Optimizing Pretrained Convolutional Neural Networks for Tomato Leaf Disease Detection

Vegetable and fruit plants facilitate around 7.5 billion people around the globe, playing a crucial role in sustaining life on the planet. The rapid increase in the use of chemicals such as fungicides and bactericides to curtail plant diseases is causing negative effects on the agro-ecosystem. The h...

Full description

Saved in:
Bibliographic Details
Published inComplexity (New York, N.Y.) Vol. 2020; no. 2020; pp. 1 - 6
Main Authors Shah, Syed Tanveer, Yousaf, Suhail, Hamid, Muhammad, Ahmad, Iftikhar, Ahmad, Muhammad Ovais
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vegetable and fruit plants facilitate around 7.5 billion people around the globe, playing a crucial role in sustaining life on the planet. The rapid increase in the use of chemicals such as fungicides and bactericides to curtail plant diseases is causing negative effects on the agro-ecosystem. The high scale prevalence of diseases in crops affects the production quantity and quality. Solving the problem of early identification/diagnosis of diseases by exploiting a quick and consistent reliable method will benefit the farmers. In this context, our research work focuses on classification and identification of tomato leaf diseases using convolutional neural network (CNN) techniques. We consider four CNN architectures, namely, VGG-16, VGG-19, ResNet, and Inception V3, and use feature extraction and parameter-tuning to identify and classify tomato leaf diseases. We test the underlying models on two datasets, a laboratory-based dataset and self-collected data from the field. We observe that all architectures perform better on the laboratory-based dataset than on field-based data, with performance on various metrics showing variance in the range 10%–15%. Inception V3 is identified as the best performing algorithm on both datasets.
AbstractList Vegetable and fruit plants facilitate around 7.5 billion people around the globe, playing a crucial role in sustaining life on the planet. The rapid increase in the use of chemicals such as fungicides and bactericides to curtail plant diseases is causing negative effects on the agro-ecosystem. The high scale prevalence of diseases in crops affects the production quantity and quality. Solving the problem of early identification/diagnosis of diseases by exploiting a quick and consistent reliable method will benefit the farmers. In this context, our research work focuses on classification and identification of tomato leaf diseases using convolutional neural network (CNN) techniques. We consider four CNN architectures, namely, VGG-16, VGG-19, ResNet, and Inception V3, and use feature extraction and parameter-tuning to identify and classify tomato leaf diseases. We test the underlying models on two datasets, a laboratory-based dataset and self-collected data from the field. We observe that all architectures perform better on the laboratory-based dataset than on field-based data, with performance on various metrics showing variance in the range 10%–15%. Inception V3 is identified as the best performing algorithm on both datasets.
Audience Academic
Author Hamid, Muhammad
Shah, Syed Tanveer
Ahmad, Iftikhar
Ahmad, Muhammad Ovais
Yousaf, Suhail
Author_xml – sequence: 1
  fullname: Shah, Syed Tanveer
– sequence: 2
  fullname: Yousaf, Suhail
– sequence: 3
  fullname: Hamid, Muhammad
– sequence: 4
  fullname: Ahmad, Iftikhar
– sequence: 5
  fullname: Ahmad, Muhammad Ovais
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-80334$$DView record from Swedish Publication Index
BookMark eNqFkc1v1DAQxSNUJNrCjTOKxBHS-iv-OK52oVRaUQ4tV2vi2Iu32XixE1bw19fZVFQgIeSDrfFv3jzNOytO-tDboniN0QXGdX1JEEGXUmKCsHpWnGKkVIVqwk-mt-AVEVK8KM5S2iKEFKfitLi72Q9-53_5flN-iXaI4HvblsvQ_wjdOPjQQ1d-tmM8XsMhxPtUuhDL27CDIZRrC65c-WQh2XJlB2umnpfFcwddsq8e7_Pi7uOH2-Wnan1zdb1crCtTIzJUGEupGkIsERwhDpBdUeaENbjhNW4bQxBXVClOTCOZ4oojAtS4PFTkT3peXM-6bYCt3ke_g_hTB_D6WAhxoyEO3nRWIyKAQFNLKhjjSoJjLQOnWpVLjXRZ6_2slQ52PzZ_qK3818VR7R5GLRGlLONvZ3wfw_fRpkFvwxjztpImjElSKyxopi5magPZg-9dyBs2-bR2501Oz_lcX3AlkBJU4icXJoaUonW_fWCkp5D1FLJ-DDnj5C_c-AGmCKYku381vZubvvm-hYP_34g3M20zYx080ZixWtb0AbpWwLI
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3373001
crossref_primary_10_1117_1_JEI_32_3_033039
crossref_primary_10_1007_s00521_022_07521_w
crossref_primary_10_1007_s10462_024_11100_x
crossref_primary_10_1155_2022_3287561
crossref_primary_10_48175_IJARSCT_12196
crossref_primary_10_1016_j_compag_2025_110128
crossref_primary_10_3390_agronomy13092242
crossref_primary_10_1109_ACCESS_2021_3105112
crossref_primary_10_3390_agronomy14122796
crossref_primary_10_3390_agriengineering5010009
crossref_primary_10_1038_s41598_023_34549_2
crossref_primary_10_3390_agriculture12081192
crossref_primary_10_3389_fpls_2024_1493322
crossref_primary_10_1007_s41348_021_00528_w
crossref_primary_10_3390_plants11010024
crossref_primary_10_1007_s42979_024_02620_y
crossref_primary_10_1016_j_procs_2024_12_036
crossref_primary_10_1109_JSEN_2023_3342833
crossref_primary_10_3390_s23010048
crossref_primary_10_1111_exsy_13543
crossref_primary_10_3390_app13031598
crossref_primary_10_3390_s23218685
crossref_primary_10_1155_2022_9153699
crossref_primary_10_3390_s22166079
crossref_primary_10_1080_1206212X_2023_2235750
crossref_primary_10_3390_app14177472
crossref_primary_10_1080_00103624_2024_2367035
crossref_primary_10_1002_agj2_21382
crossref_primary_10_1007_s11042_023_17503_2
crossref_primary_10_53759_181X_JCNS202202008
crossref_primary_10_1016_j_engappai_2022_105210
crossref_primary_10_1371_journal_pone_0313607
crossref_primary_10_3390_electronics11172641
crossref_primary_10_1007_s11042_023_17449_5
crossref_primary_10_1155_2022_3452413
crossref_primary_10_1016_j_suscom_2022_100696
crossref_primary_10_1016_j_ecoinf_2022_101698
crossref_primary_10_35234_fumbd_982348
crossref_primary_10_55581_ejeas_1321042
crossref_primary_10_48175_IJARSCT_11919
crossref_primary_10_48175_IJARSCT_11918
crossref_primary_10_1038_s41598_024_63930_y
crossref_primary_10_48175_IJARSCT_11917
crossref_primary_10_1109_ACCESS_2022_3141371
crossref_primary_10_48175_IJARSCT_11916
crossref_primary_10_1155_2022_1470541
crossref_primary_10_3390_rs14184648
crossref_primary_10_48175_IJARSCT_12321
crossref_primary_10_3390_s23041787
crossref_primary_10_1186_s12870_024_04825_y
crossref_primary_10_3390_s24196177
crossref_primary_10_1007_s00521_022_07722_3
crossref_primary_10_5897_AJAR2022_16226
crossref_primary_10_1186_s43067_024_00148_y
crossref_primary_10_3390_agronomy12102359
crossref_primary_10_1109_ACCESS_2021_3069646
crossref_primary_10_2174_0118743315321139240627092707
crossref_primary_10_1155_2021_6663442
crossref_primary_10_3389_fpls_2023_1224709
crossref_primary_10_1111_jph_13363
crossref_primary_10_1155_2022_2845320
Cites_doi 10.1098/rstb.2013.0089
10.1007/s13593-014-0246-1
10.1038/srep16564
10.1016/j.compag.2017.02.026
10.3389/fpls.2016.01419
10.1016/j.asoc.2019.105933
ContentType Journal Article
Copyright Copyright © 2020 Iftikhar Ahmad et al.
COPYRIGHT 2020 John Wiley & Sons, Inc.
Copyright © 2020 Iftikhar Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2020 Iftikhar Ahmad et al.
– notice: COPYRIGHT 2020 John Wiley & Sons, Inc.
– notice: Copyright © 2020 Iftikhar Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID ADJCN
AHFXO
AHMDM
RHU
RHW
RHX
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
AAMOE
ADTPV
AOWAS
D8T
DG3
ZZAVC
DOA
DOI 10.1155/2020/8812019
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
قاعدة العلوم الإنسانية - e-Marefa Humanities
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Research Library
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SWEPUB Karlstads universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Karlstads universitet
SwePub Articles full text
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList



CrossRef
Research Library Prep

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
Computer Science
EISSN 1099-0526
Editor Uddin, M. Irfan
Editor_xml – sequence: 1
  givenname: M. Irfan
  surname: Uddin
  fullname: Uddin, M. Irfan
EndPage 6
ExternalDocumentID oai_doaj_org_article_027a2ab583744698af4d4af9d9583b8f
oai_DiVA_org_kau_80334
A697097381
10_1155_2020_8812019
1144585
GroupedDBID .3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3R3
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8G5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAJEY
AAONW
ABCQN
ABEML
ABIJN
ABPVW
ABUWG
ACBWZ
ACCFJ
ACSCC
ACXQS
ADBBV
ADIZJ
ADJCN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AFBPY
AFKRA
AFPKN
AFZJQ
AHFXO
AHMDM
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DU5
DWQXO
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HVGLF
HZ~
IAO
ITC
IX1
J0M
JPC
K6V
K7-
KQQ
LAW
LC2
LC3
LH4
LP6
LP7
LW6
M2O
MK4
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
Q.N
Q11
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
TUS
V2E
W8V
W99
WBKPD
WIH
WQJ
WRC
WYUIH
XBAML
XG1
XPP
XSW
XV2
~IA
~WT
RHU
RHW
AAYXX
ACCMX
AMVHM
CITATION
ICD
PHGZM
PHGZT
PMFND
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
AAMOE
AANHP
ACRPL
ACYXJ
ADNMO
ADTPV
AGQPQ
AOWAS
D8T
DG3
ZZAVC
PUEGO
ID FETCH-LOGICAL-c502t-11889b22e276006aa00934f7ec1b651dbc206939962cb84969602a3cfeaf7bc23
IEDL.DBID BENPR
ISSN 1076-2787
1099-0526
IngestDate Wed Aug 27 01:21:35 EDT 2025
Thu Aug 21 06:37:11 EDT 2025
Fri Jul 25 21:08:50 EDT 2025
Tue Jun 10 21:03:09 EDT 2025
Tue Jul 01 02:02:02 EDT 2025
Thu Apr 24 22:55:48 EDT 2025
Sun Jun 02 18:54:58 EDT 2024
Thu Nov 28 18:42:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2020
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-11889b22e276006aa00934f7ec1b651dbc206939962cb84969602a3cfeaf7bc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7885-0369
OpenAccessLink https://dx.doi.org/10.1155/2020/8812019
PQID 2448259173
PQPubID 2029978
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_027a2ab583744698af4d4af9d9583b8f
swepub_primary_oai_DiVA_org_kau_80334
proquest_journals_2448259173
gale_infotracacademiconefile_A697097381
crossref_primary_10_1155_2020_8812019
crossref_citationtrail_10_1155_2020_8812019
hindawi_primary_10_1155_2020_8812019
emarefa_primary_1144585
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: Hoboken
PublicationTitle Complexity (New York, N.Y.)
PublicationYear 2020
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 1
3
6
7
8
9
(2) 2020
References_xml – ident: 1
  doi: 10.1098/rstb.2013.0089
– ident: 3
  doi: 10.1007/s13593-014-0246-1
– ident: 7
  doi: 10.1038/srep16564
– ident: 9
  doi: 10.1016/j.compag.2017.02.026
– year: 2020
  ident: 2
– ident: 6
  doi: 10.3389/fpls.2016.01419
– ident: 8
  doi: 10.1016/j.asoc.2019.105933
SSID ssj0009637
Score 2.5575016
Snippet Vegetable and fruit plants facilitate around 7.5 billion people around the globe, playing a crucial role in sustaining life on the planet. The rapid increase...
SourceID doaj
swepub
proquest
gale
crossref
hindawi
emarefa
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Agricultural ecology
Algorithms
Analysis
Artificial neural networks
Automation
Bactericides
Business metrics
Classification
Computer Science
Crop production
Data collection
Datasets
Datavetenskap
Deep learning
Feature extraction
Fungicides
Neural networks
Parameter identification
Plant diseases
Tomatoes
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQEhI9VAX6SEsrH6jaqopIHNuJj1u2CCH6OLAVN8uObbGCZit2KRK_nhnH2S6HigvKIYpjxZ7M2DOfH58J2as8OF1T89yVqs45B7ijbGhy8AxCGe7himyf3-XRhB-fibOVo75wTVhPD9z_uH2ATYYZKwBIcTzt0ATuuAnKKUiyTcDeF3zeAKYGul0Z2TIB28icgU0OS96FQLRf7Dfg1yK7zoozipz9cWOugWez7KM3zhEd30zvx6CrvKLRFx0-I09TEElHfeW3yJrvtsmTb0sG1vk22UqNdk4_JmbpTztk8gM6iN_TW3BX9OeVj8dDeEcPZt3fZIHwVaTriLe4PnxOIaqlpzP47oyeeBPouJ_SoWO_iMu4uudkcvj19OAoT-cq5K0o2CIHTNEoy5hnOCsnjcFhDR5q35ZWitLZlhVSQeQiWWsbjvw5BTNVG6CQGl5WL8h6N-v8K0K9MFVwrpZlsBxyWyucciwYAJZ1YDwjn4cfrNtEOo7CXeoIPoTQqA6d1JGR98vcf3qyjf_k-4K6WuZBiuyYAIajk-HohwwnIy-Tpv-VBegS4FNGPqDmNTZxqGxr0k4FEBnJsvRIqhpZjpoyI3vJOB6o7-5gOTp1EXMNcRWgc0DLFYjdW9M9gcbTX6Mo0IW51k1RVfz1Y4j9hmxi1fpRpF2yvri69m8hrlrYd7EJ3QFUghih
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagUiU4IFpegRb5UAQVikgc24mP2y7VCvE6dKu9WXZsixWQRc0WJH49M453y7ZCRTlESRzbkxl75ovtz4QcVB6crql57kpV55wD3FE2NDl4BqEM93BEts-PcjLl72ZilkiS-utD-ODtEJ4XbxpwRAXSe94GA0NQPpldcuvKSI0JQEbmDAxwNb_9yrsbnicS9MdVuAauzbpD3v6CUPjXfDPg_JtENDqek_vkXooY6WhQ8Q655btdcvfDmm613yU7qYX29FWikT58QKafoDf4Pv8Nvol-PvdxLwjv6PGi-5nMDXJFbo54ipPBewohLD1dQL4L-t6bQMfD-A0d-2Wcs9U9JNOTt6fHkzxtopC3omDLHABEoyxjnuEQnDQG_2HwUPu2tFKUzraskArCFMla23AkyymYqdoAhdTwsHpEtrpF558Q6oWpgnO1LIPlkNpa4ZRjwQCKrAPjGXm9-sC6TQzjKNw3HZGGEBrVoZM6MvJinfrHwKzxj3RHqKt1GuTDjjfARnRqXhrAtWHGCoDbHPfENIE7boJyCm7ZJmTkcdL0ZVkAJQErZeQlal5je4bKtiYtSwCRkRlLj6SqkdKoKTNykIzjhvrurSxHp_6g1xBEARQHaFyB2IM1bQg0np-NokBfzYVuiqriT_-vtGfkDl4OP4X2yNby_MLvQ5i0tM9jI_kDp9gF9g
  priority: 102
  providerName: Hindawi Publishing
Title Optimizing Pretrained Convolutional Neural Networks for Tomato Leaf Disease Detection
URI https://search.emarefa.net/detail/BIM-1144585
https://dx.doi.org/10.1155/2020/8812019
https://www.proquest.com/docview/2448259173
https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-80334
https://doaj.org/article/027a2ab583744698af4d4af9d9583b8f
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Rb9MwED6xTkjwgNiAERiVH4YAoWiJYyfOE-rWlQrBmKYV9c2yExsqIBltBxK_nrPjttsDoEqtmlp23Dvf3Xd2vgM4yAw6XVWwuE7LImYM4U6prYjRM_BSMYMvz_Z5mo8n7N2UT0PCbRGOVa5sojfUdVu5HPkhuiEEMwgusjeXP2JXNcrtroYSGluwjSZYiB5sH52cnp1vaHdzz5qJGCePKerm6ug75w71J4cC_Ztn2bnmlDx3v39AV-F3tbbVt784lPxrdjMWvc4v6n3S6D7cC8EkGXTS34FbptmFux_WTKyLXdgJi3dBXgaG6VcPYPIRDcX32W90W-RsbnyZCFOT47b5GTQRe3W0Hf7DnxNfEIxuyUWL_bbkvVGWDLutHTI0S3-cq3kIk9HJxfE4DvUV4oondBkjthClptRQtzuXK-XSG8wWpkp1ztNaVzTJS4xgclppwRyPTkJVVlkcpMAfs0fQa9rGPAZiuMpsXRd5ajXD1lrzuqypVQgwC0tZBK9Xf7CsAvm4m9w36UEI59KJQwZxRPB83fqyI934S7sjJ6t1G0eV7S-0888yrDyJuFtRpTkicebKZSrLaqZsWZd4SQsbwV6Q9GYsRJkIoyJ44SQv3VLHm61UeGIBp-xIs-QgLwvHdiTSCA6CcvznfvdXmiODqVjIjWLjtDttujGh4ezTwE_oq7qSIsky9uTf3TyFO27QLk-0D73l_Mo8w8hpqfuwJUZv-2GR9H3-Ad_Px9M_UcsUnQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgQcEC2vQAEfWgFCqyZeex8HhEJDaGlaOCSoN2Pv2hAB2ZKkVPCj-I3MeL1JewBOVQ5RNpbX9oxn5vPjG4DN2KLT1amIyk6eRkIg3MmNyyL0DDLXwuLHs30eJrsj8fZIHq3A7-YuDB2rbGyiN9RlVdAa-Ta6IQQzCC7il8ffI8oaRburTQqNWi327c9ThGyzF3s9lO8W5_3Xw53dKGQViArZ5vMII-osN5xbTntSidYE6oVLbdExieyUpuDtJEe_nfDCZILYY9pcx4Wz2qX4Z4z1XoLLIkZPTjfT-2-WJL-J5-hERJVEHGdCc9BeSlpjaG9n6E09p88ZF-gzBfjrwBp_64VnuPKZMPnp-Hzke5bN1HvA_k24EUJX1q11bQ1W7GQdrh8seF9n67AWTMWMPQ181s9uwegdmqVv41_oJNn7qfVJKWzJdqrJj6D3WCuRhPgvfyp9xjCWZsMK663YAIeE9eqNJNazc394bHIbRhcy7ndgdVJN7D1gVurYlWWadJwRWNoYWeYldxrhbOq4aMHzZoBVEajOqXNflYc8UioShwriaMHWovRxTfHxl3KvSFaLMkTM7R9U008qzHOFKF9zbSTifkHJObUTpdAuL3N8ZDLXgrtB0st3IaZF0NaCJyR5RYYFG1vocD8Cu0wUXaqb5ClxK2WdFmwG5fhPezcazVHBMM3Uchpht2ttOteh3vhD13foiz5RWTuOxf1_V_MYru4ODwZqsHe4_wCuUQPqFaoNWJ1PT-xDjNnm5pGfKAw-XvTM_APT1UvB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Pretrained+Convolutional+Neural+Networks+for+Tomato+Leaf+Disease+Detection&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Ahmad%2C+Iftikhar&rft.au=Hamid%2C+Muhammad&rft.au=Yousaf%2C+Suhail&rft.au=Tanveer+Shah%2C+Syed&rft.date=2020&rft.issn=1076-2787&rft.volume=2020&rft_id=info:doi/10.1155%2F2020%2F8812019&rft.externalDocID=oai_DiVA_org_kau_80334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon