De novo design of protein structure and function with RFdiffusion
There has been considerable recent progress in designing new proteins using deep-learning methods 1 – 9 . Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order...
Saved in:
Published in | Nature (London) Vol. 620; no. 7976; pp. 1089 - 1100 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
31.08.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There has been considerable recent progress in designing new proteins using deep-learning methods
1
–
9
. Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models
10
,
11
have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence–structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.
Fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks yields a generative model for protein design that achieves outstanding performance on a wide range of protein structure and function design challenges. |
---|---|
AbstractList | There has been considerable recent progress in designing new proteins using deep-learning methods
1
–
9
. Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models
10
,
11
have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence–structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.
Fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks yields a generative model for protein design that achieves outstanding performance on a wide range of protein structure and function design challenges. There has been considerable recent progress in designing new proteins using deep-learning methods . Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence-structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications. There has been considerable recent progress in designing new proteins using deep-learning methods 1–9 . Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models 10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence–structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications. There has been considerable recent progress in designing new proteins using deep-learning methods. Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence-structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design ofdiverse functional proteins from simple molecular specifications. Abstract There has been considerable recent progress in designing new proteins using deep-learning methods1–9. Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models10,11have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence–structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications. There has been considerable recent progress in designing new proteins using deep-learning methods1-9. Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence-structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.There has been considerable recent progress in designing new proteins using deep-learning methods1-9. Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence-structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications. |
Author | Courbet, Alexis Ragotte, Robert J. Ovchinnikov, Sergey Venkatesh, Preetham Trippe, Brian L. Watson, Joseph L. Torres, Susana Vázquez Sheffler, William Sappington, Isaac De Bortoli, Valentin Baker, David Wang, Jue Borst, Andrew J. DiMaio, Frank Pellock, Samuel J. Jaakkola, Tommi S. Yim, Jason Mathieu, Emile Baek, Minkyung Lauko, Anna Eisenach, Helen E. Bennett, Nathaniel R. Milles, Lukas F. Juergens, David Wicky, Basile I. M. Ahern, Woody Barzilay, Regina Hanikel, Nikita |
Author_xml | – sequence: 1 givenname: Joseph L. surname: Watson fullname: Watson, Joseph L. organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington – sequence: 2 givenname: David surname: Juergens fullname: Juergens, David organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Graduate Program in Molecular Engineering, University of Washington – sequence: 3 givenname: Nathaniel R. orcidid: 0000-0001-8590-1454 surname: Bennett fullname: Bennett, Nathaniel R. organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Graduate Program in Molecular Engineering, University of Washington – sequence: 4 givenname: Brian L. surname: Trippe fullname: Trippe, Brian L. organization: Institute for Protein Design, University of Washington, Columbia University, Department of Statistics, Irving Institute for Cancer Dynamics, Columbia University – sequence: 5 givenname: Jason orcidid: 0000-0003-0575-7400 surname: Yim fullname: Yim, Jason organization: Institute for Protein Design, University of Washington, Massachusetts Institute of Technology – sequence: 6 givenname: Helen E. surname: Eisenach fullname: Eisenach, Helen E. organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington – sequence: 7 givenname: Woody surname: Ahern fullname: Ahern, Woody organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Paul G. Allen School of Computer Science and Engineering, University of Washington – sequence: 8 givenname: Andrew J. orcidid: 0000-0003-4297-7824 surname: Borst fullname: Borst, Andrew J. organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington – sequence: 9 givenname: Robert J. surname: Ragotte fullname: Ragotte, Robert J. organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington – sequence: 10 givenname: Lukas F. orcidid: 0000-0001-8417-3205 surname: Milles fullname: Milles, Lukas F. organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington – sequence: 11 givenname: Basile I. M. orcidid: 0000-0002-2501-7875 surname: Wicky fullname: Wicky, Basile I. M. organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington – sequence: 12 givenname: Nikita orcidid: 0000-0002-3292-5070 surname: Hanikel fullname: Hanikel, Nikita organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington – sequence: 13 givenname: Samuel J. orcidid: 0000-0002-7557-7985 surname: Pellock fullname: Pellock, Samuel J. organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington – sequence: 14 givenname: Alexis orcidid: 0000-0003-0539-7011 surname: Courbet fullname: Courbet, Alexis organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, National Centre for Scientific Research, École Normale Supérieure rue d’Ulm – sequence: 15 givenname: William surname: Sheffler fullname: Sheffler, William organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington – sequence: 16 givenname: Jue surname: Wang fullname: Wang, Jue organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington – sequence: 17 givenname: Preetham surname: Venkatesh fullname: Venkatesh, Preetham organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Graduate Program in Biological Physics, Structure and Design, University of Washington – sequence: 18 givenname: Isaac surname: Sappington fullname: Sappington, Isaac organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Graduate Program in Biological Physics, Structure and Design, University of Washington – sequence: 19 givenname: Susana Vázquez surname: Torres fullname: Torres, Susana Vázquez organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Graduate Program in Biological Physics, Structure and Design, University of Washington – sequence: 20 givenname: Anna surname: Lauko fullname: Lauko, Anna organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Graduate Program in Biological Physics, Structure and Design, University of Washington – sequence: 21 givenname: Valentin surname: De Bortoli fullname: De Bortoli, Valentin organization: National Centre for Scientific Research, École Normale Supérieure rue d’Ulm – sequence: 22 givenname: Emile surname: Mathieu fullname: Mathieu, Emile organization: Department of Engineering, University of Cambridge – sequence: 23 givenname: Sergey orcidid: 0000-0003-2774-2744 surname: Ovchinnikov fullname: Ovchinnikov, Sergey organization: Faculty of Applied Sciences, Harvard University, John Harvard Distinguished Science Fellowship, Harvard University – sequence: 24 givenname: Regina surname: Barzilay fullname: Barzilay, Regina organization: Massachusetts Institute of Technology – sequence: 25 givenname: Tommi S. orcidid: 0000-0002-2199-0379 surname: Jaakkola fullname: Jaakkola, Tommi S. organization: Massachusetts Institute of Technology – sequence: 26 givenname: Frank surname: DiMaio fullname: DiMaio, Frank organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington – sequence: 27 givenname: Minkyung orcidid: 0000-0003-3414-9404 surname: Baek fullname: Baek, Minkyung organization: School of Biological Sciences, Seoul National University – sequence: 28 givenname: David orcidid: 0000-0001-7896-6217 surname: Baker fullname: Baker, David email: dabaker@uw.edu organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Howard Hughes Medical Institute, University of Washington |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37433327$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2420884$$D View this record in Osti.gov |
BookMark | eNp9kU1vFSEYhYmpsbfVP-DCTHTTzVi-h1mZprZq0sSk0TWZgZd7aebCFZg2_nu5TutHF11B4Dkvh3OO0EGIARB6TfB7gpk6zZwIJVtMWYtl3bfqGVoR3smWS9UdoBXGVLVYMXmIjnK-wRgL0vEX6JB1nDFGuxU6-whNiLexsZD9OjTRNbsUC_jQ5JJmU-YEzRBs4-Zgio-hufNl01xfWu_cnOvBS_TcDVOGV_frMfp-efHt_HN79fXTl_Ozq9YITEtLORacg-iZIxbEwC01IxnB0pGQccQYqOhVL63BTjnoFHdWWkE7JrjsObBj9GGZu5vHLVgDoaRh0rvkt0P6qePg9f83wW_0Ot5qgmscrOd1wttlQszF62x8AbMxMQQwRVNOsVJ76OT-mRR_zJCL3vpsYJqGAHHOmtY4ac9YJyr67hF6E-cUagiVkkT1nMiuUm_-9f3H8EMHFVALYFLMOYHT1dmwz7p-w0_Vv97XrZe6da1b_65bqyqlj6QP058UsUWUKxzWkP7afkL1C5H6u70 |
CitedBy_id | crossref_primary_10_1002_advs_202406305 crossref_primary_10_1016_j_ymeth_2025_03_008 crossref_primary_10_1093_bib_bbae644 crossref_primary_10_3390_e26070556 crossref_primary_10_1016_j_it_2025_02_013 crossref_primary_10_1016_j_apsb_2024_01_009 crossref_primary_10_1021_acs_jctc_4c00927 crossref_primary_10_1021_acs_jpcb_4c01957 crossref_primary_10_1016_j_cogsc_2025_101010 crossref_primary_10_1016_j_biomaterials_2023_122464 crossref_primary_10_1016_j_cels_2023_10_008 crossref_primary_10_1016_j_cels_2023_10_006 crossref_primary_10_3390_molecules29245923 crossref_primary_10_1016_j_str_2024_08_018 crossref_primary_10_1002_2211_5463_13855 crossref_primary_10_1089_hs_2022_0109 crossref_primary_10_1371_journal_pcbi_1012144 crossref_primary_10_1038_s42256_024_00792_z crossref_primary_10_17537_2024_19_402 crossref_primary_10_1016_j_copbio_2025_103263 crossref_primary_10_1021_acscentsci_4c01428 crossref_primary_10_1093_nsr_nwad303 crossref_primary_10_3390_ph18020143 crossref_primary_10_1038_s41592_024_02437_w crossref_primary_10_1016_j_crstbi_2024_100131 crossref_primary_10_1080_17460441_2023_2250721 crossref_primary_10_1126_science_adu2454 crossref_primary_10_1002_ange_202422075 crossref_primary_10_1016_j_copbio_2024_103199 crossref_primary_10_1016_j_ijbiomac_2025_140803 crossref_primary_10_1093_nsr_nwad331 crossref_primary_10_3389_fbioe_2025_1537471 crossref_primary_10_1126_sciadv_adr3239 crossref_primary_10_1002_ijch_202400006 crossref_primary_10_34133_research_0413 crossref_primary_10_1016_j_biomaterials_2024_122946 crossref_primary_10_1002_advs_202407664 crossref_primary_10_1021_jacsau_4c00228 crossref_primary_10_1186_s13321_025_00965_x crossref_primary_10_1016_j_immuni_2024_01_015 crossref_primary_10_1016_j_xplc_2024_101195 crossref_primary_10_3390_molecules28237865 crossref_primary_10_1063_5_0194391 crossref_primary_10_1038_s41587_024_02469_9 crossref_primary_10_1126_science_adn3780 crossref_primary_10_1002_cbic_202400092 crossref_primary_10_1016_j_sbi_2025_103004 crossref_primary_10_1021_acssynbio_4c00624 crossref_primary_10_1126_sciadv_adl4000 crossref_primary_10_1021_acs_jpcb_3c04542 crossref_primary_10_59717_j_xinn_life_2024_100105 crossref_primary_10_1021_acscatal_3c02743 crossref_primary_10_1038_s41467_025_58227_1 crossref_primary_10_1038_s41594_025_01490_z crossref_primary_10_1038_s41467_024_45461_2 crossref_primary_10_3390_diagnostics14111100 crossref_primary_10_1093_protein_gzad023 crossref_primary_10_1016_j_drudis_2024_104272 crossref_primary_10_1016_j_sbi_2025_103018 crossref_primary_10_1016_j_chempr_2024_102407 crossref_primary_10_1093_bioinformatics_btad712 crossref_primary_10_1109_TKDE_2024_3361474 crossref_primary_10_1360_TB_2024_1178 crossref_primary_10_1007_s11426_024_2469_0 crossref_primary_10_1016_j_tips_2024_01_003 crossref_primary_10_1039_D4CC00183D crossref_primary_10_1016_j_cell_2024_12_029 crossref_primary_10_1021_acs_jcim_4c01641 crossref_primary_10_1093_protein_gzae002 crossref_primary_10_1103_PhysRevResearch_6_023006 crossref_primary_10_1089_genbio_2025_0004 crossref_primary_10_1021_acs_jctc_3c01395 crossref_primary_10_1038_s41592_024_02479_0 crossref_primary_10_1016_j_sbi_2025_103027 crossref_primary_10_1021_acsomega_3c09084 crossref_primary_10_1016_j_procbio_2025_01_013 crossref_primary_10_1016_j_medj_2024_07_026 crossref_primary_10_1016_j_str_2024_07_016 crossref_primary_10_1021_acscatal_3c02746 crossref_primary_10_1002_prot_26790 crossref_primary_10_1038_s42256_024_00838_2 crossref_primary_10_1016_j_cell_2024_05_025 crossref_primary_10_1021_acsbiomaterials_4c01986 crossref_primary_10_1038_s43586_024_00356_w crossref_primary_10_1002_adma_202404235 crossref_primary_10_1002_aaai_12210 crossref_primary_10_1080_08830185_2024_2374546 crossref_primary_10_1016_j_meegid_2024_105626 crossref_primary_10_1093_nsr_nwae343 crossref_primary_10_1021_acs_bioconjchem_4c00079 crossref_primary_10_1089_mab_2025_85611_ed crossref_primary_10_1371_journal_pcbi_1012136 crossref_primary_10_1039_D3LC00860F crossref_primary_10_1016_j_jconrel_2025_113629 crossref_primary_10_1021_acs_jmedchem_4c00250 crossref_primary_10_1093_nsr_nwae348 crossref_primary_10_1039_D4DD00013G crossref_primary_10_1039_D4EN00144C crossref_primary_10_1093_protein_gzad016 crossref_primary_10_1002_bkcs_12840 crossref_primary_10_1093_protein_gzad012 crossref_primary_10_1038_s41467_024_55436_y crossref_primary_10_1038_s41587_024_02422_w crossref_primary_10_1016_j_str_2024_02_017 crossref_primary_10_1242_dev_202300 crossref_primary_10_1371_journal_pcbi_1012489 crossref_primary_10_1038_s41586_024_07813_2 crossref_primary_10_7554_eLife_100545 crossref_primary_10_1016_j_tibs_2023_12_002 crossref_primary_10_3389_fphar_2024_1426300 crossref_primary_10_7498_aps_73_20240811 crossref_primary_10_1080_0194262X_2025_2468333 crossref_primary_10_3390_biom14030339 crossref_primary_10_1016_j_bidere_2025_100004 crossref_primary_10_1016_j_bidere_2025_100005 crossref_primary_10_7498_aps_72_20231624 crossref_primary_10_1016_j_ijbiomac_2025_142293 crossref_primary_10_1016_j_bios_2025_117338 crossref_primary_10_1016_j_jmb_2025_169008 crossref_primary_10_1038_s41586_024_07687_4 crossref_primary_10_1002_prot_26611 crossref_primary_10_1038_d41586_024_00846_7 crossref_primary_10_1016_j_jpha_2025_101260 crossref_primary_10_1038_s41587_024_02127_0 crossref_primary_10_1038_s41592_023_02123_3 crossref_primary_10_1002_anie_202422075 crossref_primary_10_1016_j_xphs_2024_09_015 crossref_primary_10_1016_j_hlife_2025_01_002 crossref_primary_10_1021_acs_chemrev_4c00120 crossref_primary_10_1016_j_biotechadv_2024_108366 crossref_primary_10_1021_acs_jafc_4c02335 crossref_primary_10_1126_science_ads0018 crossref_primary_10_1038_s41592_024_02465_6 crossref_primary_10_1021_acscatal_4c04145 crossref_primary_10_1016_j_csbj_2024_06_016 crossref_primary_10_1016_j_crstbi_2025_100165 crossref_primary_10_1021_acssynbio_4c00686 crossref_primary_10_3390_su16177651 crossref_primary_10_1016_j_ijbiomac_2024_134014 crossref_primary_10_1016_j_sbi_2023_102771 crossref_primary_10_1038_s41576_024_00786_y crossref_primary_10_1093_plcell_koae081 crossref_primary_10_1002_bmm2_12134 crossref_primary_10_1021_acsomega_4c01704 crossref_primary_10_1016_j_biotechadv_2024_108495 crossref_primary_10_1038_s41401_024_01380_y crossref_primary_10_1126_sciadv_adr8638 crossref_primary_10_1038_s41467_024_54913_8 crossref_primary_10_1016_j_greenca_2024_05_001 crossref_primary_10_1038_s41586_024_08393_x crossref_primary_10_1016_j_bpj_2023_12_001 crossref_primary_10_1021_acsnano_4c00829 crossref_primary_10_1111_1751_7915_70047 crossref_primary_10_1021_acs_jcim_4c02108 crossref_primary_10_1038_s41589_024_01642_0 crossref_primary_10_1016_j_csbj_2024_06_021 crossref_primary_10_15252_msb_202311933 crossref_primary_10_1038_s41587_024_02395_w crossref_primary_10_1002_advs_202402361 crossref_primary_10_7554_eLife_91512 crossref_primary_10_3390_metabo14030154 crossref_primary_10_1021_acs_chemrev_4c00582 crossref_primary_10_1038_s41467_024_46356_y crossref_primary_10_1016_j_cossms_2024_101158 crossref_primary_10_1016_j_sbi_2023_102746 crossref_primary_10_1016_j_bbamcr_2024_119718 crossref_primary_10_2217_nnm_2023_0362 crossref_primary_10_1021_acs_chemrev_4c00329 crossref_primary_10_1038_s41467_025_56369_w crossref_primary_10_1002_pro_5033 crossref_primary_10_1021_acs_jcim_4c01020 crossref_primary_10_1016_j_bej_2024_109510 crossref_primary_10_1016_j_jmb_2025_169011 crossref_primary_10_1101_cshperspect_a041472 crossref_primary_10_1016_j_jmb_2025_169012 crossref_primary_10_1111_nph_20449 crossref_primary_10_1016_j_cstres_2025_01_001 crossref_primary_10_1021_acs_jctc_3c01054 crossref_primary_10_1002_wcms_1711 crossref_primary_10_1021_acssynbio_4c00109 crossref_primary_10_1038_s44222_024_00225_x crossref_primary_10_1016_j_jinorgbio_2024_112810 crossref_primary_10_1038_s41467_024_51511_6 crossref_primary_10_3390_nu16142354 crossref_primary_10_1093_nar_gkae840 crossref_primary_10_1038_s41467_024_46574_4 crossref_primary_10_3390_ncrna11020018 crossref_primary_10_1093_nar_gkae889 crossref_primary_10_1039_D4DD00177J crossref_primary_10_1126_sciadv_adr7338 crossref_primary_10_1038_s41586_025_08611_0 crossref_primary_10_3390_biom14091073 crossref_primary_10_1002_pro_5027 crossref_primary_10_1002_pro_5148 crossref_primary_10_1038_s42004_024_01233_z crossref_primary_10_1016_j_ijbiomac_2024_136643 crossref_primary_10_1007_s00425_023_04292_z crossref_primary_10_1038_s41586_024_08360_6 crossref_primary_10_1017_qrd_2024_15 crossref_primary_10_1042_BST20240833 crossref_primary_10_1038_s41586_023_06953_1 crossref_primary_10_1016_j_inffus_2025_103119 crossref_primary_10_1016_j_celrep_2023_113552 crossref_primary_10_1038_s43586_025_00383_1 crossref_primary_10_1002_pro_5013 crossref_primary_10_1021_acssynbio_4c00482 crossref_primary_10_1038_s41589_024_01679_1 crossref_primary_10_1016_j_bbadis_2024_167263 crossref_primary_10_1016_j_tim_2023_09_007 crossref_primary_10_1016_j_xcrp_2025_102466 crossref_primary_10_1021_acs_chemrev_4c00423 crossref_primary_10_1038_s41467_024_50571_y crossref_primary_10_1016_j_biotechadv_2024_108457 crossref_primary_10_1016_j_trechm_2024_06_004 crossref_primary_10_1016_j_sbi_2024_102835 crossref_primary_10_1111_1751_7915_70072 crossref_primary_10_1016_j_cels_2024_09_006 crossref_primary_10_1126_science_adk8946 crossref_primary_10_7554_eLife_100545_3 crossref_primary_10_1002_pro_5001 crossref_primary_10_34133_bdr_0037 crossref_primary_10_1016_j_cobme_2024_100556 crossref_primary_10_1016_j_synbio_2024_12_007 crossref_primary_10_1016_j_ymthe_2025_02_021 crossref_primary_10_1021_jacsau_4c01101 crossref_primary_10_1093_bioinformatics_btae654 crossref_primary_10_3389_fimmu_2024_1412513 crossref_primary_10_3390_catal15020147 crossref_primary_10_34133_bmef_0050 crossref_primary_10_1002_2211_5463_13902 crossref_primary_10_1007_s10994_024_06575_2 crossref_primary_10_1002_biof_2045 crossref_primary_10_1021_acs_jafc_4c13201 crossref_primary_10_1002_cbic_202300863 crossref_primary_10_1038_s41589_024_01632_2 crossref_primary_10_1038_s41551_024_01251_1 crossref_primary_10_1038_s41587_023_02076_0 crossref_primary_10_1126_science_adl5364 crossref_primary_10_1021_acs_chemmater_3c02242 crossref_primary_10_1016_j_sbi_2024_102973 crossref_primary_10_1038_s41467_024_50712_3 crossref_primary_10_1002_nadc_20244143087 crossref_primary_10_1002_cbic_202300754 crossref_primary_10_1002_cbic_202401014 crossref_primary_10_3390_molecules29153512 crossref_primary_10_1021_acssynbio_3c00042 crossref_primary_10_1038_s41598_024_54508_9 crossref_primary_10_1016_j_str_2025_01_002 crossref_primary_10_1038_s42003_024_07113_5 crossref_primary_10_1002_mlf2_12157 crossref_primary_10_7554_eLife_91512_4 crossref_primary_10_1002_ange_202421686 crossref_primary_10_1038_s41392_024_01934_w crossref_primary_10_1038_s44222_024_00264_4 crossref_primary_10_1021_acssynbio_4c00179 crossref_primary_10_1016_j_bioorg_2024_107162 crossref_primary_10_1016_j_sbi_2024_102890 crossref_primary_10_1016_j_biopha_2024_116965 crossref_primary_10_1016_j_cels_2023_06_009 crossref_primary_10_1039_D2CS00991A crossref_primary_10_1016_j_sbi_2024_102883 crossref_primary_10_1002_anie_202318365 crossref_primary_10_1073_pnas_2422180121 crossref_primary_10_1093_bioadv_vbae099 crossref_primary_10_1016_j_synbio_2024_07_004 crossref_primary_10_1002_anie_202411461 crossref_primary_10_1021_acssynbio_4c00041 crossref_primary_10_1126_science_adp1779 crossref_primary_10_1126_science_ado9336 crossref_primary_10_1007_s00299_024_03294_9 crossref_primary_10_1103_PRXLife_2_043013 crossref_primary_10_1021_acs_est_4c02845 crossref_primary_10_1103_PRXLife_2_043012 crossref_primary_10_1016_j_ejmech_2024_116262 crossref_primary_10_1038_s41576_024_00720_2 crossref_primary_10_1038_s41586_024_07601_y crossref_primary_10_1007_s42994_024_00152_w crossref_primary_10_1038_s44222_023_00114_9 crossref_primary_10_1021_acs_molpharmaceut_4c00604 crossref_primary_10_1086_732852 crossref_primary_10_1016_j_tips_2024_12_002 crossref_primary_10_1063_4_0000271 crossref_primary_10_1038_s41467_025_57192_z crossref_primary_10_3389_fcell_2024_1343106 crossref_primary_10_3390_molecules29204965 crossref_primary_10_1021_acs_chemrev_4c00055 crossref_primary_10_1016_j_cmet_2023_08_007 crossref_primary_10_3390_molecules30051116 crossref_primary_10_1002_adfm_202408870 crossref_primary_10_1016_j_jmb_2024_168818 crossref_primary_10_1038_s41586_025_08628_5 crossref_primary_10_3389_fbioe_2023_1328141 crossref_primary_10_3390_v17030417 crossref_primary_10_1038_s41597_023_02553_w crossref_primary_10_1021_acssensors_4c00282 crossref_primary_10_1186_s40643_023_00723_7 crossref_primary_10_1038_s41467_024_46203_0 crossref_primary_10_1021_acssynbio_4c00187 crossref_primary_10_1016_j_sbi_2024_102775 crossref_primary_10_1126_science_adq2634 crossref_primary_10_1021_acs_jctc_4c00222 crossref_primary_10_1080_19336950_2024_2325032 crossref_primary_10_3389_fphar_2025_1553853 crossref_primary_10_1039_D4DD90010C crossref_primary_10_1016_j_csbj_2024_08_029 crossref_primary_10_1038_s41565_024_01641_1 crossref_primary_10_1101_cshperspect_a041469 crossref_primary_10_1016_j_crmeth_2024_100882 crossref_primary_10_1021_acs_jcim_4c01193 crossref_primary_10_1089_genbio_2023_29114_fli crossref_primary_10_1016_j_eml_2024_102236 crossref_primary_10_1038_s41467_024_49030_5 crossref_primary_10_1038_s43586_024_00294_7 crossref_primary_10_1016_j_antiviral_2024_105834 crossref_primary_10_1126_sciadv_adr8265 crossref_primary_10_1021_acs_jcim_4c02046 crossref_primary_10_1038_s44320_024_00016_x crossref_primary_10_1021_acssynbio_3c00674 crossref_primary_10_1021_acs_biomac_4c01243 crossref_primary_10_1038_s41598_024_71477_1 crossref_primary_10_1111_1748_5967_70008 crossref_primary_10_1371_journal_pone_0308425 crossref_primary_10_1038_s41586_024_08435_4 crossref_primary_10_1016_j_jmb_2024_168809 crossref_primary_10_1016_j_sbi_2024_102794 crossref_primary_10_1021_acsnano_4c12599 crossref_primary_10_1093_bioadv_vbae187 crossref_primary_10_1002_wcms_1693 crossref_primary_10_1089_genbio_2024_0051 crossref_primary_10_1016_j_medp_2024_100043 crossref_primary_10_1177_15330338241275947 crossref_primary_10_1039_D3DD00218G crossref_primary_10_1038_s41589_024_01640_2 crossref_primary_10_1016_j_isci_2025_112012 crossref_primary_10_1109_TNNLS_2024_3416328 crossref_primary_10_1002_advs_202402441 crossref_primary_10_1093_bioinformatics_btae259 crossref_primary_10_1146_annurev_chembioeng_100722_112440 crossref_primary_10_1039_D4FD00139G crossref_primary_10_1002_smll_202406388 crossref_primary_10_1016_j_pep_2024_106623 crossref_primary_10_1002_asi_24930 crossref_primary_10_1016_j_sbi_2025_102983 crossref_primary_10_1103_PRXLife_2_033012 crossref_primary_10_1089_genbio_2024_0062 crossref_primary_10_1038_s41586_023_06728_8 crossref_primary_10_1002_anie_202421686 crossref_primary_10_1016_j_jmb_2024_168900 crossref_primary_10_1021_acs_jmedchem_4c00828 crossref_primary_10_1038_s41587_024_02516_5 crossref_primary_10_1016_j_sbi_2025_102998 crossref_primary_10_1371_journal_pcbi_1011953 crossref_primary_10_1038_s44222_024_00245_7 crossref_primary_10_1039_D3CS00972F crossref_primary_10_1126_science_adq1741 crossref_primary_10_1073_pnas_2418918121 crossref_primary_10_1002_pro_70045 crossref_primary_10_3390_microorganisms13020458 crossref_primary_10_1038_s42256_024_00831_9 crossref_primary_10_1016_j_jmb_2024_168791 crossref_primary_10_1021_jacs_4c04618 crossref_primary_10_1073_pnas_2413465122 crossref_primary_10_1093_bib_bbae488 crossref_primary_10_1016_j_cma_2024_117224 crossref_primary_10_1038_d41586_024_00173_x crossref_primary_10_1093_pnasnexus_pgae572 crossref_primary_10_1073_pnas_2314999121 crossref_primary_10_1016_j_jcis_2025_01_147 crossref_primary_10_1186_s12859_024_05820_8 crossref_primary_10_1055_a_2520_3833 crossref_primary_10_1038_s41551_024_01237_z crossref_primary_10_1038_s42003_024_07218_x crossref_primary_10_1016_j_drudis_2024_104106 crossref_primary_10_1016_j_copbio_2024_103256 crossref_primary_10_1093_bioinformatics_btaf010 crossref_primary_10_1021_acscentsci_3c01275 crossref_primary_10_2139_ssrn_4833954 crossref_primary_10_1021_acs_jcim_4c00877 crossref_primary_10_1002_pro_4762 crossref_primary_10_1016_j_copbio_2024_103126 crossref_primary_10_1007_s11426_024_2072_4 crossref_primary_10_1038_s41467_023_41717_5 crossref_primary_10_1002_pro_4991 crossref_primary_10_1016_j_tibtech_2024_10_008 crossref_primary_10_1073_pnas_2311807121 crossref_primary_10_1016_j_chempr_2024_10_013 crossref_primary_10_1016_j_addr_2024_115418 crossref_primary_10_1016_j_bioorg_2024_107108 crossref_primary_10_1080_19420862_2024_2341443 crossref_primary_10_1021_acs_jcim_4c01928 crossref_primary_10_1093_protein_gzae010 crossref_primary_10_1002_cctc_202400835 crossref_primary_10_1016_j_coelec_2024_101541 crossref_primary_10_1038_s41592_024_02516_y crossref_primary_10_1016_j_cels_2025_101201 crossref_primary_10_1038_s44319_024_00143_4 crossref_primary_10_1126_science_adk1687 crossref_primary_10_1093_bib_bbae495 crossref_primary_10_1021_acs_iecr_4c04636 crossref_primary_10_1016_j_compbiomed_2025_109842 crossref_primary_10_3390_molecules29194626 crossref_primary_10_1021_acs_jcim_4c00975 crossref_primary_10_1021_jacs_3c11067 crossref_primary_10_1002_adhm_202402744 crossref_primary_10_1002_pro_4743 crossref_primary_10_1002_pro_4985 crossref_primary_10_1103_PRXLife_2_040001 crossref_primary_10_1038_s42256_024_00843_5 crossref_primary_10_1038_s41587_024_02466_y crossref_primary_10_1039_D4NP00003J crossref_primary_10_1021_acsphyschemau_4c00004 crossref_primary_10_1002_ange_202411461 crossref_primary_10_1038_s41467_024_48837_6 crossref_primary_10_1038_s41597_024_03403_z crossref_primary_10_7498_aps_73_20231618 crossref_primary_10_1039_D4MD00869C crossref_primary_10_1021_acscentsci_3c01488 crossref_primary_10_1016_j_mib_2024_102575 crossref_primary_10_1038_s41467_024_48000_1 crossref_primary_10_1039_D4FD00153B crossref_primary_10_1038_d41586_024_03214_7 crossref_primary_10_1038_s41580_024_00718_y crossref_primary_10_1016_j_cmpb_2025_108687 crossref_primary_10_1016_j_csbj_2024_09_010 crossref_primary_10_1016_j_neucom_2024_128103 crossref_primary_10_1089_mab_2025_0001 crossref_primary_10_1002_aocs_12934 crossref_primary_10_1016_j_cels_2024_11_006 crossref_primary_10_1016_j_chembiol_2024_06_001 crossref_primary_10_1016_j_eng_2025_01_002 crossref_primary_10_1021_acs_jctc_4c00315 crossref_primary_10_1016_j_drudis_2025_104300 crossref_primary_10_1152_physiol_00029_2024 crossref_primary_10_1038_s41586_025_08598_8 crossref_primary_10_1021_acs_jcim_4c00711 crossref_primary_10_1126_science_adl2528 crossref_primary_10_1038_s41467_024_49204_1 crossref_primary_10_2174_0115748936285690240101041704 crossref_primary_10_1016_j_csbj_2025_02_014 crossref_primary_10_1038_s41551_025_01365_0 crossref_primary_10_1021_jacs_4c16633 crossref_primary_10_1007_s11705_024_2500_7 crossref_primary_10_1002_pro_4958 crossref_primary_10_1093_bib_bbae307 crossref_primary_10_1016_j_tim_2024_11_001 crossref_primary_10_1002_smtd_202401455 crossref_primary_10_1002_smll_202402980 crossref_primary_10_1038_s41587_024_02133_2 crossref_primary_10_1093_bib_bbae338 crossref_primary_10_1038_s41421_024_00728_2 crossref_primary_10_1016_j_device_2024_100401 crossref_primary_10_1038_s41587_023_02115_w crossref_primary_10_1016_j_tips_2024_07_007 crossref_primary_10_1038_s41467_025_57148_3 crossref_primary_10_1073_pnas_2409257121 crossref_primary_10_1016_j_ijbiomac_2024_131840 crossref_primary_10_1016_j_cell_2023_12_028 crossref_primary_10_3390_ijms25031798 crossref_primary_10_1021_acs_jcim_4c00928 crossref_primary_10_1021_acssynbio_4c00707 crossref_primary_10_3390_molecules30051047 crossref_primary_10_1016_j_copbio_2024_103143 crossref_primary_10_1002_ange_202318365 crossref_primary_10_1016_j_csbj_2025_02_032 crossref_primary_10_1002_pro_4936 crossref_primary_10_1093_bib_bbad358 crossref_primary_10_1042_BST20231347 crossref_primary_10_1021_acscatal_3c03417 crossref_primary_10_1038_s42256_024_00920_9 |
Cites_doi | 10.1073/pnas.2016093117 10.1038/s41467-022-32007-7 10.1146/annurev.biophys.29.1.105 10.1126/science.abj8754 10.1016/j.cell.2020.10.043 10.1038/nature23912 10.1146/annurev.physchem.48.1.545 10.1038/nbt.3907 10.1126/science.add2187 10.1038/s41586-021-03365-x 10.1038/s41586-023-05696-3 10.1126/science.274.5289.948 10.1126/science.abc0881 10.1038/s41589-020-00699-x 10.1038/s41586-021-04184-w 10.1126/science.ade2574 10.1038/nrc991 10.1038/nature25157 10.1126/science.1089427 10.1038/nbt1166 10.1016/j.cbpa.2020.02.002 10.1371/journal.pone.0265020 10.1038/s41586-022-04654-9 10.1093/nar/gkx1012 10.1016/B978-0-12-381270-4.00019-6 10.1128/AAC.01802-15 10.1126/science.add1964 10.1073/pnas.2005412117 10.1126/science.abn2100 10.1016/j.cell.2019.01.046 10.1073/pnas.0906852107 10.1038/s41586-021-03819-2 10.1126/science.aay5051 10.1126/scitranslmed.abn1252 10.1093/nar/28.1.235 10.1021/cr030191z 10.1101/2022.12.01.518682 10.1021/ic9001237 10.1101/2021.10.11.463937 10.1101/2022.09.09.507333 10.48550/arXiv.2209.15611 10.1101/2022.07.13.499967 10.1101/2022.07.10.499510 10.1101/2023.02.24.529906 10.48550/arXiv.2205.15019 10.1038/s41467-023-38328-5 10.1101/2022.12.10.519862 10.1101/2022.07.21.500999 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). Copyright Nature Publishing Group Aug 31, 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: Copyright Nature Publishing Group Aug 31, 2023 |
CorporateAuthor | Univ. of Washington, Seattle, WA (United States) |
CorporateAuthor_xml | – name: Univ. of Washington, Seattle, WA (United States) |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 OTOTI 5PM |
DOI | 10.1038/s41586-023-06415-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Agricultural & Environmental Science & Pollution Managment ProQuest Central Essentials Biological Science Collection ProQuest eLibrary (NC LIVE) ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 1100 |
ExternalDocumentID | PMC10468394 2420884 37433327 10_1038_s41586_023_06415_8 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM008268 – fundername: NIGMS NIH HHS grantid: T32 GM007250 – fundername: NIA NIH HHS grantid: U19 AG065156 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI C6C CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FAC FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR K6- KB. KOO L6V L7B LGEZI LK5 LK8 LOTEE LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NADUK NAPCQ NEPJS NXXTH O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YJ6 YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 I-F ITC J5H L-9 MVM N4W NEJ NPM ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT SV3 TH9 TUD TUS UAO UBY UHB USG VOH X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FK AFKWF C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7X8 AADEA AAEXX ABEEJ ABVXF ADFPY ADZGE AFRQD AGEZK B-7 OTOTI 5PM |
ID | FETCH-LOGICAL-c502t-240544e593f1de5a4d2cb1bed2b11bb00e259896dc0f8fe784fd6d527354694e3 |
IEDL.DBID | C6C |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:36:08 EDT 2025 Mon Aug 12 05:47:36 EDT 2024 Fri Jul 11 03:08:46 EDT 2025 Sat Aug 23 12:52:37 EDT 2025 Thu Apr 03 06:57:06 EDT 2025 Thu Apr 24 23:11:27 EDT 2025 Tue Jul 01 02:58:42 EDT 2025 Fri Feb 21 02:39:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7976 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-240544e593f1de5a4d2cb1bed2b11bb00e259896dc0f8fe784fd6d527354694e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0018940 USDOE Office of Science (SC) |
ORCID | 0000-0001-8590-1454 0000-0002-7557-7985 0000-0002-3292-5070 0000-0003-3414-9404 0000-0003-0575-7400 0000-0001-8417-3205 0000-0002-2501-7875 0000-0003-2774-2744 0000-0003-4297-7824 0000-0003-0539-7011 0000-0002-2199-0379 0000-0001-7896-6217 0000000225017875 0000000221990379 0000000305757400 0000000185901454 0000000327742744 0000000334149404 0000000342977824 0000000232925070 0000000305397011 0000000275577985 0000000184173205 0000000178966217 |
OpenAccessLink | https://www.nature.com/articles/s41586-023-06415-8 |
PMID | 37433327 |
PQID | 2861894167 |
PQPubID | 40569 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10468394 osti_scitechconnect_2420884 proquest_miscellaneous_2836293375 proquest_journals_2861894167 pubmed_primary_37433327 crossref_citationtrail_10_1038_s41586_023_06415_8 crossref_primary_10_1038_s41586_023_06415_8 springer_journals_10_1038_s41586_023_06415_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-31 |
PublicationDateYYYYMMDD | 2023-08-31 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Yeh (CR56) 2023; 614 Butterfield (CR35) 2017; 552 Basanta (CR32) 2020; 117 Leaver-Fay (CR58) 2011; 487 Wicky (CR7) 2022; 378 CR37 CR31 Sesterhenn (CR38) 2020; 368 Singer (CR3) 2022; 17 Cao (CR12) 2022; 605 Jumper (CR17) 2021; 596 Chène (CR41) 2003; 3 Boyoglu-Barnum (CR47) 2021; 592 Goodsell, Olson (CR36) 2000; 29 Kussie (CR42) 1996; 274 Marcandalli (CR34) 2019; 176 CR5 CR8 CR9 Pan (CR33) 2020; 369 Silverman (CR44) 2005; 23 CR49 Walls (CR48) 2020; 183 Ribeiro (CR57) 2018; 46 Salgado (CR50) 2010; 107 Anishchenko (CR6) 2021; 600 Yang (CR39) 2021; 17 Dauparas (CR1) 2022; 378 Baek (CR18) 2021; 373 Glasgow (CR40) 2020; 117 CR19 CR16 CR15 CR14 Kuhlman (CR13) 2003; 302 CR11 Quijano-Rubio, Ulge, Walkey, Silva (CR51) 2020; 56 CR55 CR10 CR54 CR53 Berman (CR22) 2000; 28 CR29 Detalle (CR45) 2016; 60 CR28 Chevalier (CR52) 2017; 550 CR27 CR26 CR25 Onuchic, Luthey-Schulten, Wolynes (CR30) 1997; 48 Wang (CR4) 2022; 377 CR24 CR23 CR20 Lin (CR21) 2023; 379 Hunt (CR43) 2022; 14 Ferruz, Schmidt, Höcker (CR2) 2022; 13 Strauch (CR46) 2017; 35 N Ferruz (6415_CR2) 2022; 13 6415_CR10 6415_CR54 6415_CR53 6415_CR11 6415_CR55 6415_CR14 GL Butterfield (6415_CR35) 2017; 552 E-M Strauch (6415_CR46) 2017; 35 BIM Wicky (6415_CR7) 2022; 378 L Cao (6415_CR12) 2022; 605 J Dauparas (6415_CR1) 2022; 378 HM Berman (6415_CR22) 2000; 28 6415_CR16 6415_CR15 B Basanta (6415_CR32) 2020; 117 I Anishchenko (6415_CR6) 2021; 600 AC Hunt (6415_CR43) 2022; 14 6415_CR19 A Leaver-Fay (6415_CR58) 2011; 487 6415_CR20 L Detalle (6415_CR45) 2016; 60 6415_CR23 P Chène (6415_CR41) 2003; 3 6415_CR25 6415_CR24 JN Onuchic (6415_CR30) 1997; 48 F Sesterhenn (6415_CR38) 2020; 368 B Kuhlman (6415_CR13) 2003; 302 A Quijano-Rubio (6415_CR51) 2020; 56 AH-W Yeh (6415_CR56) 2023; 614 A Glasgow (6415_CR40) 2020; 117 6415_CR5 6415_CR8 6415_CR9 DS Goodsell (6415_CR36) 2000; 29 6415_CR27 6415_CR26 J Silverman (6415_CR44) 2005; 23 6415_CR29 EN Salgado (6415_CR50) 2010; 107 6415_CR28 C Yang (6415_CR39) 2021; 17 A Chevalier (6415_CR52) 2017; 550 6415_CR31 AC Walls (6415_CR48) 2020; 183 Z Lin (6415_CR21) 2023; 379 M Baek (6415_CR18) 2021; 373 6415_CR37 JM Singer (6415_CR3) 2022; 17 PH Kussie (6415_CR42) 1996; 274 AJM Ribeiro (6415_CR57) 2018; 46 X Pan (6415_CR33) 2020; 369 S Boyoglu-Barnum (6415_CR47) 2021; 592 J Jumper (6415_CR17) 2021; 596 J Marcandalli (6415_CR34) 2019; 176 6415_CR49 J Wang (6415_CR4) 2022; 377 |
References_xml | – volume: 117 start-page: 28046 year: 2020 end-page: 28055 ident: CR40 article-title: Engineered ACE2 receptor traps potently neutralize SARS-CoV-2 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2016093117 – ident: CR49 – volume: 13 year: 2022 ident: CR2 article-title: ProtGPT2 is a deep unsupervised language model for protein design publication-title: Nat. Commun. doi: 10.1038/s41467-022-32007-7 – ident: CR16 – volume: 29 start-page: 105 year: 2000 end-page: 153 ident: CR36 article-title: Structural symmetry and protein function publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.29.1.105 – volume: 373 start-page: 871 year: 2021 end-page: 876 ident: CR18 article-title: Accurate prediction of protein structures and interactions using a three-track neural network publication-title: Science doi: 10.1126/science.abj8754 – volume: 183 start-page: 1367 year: 2020 end-page: 1382.e17 ident: CR48 article-title: Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2 publication-title: Cell doi: 10.1016/j.cell.2020.10.043 – volume: 550 start-page: 74 year: 2017 end-page: 79 ident: CR52 article-title: Massively parallel de novo protein design for targeted therapeutics publication-title: Nature doi: 10.1038/nature23912 – volume: 48 start-page: 545 year: 1997 end-page: 600 ident: CR30 article-title: Theory of protein folding: the energy landscape perspective publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.48.1.545 – ident: CR29 – volume: 35 start-page: 667 year: 2017 end-page: 671 ident: CR46 article-title: Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3907 – ident: CR54 – volume: 378 start-page: 49 year: 2022 end-page: 56 ident: CR1 article-title: Robust deep learning-based protein sequence design using ProteinMPNN publication-title: Science doi: 10.1126/science.add2187 – ident: CR8 – ident: CR25 – volume: 592 start-page: 623 year: 2021 end-page: 628 ident: CR47 article-title: Quadrivalent influenza nanoparticle vaccines induce broad protection publication-title: Nature doi: 10.1038/s41586-021-03365-x – volume: 614 start-page: 774 year: 2023 end-page: 780 ident: CR56 article-title: De novo design of luciferases using deep learning publication-title: Nature doi: 10.1038/s41586-023-05696-3 – volume: 274 start-page: 948 year: 1996 end-page: 953 ident: CR42 article-title: Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain publication-title: Science doi: 10.1126/science.274.5289.948 – volume: 369 start-page: 1132 year: 2020 end-page: 1136 ident: CR33 article-title: Expanding the space of protein geometries by computational design of de novo fold families publication-title: Science doi: 10.1126/science.abc0881 – ident: CR19 – volume: 17 start-page: 492 year: 2021 end-page: 500 ident: CR39 article-title: Bottom-up de novo design of functional proteins with complex structural features publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-00699-x – ident: CR15 – ident: CR11 – ident: CR9 – ident: CR5 – ident: CR26 – volume: 600 start-page: 547 year: 2021 end-page: 552 ident: CR6 article-title: De novo protein design by deep network hallucination publication-title: Nature doi: 10.1038/s41586-021-04184-w – volume: 379 start-page: 1123 year: 2023 end-page: 1130 ident: CR21 article-title: Language models of protein sequences at the scale of evolution enable accurate structure prediction publication-title: Science doi: 10.1126/science.ade2574 – volume: 3 start-page: 102 year: 2003 end-page: 109 ident: CR41 article-title: Inhibiting the p53-MDM2 interaction: an important target for cancer therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc991 – volume: 552 start-page: 415 year: 2017 end-page: 420 ident: CR35 article-title: Evolution of a designed protein assembly encapsulating its own RNA genome publication-title: Nature doi: 10.1038/nature25157 – volume: 302 start-page: 1364 year: 2003 end-page: 1368 ident: CR13 article-title: Design of a novel globular protein fold with atomic-level accuracy publication-title: Science doi: 10.1126/science.1089427 – ident: CR14 – volume: 23 start-page: 1556 year: 2005 end-page: 1561 ident: CR44 article-title: Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains publication-title: Nat. Biotechnol. doi: 10.1038/nbt1166 – volume: 56 start-page: 119 year: 2020 end-page: 128 ident: CR51 article-title: The advent of de novo proteins for cancer immunotherapy publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2020.02.002 – ident: CR37 – ident: CR53 – volume: 17 start-page: e0265020 year: 2022 ident: CR3 article-title: Large-scale design and refinement of stable proteins using sequence-only models publication-title: PLoS ONE doi: 10.1371/journal.pone.0265020 – ident: CR10 – volume: 605 start-page: 551 year: 2022 end-page: 560 ident: CR12 article-title: Design of protein-binding proteins from the target structure alone publication-title: Nature doi: 10.1038/s41586-022-04654-9 – volume: 46 start-page: D618 year: 2018 end-page: D623 ident: CR57 article-title: Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1012 – volume: 487 start-page: 545 year: 2011 end-page: 574 ident: CR58 article-title: ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules publication-title: Methods Enzymol. doi: 10.1016/B978-0-12-381270-4.00019-6 – ident: CR27 – volume: 60 start-page: 6 year: 2016 end-page: 13 ident: CR45 article-title: Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01802-15 – ident: CR23 – volume: 378 start-page: 56 year: 2022 end-page: 61 ident: CR7 article-title: Hallucinating symmetric protein assemblies publication-title: Science doi: 10.1126/science.add1964 – volume: 117 start-page: 22135 year: 2020 end-page: 22145 ident: CR32 article-title: An enumerative algorithm for de novo design of proteins with diverse pocket structures publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2005412117 – volume: 377 start-page: 387 year: 2022 end-page: 394 ident: CR4 article-title: Scaffolding protein functional sites using deep learning publication-title: Science doi: 10.1126/science.abn2100 – volume: 176 start-page: 1420 year: 2019 end-page: 1431.e17 ident: CR34 article-title: Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus publication-title: Cell doi: 10.1016/j.cell.2019.01.046 – volume: 107 start-page: 1827 year: 2010 end-page: 1832 ident: CR50 article-title: Metal templated design of protein interfaces publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0906852107 – ident: CR31 – volume: 596 start-page: 583 year: 2021 end-page: 589 ident: CR17 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 368 start-page: eaay5051 year: 2020 ident: CR38 article-title: De novo protein design enables the precise induction of RSV-neutralizing antibodies publication-title: Science doi: 10.1126/science.aay5051 – volume: 14 start-page: eabn1252 year: 2022 ident: CR43 article-title: Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abn1252 – volume: 28 start-page: 235 year: 2000 end-page: 242 ident: CR22 article-title: The Protein Data Bank publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.235 – ident: CR55 – ident: CR28 – ident: CR24 – ident: CR20 – ident: 6415_CR19 doi: 10.1126/science.abn2100 – ident: 6415_CR37 doi: 10.1021/cr030191z – volume: 107 start-page: 1827 year: 2010 ident: 6415_CR50 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0906852107 – ident: 6415_CR28 doi: 10.1101/2022.12.01.518682 – ident: 6415_CR49 doi: 10.1021/ic9001237 – ident: 6415_CR31 doi: 10.1101/2021.10.11.463937 – ident: 6415_CR55 doi: 10.1101/2022.09.09.507333 – volume: 117 start-page: 28046 year: 2020 ident: 6415_CR40 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2016093117 – volume: 614 start-page: 774 year: 2023 ident: 6415_CR56 publication-title: Nature doi: 10.1038/s41586-023-05696-3 – volume: 35 start-page: 667 year: 2017 ident: 6415_CR46 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3907 – volume: 487 start-page: 545 year: 2011 ident: 6415_CR58 publication-title: Methods Enzymol. doi: 10.1016/B978-0-12-381270-4.00019-6 – volume: 378 start-page: 49 year: 2022 ident: 6415_CR1 publication-title: Science doi: 10.1126/science.add2187 – volume: 379 start-page: 1123 year: 2023 ident: 6415_CR21 publication-title: Science doi: 10.1126/science.ade2574 – ident: 6415_CR25 – ident: 6415_CR16 doi: 10.48550/arXiv.2209.15611 – volume: 369 start-page: 1132 year: 2020 ident: 6415_CR33 publication-title: Science doi: 10.1126/science.abc0881 – ident: 6415_CR14 – ident: 6415_CR10 – ident: 6415_CR29 doi: 10.1101/2022.07.13.499967 – volume: 176 start-page: 1420 year: 2019 ident: 6415_CR34 publication-title: Cell doi: 10.1016/j.cell.2019.01.046 – volume: 596 start-page: 583 year: 2021 ident: 6415_CR17 publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 14 start-page: eabn1252 year: 2022 ident: 6415_CR43 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abn1252 – ident: 6415_CR9 doi: 10.1101/2022.07.10.499510 – ident: 6415_CR53 doi: 10.1101/2023.02.24.529906 – ident: 6415_CR24 – volume: 3 start-page: 102 year: 2003 ident: 6415_CR41 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc991 – ident: 6415_CR8 doi: 10.48550/arXiv.2205.15019 – volume: 17 start-page: 492 year: 2021 ident: 6415_CR39 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-00699-x – volume: 46 start-page: D618 year: 2018 ident: 6415_CR57 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1012 – ident: 6415_CR5 – ident: 6415_CR15 – volume: 28 start-page: 235 year: 2000 ident: 6415_CR22 publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.235 – volume: 377 start-page: 387 year: 2022 ident: 6415_CR4 publication-title: Science doi: 10.1126/science.abn2100 – volume: 56 start-page: 119 year: 2020 ident: 6415_CR51 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2020.02.002 – volume: 552 start-page: 415 year: 2017 ident: 6415_CR35 publication-title: Nature doi: 10.1038/nature25157 – ident: 6415_CR11 – volume: 592 start-page: 623 year: 2021 ident: 6415_CR47 publication-title: Nature doi: 10.1038/s41586-021-03365-x – ident: 6415_CR26 doi: 10.1038/s41467-023-38328-5 – volume: 23 start-page: 1556 year: 2005 ident: 6415_CR44 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1166 – ident: 6415_CR27 – volume: 368 start-page: eaay5051 year: 2020 ident: 6415_CR38 publication-title: Science doi: 10.1126/science.aay5051 – volume: 274 start-page: 948 year: 1996 ident: 6415_CR42 publication-title: Science doi: 10.1126/science.274.5289.948 – volume: 183 start-page: 1367 year: 2020 ident: 6415_CR48 publication-title: Cell doi: 10.1016/j.cell.2020.10.043 – volume: 60 start-page: 6 year: 2016 ident: 6415_CR45 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01802-15 – volume: 600 start-page: 547 year: 2021 ident: 6415_CR6 publication-title: Nature doi: 10.1038/s41586-021-04184-w – volume: 550 start-page: 74 year: 2017 ident: 6415_CR52 publication-title: Nature doi: 10.1038/nature23912 – ident: 6415_CR23 – volume: 117 start-page: 22135 year: 2020 ident: 6415_CR32 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2005412117 – ident: 6415_CR54 doi: 10.1101/2022.12.10.519862 – volume: 605 start-page: 551 year: 2022 ident: 6415_CR12 publication-title: Nature doi: 10.1038/s41586-022-04654-9 – volume: 17 start-page: e0265020 year: 2022 ident: 6415_CR3 publication-title: PLoS ONE doi: 10.1371/journal.pone.0265020 – volume: 302 start-page: 1364 year: 2003 ident: 6415_CR13 publication-title: Science doi: 10.1126/science.1089427 – volume: 29 start-page: 105 year: 2000 ident: 6415_CR36 publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.29.1.105 – volume: 373 start-page: 871 year: 2021 ident: 6415_CR18 publication-title: Science doi: 10.1126/science.abj8754 – volume: 48 start-page: 545 year: 1997 ident: 6415_CR30 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.48.1.545 – volume: 13 year: 2022 ident: 6415_CR2 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32007-7 – ident: 6415_CR20 doi: 10.1101/2022.07.21.500999 – volume: 378 start-page: 56 year: 2022 ident: 6415_CR7 publication-title: Science doi: 10.1126/science.add1964 |
SSID | ssj0005174 |
Score | 2.759278 |
Snippet | There has been considerable recent progress in designing new proteins using deep-learning methods
1
–
9
. Despite this progress, a general deep-learning... There has been considerable recent progress in designing new proteins using deep-learning methods 1–9 . Despite this progress, a general deep-learning... There has been considerable recent progress in designing new proteins using deep-learning methods . Despite this progress, a general deep-learning framework... There has been considerable recent progress in designing new proteins using deep-learning methods. Despite this progress, a general deep-learning framework for... There has been considerable recent progress in designing new proteins using deep-learning methods1-9. Despite this progress, a general deep-learning framework... Abstract There has been considerable recent progress in designing new proteins using deep-learning methods1–9. Despite this progress, a general deep-learning... |
SourceID | pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1089 |
SubjectTerms | 101/28 631/114/1305 631/114/469 631/45/612 82 82/83 Amino acid sequence Binders Catalytic Domain Complexity Cryoelectron Microscopy Deep Learning Design Design specifications Diffusion models Electron microscopy Hemagglutinin Glycoproteins, Influenza Virus - chemistry Hemagglutinin Glycoproteins, Influenza Virus - metabolism Hemagglutinin Glycoproteins, Influenza Virus - ultrastructure Hemagglutinins Humanities and Social Sciences Modelling multidisciplinary Protein Binding Protein structure Proteins Proteins - chemistry Proteins - metabolism Proteins - ultrastructure Scaffolding Science Science & Technology - Other Topics Science (multidisciplinary) Structure-function relationships Success Topology |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SDYVeSpP0sU1SFMihpTWx9bDlUwltN6GHHkoDuQlZkmkg2Gm9m9-fGVm7y6ZpbgZLWNbMeEYzn78BOA4lHqtqV2VNKEUmvaoyK1yRtcGjdwlFE5qI8v1Rnl_I75fqMiXchgSrXH4T44fa945y5Cdcl4WuMXyoPt_8yahrFFVXUwuNJ7BdoKchSJeena0hHvdYmNNPM7nQJwM6Lk3wW-ptgNeZ3nBMkx4N7KGg81_s5L0CavRLsxfwPAWU7HTUgB3YCt0uPI3ATjfswk4y3oG9TwzTH_bg9GtgXX_bMx_xG6xvWeRruOrYyCe7-BuY7Twjr0eSY5SuZT9n1E5lQfm1l3Ax-_bry3mWeilkTuV8TkUUJWVQtWgLH5SVnrsGJeF5UxQN2l7Ac5CuS-_yVreh0rL1pSd2NoUHaBnEK5h0fRfeAPMl5x7DnCa3eDrLlXW5k4E7662vrZNTKJYbaVwiGqd-F9cmFryFNuPmG9x8Ezff6Cl8XM25GWk2Hh29T_IxGCQQ060jSJCbG05QAY3PP1iKzSSDHMxafaZwtLqNpkT1EduFfkFj0JvXQlRqCq9HKa8WIzDSEoLjbL0h_9UAounevNNd_Y503VRFxzAU1_VpqSrrdf3_Jd8-_hr78IxH7aX09gFMUDvCIcZH8-ZdNII73_YKdg priority: 102 providerName: ProQuest |
Title | De novo design of protein structure and function with RFdiffusion |
URI | https://link.springer.com/article/10.1038/s41586-023-06415-8 https://www.ncbi.nlm.nih.gov/pubmed/37433327 https://www.proquest.com/docview/2861894167 https://www.proquest.com/docview/2836293375 https://www.osti.gov/biblio/2420884 https://pubmed.ncbi.nlm.nih.gov/PMC10468394 |
Volume | 620 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SDYVeSpO-tkkWFXpoaU1tPWz5mGyyCT2EEhrYm5AlmQSKXdhNfn9mZHvD5gW5GINlW57ReGY0nz4BfA05plWlK5Iq5CKRXhWJFS5L6uDRu4SsClVE-Z7lpxfy91zNN4APa2EiaD9SWsbf9IAO-7VAR6MJLkt7EeB5ojdhi6jbKeGa5tM7WMc95uV-oUwq9CPPWHNGoxaN6rFA8yFe8l7RNPqi2Vt40weR7KDr9jZshGYHXkUwp1vswHZvsAv2rWeV_v4ODo4Ca9qblvmI2WBtzSJHw1XDOg5ZFAazjWfk6UhbjKZo2fmMtlC5pjm193AxO_47PU36_RMSp1K-pMKJkjKoUtSZD8pKz12F0ve8yrIK7S1g7qPL3Lu01nUotKx97omRTWHSLIP4AKOmbcInYD7n3GNoU6UWM7JUWZc6Gbiz3vrSOjmGbBCkcT25OO1x8c_EIrfQphO-QeGbKHyjx_Bjdc__jlrj2da7pB-DgQGx2zqCAbml4QQP0Pj-vUFtpjfCheE6z3SJEWcxhi-ry2g-VBOxTWivqQ168FKIQo3hY6flVWcERldCcLxbr-l_1YCoudevNFeXkaKbKucYemK_fg5D5a5fT3_k55c134XXPI5mmuLegxGOlrCPMdKymsBmMS_wqKcZHWcnE9g6PD77cz6J5nILDUwMZA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLfGIQQviI1_xwYECSQQVGuTtE0fEJoYx42NPaBN2ltIk1RMQu2gdyC-FJ8RO23vdAP2trdKTdrEdmI7dn4GeOozdKsKm0elz0QkXZpHRtgkqrxD7eKT0pchy_cwmx7LDyfpyRr8Hu7CUFrlsCeGjdo1ls7It7nKElWg-ZC_OfsWUdUoiq4OJTQ6sdj3v36iy9a-3ttF_j7jfPLu6O006qsKRDaN-YzCCamUPi1ElTifGum4LXFMjpdJUqIUevQIVJE5G1eq8rmSlcsc4ZSl6EpKL_C7V-CqFKjJ6Wb65P0ypeQc6nN_SScWartFRako3ZdqKeBzpFYU4ajBBf0vI_fvXM1zAdugBye34GZvwLKdTuLWYc3XG3AtJJLadgPW-82iZc97ROsXt2Fn17O6-dEwF_JFWFOxgA9xWrMOv3b-3TNTO0ZaliSF0fEw-zSh8i1zOs-7A8eXQuW7MKqb2t8H5jLOHZpVZWzQG4xTY2MrPbfGGVcYK8eQDITUtgc2p_oaX3UIsAulO-JrJL4OxNdqDC8Xfc46WI8LW28SfzQaJYSsaykFyc40p9QEhf_fGtim-w2g1UtxHcOTxWtcuhSPMbVv5tQGrYdCiDwdw72Oy4vBCLTshODYW63wf9GAYMFX39SnXwI8OEXt0ezFcb0aRGU5rv9P8sHF03gM16dHHw_0wd7h_ibc4EGS6Wh9C0YoKf4h2maz8lFYEAw-X_YK_APLPkcg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRSAuiJbX0gJGAgkE0SZ2nDgHhKouq5aiCiEq9eY6tiMqoaSQXRB_jV_HjJNs2QK99bZSnKwzD3vG8-UbgKc-w7SqsHlU-kxEqZN5ZIRNoso73F18UvoyoHwPst3D9N2RPFqDX8O3MASrHNbEsFC7xtIZ-YSrLFEFhg_5pOphER-mszenXyPqIEWV1qGdRmci-_7nD0zf2td7U9T1M85nbz_t7EZ9h4HIypjPqbQg09TLQlSJ89KkjtsS5-d4mSQlWqTH7EAVmbNxpSqfq7RymSPOMolpZeoFPvcKXM1FrsjH1M4f8JJzDND9BzuxUJMWN01F0F_qq4C_I7WyKY4adO5_Bbx_4zbPFW_Dnji7BTf7YJZtd9a3Dmu-3oBrAVRq2w1Y7xeOlj3v2a1f3IbtqWd1871hLmBHWFOxwBVxUrOOy3bxzTNTO0Y7LlkNo6Ni9nFGrVwWdLZ3Bw4vRcp3YVQ3tb8PzGWcOwyxythgZhhLY2Obem6NM64wNh1DMghS257knHptfNGh2C6U7oSvUfg6CF-rMbxc3nPaUXxcOHqT9KMxQCGWXUtwJDvXnGAKCv9_a1Cb7heDVp-Z7hieLC-jG1NtxtS-WdAYjCQKIXI5hnudlpeTERjlCcHxbrWi_-UAoghfvVKffA5U4VTBxxAY5_VqMJWzef3_JR9c_BqP4Tr6nn6_d7C_CTd4MGQ6Zd-CERqKf4hh2rx8FPyBwfFlO-Bv1rtLIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+novo+design+of+protein+structure+and+function+with+RFdiffusion&rft.jtitle=Nature+%28London%29&rft.au=Watson%2C+Joseph+L&rft.au=Juergens%2C+David&rft.au=Bennett%2C+Nathaniel+R&rft.au=Trippe%2C+Brian+L&rft.date=2023-08-31&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=620&rft.issue=7976&rft.spage=1089&rft_id=info:doi/10.1038%2Fs41586-023-06415-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |