeRruOrYyCe7-BuY7Twjr0eSY5SuZT9n1E5lQfm1l3Ax-_bry3mWeilkTuV8TkUUJWVQtWgLH5SVnrsGJeF5UxQN2l7Ac5CuS-_yVreh0rL1pSd2NoUHaBnEK5h0fRfeAPMl5x7DnCa3eDrLlXW5k4E7662vrZNTKJYbaVwiGqd-F9cmFryFNuPmG9x8Ezff6Cl8XM25GWk2Hh29T_IxGCQQ060jSJCbG05QAY3PP1iKzSSDHMxafaZwtLqNpkT1EduFfkFj0JvXQlRqCq9HKa8WIzDSEoLjbL0h_9UAounevNNd_Y503VRFxzAU1_VpqSrrdf3_Jd8-_hr78IxH7aX09gFMUDvCIcZH8-ZdNII73_YKdg
  priority: 102
  providerName: ProQuest
Title De novo design of protein structure and function with RFdiffusion
URI https://link.springer.com/article/10.1038/s41586-023-06415-8
https://www.ncbi.nlm.nih.gov/pubmed/37433327
https://www.proquest.com/docview/2861894167
https://www.proquest.com/docview/2836293375
https://www.osti.gov/biblio/2420884
https://pubmed.ncbi.nlm.nih.gov/PMC10468394
Volume 620
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SDYVeSpO-tkkWFXpoaU1tPWz5mGyyCT2EEhrYm5AlmQSKXdhNfn9mZHvD5gW5GINlW57ReGY0nz4BfA05plWlK5Iq5CKRXhWJFS5L6uDRu4SsClVE-Z7lpxfy91zNN4APa2EiaD9SWsbf9IAO-7VAR6MJLkt7EeB5ojdhi6jbKeGa5tM7WMc95uV-oUwq9CPPWHNGoxaN6rFA8yFe8l7RNPqi2Vt40weR7KDr9jZshGYHXkUwp1vswHZvsAv2rWeV_v4ODo4Ca9qblvmI2WBtzSJHw1XDOg5ZFAazjWfk6UhbjKZo2fmMtlC5pjm193AxO_47PU36_RMSp1K-pMKJkjKoUtSZD8pKz12F0ve8yrIK7S1g7qPL3Lu01nUotKx97omRTWHSLIP4AKOmbcInYD7n3GNoU6UWM7JUWZc6Gbiz3vrSOjmGbBCkcT25OO1x8c_EIrfQphO-QeGbKHyjx_Bjdc__jlrj2da7pB-DgQGx2zqCAbml4QQP0Pj-vUFtpjfCheE6z3SJEWcxhi-ry2g-VBOxTWivqQ168FKIQo3hY6flVWcERldCcLxbr-l_1YCoudevNFeXkaKbKucYemK_fg5D5a5fT3_k55c134XXPI5mmuLegxGOlrCPMdKymsBmMS_wqKcZHWcnE9g6PD77cz6J5nILDUwMZA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLfGIQQviI1_xwYECSQQVGuTtE0fEJoYx42NPaBN2ltIk1RMQu2gdyC-FJ8RO23vdAP2trdKTdrEdmI7dn4GeOozdKsKm0elz0QkXZpHRtgkqrxD7eKT0pchy_cwmx7LDyfpyRr8Hu7CUFrlsCeGjdo1ls7It7nKElWg-ZC_OfsWUdUoiq4OJTQ6sdj3v36iy9a-3ttF_j7jfPLu6O006qsKRDaN-YzCCamUPi1ElTifGum4LXFMjpdJUqIUevQIVJE5G1eq8rmSlcsc4ZSl6EpKL_C7V-CqFKjJ6Wb65P0ypeQc6nN_SScWartFRako3ZdqKeBzpFYU4ajBBf0vI_fvXM1zAdugBye34GZvwLKdTuLWYc3XG3AtJJLadgPW-82iZc97ROsXt2Fn17O6-dEwF_JFWFOxgA9xWrMOv3b-3TNTO0ZaliSF0fEw-zSh8i1zOs-7A8eXQuW7MKqb2t8H5jLOHZpVZWzQG4xTY2MrPbfGGVcYK8eQDITUtgc2p_oaX3UIsAulO-JrJL4OxNdqDC8Xfc46WI8LW28SfzQaJYSsaykFyc40p9QEhf_fGtim-w2g1UtxHcOTxWtcuhSPMbVv5tQGrYdCiDwdw72Oy4vBCLTshODYW63wf9GAYMFX39SnXwI8OEXt0ezFcb0aRGU5rv9P8sHF03gM16dHHw_0wd7h_ibc4EGS6Wh9C0YoKf4h2maz8lFYEAw-X_YK_APLPkcg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRSAuiJbX0gJGAgkE0SZ2nDgHhKouq5aiCiEq9eY6tiMqoaSQXRB_jV_HjJNs2QK99bZSnKwzD3vG8-UbgKc-w7SqsHlU-kxEqZN5ZIRNoso73F18UvoyoHwPst3D9N2RPFqDX8O3MASrHNbEsFC7xtIZ-YSrLFEFhg_5pOphER-mszenXyPqIEWV1qGdRmci-_7nD0zf2td7U9T1M85nbz_t7EZ9h4HIypjPqbQg09TLQlSJ89KkjtsS5-d4mSQlWqTH7EAVmbNxpSqfq7RymSPOMolpZeoFPvcKXM1FrsjH1M4f8JJzDND9BzuxUJMWN01F0F_qq4C_I7WyKY4adO5_Bbx_4zbPFW_Dnji7BTf7YJZtd9a3Dmu-3oBrAVRq2w1Y7xeOlj3v2a1f3IbtqWd1871hLmBHWFOxwBVxUrOOy3bxzTNTO0Y7LlkNo6Ni9nFGrVwWdLZ3Bw4vRcp3YVQ3tb8PzGWcOwyxythgZhhLY2Obem6NM64wNh1DMghS257knHptfNGh2C6U7oSvUfg6CF-rMbxc3nPaUXxcOHqT9KMxQCGWXUtwJDvXnGAKCv9_a1Cb7heDVp-Z7hieLC-jG1NtxtS-WdAYjCQKIXI5hnudlpeTERjlCcHxbrWi_-UAoghfvVKffA5U4VTBxxAY5_VqMJWzef3_JR9c_BqP4Tr6nn6_d7C_CTd4MGQ6Zd-CERqKf4hh2rx8FPyBwfFlO-Bv1rtLIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+novo+design+of+protein+structure+and+function+with+RFdiffusion&rft.jtitle=Nature+%28London%29&rft.au=Watson%2C+Joseph+L&rft.au=Juergens%2C+David&rft.au=Bennett%2C+Nathaniel+R&rft.au=Trippe%2C+Brian+L&rft.date=2023-08-31&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=620&rft.issue=7976&rft.spage=1089&rft_id=info:doi/10.1038%2Fs41586-023-06415-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon