Spin photonics: from transverse spin to photonic skyrmions

Spin angular momentum associated with circular polarization is a fundamental and important aspect of photons both in classical and quantum optics. The interaction of this optical spin with matter and structures results in many intriguing optical effects and state-of-the-art applications covered unde...

Full description

Saved in:
Bibliographic Details
Published inNanophotonics (Berlin, Germany) Vol. 10; no. 16; pp. 3927 - 3943
Main Authors Shi, Peng, Du, Luping, Yuan, Xiaocong
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 21.10.2021
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spin angular momentum associated with circular polarization is a fundamental and important aspect of photons both in classical and quantum optics. The interaction of this optical spin with matter and structures results in many intriguing optical effects and state-of-the-art applications covered under the emerging subject of spin optics. Distinct from longitudinal optical spin along the mean wavevector, transverse spin, the corresponding vector of which is perpendicular to the mean wavevector, prevails and plays a significant role in confined electromagnetic waves such as focused beams, guided waves, and evanescent waves. In the optical near-field, these transverse spins are generated owing to the spatial variation of the kinetic momentum of confined electromagnetic waves, where the spin and orbital angular momenta are strongly coupled, leading to many interesting topological spin structures and properties. Several reviews on optical transverse spins have been published in recent years in which their concepts and the various configurations producing them were introduced systematically. Here, we introduce in this review the underlying physics and dynamics of transverse spin and the resultant topological structures and properties such as the photonic skyrmions and merons. We term this sub-area ‘spin photonics’, its scope being to cover the design and research of spin structures in strongly confined electromagnetic fields with unique properties and applications. The concepts and framework reviewed have importance in optics, topological photonics, metrology, and quantum technologies and may be used to extend spin-dynamics concepts to fluidic, acoustic, and gravitational waves.
AbstractList Spin angular momentum associated with circular polarization is a fundamental and important aspect of photons both in classical and quantum optics. The interaction of this optical spin with matter and structures results in many intriguing optical effects and state-of-the-art applications covered under the emerging subject of spin optics. Distinct from longitudinal optical spin along the mean wavevector, transverse spin, the corresponding vector of which is perpendicular to the mean wavevector, prevails and plays a significant role in confined electromagnetic waves such as focused beams, guided waves, and evanescent waves. In the optical near-field, these transverse spins are generated owing to the spatial variation of the kinetic momentum of confined electromagnetic waves, where the spin and orbital angular momenta are strongly coupled, leading to many interesting topological spin structures and properties. Several reviews on optical transverse spins have been published in recent years in which their concepts and the various configurations producing them were introduced systematically. Here, we introduce in this review the underlying physics and dynamics of transverse spin and the resultant topological structures and properties such as the photonic skyrmions and merons. We term this sub-area ‘spin photonics’, its scope being to cover the design and research of spin structures in strongly confined electromagnetic fields with unique properties and applications. The concepts and framework reviewed have importance in optics, topological photonics, metrology, and quantum technologies and may be used to extend spin-dynamics concepts to fluidic, acoustic, and gravitational waves.
Spin angular momentum associated with circular polarization is a fundamental and important aspect of photons both in classical and quantum optics. The interaction of this optical spin with matter and structures results in many intriguing optical effects and state-of-the-art applications covered under the emerging subject of spin optics. Distinct from longitudinal optical spin along the mean wavevector, transverse spin, the corresponding vector of which is perpendicular to the mean wavevector, prevails and plays a significant role in confined electromagnetic waves such as focused beams, guided waves, and evanescent waves. In the optical near-field, these transverse spins are generated owing to the spatial variation of the kinetic momentum of confined electromagnetic waves, where the spin and orbital angular momenta are strongly coupled, leading to many interesting topological spin structures and properties. Several reviews on optical transverse spins have been published in recent years in which their concepts and the various configurations producing them were introduced systematically. Here, we introduce in this review the underlying physics and dynamics of transverse spin and the resultant topological structures and properties such as the photonic skyrmions and merons. We term this sub-area ‘spin photonics’, its scope being to cover the design and research of spin structures in strongly confined electromagnetic fields with unique properties and applications. The concepts and framework reviewed have importance in optics, topological photonics, metrology, and quantum technologies and may be used to extend spin-dynamics concepts to fluidic, acoustic, and gravitational waves.
Author Shi, Peng
Yuan, Xiaocong
Du, Luping
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0001-9583-9412
  surname: Shi
  fullname: Shi, Peng
  organization: Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology and Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
– sequence: 2
  givenname: Luping
  surname: Du
  fullname: Du, Luping
  email: lpdu@szu.edu.cn
  organization: Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology and Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
– sequence: 3
  givenname: Xiaocong
  orcidid: 0000-0003-2605-9003
  surname: Yuan
  fullname: Yuan, Xiaocong
  email: xcyuan@szu.edu.cn
  organization: Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology and Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
BookMark eNp9kEFP3DAQha0KpFLYO8dIPQc8tuPEnFohWpCQegDO1jh2lmx37dT2gvbf10sQrSrRuXg0fu_N6PtEDnzwjpBToGfQQHPu0YfpsWaUQU2pkB_IEQPF6k6COPir_0gWKa1oKaU4KHlELu6m0VfTY8jBj326qIYYNlWO6NOTi8lVaf-fw5ukSj93cTMGn07I4YDr5Bav7zF5-HZ1f3ld3_74fnP59bbuG8pyDWgaIXpheMfsYNtSijtkpkWUlAOnQ8c63hngvLOyB0TXghisNMwo2fBjcjPn2oArPcVxg3GnA476ZRDiUmPMY792mktpHO9ERykTjjVoTQ_WAgIYLiiUrM9z1hTDr61LWa_CNvpyvmaNapWQZWFR0VnVx5BSdMPbVqB6D1zPwPUeuN4DLxb5j6UfM-bCqbAc1_8zfpmNz7jOLlq3jNtdaf4c9p4VKEiuWMt_AyWhnJo
CitedBy_id crossref_primary_10_1103_PhysRevA_107_063517
crossref_primary_10_1002_adma_202301573
crossref_primary_10_1088_2040_8986_ada047
crossref_primary_10_3390_photonics11060579
crossref_primary_10_1360_TB_2024_0296
crossref_primary_10_1002_adma_202203889
crossref_primary_10_1364_OE_506758
crossref_primary_10_1016_j_progsurf_2023_100707
crossref_primary_10_1364_OE_514440
crossref_primary_10_1039_D3NR02143B
crossref_primary_10_1364_AOP_489300
crossref_primary_10_1364_OL_483339
crossref_primary_10_1002_advs_202205249
crossref_primary_10_1109_JPHOT_2022_3189626
crossref_primary_10_1103_PhysRevLett_128_213904
crossref_primary_10_3389_fphy_2022_1079265
crossref_primary_10_1364_JOSAA_541429
crossref_primary_10_3788_AOS231986
crossref_primary_10_1002_adom_202201986
crossref_primary_10_1103_PhysRevA_105_023524
crossref_primary_10_1103_PhysRevB_108_L241112
crossref_primary_10_1515_nanoph_2023_0065
crossref_primary_10_3390_opt3030029
crossref_primary_10_1103_PhysRevLett_133_073802
crossref_primary_10_1103_PhysRevA_107_063504
crossref_primary_10_7498_aps_74_20241344
crossref_primary_10_1038_s42005_023_01374_y
crossref_primary_10_3390_app14167425
crossref_primary_10_1038_s41377_024_01659_z
crossref_primary_10_1364_OE_538682
crossref_primary_10_1103_PhysRevA_106_063522
crossref_primary_10_1364_JOSAA_522001
crossref_primary_10_1103_PhysRevLett_129_267401
crossref_primary_10_1021_acsphotonics_2c01535
crossref_primary_10_1002_adfm_202413351
crossref_primary_10_1088_1367_2630_ad22ba
crossref_primary_10_1364_OL_489429
crossref_primary_10_1002_lpor_202400109
crossref_primary_10_1364_OE_498456
crossref_primary_10_1002_lpor_202300212
crossref_primary_10_1364_OE_541926
crossref_primary_10_1016_j_optcom_2024_130839
crossref_primary_10_1002_lpor_202200007
crossref_primary_10_1063_5_0084482
crossref_primary_10_1364_OPTICA_474612
crossref_primary_10_1021_acs_nanolett_3c03351
crossref_primary_10_1038_s41377_022_00970_x
crossref_primary_10_1103_PhysRevA_110_043523
Cites_doi 10.1098/rspa.1984.0023
10.1103/PhysRevLett.121.193902
10.1117/1.AP.3.1.014002
10.1103/PhysRevD.101.084046
10.1039/C5NR07374J
10.12693/APhysPolA.86.97
10.1103/PhysRevLett.109.013901
10.1103/PhysRevB.99.174310
10.1088/2040-8978/13/5/053001
10.1103/PhysRevA.97.053842
10.1103/PhysRevA.97.043840
10.1038/nphoton.2008.229
10.1126/science.1233739
10.1364/OME.9.000095
10.1063/1.1704165
10.1103/PhysRevLett.88.257901
10.1088/1367-2630/16/9/093008
10.1117/1.AP.3.1.015001
10.1126/science.1257671
10.1098/rspa.1909.0060
10.1103/PhysRevLett.117.166803
10.1103/PhysRevLett.121.193901
10.1126/science.aba6415
10.1103/PhysRevLett.101.043903
10.1103/PhysRevLett.119.073901
10.1103/PhysRevX.8.021042
10.1088/0143-0807/17/3/008
10.1073/pnas.2018816118
10.1103/PhysRevA.86.042103
10.1103/RevModPhys.83.1057
10.1364/OL.40.002929
10.1103/PhysRevA.98.043837
10.1038/s41586-020-3030-1
10.1038/s41377-019-0194-2
10.1103/PhysRevA.78.052116
10.1039/C8NR01618F
10.1038/nphys3732
10.1038/s41467-018-03237-5
10.1016/j.physrep.2015.06.003
10.1364/OE.27.018980
10.1088/1367-2630/15/3/033026
10.1002/lpor.200810007
10.1364/OE.26.023449
10.1038/s41567-019-0487-7
10.1364/OE.389176
10.1103/PhysRevA.83.053820
10.1103/RevModPhys.91.015006
10.1038/nphoton.2015.201
10.1364/OPTICA.5.001016
10.1088/2040-8986/ab14c4
10.1088/1367-2630/16/9/093037
10.1103/PhysRevLett.100.013904
10.1002/lpor.202000554
10.1103/PhysRevB.102.045129
10.1103/PhysRev.50.115
10.1088/0370-1328/74/3/305
10.1038/nature08293
10.1038/nphoton.2016.262
10.1103/PhysRevLett.96.163905
10.1126/science.1231758
10.1364/AOP.3.000161
10.1016/j.physleta.2017.05.042
10.1088/1367-2630/14/5/053050
10.1080/09500349414550911
10.1103/PhysRevLett.99.073901
10.1038/ncomms4300
10.1103/PhysRevLett.104.163901
10.1088/2040-8978/18/8/085605
10.1038/nphoton.2015.203
10.1103/PhysRevLett.111.060401
10.1038/s41467-019-08397-6
10.1103/PhysRevLett.101.030404
10.1117/1.AP.3.3.036001
10.1088/1464-4258/11/9/094001
10.1364/OE.27.015846
10.1103/PhysRevLett.108.120403
10.1021/acsphotonics.1c00762
10.1016/S0079-6638(08)70316-0
10.1088/1751-8113/46/5/053001
10.1016/S0031-8914(40)90091-X
10.1103/PhysRevLett.117.113903
10.1103/PhysRevA.83.021803
10.1088/2040-8986/aa98b6
10.1103/PhysRevLett.114.063901
10.1038/nature21037
10.1126/science.aau0227
10.1364/OE.19.026132
10.1103/PhysRevA.86.013845
10.7567/1882-0786/aafca1
10.1088/2040-8978/18/6/064004
10.1016/j.pquantelec.2021.100341
10.1515/nanoph-2021-0201
10.1038/s41566-020-00709-3
10.1103/PhysRevLett.124.106103
10.1103/PhysRevLett.104.083903
10.1103/PhysRevLett.93.083901
10.1103/PhysRevA.81.053826
10.1073/pnas.1808534115
10.1209/0295-5075/25/7/004
10.1038/ncomms11286
10.1088/1464-4258/11/9/094009
10.1103/PhysRevA.80.063814
10.1126/science.aaa9519
10.1364/OL.43.000963
10.1007/978-3-642-32858-9
10.2971/jeos.2013.13032
10.1038/s41566-019-0521-4
10.1119/1.19136
10.1021/acsphotonics.7b00436
10.1016/S0079-6638(08)70391-3
10.1088/1367-2630/15/7/073022
10.1103/PhysRevA.89.033841
10.1021/acs.nanolett.9b01343
10.1103/PhysRevA.97.053802
10.1103/PhysRevB.82.125433
10.1103/PhysRevA.82.023817
10.1088/1367-2630/abc853
10.1103/PhysRevA.95.053802
10.1088/1361-6633/aa5397
10.1103/RevModPhys.82.3045
10.1364/OL.40.002890
10.1126/science.1152697
10.1103/PhysRevResearch.3.023109
10.1016/B978-0-08-030275-1.50007-2
10.1063/5.0004750
10.1039/D0NR00618A
10.1103/PhysRevLett.75.826
10.1103/PhysRevLett.118.040401
10.1038/nphoton.2013.289
10.1103/PhysRevLett.127.237403
10.1201/b19031
10.1103/PhysRevLett.115.153901
10.1088/2040-8978/15/1/014001
10.1088/0305-4470/21/9/019
10.1103/PhysRevLett.88.053601
10.1038/s41566-020-00733-3
10.1364/OPTICA.3.000118
10.1103/PhysRevA.85.061801
10.1103/PhysRevA.82.063825
10.1088/1464-4258/8/9/008
10.1021/nl3012787
10.1103/PhysRevB.99.020301
10.1088/1464-4266/4/2/361
10.1364/OL.34.000389
10.1364/OL.37.003009
10.1364/OL.33.001437
10.1088/1361-6463/ab2402
10.1103/PhysRevLett.96.073903
10.1103/PhysRevA.102.053513
10.1021/ph500084b
10.1038/nnano.2015.159
10.1103/PhysRevLett.120.243605
10.1098/rspa.2000.0660
10.1103/PhysRevA.45.8185
10.1515/nanoph-2020-0430
10.1038/ncomms7695
10.1103/PhysRevX.5.011039
10.1038/ncomms6327
10.1088/1751-8113/46/39/395202
10.1103/PhysRevLett.97.043901
10.1038/nphoton.2015.232
ContentType Journal Article
Copyright 2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1515/nanoph-2021-0046
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2192-8614
EndPage 3943
ExternalDocumentID oai_doaj_org_article_366be38480024e25adbc1dd1a11b3401
10_1515_nanoph_2021_0046
10_1515_nanoph_2021_004610163927
GrantInformation_xml – fundername: Shenzhen Peacock Plan
  grantid: KQTD20170330110444030
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2016A030312010
– fundername: National Natural Science Foundation of China
  grantid: U1701661, 61935013, 62075139, 61427819, 61622504, 12174266, 12047540, 61705135
– fundername: Science and Technology Innovation Commission of Shenzhen
  grantid: RCJC20200714114435063, JCYJ20200109114018750, JCYJ20180507182035270
– fundername: leadership of Guangdong province program
  grantid: 00201505
– fundername: Guangdong Major Project of Basic Research
  grantid: 2020B0301030009
GroupedDBID 0R~
0~D
5VS
8FE
8FG
AAFWJ
ABFKT
ACGFS
ADBBV
ADMLS
AEJTT
AENEX
AFBDD
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
HZ~
M48
O9-
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
QD8
SA.
SLJYH
AAYXX
CITATION
7SP
7U5
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c502t-1ab544c4b382dfd777793ea2b7aa603130f82838b1338d6c1aae714fd6b2b9653
IEDL.DBID BENPR
ISSN 2192-8614
2192-8606
IngestDate Wed Aug 27 00:59:30 EDT 2025
Fri Jul 25 04:11:11 EDT 2025
Tue Jul 01 00:41:51 EDT 2025
Thu Apr 24 23:08:54 EDT 2025
Thu Jul 10 10:33:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-1ab544c4b382dfd777793ea2b7aa603130f82838b1338d6c1aae714fd6b2b9653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2605-9003
0000-0001-9583-9412
OpenAccessLink https://www.proquest.com/docview/2597946653?pq-origsite=%requestingapplication%
PQID 2597946653
PQPubID 2038884
PageCount 017
ParticipantIDs doaj_primary_oai_doaj_org_article_366be38480024e25adbc1dd1a11b3401
proquest_journals_2597946653
crossref_primary_10_1515_nanoph_2021_0046
crossref_citationtrail_10_1515_nanoph_2021_0046
walterdegruyter_journals_10_1515_nanoph_2021_004610163927
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-21
PublicationDateYYYYMMDD 2021-10-21
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-21
  day: 21
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Nanophotonics (Berlin, Germany)
PublicationYear 2021
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2022111113434684105_j_nanoph-2021-0046_ref_150
2022111113434684105_j_nanoph-2021-0046_ref_151
2022111113434684105_j_nanoph-2021-0046_ref_152
2022111113434684105_j_nanoph-2021-0046_ref_031
2022111113434684105_j_nanoph-2021-0046_ref_030
2022111113434684105_j_nanoph-2021-0046_ref_035
2022111113434684105_j_nanoph-2021-0046_ref_157
2022111113434684105_j_nanoph-2021-0046_ref_034
2022111113434684105_j_nanoph-2021-0046_ref_158
2022111113434684105_j_nanoph-2021-0046_ref_033
2022111113434684105_j_nanoph-2021-0046_ref_159
2022111113434684105_j_nanoph-2021-0046_ref_032
2022111113434684105_j_nanoph-2021-0046_ref_039
2022111113434684105_j_nanoph-2021-0046_ref_153
2022111113434684105_j_nanoph-2021-0046_ref_038
2022111113434684105_j_nanoph-2021-0046_ref_154
2022111113434684105_j_nanoph-2021-0046_ref_037
2022111113434684105_j_nanoph-2021-0046_ref_155
2022111113434684105_j_nanoph-2021-0046_ref_036
2022111113434684105_j_nanoph-2021-0046_ref_156
2022111113434684105_j_nanoph-2021-0046_ref_160
2022111113434684105_j_nanoph-2021-0046_ref_161
2022111113434684105_j_nanoph-2021-0046_ref_162
2022111113434684105_j_nanoph-2021-0046_ref_163
2022111113434684105_j_nanoph-2021-0046_ref_042
2022111113434684105_j_nanoph-2021-0046_ref_041
2022111113434684105_j_nanoph-2021-0046_ref_040
2022111113434684105_j_nanoph-2021-0046_ref_046
2022111113434684105_j_nanoph-2021-0046_ref_045
2022111113434684105_j_nanoph-2021-0046_ref_044
2022111113434684105_j_nanoph-2021-0046_ref_043
2022111113434684105_j_nanoph-2021-0046_ref_164
2022111113434684105_j_nanoph-2021-0046_ref_049
2022111113434684105_j_nanoph-2021-0046_ref_165
2022111113434684105_j_nanoph-2021-0046_ref_048
2022111113434684105_j_nanoph-2021-0046_ref_166
2022111113434684105_j_nanoph-2021-0046_ref_047
2022111113434684105_j_nanoph-2021-0046_ref_167
2022111113434684105_j_nanoph-2021-0046_ref_094
2022111113434684105_j_nanoph-2021-0046_ref_095
2022111113434684105_j_nanoph-2021-0046_ref_096
2022111113434684105_j_nanoph-2021-0046_ref_097
2022111113434684105_j_nanoph-2021-0046_ref_130
2022111113434684105_j_nanoph-2021-0046_ref_090
2022111113434684105_j_nanoph-2021-0046_ref_091
2022111113434684105_j_nanoph-2021-0046_ref_092
2022111113434684105_j_nanoph-2021-0046_ref_093
2022111113434684105_j_nanoph-2021-0046_ref_019
2022111113434684105_j_nanoph-2021-0046_ref_018
2022111113434684105_j_nanoph-2021-0046_ref_139
2022111113434684105_j_nanoph-2021-0046_ref_013
2022111113434684105_j_nanoph-2021-0046_ref_135
2022111113434684105_j_nanoph-2021-0046_ref_012
2022111113434684105_j_nanoph-2021-0046_ref_136
2022111113434684105_j_nanoph-2021-0046_ref_011
2022111113434684105_j_nanoph-2021-0046_ref_137
2022111113434684105_j_nanoph-2021-0046_ref_010
2022111113434684105_j_nanoph-2021-0046_ref_138
2022111113434684105_j_nanoph-2021-0046_ref_017
2022111113434684105_j_nanoph-2021-0046_ref_098
2022111113434684105_j_nanoph-2021-0046_ref_131
2022111113434684105_j_nanoph-2021-0046_ref_016
2022111113434684105_j_nanoph-2021-0046_ref_099
2022111113434684105_j_nanoph-2021-0046_ref_132
2022111113434684105_j_nanoph-2021-0046_ref_015
2022111113434684105_j_nanoph-2021-0046_ref_133
2022111113434684105_j_nanoph-2021-0046_ref_014
2022111113434684105_j_nanoph-2021-0046_ref_134
2022111113434684105_j_nanoph-2021-0046_ref_140
2022111113434684105_j_nanoph-2021-0046_ref_141
2022111113434684105_j_nanoph-2021-0046_ref_020
2022111113434684105_j_nanoph-2021-0046_ref_029
2022111113434684105_j_nanoph-2021-0046_ref_024
2022111113434684105_j_nanoph-2021-0046_ref_146
2022111113434684105_j_nanoph-2021-0046_ref_023
2022111113434684105_j_nanoph-2021-0046_ref_147
2022111113434684105_j_nanoph-2021-0046_ref_022
2022111113434684105_j_nanoph-2021-0046_ref_148
2022111113434684105_j_nanoph-2021-0046_ref_021
2022111113434684105_j_nanoph-2021-0046_ref_149
2022111113434684105_j_nanoph-2021-0046_ref_028
2022111113434684105_j_nanoph-2021-0046_ref_142
2022111113434684105_j_nanoph-2021-0046_ref_027
2022111113434684105_j_nanoph-2021-0046_ref_143
2022111113434684105_j_nanoph-2021-0046_ref_026
2022111113434684105_j_nanoph-2021-0046_ref_144
2022111113434684105_j_nanoph-2021-0046_ref_025
2022111113434684105_j_nanoph-2021-0046_ref_145
2022111113434684105_j_nanoph-2021-0046_ref_071
2022111113434684105_j_nanoph-2021-0046_ref_070
2022111113434684105_j_nanoph-2021-0046_ref_075
2022111113434684105_j_nanoph-2021-0046_ref_074
2022111113434684105_j_nanoph-2021-0046_ref_073
2022111113434684105_j_nanoph-2021-0046_ref_072
2022111113434684105_j_nanoph-2021-0046_ref_117
2022111113434684105_j_nanoph-2021-0046_ref_118
2022111113434684105_j_nanoph-2021-0046_ref_119
2022111113434684105_j_nanoph-2021-0046_ref_079
2022111113434684105_j_nanoph-2021-0046_ref_113
2022111113434684105_j_nanoph-2021-0046_ref_078
2022111113434684105_j_nanoph-2021-0046_ref_114
2022111113434684105_j_nanoph-2021-0046_ref_077
2022111113434684105_j_nanoph-2021-0046_ref_115
2022111113434684105_j_nanoph-2021-0046_ref_076
2022111113434684105_j_nanoph-2021-0046_ref_116
2022111113434684105_j_nanoph-2021-0046_ref_110
2022111113434684105_j_nanoph-2021-0046_ref_111
2022111113434684105_j_nanoph-2021-0046_ref_112
2022111113434684105_j_nanoph-2021-0046_ref_082
2022111113434684105_j_nanoph-2021-0046_ref_081
2022111113434684105_j_nanoph-2021-0046_ref_080
2022111113434684105_j_nanoph-2021-0046_ref_086
2022111113434684105_j_nanoph-2021-0046_ref_085
2022111113434684105_j_nanoph-2021-0046_ref_084
2022111113434684105_j_nanoph-2021-0046_ref_083
2022111113434684105_j_nanoph-2021-0046_ref_009
2022111113434684105_j_nanoph-2021-0046_ref_008
2022111113434684105_j_nanoph-2021-0046_ref_007
2022111113434684105_j_nanoph-2021-0046_ref_128
2022111113434684105_j_nanoph-2021-0046_ref_129
2022111113434684105_j_nanoph-2021-0046_ref_002
2022111113434684105_j_nanoph-2021-0046_ref_124
2022111113434684105_j_nanoph-2021-0046_ref_001
2022111113434684105_j_nanoph-2021-0046_ref_089
2022111113434684105_j_nanoph-2021-0046_ref_125
2022111113434684105_j_nanoph-2021-0046_ref_088
2022111113434684105_j_nanoph-2021-0046_ref_126
2022111113434684105_j_nanoph-2021-0046_ref_087
2022111113434684105_j_nanoph-2021-0046_ref_127
2022111113434684105_j_nanoph-2021-0046_ref_006
2022111113434684105_j_nanoph-2021-0046_ref_120
2022111113434684105_j_nanoph-2021-0046_ref_005
2022111113434684105_j_nanoph-2021-0046_ref_121
2022111113434684105_j_nanoph-2021-0046_ref_004
2022111113434684105_j_nanoph-2021-0046_ref_122
2022111113434684105_j_nanoph-2021-0046_ref_003
2022111113434684105_j_nanoph-2021-0046_ref_123
2022111113434684105_j_nanoph-2021-0046_ref_053
2022111113434684105_j_nanoph-2021-0046_ref_052
2022111113434684105_j_nanoph-2021-0046_ref_051
2022111113434684105_j_nanoph-2021-0046_ref_050
2022111113434684105_j_nanoph-2021-0046_ref_057
2022111113434684105_j_nanoph-2021-0046_ref_056
2022111113434684105_j_nanoph-2021-0046_ref_055
2022111113434684105_j_nanoph-2021-0046_ref_054
2022111113434684105_j_nanoph-2021-0046_ref_059
2022111113434684105_j_nanoph-2021-0046_ref_058
2022111113434684105_j_nanoph-2021-0046_ref_060
2022111113434684105_j_nanoph-2021-0046_ref_064
2022111113434684105_j_nanoph-2021-0046_ref_063
2022111113434684105_j_nanoph-2021-0046_ref_062
2022111113434684105_j_nanoph-2021-0046_ref_061
2022111113434684105_j_nanoph-2021-0046_ref_106
2022111113434684105_j_nanoph-2021-0046_ref_107
2022111113434684105_j_nanoph-2021-0046_ref_108
2022111113434684105_j_nanoph-2021-0046_ref_109
2022111113434684105_j_nanoph-2021-0046_ref_068
2022111113434684105_j_nanoph-2021-0046_ref_102
2022111113434684105_j_nanoph-2021-0046_ref_067
2022111113434684105_j_nanoph-2021-0046_ref_103
2022111113434684105_j_nanoph-2021-0046_ref_066
2022111113434684105_j_nanoph-2021-0046_ref_104
2022111113434684105_j_nanoph-2021-0046_ref_065
2022111113434684105_j_nanoph-2021-0046_ref_105
2022111113434684105_j_nanoph-2021-0046_ref_100
2022111113434684105_j_nanoph-2021-0046_ref_069
2022111113434684105_j_nanoph-2021-0046_ref_101
References_xml – ident: 2022111113434684105_j_nanoph-2021-0046_ref_161
  doi: 10.1098/rspa.1984.0023
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_087
  doi: 10.1103/PhysRevLett.121.193902
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_009
  doi: 10.1117/1.AP.3.1.014002
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_002
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_143
  doi: 10.1103/PhysRevD.101.084046
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_045
  doi: 10.1039/C5NR07374J
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_103
  doi: 10.12693/APhysPolA.86.97
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_032
  doi: 10.1103/PhysRevLett.109.013901
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_138
  doi: 10.1103/PhysRevB.99.174310
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_010
  doi: 10.1088/2040-8978/13/5/053001
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_072
  doi: 10.1103/PhysRevA.97.053842
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_116
  doi: 10.1103/PhysRevA.97.043840
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_016
  doi: 10.1038/nphoton.2008.229
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_063
  doi: 10.1126/science.1233739
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_152
  doi: 10.1364/OME.9.000095
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_132
  doi: 10.1063/1.1704165
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_011
  doi: 10.1103/PhysRevLett.88.257901
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_101
  doi: 10.1088/1367-2630/16/9/093008
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_014
  doi: 10.1117/1.AP.3.1.015001
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_089
  doi: 10.1126/science.1257671
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_003
  doi: 10.1098/rspa.1909.0060
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_033
  doi: 10.1103/PhysRevLett.117.166803
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_085
  doi: 10.1103/PhysRevLett.121.193901
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_155
  doi: 10.1126/science.aba6415
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_041
  doi: 10.1103/PhysRevLett.101.043903
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_110
  doi: 10.1103/PhysRevLett.119.073901
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_055
  doi: 10.1103/PhysRevX.8.021042
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_130
  doi: 10.1088/0143-0807/17/3/008
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_057
  doi: 10.1073/pnas.2018816118
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_128
  doi: 10.1103/PhysRevA.86.042103
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_146
  doi: 10.1103/RevModPhys.83.1057
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_052
  doi: 10.1364/OL.40.002929
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_104
  doi: 10.1103/PhysRevA.98.043837
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_156
  doi: 10.1038/s41586-020-3030-1
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_007
  doi: 10.1038/s41377-019-0194-2
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_109
  doi: 10.1103/PhysRevA.78.052116
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_066
  doi: 10.1039/C8NR01618F
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_095
  doi: 10.1038/nphys3732
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_099
  doi: 10.1038/s41467-018-03237-5
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_021
  doi: 10.1016/j.physrep.2015.06.003
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_164
  doi: 10.1364/OE.27.018980
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_114
  doi: 10.1088/1367-2630/15/3/033026
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_008
  doi: 10.1002/lpor.200810007
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_073
  doi: 10.1364/OE.26.023449
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_075
  doi: 10.1038/s41567-019-0487-7
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_167
  doi: 10.1364/OE.389176
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_034
  doi: 10.1103/PhysRevA.83.053820
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_147
  doi: 10.1103/RevModPhys.91.015006
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_019
  doi: 10.1038/nphoton.2015.201
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_112
  doi: 10.1364/OPTICA.5.001016
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_120
  doi: 10.1088/2040-8986/ab14c4
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_125
  doi: 10.1088/1367-2630/16/9/093037
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_148
  doi: 10.1103/PhysRevLett.100.013904
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_078
  doi: 10.1002/lpor.202000554
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_140
  doi: 10.1103/PhysRevB.102.045129
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_018
  doi: 10.1103/PhysRev.50.115
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_123
  doi: 10.1088/0370-1328/74/3/305
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_080
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_149
  doi: 10.1038/nature08293
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_159
  doi: 10.1038/nphoton.2016.262
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_049
  doi: 10.1103/PhysRevLett.96.163905
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_030
  doi: 10.1126/science.1231758
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_006
  doi: 10.1364/AOP.3.000161
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_118
  doi: 10.1016/j.physleta.2017.05.042
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_126
  doi: 10.1088/1367-2630/14/5/053050
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_013
  doi: 10.1080/09500349414550911
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_047
  doi: 10.1103/PhysRevLett.99.073901
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_053
  doi: 10.1038/ncomms4300
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_133
  doi: 10.1103/PhysRevLett.104.163901
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_121
  doi: 10.1088/2040-8978/18/8/085605
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_022
  doi: 10.1038/nphoton.2015.203
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_129
  doi: 10.1103/PhysRevLett.111.060401
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_150
  doi: 10.1038/s41467-019-08397-6
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_040
  doi: 10.1103/PhysRevLett.101.030404
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_065
  doi: 10.1117/1.AP.3.3.036001
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_100
  doi: 10.1088/1464-4258/11/9/094001
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_056
  doi: 10.1364/OE.27.015846
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_028
  doi: 10.1103/PhysRevLett.108.120403
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_082
  doi: 10.1021/acsphotonics.1c00762
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_102
  doi: 10.1016/S0079-6638(08)70316-0
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_107
  doi: 10.1088/1751-8113/46/5/053001
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_124
  doi: 10.1016/S0031-8914(40)90091-X
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_086
  doi: 10.1103/PhysRevLett.117.113903
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_134
  doi: 10.1103/PhysRevA.83.021803
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_108
  doi: 10.1088/2040-8986/aa98b6
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_054
  doi: 10.1103/PhysRevLett.114.063901
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_091
  doi: 10.1038/nature21037
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_154
  doi: 10.1126/science.aau0227
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_048
  doi: 10.1364/OE.19.026132
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_127
  doi: 10.1103/PhysRevA.86.013845
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_074
  doi: 10.7567/1882-0786/aafca1
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_105
  doi: 10.1088/2040-8978/18/6/064004
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_020
  doi: 10.1016/j.pquantelec.2021.100341
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_081
  doi: 10.1515/nanoph-2021-0201
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_070
  doi: 10.1038/s41566-020-00709-3
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_158
  doi: 10.1103/PhysRevLett.124.106103
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_046
  doi: 10.1103/PhysRevLett.104.083903
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_026
  doi: 10.1103/PhysRevLett.93.083901
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_039
  doi: 10.1103/PhysRevA.81.053826
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_141
  doi: 10.1073/pnas.1808534115
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_012
  doi: 10.1209/0295-5075/25/7/004
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_084
  doi: 10.1038/ncomms11286
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_017
  doi: 10.1088/1464-4258/11/9/094009
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_015
  doi: 10.1103/PhysRevA.80.063814
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_067
  doi: 10.1126/science.aaa9519
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_135
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_083
  doi: 10.1364/OL.43.000963
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_144
  doi: 10.1007/978-3-642-32858-9
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_051
  doi: 10.2971/jeos.2013.13032
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_060
  doi: 10.1038/s41566-019-0521-4
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_001
  doi: 10.1119/1.19136
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_069
  doi: 10.1021/acsphotonics.7b00436
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_005
  doi: 10.1016/S0079-6638(08)70391-3
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_119
  doi: 10.1088/1367-2630/15/7/073022
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_098
  doi: 10.1103/PhysRevA.89.033841
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_153
  doi: 10.1021/acs.nanolett.9b01343
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_071
  doi: 10.1103/PhysRevA.97.053802
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_042
  doi: 10.1103/PhysRevB.82.125433
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_142
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_037
  doi: 10.1103/PhysRevA.82.023817
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_117
  doi: 10.1088/1367-2630/abc853
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_097
  doi: 10.1103/PhysRevA.95.053802
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_058
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_031
  doi: 10.1088/1361-6633/aa5397
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_145
  doi: 10.1103/RevModPhys.82.3045
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_090
  doi: 10.1364/OL.40.002890
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_029
  doi: 10.1126/science.1152697
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_136
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_151
  doi: 10.1103/PhysRevResearch.3.023109
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_113
  doi: 10.1016/B978-0-08-030275-1.50007-2
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_166
  doi: 10.1063/5.0004750
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_076
  doi: 10.1039/D0NR00618A
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_096
  doi: 10.1103/PhysRevLett.75.826
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_162
  doi: 10.1103/PhysRevLett.118.040401
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_163
  doi: 10.1038/nphoton.2013.289
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_079
  doi: 10.1103/PhysRevLett.127.237403
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_137
  doi: 10.1201/b19031
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_088
  doi: 10.1103/PhysRevLett.115.153901
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_038
  doi: 10.1088/2040-8978/15/1/014001
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_025
  doi: 10.1088/0305-4470/21/9/019
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_023
  doi: 10.1103/PhysRevLett.88.053601
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_061
  doi: 10.1038/s41566-020-00733-3
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_068
  doi: 10.1364/OPTICA.3.000118
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_050
  doi: 10.1103/PhysRevA.85.061801
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_115
  doi: 10.1103/PhysRevA.82.063825
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_043
  doi: 10.1088/1464-4258/8/9/008
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_094
  doi: 10.1021/nl3012787
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_139
  doi: 10.1103/PhysRevB.99.020301
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_106
  doi: 10.1088/1464-4266/4/2/361
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_036
  doi: 10.1364/OL.34.000389
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_131
  doi: 10.1364/OL.37.003009
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_035
  doi: 10.1364/OL.33.001437
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_165
  doi: 10.1088/1361-6463/ab2402
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_027
  doi: 10.1103/PhysRevLett.96.073903
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_157
  doi: 10.1103/PhysRevA.102.053513
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_064
  doi: 10.1021/ph500084b
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_092
  doi: 10.1038/nnano.2015.159
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_111
  doi: 10.1103/PhysRevLett.120.243605
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_160
  doi: 10.1098/rspa.2000.0660
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_004
  doi: 10.1103/PhysRevA.45.8185
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_077
  doi: 10.1515/nanoph-2020-0430
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_093
  doi: 10.1038/ncomms7695
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_059
  doi: 10.1103/PhysRevX.5.011039
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_062
  doi: 10.1038/ncomms6327
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_122
  doi: 10.1088/1751-8113/46/39/395202
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_044
  doi: 10.1103/PhysRevLett.97.043901
– ident: 2022111113434684105_j_nanoph-2021-0046_ref_024
  doi: 10.1038/nphoton.2015.232
SSID ssj0000993196
Score 2.4235728
SecondaryResourceType review_article
Snippet Spin angular momentum associated with circular polarization is a fundamental and important aspect of photons both in classical and quantum optics. The...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3927
SubjectTerms Angular momentum
Circular polarization
Electromagnetic fields
Electromagnetic radiation
Evanescent waves
Gravitational waves
Hypothetical particles
Ion beams
Optical properties
Optics
Particle theory
Photonics
Quantum optics
Spin dynamics
spin-momentum locking
spin-orbit interaction
topological structure
Topology
transverse spin
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQE0t5i0JBGVgYotaxnUc3QFQVEixQqZvlVygPpVGTCvXfc5ekpSABCxmTs2Tdw993sX1HyHmawrJo8JR45BKfp4nylUuFr42hznGRRhovON_dh8MRvx2L8VqrLzwTVpcHrhXXZWGoHYs5EhvuAqGsNtRaqijVjNc3twDz1pKpl5r3oG81-5KA2d1MZdN8Ak4RQPrcQ767hkNVuf4vHLP1Xu1WW_c0my_K5e5oBTqDHdJq2KJ3Wc9yl2y4bI9sN8zRa-Ky2Cf9h_w58_LJtMRKt0Xfw1sjXok4hMcunFfg93K6EvGK1wWYGFzugIwGN4_XQ7_piuAb0QtKnyotODdcsziwqY3gSZhTgY6UwpbRrJdCFsVijdmnDQ1VykWUpzbUgU5CwQ7JZjbN3BHxhONGxRRiNgakTqiCiA6SMIYBcU852ybdpY6kaUqGY-eKN4mpA2hV1lqVqFWJWm2Ti9WIvC6X8YvsFap9JYeFrqsXYH7ZmF_-Zf426SyNJpvoKySkdFXdfMHaJPlmyE-pn-aF_zOANUbH_zG_E7JVuRygXUA7ZLOczd0p0JhSn1Ue-wF1p-9Y
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66Xrz4FldX6cGLh-qmSfoQRFQUEfSiC95CXvW1tOu2ovvvnelmVxS1x3YSyjw639ckM4Ts5jl8Fg3uEk9cFvI8U6FyuQi1MdQ5LvJE4wHn65v4ssev7sX91_For8DqV2qH_aR6w_7-x-voGAL-qOneQ8VBoYpy8Aj2joAZA9-bJXOQlxIM02sP9p_HWAj9DbvNAawJU4Duft3yt0m-5ammnP83DLrw3qxmW_cwfBvVk9XTJildLJEFjyaDk7H5l8mMK1bIokeWgY_bapUc3g6eimDwWNZYCbc6DPBUSVBjnsJtGS6o8HldTkWC6mUELgAuuUZ6F-d3Z5eh75oQGtGN6pAqLTg3XLM0srlN4MqYU5FOlMKW0qybA8tiqUZ2amNDlXIJ5bmNdaSzWLB10irKwm2QQDhuVEohplPI5BlVEPFRFqcwIO0qZ9vkYKIjaXxJcexs0ZdILUCrcqxViVqVqNU22ZuOGIzLafwje4pqn8phIezmRjl8kD6uJItj7VjKEfdyFwlltaHWUkWpZsAd26QzMZqcOJcEytfU1ResTbIfhvyS-uu98H8HoMpk8_-pt8h840yQ5yLaIa16-Oa2AcDUeqfxy0-e1-0a
  priority: 102
  providerName: Scholars Portal
Title Spin photonics: from transverse spin to photonic skyrmions
URI https://www.degruyter.com/doi/10.1515/nanoph-2021-0046
https://www.proquest.com/docview/2597946653
https://doaj.org/article/366be38480024e25adbc1dd1a11b3401
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB41cOHCu2p4RD5w6cFK1l7bay4VIFJUCVQVkHJb7cuhamW7sRHi33fG2YSHRHzwwd61rHl-M7s7A3BSFGgWDe0Sz1we8iJXoXJFEmpjmHM8KTJNB5yvb9Kre_5jkkx8wq3x2yoXNrEz1LYylCMfIkzvaqEn8bf6X0hdo2h11bfQ6ME6mmCBwdf6-eXNz1_LLAviH5Ix6jCHUCYUCNf9WiX68WGpyqp-QEGJMKQeEQZ-5Zu6Ev5vcOfmU7eCbd109vjcLlZMO0c03oZNjyCDsznLd-CTK3dhy6PJwOtqswent_XvMqgfqpaq3zanAZ0kCVryTbQVwwUNvW-r5ZCg-fOMbEcx3If78eXdxVXoOyWEJhlFbciUTjg3XMcisoXN8MpjpyKdKUVtpONRgZFVLDRFpDY1TCmXMV7YVEc6R5p-hrWyKt0XCBLHjRIM9Vig986ZQi2P8lTgBDFSzvZhuKCRNL6MOHWz-CspnECqyjlVJVFVElX78HU5o56X0Fgx9pzIvhxHxa-7B9VsKr0uyThNtYsFJ6zLXZQoqw2zlinGdIzxYh-OFkyTXiMb-SI_fcjfMfJl1Ef_RTkORJLZwepPH8JGJ0zo2yJ2BGvt7NEdI2hp9QB6Yvx94OVz0IX-eL_m4j_XyO14
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLaqcoBLy1NsKZADHDhEu_NIMqmEKl7Llj4utFJvw7zSIlASNqmq_VP9jdjZZAtI9NYcEyeKPJ89n8czNsCrokC36GiXeBbyWBa5iU0oktg6x0KQSZFZOuB8eJTOTuSX0-R0Da6GszC0rXLwiZ2j9pWjNfIx0vSuFnoidutfMXWNouzq0EJjCYv9sLjEkK15u_cRx_c159NPxx9mcd9VIHbJhLcxMzaR0kkrFPeFz_DKRTDcZsZQy2UxKTAKEcpS9OZTx4wJGZOFTy23eUpdItDl35FC5GRRavp5taaDbIsQTf3skDjFCoODPjOKrGFcmrKqzxGWHAP4CTHuP2bCrmHAXyx347LLl_twNr9YtEN-tpv2pvdho-er0bslwB7AWigfwmbPXaPeMzSPYOdr_b2M6vOqpVq7zU5E51ailmZC2vgRooaet9VKJGp-LBBkCPrHcHIrGnwC62VVhqcQJUE6oxh6DYVcIWcGfQrPU4UvqIkJfgTjQUfa9UXLqXfGT03BC2pVL7WqSauatDqCN6s36mXBjhtk35PaV3JUaru7Uc3PdG-5WqSpDUJJYtYy8MR465j3zDBmBUanI9geBk339t_oa7SOIP9nIK-l_vdftKKCvDXbuvnTL-Hu7PjwQB_sHe0_g3sdsHBW5Wwb1tv5RXiOdKm1LzqMRvDtto3iN7pWJZw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VVEJcylsECvjAhYOVrPdhu7dSCOFVkEql3lb7cotAthU7Qv33zDgbQxFwwUd7RlrNw_PNPr4FeFZV-Ft0tEs8D2UqqtKkJlQytc6xEISscksHnD8cq-WpeHsmz3bgaHsWhrZV-nC-Wl_2G4bUmW_cmibKRq4BrMCz2tRNe4EuzrAZplXK1lfXYFepkosJ7B4uX598HKdaEARRoMVFyj-pXylKA3f_FcC5931Yuh7H9UsFWtyCvQgdk8ONr2_DTqjvwM0II5OYpN1dODhpv9RJe9H0RHvbHSR0hCTpqSjRHoyQdPS9b0aRpPt6if7G-LsHp4tXn4-WabwiIXVynvUpM1YK4YTlReYrn-NT8mAymxtD90fzeYUtFS8staJeOWZMyJmovLKZLZXk92FSN3V4AIkMwpmCYQIXWLZLZjC9s1IVqFDMTfBTmG1tpF3kD6drLL5p6iPQqnpjVU1W1WTVKTwfNdoNd8Y_ZF-Q2Uc5Yr0eXjSrcx2TSHOlbOCFIJArQiaNt455zwxjlmOjOIX9rdN0TMVOY383kOhLPoXyN0f-lPrbuGhyAyFk_vA_dJ_C9U8vF_r9m-N3j-DGEHRY_DK2D5N-tQ6PEdX09kmM2h8zhvSl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin+photonics%3A+from+transverse+spin+to+photonic+skyrmions&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Shi%2C+Peng&rft.au=Du%2C+Luping&rft.au=Yuan%2C+Xiaocong&rft.date=2021-10-21&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=2192-8606&rft.eissn=2192-8614&rft.volume=10&rft.issue=16&rft.spage=3927&rft.epage=3943&rft_id=info:doi/10.1515%2Fnanoph-2021-0046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon