Pepper Mottle Virus and Its Host Interactions: Current State of Knowledge
Pepper mottle virus (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this review, we summarize what is known about the molecular characteristics of PepMoV and its interactions with host plants. Comparisons of symptom va...
Saved in:
Published in | Viruses Vol. 13; no. 10; p. 1930 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
25.09.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pepper mottle virus (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this review, we summarize what is known about the molecular characteristics of PepMoV and its interactions with host plants. Comparisons of symptom variations caused by PepMoV isolates in plant hosts indicates a possible relationship between symptom development and genetic variation. Researchers have investigated the PepMoV–plant pathosystem to identify effective and durable genes that confer resistance to the pathogen. As a result, several recessive pvr or dominant Pvr resistance genes that confer resistance to PepMoV in pepper have been characterized. On the other hand, the molecular mechanisms underlying the interaction between these resistance genes and PepMoV-encoded genes remain largely unknown. Our understanding of the molecular interactions between PepMoV and host plants should be increased by reverse genetic approaches and comprehensive transcriptomic analyses of both the virus and the host genes. |
---|---|
AbstractList | Pepper mottle virus (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this review, we summarize what is known about the molecular characteristics of PepMoV and its interactions with host plants. Comparisons of symptom variations caused by PepMoV isolates in plant hosts indicates a possible relationship between symptom development and genetic variation. Researchers have investigated the PepMoV-plant pathosystem to identify effective and durable genes that confer resistance to the pathogen. As a result, several recessive pvr or dominant Pvr resistance genes that confer resistance to PepMoV in pepper have been characterized. On the other hand, the molecular mechanisms underlying the interaction between these resistance genes and PepMoV-encoded genes remain largely unknown. Our understanding of the molecular interactions between PepMoV and host plants should be increased by reverse genetic approaches and comprehensive transcriptomic analyses of both the virus and the host genes.Pepper mottle virus (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this review, we summarize what is known about the molecular characteristics of PepMoV and its interactions with host plants. Comparisons of symptom variations caused by PepMoV isolates in plant hosts indicates a possible relationship between symptom development and genetic variation. Researchers have investigated the PepMoV-plant pathosystem to identify effective and durable genes that confer resistance to the pathogen. As a result, several recessive pvr or dominant Pvr resistance genes that confer resistance to PepMoV in pepper have been characterized. On the other hand, the molecular mechanisms underlying the interaction between these resistance genes and PepMoV-encoded genes remain largely unknown. Our understanding of the molecular interactions between PepMoV and host plants should be increased by reverse genetic approaches and comprehensive transcriptomic analyses of both the virus and the host genes. (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this review, we summarize what is known about the molecular characteristics of PepMoV and its interactions with host plants. Comparisons of symptom variations caused by PepMoV isolates in plant hosts indicates a possible relationship between symptom development and genetic variation. Researchers have investigated the PepMoV-plant pathosystem to identify effective and durable genes that confer resistance to the pathogen. As a result, several recessive or dominant resistance genes that confer resistance to PepMoV in pepper have been characterized. On the other hand, the molecular mechanisms underlying the interaction between these resistance genes and PepMoV-encoded genes remain largely unknown. Our understanding of the molecular interactions between PepMoV and host plants should be increased by reverse genetic approaches and comprehensive transcriptomic analyses of both the virus and the host genes. Pepper mottle virus (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this review, we summarize what is known about the molecular characteristics of PepMoV and its interactions with host plants. Comparisons of symptom variations caused by PepMoV isolates in plant hosts indicates a possible relationship between symptom development and genetic variation. Researchers have investigated the PepMoV–plant pathosystem to identify effective and durable genes that confer resistance to the pathogen. As a result, several recessive pvr or dominant Pvr resistance genes that confer resistance to PepMoV in pepper have been characterized. On the other hand, the molecular mechanisms underlying the interaction between these resistance genes and PepMoV-encoded genes remain largely unknown. Our understanding of the molecular interactions between PepMoV and host plants should be increased by reverse genetic approaches and comprehensive transcriptomic analyses of both the virus and the host genes. Pepper mottle virus (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this review, we summarize what is known about the molecular characteristics of PepMoV and its interactions with host plants. Comparisons of symptom variations caused by PepMoV isolates in plant hosts indicates a possible relationship between symptom development and genetic variation. Researchers have investigated the PepMoV–plant pathosystem to identify effective and durable genes that confer resistance to the pathogen. As a result, several recessive pvr or dominant Pvr resistance genes that confer resistance to PepMoV in pepper have been characterized. On the other hand, the molecular mechanisms underlying the interaction between these resistance genes and PepMoV-encoded genes remain largely unknown. Our understanding of the molecular interactions between PepMoV and host plants should be increased by reverse genetic approaches and comprehensive transcriptomic analyses of both the virus and the host genes. |
Author | Fang, Miao Kim, Kook-Hyung Yu, Jisuk |
AuthorAffiliation | 2 Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea; mago03@snu.ac.kr 1 Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; fmmy0506@gmail.com 3 Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea |
AuthorAffiliation_xml | – name: 2 Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea; mago03@snu.ac.kr – name: 3 Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea – name: 1 Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; fmmy0506@gmail.com |
Author_xml | – sequence: 1 givenname: Miao surname: Fang fullname: Fang, Miao – sequence: 2 givenname: Jisuk surname: Yu fullname: Yu, Jisuk – sequence: 3 givenname: Kook-Hyung orcidid: 0000-0001-9066-6903 surname: Kim fullname: Kim, Kook-Hyung |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34696360$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1rFDEUhoO02A-98A9IwBu9WJtMviZeCLKoHVpR8OM2ZDJn1iyzyZpkKv57U7cubRG8Sjh58vKe854TdBBiAISeUPKSMU3OriijhGpGHqBjqrVecE3Fwa37ETrJeU2IlJqoh-iIcaklk-QYdZ9gu4WEP8RSJsDffJoztmHAXcn4POaCu1AgWVd8DPkVXs4pQSj4c7EFcBzxRYg_JxhW8AgdjnbK8PjmPEVf3739sjxfXH583y3fXC6cIE1ZUMuIILa6dUwIS5XUgx15w4Govtb6xvYECOetdA3XQlHJqR1HQSsqlGOnqNvpDtGuzTb5jU2_TLTe_CnEtDI2Fe8mMJRZ6InTvWhaDrZvQQuqlOCi51xYVbVe77S2c7-BwdXOkp3uiN59Cf67WcUr04o6d91Ugec3Ain-mCEXs_HZwTTZAHHOpqlTlopyrf6PilZyoRrOK_rsHrqOcwp1qtcUF5Q3glXq6W3ze9d_w63Aix3gUsw5wbhHKDHXi2P2i1PZs3us8zXiGnrt20__-PEbKInBDA |
CitedBy_id | crossref_primary_10_1371_journal_pone_0278784 crossref_primary_10_9787_KJBS_2021_53_4_432 crossref_primary_10_1007_s13205_024_03984_x crossref_primary_10_3390_ijms241713625 crossref_primary_10_1111_mpp_13284 crossref_primary_10_3390_plants13233447 crossref_primary_10_3390_horticulturae8060505 crossref_primary_10_3390_v14050864 crossref_primary_10_1128_jvi_02084_21 crossref_primary_10_1186_s13765_022_00756_0 crossref_primary_10_1021_acs_jafc_3c05268 crossref_primary_10_3390_plants11020188 |
Cites_doi | 10.1128/jvi.68.4.2388-2397.1994 10.1111/tpj.13136 10.1128/JVI.01329-08 10.1007/s42161-018-00235-w 10.1016/S0168-1702(00)00161-1 10.1128/JVI.00024-16 10.3390/v12020132 10.1111/nph.13823 10.1016/S0042-6822(03)00387-8 10.1094/MPMI.2004.17.5.502 10.1111/j.1365-313X.2004.02233.x 10.1016/j.virol.2009.11.015 10.1128/JVI.75.14.6329-6336.2001 10.1128/JVI.00662-12 10.1016/bs.aivir.2014.11.006 10.1111/mpp.13017 10.1094/PDIS.2002.86.6.603 10.1099/jgv.0.000740 10.5197/j.2044-0588.2014.030.014 10.1111/j.1365-3059.2008.01992.x 10.1094/Phyto-85-561 10.3390/v7122935 10.1007/s00122-016-2723-1 10.1073/pnas.0800468105 10.1046/j.0960-7412.2000.00942.x 10.1094/PHYTO-07-17-0231-R 10.1186/s13765-020-00581-3 10.1016/j.tim.2019.05.007 10.1016/j.virusres.2010.02.004 10.3390/v11121158 10.1094/MPMI.2000.13.11.1266 10.1006/jsbi.1997.3856 10.1371/journal.ppat.1003985 10.1371/journal.pone.0119639 10.1016/0042-6822(92)90162-I 10.1101/gr.159402 10.1007/s00122-005-0120-2 10.1007/978-3-7091-6920-9_34 10.1093/jxb/err200 10.3390/v12020217 10.1007/s00705-002-0884-5 10.1094/PDIS-10-10-0721 10.1016/j.biochi.2006.02.012 10.1371/journal.ppat.1000962 10.1007/s40626-019-00143-z 10.1046/j.1365-313x.2000.00834.x 10.3389/fmicb.2020.00102 10.1007/s11032-009-9323-6 10.1016/j.tplants.2005.11.004 10.1094/PDIS.2002.86.2.186C 10.1094/MPMI-11-13-0333-CR 10.1016/j.gene.2018.05.004 10.1128/JVI.00913-07 10.1094/PHYTO-96-0240 10.1016/j.virol.2016.05.011 10.1104/pp.15.00332 10.1111/j.1364-3703.2009.00603.x 10.1111/nph.14177 10.1111/mpp.12341 10.1111/mpp.12973 10.1023/A:1003009721989 10.1002/j.1460-2075.1994.tb06403.x 10.1094/MPMI.1998.11.10.943 10.1099/0022-1317-80-10-2785 10.1073/pnas.89.21.10208 10.1094/MPMI-04-14-0111-R 10.1099/0022-1317-77-7-1335 10.1146/annurev.phyto.43.011205.141140 10.1007/s007050170187 10.1094/MPMI.2003.16.9.777 10.1111/j.1467-7652.2007.00262.x 10.1099/vir.0.035881-0 10.1007/s10327-003-0059-6 10.1146/annurev-phyto-020620-114550 10.1111/j.1365-313X.2005.02381.x 10.5423/PPJ.2008.24.2.152 10.1186/s12985-015-0369-2 10.1073/pnas.1904752116 10.1105/tpc.113.111658 10.1126/sciadv.aaw3808 10.1007/s00239-013-9601-0 10.3390/v13040688 10.1007/s00705-002-0915-2 10.1016/j.coviro.2011.09.010 10.1094/Phyto-65-559 10.1099/vir.0.81817-0 10.1128/JVI.01478-16 10.1016/j.jviromet.2014.02.003 10.5423/PPJ.2006.22.2.155 10.1016/S0168-1702(01)00220-9 10.1038/sdata.2018.103 10.1094/MPMI-19-1207 10.1093/gbe/evz069 10.3389/fpls.2020.01098 10.1073/pnas.93.22.12400 10.1094/MPMI-11-09-0277 10.1128/jvi.69.6.3668-3674.1995 10.3390/v12010077 10.1099/0022-1317-79-12-3119 10.1074/jbc.M703356200 10.1016/j.jviromet.2018.12.012 10.1046/j.1365-313X.1998.00120.x 10.1016/bs.aivir.2020.09.001 10.1006/viro.1995.1023 10.1016/j.biochi.2008.03.013 10.1016/j.virusres.2009.04.003 10.1002/9780470015902.a0000755.pub3 10.1094/Phyto-65-110 10.1016/j.virol.2007.12.014 10.1038/ncomms14493 10.1186/s12864-015-1666-2 10.1016/j.virol.2015.02.052 10.3389/fpls.2018.00666 10.1094/MPMI-02-12-0046-R 10.1007/s00705-017-3539-2 10.1111/j.1364-3703.2008.00513.x 10.1016/j.virusres.2010.12.004 10.1128/JVI.00052-11 10.1007/s00438-005-0003-x 10.5423/PPJ.2009.25.4.417 10.1111/mpp.12024 10.1128/JVI.00503-15 10.1128/JVI.02915-14 10.1094/PDIS-02-12-0147-PDN 10.1128/JVI.00485-11 10.1111/j.1364-3703.2012.00791.x |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/v13101930 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection Proquest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef AGRICOLA Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1999-4915 |
ExternalDocumentID | oai_doaj_org_article_13aeb0c9b5284eab8e95177545b445a7 PMC8539092 34696360 10_3390_v13101930 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GeographicLocations | North America India |
GeographicLocations_xml | – name: North America – name: India |
GroupedDBID | --- 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACUHS AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK E3Z EBD ESX FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M48 M7P MODMG M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM TR2 TUS UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7U9 7XB 8FK AZQEC DWQXO GNUQQ H94 K9. PKEHL PQEST PQUKI 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c502t-1a3050a193c355a1769daf424e07b3c3b2ab0e04486c249571641aff5117657c3 |
IEDL.DBID | 7X7 |
ISSN | 1999-4915 |
IngestDate | Wed Aug 27 01:07:45 EDT 2025 Thu Aug 21 18:42:45 EDT 2025 Fri Jul 11 00:22:52 EDT 2025 Thu Jul 10 16:53:02 EDT 2025 Fri Jul 25 12:04:13 EDT 2025 Mon Jul 21 05:25:42 EDT 2025 Tue Jul 01 02:48:28 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | pepper mottle virus virus–host interaction Potyvirus pepper resistance gene |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-1a3050a193c355a1769daf424e07b3c3b2ab0e04486c249571641aff5117657c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-9066-6903 |
OpenAccessLink | https://www.proquest.com/docview/2584514253?pq-origsite=%requestingapplication% |
PMID | 34696360 |
PQID | 2584514253 |
PQPubID | 2032319 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_13aeb0c9b5284eab8e95177545b445a7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8539092 proquest_miscellaneous_2636671497 proquest_miscellaneous_2586457244 proquest_journals_2584514253 pubmed_primary_34696360 crossref_primary_10_3390_v13101930 crossref_citationtrail_10_3390_v13101930 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210925 |
PublicationDateYYYYMMDD | 2021-09-25 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210925 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Viruses |
PublicationTitleAlternate | Viruses |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Li (ref_101) 2019; 27 Quenouille (ref_46) 2013; 14 Robaglia (ref_106) 2006; 11 Mandadi (ref_100) 2013; 25 ref_97 Kim (ref_130) 2018; 5 Dufresne (ref_82) 2008; 374 Kang (ref_115) 2005; 42 Fares (ref_52) 2014; 78 Carrington (ref_71) 1994; 68 ref_18 Song (ref_24) 2017; 162 Zitter (ref_11) 1975; 65 Zhang (ref_30) 2019; 101 Blanc (ref_53) 1998; 79 Constantin (ref_42) 2004; 40 Guiraud (ref_64) 2009; 10 Doublet (ref_63) 2012; 93 ref_126 Venkatesh (ref_119) 2018; 108 Varjosalo (ref_72) 2016; 17 ref_25 Cheng (ref_83) 2017; 91 ref_20 Seo (ref_98) 2010; 11 Verchot (ref_48) 1995; 69 Satyanarayana (ref_35) 2003; 313 Sorel (ref_61) 2014; 27 Jiang (ref_67) 2015; 89 Dolja (ref_95) 1994; 13 Eskelin (ref_75) 2011; 85 Kang (ref_81) 2005; 43 Goytia (ref_55) 2011; 85 Chung (ref_32) 2008; 105 Guerini (ref_109) 1999; 80 Nakahara (ref_49) 2010; 23 Grzela (ref_78) 2006; 88 Yoon (ref_127) 2021; 64 Sorel (ref_65) 2014; 27 Llave (ref_99) 2002; 147 (ref_40) 2000; 68 Jin (ref_54) 2007; 81 Spetz (ref_66) 2004; 17 Zitter (ref_2) 1972; 56 Mestre (ref_85) 2000; 23 Yeam (ref_111) 2005; 112 Dolja (ref_91) 1995; 206 (ref_90) 2020; 108 Miyoshi (ref_79) 2008; 90 Tran (ref_21) 2015; 481 Creamer (ref_5) 2002; 86 Jonson (ref_19) 2009; 25 Revers (ref_31) 2015; 92 Dai (ref_93) 2020; 21 Tuo (ref_41) 2015; 7 Wang (ref_80) 2012; 13 Whitham (ref_123) 2006; 19 Lee (ref_29) 2011; 155 Yoon (ref_22) 2020; 11 Janzac (ref_105) 2009; 58 Kyle (ref_107) 1997; 97 Ivanov (ref_92) 2015; 89 Cui (ref_57) 2010; 397 Kim (ref_120) 2017; 213 Yang (ref_47) 2021; 59 Haenni (ref_34) 2001; 74 Murphy (ref_104) 1998; 11 Ruffel (ref_112) 2005; 274 Olsen (ref_39) 2001; 146 Goritschnig (ref_122) 2016; 210 Murphy (ref_14) 2006; 96 Lerich (ref_73) 2011; 62 ref_50 Zhu (ref_129) 2018; 666 Kang (ref_113) 2007; 5 Gauffier (ref_114) 2016; 85 Jiang (ref_74) 2011; 1 Zanardo (ref_128) 2019; 31 Johansen (ref_38) 1996; 93 ref_58 Deng (ref_44) 2015; 12 Collmer (ref_117) 2000; 13 Tangjang (ref_10) 2018; 115 Zhang (ref_118) 2012; 25 Tran (ref_102) 2014; 201 Vance (ref_17) 1992; 191 Jenner (ref_59) 2003; 16 Han (ref_12) 2006; 22 Carrington (ref_62) 1998; 14 Ogawa (ref_3) 2003; 69 Purcifull (ref_27) 1975; 65 Kaur (ref_9) 2014; 30 Meyers (ref_121) 2002; 12 Maia (ref_51) 1996; 77 Ratcliff (ref_43) 2001; 25 Dolja (ref_45) 1992; 89 Pavan (ref_108) 2010; 25 ref_69 Cheng (ref_8) 2011; 95 Goyer (ref_124) 2015; 16 Butterbach (ref_116) 2014; 5 Tran (ref_23) 2019; 265 Wei (ref_70) 2008; 82 Melzer (ref_7) 2012; 96 Casteel (ref_86) 2015; 169 Hiebert (ref_28) 1992; 5 Langenberg (ref_56) 1997; 118 Bak (ref_87) 2017; 8 Kim (ref_13) 2008; 24 Khan (ref_77) 2008; 283 Yan (ref_96) 2021; 22 Gao (ref_37) 2012; 86 Gong (ref_88) 2020; 11 Kim (ref_4) 2009; 144 Tran (ref_125) 2016; 495 Verhoeven (ref_6) 2002; 86 Wu (ref_68) 2019; 11 ref_1 Warren (ref_16) 2003; 148 Arazi (ref_94) 2001; 75 Murphy (ref_15) 1995; 85 Cui (ref_60) 2016; 90 Rodamilans (ref_84) 2018; 9 Ruffel (ref_110) 2006; 87 Volpon (ref_76) 2019; 116 Coll (ref_89) 2019; 5 (ref_33) 2014; 5 Wylie (ref_26) 2017; 98 Bedoya (ref_36) 2010; 149 Liu (ref_103) 2016; 129 |
References_xml | – volume: 68 start-page: 2388 year: 1994 ident: ref_71 article-title: The tobacco etch potyvirus 6-kilodalton protein is membrane associated and involved in viral replication publication-title: J. Virol. doi: 10.1128/jvi.68.4.2388-2397.1994 – volume: 85 start-page: 717 year: 2016 ident: ref_114 article-title: A TILLING approach to generate broad-spectrum resistance to potyviruses in tomato is hampered by eIF4E gene redundancy publication-title: Plant J. doi: 10.1111/tpj.13136 – volume: 82 start-page: 12252 year: 2008 ident: ref_70 article-title: Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI-and COPII-dependent manner publication-title: J. Virol. doi: 10.1128/JVI.01329-08 – volume: 101 start-page: 559 year: 2019 ident: ref_30 article-title: Genome and phylogenetic analyses of chinese pepper mottle virus isolates from chili pepper plants publication-title: J. Plant Pathol. doi: 10.1007/s42161-018-00235-w – volume: 68 start-page: 99 year: 2000 ident: ref_40 article-title: Construction of a stable and highly infectious intron-containing cDNA clone of plum pox potyvirus and its use to infect plants by particle bombardment publication-title: Virus Res. doi: 10.1016/S0168-1702(00)00161-1 – volume: 90 start-page: 5119 year: 2016 ident: ref_60 article-title: Plum pox virus 6K1 protein is required for viral replication and targets the viral replication complex at the early stage of infection publication-title: J. Virol. doi: 10.1128/JVI.00024-16 – ident: ref_25 doi: 10.3390/v12020132 – volume: 210 start-page: 984 year: 2016 ident: ref_122 article-title: Structurally distinct Arabidopsis thaliana NLR immune receptors recognize tandem WY domains of an oomycete effector publication-title: New Phytol. doi: 10.1111/nph.13823 – volume: 313 start-page: 481 year: 2003 ident: ref_35 article-title: Frameshift mutations in infectious cDNA clones of citrus tristeza virus: A strategy to minimize the toxicity of viral sequences to Escherichia coli publication-title: Virology doi: 10.1016/S0042-6822(03)00387-8 – volume: 17 start-page: 502 year: 2004 ident: ref_66 article-title: Potyviral 6K2 protein long-distance movement and symptom-induction functions are independent and host-specific publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI.2004.17.5.502 – volume: 40 start-page: 622 year: 2004 ident: ref_42 article-title: Virus-induced gene silencing as a tool for functional genomics in a legume species publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02233.x – volume: 397 start-page: 56 year: 2010 ident: ref_57 article-title: The tobacco etch virus P3 protein forms mobile inclusions via the early secretory pathway and traffics along actin microfilaments publication-title: Virology doi: 10.1016/j.virol.2009.11.015 – volume: 75 start-page: 6329 year: 2001 ident: ref_94 article-title: A nonviral peptide can replace the entire N terminus of zucchini yellow mosaic potyvirus coat protein and permits viral systemic infection publication-title: J. Virol. doi: 10.1128/JVI.75.14.6329-6336.2001 – volume: 86 start-page: 7043 year: 2012 ident: ref_37 article-title: The influenza A virus PB2, PA, NP, and M segments play a pivotal role during genome packaging publication-title: J. Virol. doi: 10.1128/JVI.00662-12 – volume: 92 start-page: 101 year: 2015 ident: ref_31 article-title: Molecular biology of potyviruses publication-title: Adv. Virus Res. doi: 10.1016/bs.aivir.2014.11.006 – volume: 22 start-page: 189 year: 2021 ident: ref_96 article-title: The conserved aromatic residue W122 is a determinant of potyviral coat protein stability, replication, and cell-to-cell movement in plants publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.13017 – volume: 86 start-page: 603 year: 2002 ident: ref_5 article-title: Pepper mottle virus causing disease in chile peppers in southern New Mexico publication-title: Plant Dis. doi: 10.1094/PDIS.2002.86.6.603 – volume: 98 start-page: 352 year: 2017 ident: ref_26 article-title: ICTV virus taxonomy profile: Potyviridae publication-title: J. Gen. Virol. doi: 10.1099/jgv.0.000740 – volume: 30 start-page: 14 year: 2014 ident: ref_9 article-title: First report of pepper mottle virus infecting chilli pepper in India publication-title: New Dis. Rep. doi: 10.5197/j.2044-0588.2014.030.014 – volume: 58 start-page: 443 year: 2009 ident: ref_105 article-title: Phenotype and spectrum of action of the Pvr4 resistance in pepper against potyviruses, and selection for virulent variants publication-title: Plant Pathol. doi: 10.1111/j.1365-3059.2008.01992.x – volume: 85 start-page: 561 year: 1995 ident: ref_15 article-title: Alleviation of restricted systemic spread of pepper mottle potyvirus in Capsicum annuum cv. Avelar by coinfection with a cucumovirus publication-title: Phytopathology doi: 10.1094/Phyto-85-561 – volume: 7 start-page: 6241 year: 2015 ident: ref_41 article-title: Rapid construction of stable infectious full-length cDNA clone of papaya leaf distortion mosaic virus using in-fusion cloning publication-title: Viruses doi: 10.3390/v7122935 – volume: 129 start-page: 1541 year: 2016 ident: ref_103 article-title: Fine mapping and identification of candidate genes for the sy-2 locus in a temperature-sensitive chili pepper (Capsicum chinense) publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-016-2723-1 – volume: 105 start-page: 5897 year: 2008 ident: ref_32 article-title: An overlapping essential gene in the Potyviridae publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0800468105 – volume: 25 start-page: 237 year: 2001 ident: ref_43 article-title: Technical advance: Tobacco rattle virus as a vector for analysis of gene function by silencing publication-title: Plant J. doi: 10.1046/j.0960-7412.2000.00942.x – volume: 108 start-page: 142 year: 2018 ident: ref_119 article-title: Fine mapping of the dominant potyvirus resistance gene Pvr7 reveals a relationship with Pvr4 in Capsicum annuum publication-title: Phytopathology doi: 10.1094/PHYTO-07-17-0231-R – volume: 64 start-page: 1 year: 2021 ident: ref_127 article-title: Double-stranded RNA confers resistance to pepper mottle virus in Nicotiana benthamiana publication-title: Appl. Biol. Chem. doi: 10.1186/s13765-020-00581-3 – volume: 5 start-page: 110 year: 2014 ident: ref_33 article-title: Intracellular coordination of potyviral RNA functions in infection publication-title: Front. Plant Sci. – volume: 27 start-page: 792 year: 2019 ident: ref_101 article-title: RNA-targeted antiviral immunity: More than just RNA silencing publication-title: Trends Microbiol. doi: 10.1016/j.tim.2019.05.007 – volume: 149 start-page: 234 year: 2010 ident: ref_36 article-title: Stability of tobacco etch virus infectious clones in plasmid vectors publication-title: Virus Res. doi: 10.1016/j.virusres.2010.02.004 – ident: ref_18 doi: 10.3390/v11121158 – volume: 13 start-page: 1266 year: 2000 ident: ref_117 article-title: The I gene of bean: A dosage-dependent allele conferring extreme resistance, hypersensitive resistance, or spreading vascular necrosis in response to the potyvirus bean common mosaic virus publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI.2000.13.11.1266 – volume: 118 start-page: 243 year: 1997 ident: ref_56 article-title: Immunocytology shows the presence of tobacco etch virus P3 protein in nuclear inclusions publication-title: J. Struct. Biol. doi: 10.1006/jsbi.1997.3856 – ident: ref_50 doi: 10.1371/journal.ppat.1003985 – ident: ref_20 doi: 10.1371/journal.pone.0119639 – volume: 191 start-page: 19 year: 1992 ident: ref_17 article-title: The complete nucleotide sequence of pepper mottle virus genomic RNA: Comparison of the encoded polyprotein with those of other sequenced potyviruses publication-title: Virology doi: 10.1016/0042-6822(92)90162-I – volume: 12 start-page: 1305 year: 2002 ident: ref_121 article-title: Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana publication-title: Genome Res. doi: 10.1101/gr.159402 – volume: 112 start-page: 178 year: 2005 ident: ref_111 article-title: Allele-specific CAPS markers based on point mutations in resistance alleles at the pvr1 locus encoding eIF4E in Capsicum publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-005-0120-2 – volume: 5 start-page: 321 year: 1992 ident: ref_28 article-title: A comparison of pepper mottle virus with potato virus Y and evidence for their distinction publication-title: Potyvirus Taxonomy doi: 10.1007/978-3-7091-6920-9_34 – volume: 62 start-page: 5013 year: 2011 ident: ref_73 article-title: Is the 6 kDa tobacco etch viral protein a bona fide ERES marker? publication-title: J. Exp. Bot. doi: 10.1093/jxb/err200 – ident: ref_97 doi: 10.3390/v12020217 – volume: 147 start-page: 2365 year: 2002 ident: ref_99 article-title: Amino acid substitutions within the Cys-rich domain of the tobacco etch potyvirus HC-Pro result in loss of transmissibility by aphids publication-title: Arch. Virol. doi: 10.1007/s00705-002-0884-5 – volume: 95 start-page: 617 year: 2011 ident: ref_8 article-title: First report of pepper mottle virus in bell pepper in Taiwan publication-title: Plant Dis. doi: 10.1094/PDIS-10-10-0721 – volume: 88 start-page: 887 year: 2006 ident: ref_78 article-title: Potyvirus terminal protein VPg, effector of host eukaryotic initiation factor eIF4E publication-title: Biochimie doi: 10.1016/j.biochi.2006.02.012 – ident: ref_58 doi: 10.1371/journal.ppat.1000962 – volume: 31 start-page: 103 year: 2019 ident: ref_128 article-title: Transcriptomics of plant–virus interactions: A review publication-title: Theor. Exp. Plant Physiol. doi: 10.1007/s40626-019-00143-z – volume: 23 start-page: 653 year: 2000 ident: ref_85 article-title: An Ry-mediated resistance response in potato requires the intact active site of the NIa proteinase from potato virus Y publication-title: Plant J. doi: 10.1046/j.1365-313x.2000.00834.x – volume: 11 start-page: 102 year: 2020 ident: ref_88 article-title: The NIa-protease protein encoded by the Pepper mottle virus is a pathogenicity determinant and releases DNA methylation of Nicotiana benthamiana publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.00102 – volume: 25 start-page: 1 year: 2010 ident: ref_108 article-title: Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance publication-title: Mol. Breed. doi: 10.1007/s11032-009-9323-6 – volume: 11 start-page: 40 year: 2006 ident: ref_106 article-title: Translation initiation factors: A weak link in plant RNA virus infection publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2005.11.004 – volume: 86 start-page: 186 year: 2002 ident: ref_6 article-title: First report of pepper mottle virus in tomato publication-title: Plant Dis. doi: 10.1094/PDIS.2002.86.2.186C – volume: 27 start-page: 215 year: 2014 ident: ref_61 article-title: The Potyviridae cylindrical inclusion helicase: A key multipartner and multifunctional protein publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-11-13-0333-CR – volume: 666 start-page: 123 year: 2018 ident: ref_129 article-title: Transcriptome profiling using Illumina-and SMRT-based RNA-seq of hot pepper for in-depth understanding of genes involved in CMV infection publication-title: Gene doi: 10.1016/j.gene.2018.05.004 – volume: 81 start-page: 12881 year: 2007 ident: ref_54 article-title: HC-Pro protein of potato virus Y can interact with three Arabidopsis 20S proteasome subunits in planta publication-title: J. Virol. doi: 10.1128/JVI.00913-07 – volume: 96 start-page: 240 year: 2006 ident: ref_14 article-title: Synergistic disease in pepper caused by the mixed infection of cucumber mosaic virus and pepper mottle virus publication-title: Phytopathology doi: 10.1094/PHYTO-96-0240 – volume: 495 start-page: 167 year: 2016 ident: ref_125 article-title: Virus-induced gene silencing reveals signal transduction components required for the Pvr9-mediated hypersensitive response in Nicotiana benthamiana publication-title: Virology doi: 10.1016/j.virol.2016.05.011 – volume: 169 start-page: 209 year: 2015 ident: ref_86 article-title: Disruption of ethylene responses by turnip mosaic virus mediates suppression of plant defense against the green peach aphid vector publication-title: Plant Physiol. doi: 10.1104/pp.15.00332 – volume: 11 start-page: 265 year: 2010 ident: ref_98 article-title: Mutational analysis of interaction between coat protein and helper component-proteinase of Soybean mosaic virus involved in aphid transmission publication-title: Mol. Plant Pathol. doi: 10.1111/j.1364-3703.2009.00603.x – volume: 213 start-page: 886 year: 2017 ident: ref_120 article-title: Divergent evolution of multiple virus-resistance genes from a progenitor in Capsicum spp. publication-title: New Phytol. doi: 10.1111/nph.14177 – volume: 17 start-page: 943 year: 2016 ident: ref_72 article-title: Protein composition of 6K2-induced membrane structures formed during potato virus A infection publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12341 – volume: 21 start-page: 1194 year: 2020 ident: ref_93 article-title: The cis-expression of the coat protein of turnip mosaic virus is essential for viral intercellular movement in plants publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12973 – volume: 97 start-page: 183 year: 1997 ident: ref_107 article-title: Proposed revision of nomenclature for potyvirusresistance genes in Capsicum publication-title: Euphytica doi: 10.1023/A:1003009721989 – volume: 13 start-page: 1482 year: 1994 ident: ref_95 article-title: Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants publication-title: EMBO J. doi: 10.1002/j.1460-2075.1994.tb06403.x – volume: 11 start-page: 943 year: 1998 ident: ref_104 article-title: Genetic mapping of the pvr1 locus in Capsicum spp. and evidence that distinct potyvirus resistance loci control responses that differ at the whole plant and cellular levels publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI.1998.11.10.943 – volume: 80 start-page: 2785 year: 1999 ident: ref_109 article-title: Resistance of Capsicum annuum ‘Avelar’to pepper mottle potyvirus and alleviation of this resistance by co-infection with cucumber mosaic cucumovirus are associated with virus movement publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-80-10-2785 – volume: 89 start-page: 10208 year: 1992 ident: ref_45 article-title: Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.89.21.10208 – volume: 27 start-page: 1014 year: 2014 ident: ref_65 article-title: Key mutations in the cylindrical inclusion involved in Lettuce mosaic virus adaptation to eIF4E-mediated resistance in lettuce publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-04-14-0111-R – volume: 77 start-page: 1335 year: 1996 ident: ref_51 article-title: Potyviral HC-Pro: A multifunctional protein publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-77-7-1335 – volume: 43 start-page: 581 year: 2005 ident: ref_81 article-title: Genetics of plant virus resistance publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev.phyto.43.011205.141140 – volume: 146 start-page: 15 year: 2001 ident: ref_39 article-title: Nucleotide sequence and infectious cDNA clone of the L1 isolate of pea seed-borne mosaic potyvirus publication-title: Arch. Virol. doi: 10.1007/s007050170187 – volume: 16 start-page: 777 year: 2003 ident: ref_59 article-title: The dual role of the potyvirus P3 protein of turnip mosaic virus as a symptom and avirulence determinant in brassicas publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI.2003.16.9.777 – volume: 5 start-page: 526 year: 2007 ident: ref_113 article-title: Ectopic expression of a recessive resistance gene generates dominant potyvirus resistance in plants publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2007.00262.x – volume: 93 start-page: 184 year: 2012 ident: ref_63 article-title: The C terminus of lettuce mosaic potyvirus cylindrical inclusion helicase interacts with the viral VPg and with lettuce translation eukaryotic initiation factor 4E publication-title: J. Gen. Virol. doi: 10.1099/vir.0.035881-0 – volume: 69 start-page: 348 year: 2003 ident: ref_3 article-title: First report of pepper mottle virus on Capsicum annuum in Japan publication-title: J. Gen. Plant Pathol. doi: 10.1007/s10327-003-0059-6 – volume: 59 start-page: 1 year: 2021 ident: ref_47 article-title: Research advances in potyviruses: From the laboratory bench to the field publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-020620-114550 – volume: 42 start-page: 392 year: 2005 ident: ref_115 article-title: The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with tobacco etch virus VPg publication-title: Plant J. doi: 10.1111/j.1365-313X.2005.02381.x – volume: 24 start-page: 152 year: 2008 ident: ref_13 article-title: Isolation and characterization of pepper mottle virus infecting tomato in Korea publication-title: Plant Pathol. J. doi: 10.5423/PPJ.2008.24.2.152 – volume: 12 start-page: 1 year: 2015 ident: ref_44 article-title: The multifunctional protein CI of potyviruses plays interlinked and distinct roles in viral genome replication and intercellular movement publication-title: Virol. J. doi: 10.1186/s12985-015-0369-2 – volume: 116 start-page: 24056 year: 2019 ident: ref_76 article-title: Structural studies of the eIF4E–VPg complex reveal a direct competition for capped RNA: Implications for translation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1904752116 – volume: 25 start-page: 1489 year: 2013 ident: ref_100 article-title: Plant immune responses against viruses: How does a virus cause disease? publication-title: Plant Cell doi: 10.1105/tpc.113.111658 – volume: 5 start-page: eaaw3808 year: 2019 ident: ref_89 article-title: Structural basis for the multitasking nature of the potato virus Y coat protein publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw3808 – volume: 78 start-page: 75 year: 2014 ident: ref_52 article-title: Molecular evolution of viral multifunctional proteins: The case of potyvirus HC-Pro publication-title: J. Mol. Evol. doi: 10.1007/s00239-013-9601-0 – ident: ref_126 doi: 10.3390/v13040688 – volume: 148 start-page: 189 year: 2003 ident: ref_16 article-title: The complete nucleotide sequence of pepper mottle virus-Florida RNA publication-title: Arch. Virol. doi: 10.1007/s00705-002-0915-2 – volume: 1 start-page: 347 year: 2011 ident: ref_74 article-title: The genome-linked protein VPg of plant viruses—a protein with many partners publication-title: Curr Opin Virol. doi: 10.1016/j.coviro.2011.09.010 – volume: 65 start-page: 559 year: 1975 ident: ref_27 article-title: Morphology, host range and serological relationships of pepper mottle virus publication-title: Phytopathology doi: 10.1094/Phyto-65-559 – volume: 87 start-page: 2089 year: 2006 ident: ref_110 article-title: Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper publication-title: J. Gen. Virol. doi: 10.1099/vir.0.81817-0 – volume: 91 start-page: e01478-16 year: 2017 ident: ref_83 article-title: The potyvirus silencing suppressor protein VPg mediates degradation of SGS3 via ubiquitination and autophagy pathways publication-title: J. Virol. doi: 10.1128/JVI.01478-16 – volume: 201 start-page: 57 year: 2014 ident: ref_102 article-title: A simple method for screening of plant NBS-LRR genes that confer a hypersensitive response to plant viruses and its application for screening candidate pepper genes against Pepper mottle virus publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2014.02.003 – volume: 22 start-page: 155 year: 2006 ident: ref_12 article-title: Biological, physical and cytological properties of pepper mottle virus-SNU1 and its RT-PCR detection publication-title: Plant Pathol. J. doi: 10.5423/PPJ.2006.22.2.155 – volume: 74 start-page: 157 year: 2001 ident: ref_34 article-title: Potyvirus proteins: A wealth of functions publication-title: Virus Res. doi: 10.1016/S0168-1702(01)00220-9 – volume: 5 start-page: 1 year: 2018 ident: ref_130 article-title: Global gene expression profiling for fruit organs and pathogen infections in the pepper, Capsicum annuum L. publication-title: Sci. Data doi: 10.1038/sdata.2018.103 – volume: 19 start-page: 1207 year: 2006 ident: ref_123 article-title: Global impact: Elucidating plant responses to viral infection publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-19-1207 – volume: 11 start-page: 1207 year: 2019 ident: ref_68 article-title: Mutagenesis scanning uncovers evolutionary constraints on tobacco etch potyvirus membrane-associated 6K2 protein publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evz069 – volume: 11 start-page: 1098 year: 2020 ident: ref_22 article-title: Genome editing of eIF4E1 in tomato confers resistance to pepper mottle virus publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.01098 – volume: 93 start-page: 12400 year: 1996 ident: ref_38 article-title: Intron insertion facilitates amplification of cloned virus cDNA in Escherichia coli while biological activity is reestablished after transcription in vivo publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.22.12400 – volume: 56 start-page: 586 year: 1972 ident: ref_2 article-title: Plant disease reporter naturally occurring pepper virus strains in south Florida publication-title: Plant Dis. Rep. – volume: 115 start-page: 2012 year: 2018 ident: ref_10 article-title: Seed transmissibility of pepper mottle virus: Survival of virus publication-title: Curr. Sci. – volume: 23 start-page: 1460 year: 2010 ident: ref_49 article-title: Involvement of the P1 cistron in overcoming eIF4E-mediated recessive resistance against clover yellow vein virus in pea publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-11-09-0277 – volume: 69 start-page: 3668 year: 1995 ident: ref_48 article-title: Evidence that the potyvirus P1 proteinase functions in trans as an accessory factor for genome amplification publication-title: J. Virol. doi: 10.1128/jvi.69.6.3668-3674.1995 – ident: ref_69 doi: 10.3390/v12010077 – volume: 79 start-page: 3119 year: 1998 ident: ref_53 article-title: Mutations in the potyvirus helper component protein: Effects on interactions with virions and aphid stylets publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-79-12-3119 – volume: 283 start-page: 1340 year: 2008 ident: ref_77 article-title: Potyvirus genome-linked protein, VPg, directly affects wheat germ in vitro translation: Interactions with translation initiation factors eIF4F and eIFiso4F publication-title: J. Biol. Chem. doi: 10.1074/jbc.M703356200 – volume: 265 start-page: 26 year: 2019 ident: ref_23 article-title: A plant intron enhances the performance of an infectious clone in planta publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2018.12.012 – volume: 14 start-page: 393 year: 1998 ident: ref_62 article-title: Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement publication-title: Plant J. doi: 10.1046/j.1365-313X.1998.00120.x – volume: 108 start-page: 165 year: 2020 ident: ref_90 article-title: Potyviral coat protein and genomic RNA: A striking partnership leading virion assembly and more publication-title: Adv. Virus Res. doi: 10.1016/bs.aivir.2020.09.001 – volume: 206 start-page: 1007 year: 1995 ident: ref_91 article-title: Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus publication-title: Virology doi: 10.1006/viro.1995.1023 – volume: 90 start-page: 1427 year: 2008 ident: ref_79 article-title: Turnip mosaic virus VPg interacts with Arabidopsis thaliana eIF (iso) 4E and inhibits in vitro translation publication-title: Biochimie doi: 10.1016/j.biochi.2008.03.013 – volume: 144 start-page: 83 year: 2009 ident: ref_4 article-title: Molecular characterization of Korean pepper mottle virus isolates and its relationship to symptom variations publication-title: Virus Res. doi: 10.1016/j.virusres.2009.04.003 – ident: ref_1 doi: 10.1002/9780470015902.a0000755.pub3 – volume: 65 start-page: 110 year: 1975 ident: ref_11 article-title: Transmission of pepper mottle virus from susceptible and resistant pepper cultivars publication-title: Phytopathology doi: 10.1094/Phyto-65-110 – volume: 374 start-page: 217 year: 2008 ident: ref_82 article-title: Heat shock 70 protein interaction with turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles publication-title: Virology doi: 10.1016/j.virol.2007.12.014 – volume: 5 start-page: 307 year: 2014 ident: ref_116 article-title: Dominant resistance against plant viruses publication-title: Front. Plant Sci. – volume: 8 start-page: 14493 year: 2017 ident: ref_87 article-title: A viral protease relocalizes in the presence of the vector to promote vector performance publication-title: Nat. Commun. doi: 10.1038/ncomms14493 – volume: 16 start-page: 1 year: 2015 ident: ref_124 article-title: RNA-Seq analysis of resistant and susceptible potato varieties during the early stages of potato virus Y infection publication-title: BMC Genom. doi: 10.1186/s12864-015-1666-2 – volume: 481 start-page: 113 year: 2015 ident: ref_21 article-title: Molecular characterization of Pvr9 that confers a hypersensitive response to pepper mottle virus (a potyvirus) in Nicotiana benthamiana publication-title: Virology doi: 10.1016/j.virol.2015.02.052 – volume: 9 start-page: 666 year: 2018 ident: ref_84 article-title: Plant viral proteases: Beyond the role of peptide cutters publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00666 – volume: 25 start-page: 1307 year: 2012 ident: ref_118 article-title: The requirement of multiple defense genes in soybean Rsv1–mediated extreme resistance to soybean mosaic virus publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-02-12-0046-R – volume: 162 start-page: 3717 year: 2017 ident: ref_24 article-title: A pepper mottle virus-based vector enables systemic expression of endoglucanase D in non-transgenic plants publication-title: Arch. Virol. doi: 10.1007/s00705-017-3539-2 – volume: 10 start-page: 109 year: 2009 ident: ref_64 article-title: Involvement of the cylindrical inclusion (CI) protein in the overcoming of an eIF4E-mediated resistance against lettuce mosaic potyvirus publication-title: Mol. Plant Pathol. doi: 10.1111/j.1364-3703.2008.00513.x – volume: 155 start-page: 487 year: 2011 ident: ref_29 article-title: Development of infectious transcripts from full-length and GFP-tagged cDNA clones of Pepper mottle virus and stable systemic expression of GFP in tobacco and pepper publication-title: Virus Res. doi: 10.1016/j.virusres.2010.12.004 – volume: 85 start-page: 9210 year: 2011 ident: ref_75 article-title: Potyviral VPg enhances viral RNA translation and inhibits reporter mRNA translation in planta publication-title: J. Virol. doi: 10.1128/JVI.00052-11 – volume: 274 start-page: 346 year: 2005 ident: ref_112 article-title: The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene publication-title: Mol. Genet. Genom. doi: 10.1007/s00438-005-0003-x – volume: 25 start-page: 417 year: 2009 ident: ref_19 article-title: Effects of recombination on the pathogenicity and evolution of pepper mottle virus publication-title: Plant Pathol. J. doi: 10.5423/PPJ.2009.25.4.417 – volume: 14 start-page: 439 year: 2013 ident: ref_46 article-title: Potato virus Y: A major crop pathogen that has provided major insights into the evolution of viral pathogenicity publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12024 – volume: 89 start-page: 6695 year: 2015 ident: ref_67 article-title: The vesicle-forming 6K2 protein of turnip mosaic virus interacts with the COPII coatomer Sec24a for viral systemic infection publication-title: J. Virol. doi: 10.1128/JVI.00503-15 – volume: 89 start-page: 4237 year: 2015 ident: ref_92 article-title: Cotranslational coat protein-mediated inhibition of potyviral RNA translation publication-title: J. Virol. doi: 10.1128/JVI.02915-14 – volume: 96 start-page: 917 year: 2012 ident: ref_7 article-title: First report of pepper mottle virus infecting tomato in Hawaii publication-title: Plant Dis. doi: 10.1094/PDIS-02-12-0147-PDN – volume: 85 start-page: 6784 year: 2011 ident: ref_55 article-title: Helper component proteinase of the genus Potyvirus is an interaction partner of translation initiation factors eIF (iso) 4E and eIF4E and contains a 4E binding motif publication-title: J. Virol. doi: 10.1128/JVI.00485-11 – volume: 13 start-page: 795 year: 2012 ident: ref_80 article-title: Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement publication-title: Mol. Plant Pathol. doi: 10.1111/j.1364-3703.2012.00791.x |
SSID | ssj0066907 |
Score | 2.3416734 |
SecondaryResourceType | review_article |
Snippet | Pepper mottle virus (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this... (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this review, we summarize... Pepper mottle virus (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1930 |
SubjectTerms | Cloning E coli Genes, vpr Genetic analysis Genetic diversity genetic variation Genomes Host Microbial Interactions - genetics Host plants Infections Lycopersicon esculentum - genetics Lycopersicon esculentum - virology Molecular modelling Pathogens pepper Pepper mottle virus pepper resistance gene Plant Diseases - genetics Plant Diseases - virology Plasmids potatoes Potyvirus Potyvirus - genetics Potyvirus - physiology Proteins reverse genetics Review Roles Solanum tuberosum - genetics Solanum tuberosum - virology sweet peppers tomatoes transcriptomics Viral infections Viruses virus–host interaction |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-UwFA4iDLgRHV_VOxLFhZti2iZpO7uZQbkqigsVdyVPFKS93PYK_vs5SXqLV0Q3bpsDTc7J4_vy-A5CRwVl0ipmY14YG1PJs7gUijuqUvCCaGr91sDVNR_f0YsH9vAm1Ze7ExbkgYPjTpJMGElUKRlMpEbIwgAmcLJtTFLKhH9HDmvenEyFOZg7zhd0hDIg9ScvCaAYgCpkYfXxIv0fIcv3FyTfrDhna2i1h4r4T6jiOloy9U_0IySPfN1A5zdmMjFTfNU4GWJ8_zSdtVjUGp93LR43bYf9bl94uND-xr0SE_bwEjcWX8630zbR3dnp7b9x3CdGiBUjaRcnAkYpEdAgBXBBJDkvtbA0pYbkEr7JVEhiCDAvrlxuaceJEmEtgKucs1xlW2i5bmqzg3CuU2KkhciAOzOtpXZHe8D5tNDgVhWh47nDKtWrhrvkFc8VsAfn22rwbYQOB9NJkMr4yOiv8_pg4NSt_QeIedXHvPoq5hEazWNW9UOurVKAUoD-UpZF6GAohsHiTkBEbZqZt-GU5QBpPrHhGec5EEf4zXboBkNtM8pLJ7AWoXyhgyw0Z7Gkfnr0ot0Ai0pSprvf0f49tJK6qzXucIyN0HI3nZlfgI06ue-HwX8MFArl priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9UwEA7LiuCLeLe6ShQffKmmbS6tIKLiclY54oNH9q3kui4s7bHtEfffO9MbVg77mgw0mSTM92XSbwh5kXNhghUhlrkPMTcyiwttJVKVXObM8dBfDay_ytWGfz4VpwdkqrE5OrDdS-2wntSmuXj159flOzjwb5FxAmV__TsBjAJABJj7NQhICgsZrPmcTJBIAAdRoaX5IhT1iv37YOb_ryX_CT_Ht8jNETfS98NC3yYHvrpDrg-VJC_vkpNvfrv1DV3XqElMf5w3u5bqytGTrqWruu1of_U3_MXQvqGjLBPtsSatA_0y3a3dI5vjT98_ruKxSkJsBUu7ONFwZJmGCVnADjpRsnA68JR7pgy0mVQb5hnQMGmx0DQSpESHAEhLSaFsdp8cVnXlHxKqXMq8CbBMhvPMOeMwzwcE0GkHuMJG5OXksNKOEuJYyeKiBCqBvi1n30bk-Wy6HXQz9hl9QK_PBih13TfUzVk5npwyybQ3zBZGQCT12uQeQCHq9gkYpNAqIkfTmpXT9ilTwFUABVORReTZ3A0nB9MhuvL1rreRXCjAN1fYyExKBSwSPvNg2AbzaDMuC1Rbi4habJDFdJY91fnPXsEbMFLBivTR1UN_TG6k-IIGc2DiiBx2zc4_AQjUmaf9Bv8LhIYECA priority: 102 providerName: Scholars Portal |
Title | Pepper Mottle Virus and Its Host Interactions: Current State of Knowledge |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34696360 https://www.proquest.com/docview/2584514253 https://www.proquest.com/docview/2586457244 https://www.proquest.com/docview/2636671497 https://pubmed.ncbi.nlm.nih.gov/PMC8539092 https://doaj.org/article/13aeb0c9b5284eab8e95177545b445a7 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFRIXxJtAWRnEgUtUJ_Ej4YIoatmCtqoQRXuL_ApUQsmyySLx75lxvIFFVS8-JCPFsceZ7xs73xDyquTCNFY0qSx9k3Iji7TSViJVKWXJHG9CamBxJucX_ONSLGPCrY_HKrffxPChdp3FHPlhDpESgnsuirernylWjcLd1VhC4ybZR-ky9Gq1nAiXROY3qgkVQO0Pf2WAZQCwsJ0YFKT6r8KX_x-T_CfunNwldyJgpO_GGb5Hbvj2Prk1lpD8_YCcnvvVyq_pokMxYvr1cr3pqW4dPR16Ou_6gYac3_j7Qv-GRj0mGkAm7Rr6aZtUe0guTo6_vJ-nsTxCagXLhzTTsFaZhheyABp0pmTldMNz7pkycM3k2jDPgH9JixWmkRllumkAYikplC0ekb22a_0TQpXLmTcNzI_hvHDOONzgA-bntANAYRPyejtgtY3a4VjC4kcNHALHtp7GNiEvJ9PVKJhxldERjvpkgBrX4UK3_lbHJVNnhfaG2coICKFem9IDGkTBPgGdFFol5GA7Z3VceH39100S8mK6DUsG90F067tNsJFcKAA219jIQkoF9BEe83h0g6m3BZcVyqwlRO04yM7r7N5pL78H6W4ARxWr8qfXd_0ZuZ3j0Rnc_BIHZG9Yb_xzwD6DmQUHn5H9o-Oz88-zkEGA9sMyg3bByz-q0gcB |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAAYNA4hLVcWwnQUKIV7XLdisOLdpb6legEkqWTRbUP8VvZJwXLKp669UZJc5k7Pk-2_kG4HnKhS6MKEKZuiLkWsZhpoz0VCWVKbW8aJcG5gdycsQ_LcRiC34P_8L4Y5XDnNhO1LYyfo18l2GmxOTORPxm-SP0VaP87upQQqMLi5k7_YWUrX49_YDf9wVjex8P30_CvqpAaARlTRgpDHGqELgYzLUqSmRmVcEZdzTR2KaZ0tRRpC3S-MLMnlBEqigQmSRSJCbG-16Cy5h4qSd7yWIkeNIzzU69KI4zuvszQht8Dt3IeW1pgLPw7P_HMv_Jc3s34HoPUMnbLqJuwpYrb8GVrmTl6W2YfnbLpVuReeXFj8mXk9W6Jqq0ZNrUZFLVDWnXGLvfJepXpNd_Ii2oJVVBZsMi3h04uhDH3YXtsirdfSCJZdTpAuNBcx5bq63fUESmaZVFAGMCeDk4LDe9VrkvmfE9R87ifZuPvg3g2Wi67AQ6zjJ6570-GnhN7bahWn3N-yGaR7FymppMC0zZTunUIfr0AoECOylUEsDO8M3yfqDX-d-wDODpeBmHqN93UaWr1q2N5CJBIHWOjYylTJCu4mPudWEw9jbmMvOybgEkGwGy8TqbV8qTb61UOIKxjGbswfldfwJXJ4fz_Xx_ejB7CNeYP7bjN97EDmw3q7V7hLir0Y_bYCdwfNGj6w_eIj0i |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTiBeEL8JDDAIJF6iOo7tJEgIMbaqpayqEEN7y-zYYZOmpDQpaP8afx3n_CgUTXvba3JKnMtd7vts5zuAVzEXOs9E7svY5j7XMvQTlUlHVWIZU8PzZmrgYCbHh_zTkTjagt_9vzBuW2X_TWw-1KbM3Bz5kGGlxOLORDjMu20R873R-8UP33WQciutfTuNNkSm9vwX0rfq3WQP3_Vrxkb7Xz-O_a7DgJ8Jymo_UBjuVCGIybDuqiCSiVE5Z9zSSOMxzZSmliKFkZlr0uzIRaDyHFFKJEWUhXjda7AdOVY0gO3d_dn8S18HpOOdrZZRGCZ0-DNAJIV3ohsVsGkUcBG6_X-T5j9Vb3QbbnVwlXxo4-sObNniLlxvG1ie34PJ3C4WdkkOSieFTL6dLlcVUYUhk7oi47KqSTPj2P48Ub0lnRoUaSAuKXMy7af07sPhlbjuAQyKsrCPgESGUatzjA7NeWiMNm55EXmnUQbhTObBm95hadYpl7sGGmcpMhjn23TtWw9erk0XrVzHRUa7zutrA6ew3Rwol9_TLmHTIFRW0yzRAgu4VTq2iEWdXKDAQQoVebDTv7O0S_sq_RukHrxYn8aEdaswqrDlqrGRXEQIqy6xkaGUEZJXvM3DNgzWow25TJzImwfRRoBsPM7mmeL0pBEOR2iW0IQ9vnzoz-EGZlb6eTKbPoGbzO3hcatwYgcG9XJlnyIIq_WzLtoJHF91gv0BKIZCvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pepper+Mottle+Virus+and+Its+Host+Interactions%3A+Current+State+of+Knowledge&rft.jtitle=Viruses&rft.au=Miao+Fang&rft.au=Yu%2C+Jisuk&rft.au=Kim%2C+Kook-Hyung&rft.date=2021-09-25&rft.pub=MDPI+AG&rft.eissn=1999-4915&rft.volume=13&rft.issue=10&rft.spage=1930&rft_id=info:doi/10.3390%2Fv13101930&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon |