Optimizing Pretrained Convolutional Neural Networks for Tomato Leaf Disease Detection
Vegetable and fruit plants facilitate around 7.5 billion people around the globe, playing a crucial role in sustaining life on the planet. The rapid increase in the use of chemicals such as fungicides and bactericides to curtail plant diseases is causing negative effects on the agro-ecosystem. The h...
Saved in:
Published in | Complexity (New York, N.Y.) Vol. 2020; no. 2020; pp. 1 - 6 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vegetable and fruit plants facilitate around 7.5 billion people around the globe, playing a crucial role in sustaining life on the planet. The rapid increase in the use of chemicals such as fungicides and bactericides to curtail plant diseases is causing negative effects on the agro-ecosystem. The high scale prevalence of diseases in crops affects the production quantity and quality. Solving the problem of early identification/diagnosis of diseases by exploiting a quick and consistent reliable method will benefit the farmers. In this context, our research work focuses on classification and identification of tomato leaf diseases using convolutional neural network (CNN) techniques. We consider four CNN architectures, namely, VGG-16, VGG-19, ResNet, and Inception V3, and use feature extraction and parameter-tuning to identify and classify tomato leaf diseases. We test the underlying models on two datasets, a laboratory-based dataset and self-collected data from the field. We observe that all architectures perform better on the laboratory-based dataset than on field-based data, with performance on various metrics showing variance in the range 10%–15%. Inception V3 is identified as the best performing algorithm on both datasets. |
---|---|
AbstractList | Vegetable and fruit plants facilitate around 7.5 billion people around the globe, playing a crucial role in sustaining life on the planet. The rapid increase in the use of chemicals such as fungicides and bactericides to curtail plant diseases is causing negative effects on the agro-ecosystem. The high scale prevalence of diseases in crops affects the production quantity and quality. Solving the problem of early identification/diagnosis of diseases by exploiting a quick and consistent reliable method will benefit the farmers. In this context, our research work focuses on classification and identification of tomato leaf diseases using convolutional neural network (CNN) techniques. We consider four CNN architectures, namely, VGG-16, VGG-19, ResNet, and Inception V3, and use feature extraction and parameter-tuning to identify and classify tomato leaf diseases. We test the underlying models on two datasets, a laboratory-based dataset and self-collected data from the field. We observe that all architectures perform better on the laboratory-based dataset than on field-based data, with performance on various metrics showing variance in the range 10%–15%. Inception V3 is identified as the best performing algorithm on both datasets. |
Audience | Academic |
Author | Hamid, Muhammad Shah, Syed Tanveer Ahmad, Iftikhar Ahmad, Muhammad Ovais Yousaf, Suhail |
Author_xml | – sequence: 1 fullname: Shah, Syed Tanveer – sequence: 2 fullname: Yousaf, Suhail – sequence: 3 fullname: Hamid, Muhammad – sequence: 4 fullname: Ahmad, Iftikhar – sequence: 5 fullname: Ahmad, Muhammad Ovais |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-80334$$DView record from Swedish Publication Index |
BookMark | eNqFkc1v1DAQxSNUJNrCjTOKxBHS-iv-OK52oVRaUQ4tV2vi2Iu32XixE1bw19fZVFQgIeSDrfFv3jzNOytO-tDboniN0QXGdX1JEEGXUmKCsHpWnGKkVIVqwk-mt-AVEVK8KM5S2iKEFKfitLi72Q9-53_5flN-iXaI4HvblsvQ_wjdOPjQQ1d-tmM8XsMhxPtUuhDL27CDIZRrC65c-WQh2XJlB2umnpfFcwddsq8e7_Pi7uOH2-Wnan1zdb1crCtTIzJUGEupGkIsERwhDpBdUeaENbjhNW4bQxBXVClOTCOZ4oojAtS4PFTkT3peXM-6bYCt3ke_g_hTB_D6WAhxoyEO3nRWIyKAQFNLKhjjSoJjLQOnWpVLjXRZ6_2slQ52PzZ_qK3818VR7R5GLRGlLONvZ3wfw_fRpkFvwxjztpImjElSKyxopi5magPZg-9dyBs2-bR2501Oz_lcX3AlkBJU4icXJoaUonW_fWCkp5D1FLJ-DDnj5C_c-AGmCKYku381vZubvvm-hYP_34g3M20zYx080ZixWtb0AbpWwLI |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3373001 crossref_primary_10_1117_1_JEI_32_3_033039 crossref_primary_10_1007_s00521_022_07521_w crossref_primary_10_1007_s10462_024_11100_x crossref_primary_10_1155_2022_3287561 crossref_primary_10_48175_IJARSCT_12196 crossref_primary_10_1016_j_compag_2025_110128 crossref_primary_10_3390_agronomy13092242 crossref_primary_10_1109_ACCESS_2021_3105112 crossref_primary_10_3390_agronomy14122796 crossref_primary_10_3390_agriengineering5010009 crossref_primary_10_1038_s41598_023_34549_2 crossref_primary_10_3390_agriculture12081192 crossref_primary_10_3389_fpls_2024_1493322 crossref_primary_10_1007_s41348_021_00528_w crossref_primary_10_3390_plants11010024 crossref_primary_10_1007_s42979_024_02620_y crossref_primary_10_1016_j_procs_2024_12_036 crossref_primary_10_1109_JSEN_2023_3342833 crossref_primary_10_3390_s23010048 crossref_primary_10_1111_exsy_13543 crossref_primary_10_3390_app13031598 crossref_primary_10_3390_s23218685 crossref_primary_10_1155_2022_9153699 crossref_primary_10_3390_s22166079 crossref_primary_10_1080_1206212X_2023_2235750 crossref_primary_10_3390_app14177472 crossref_primary_10_1080_00103624_2024_2367035 crossref_primary_10_1002_agj2_21382 crossref_primary_10_1007_s11042_023_17503_2 crossref_primary_10_53759_181X_JCNS202202008 crossref_primary_10_1016_j_engappai_2022_105210 crossref_primary_10_1371_journal_pone_0313607 crossref_primary_10_3390_electronics11172641 crossref_primary_10_1007_s11042_023_17449_5 crossref_primary_10_1155_2022_3452413 crossref_primary_10_1016_j_suscom_2022_100696 crossref_primary_10_1016_j_ecoinf_2022_101698 crossref_primary_10_35234_fumbd_982348 crossref_primary_10_55581_ejeas_1321042 crossref_primary_10_48175_IJARSCT_11919 crossref_primary_10_48175_IJARSCT_11918 crossref_primary_10_1038_s41598_024_63930_y crossref_primary_10_48175_IJARSCT_11917 crossref_primary_10_1109_ACCESS_2022_3141371 crossref_primary_10_48175_IJARSCT_11916 crossref_primary_10_1155_2022_1470541 crossref_primary_10_3390_rs14184648 crossref_primary_10_48175_IJARSCT_12321 crossref_primary_10_3390_s23041787 crossref_primary_10_1186_s12870_024_04825_y crossref_primary_10_3390_s24196177 crossref_primary_10_1007_s00521_022_07722_3 crossref_primary_10_5897_AJAR2022_16226 crossref_primary_10_1186_s43067_024_00148_y crossref_primary_10_3390_agronomy12102359 crossref_primary_10_1109_ACCESS_2021_3069646 crossref_primary_10_2174_0118743315321139240627092707 crossref_primary_10_1155_2021_6663442 crossref_primary_10_3389_fpls_2023_1224709 crossref_primary_10_1111_jph_13363 crossref_primary_10_1155_2022_2845320 |
Cites_doi | 10.1098/rstb.2013.0089 10.1007/s13593-014-0246-1 10.1038/srep16564 10.1016/j.compag.2017.02.026 10.3389/fpls.2016.01419 10.1016/j.asoc.2019.105933 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Iftikhar Ahmad et al. COPYRIGHT 2020 John Wiley & Sons, Inc. Copyright © 2020 Iftikhar Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2020 Iftikhar Ahmad et al. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: Copyright © 2020 Iftikhar Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | ADJCN AHFXO AHMDM RHU RHW RHX AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U AAMOE ADTPV AOWAS D8T DG3 ZZAVC DOA |
DOI | 10.1155/2020/8812019 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete قاعدة العلوم الإنسانية - e-Marefa Humanities Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Research Library Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SWEPUB Karlstads universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Karlstads universitet SwePub Articles full text Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics Computer Science |
EISSN | 1099-0526 |
Editor | Uddin, M. Irfan |
Editor_xml | – sequence: 1 givenname: M. Irfan surname: Uddin fullname: Uddin, M. Irfan |
EndPage | 6 |
ExternalDocumentID | oai_doaj_org_article_027a2ab583744698af4d4af9d9583b8f oai_DiVA_org_kau_80334 A697097381 10_1155_2020_8812019 1144585 |
GroupedDBID | .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3R3 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8G5 8UM 930 A03 AAESR AAEVG AAFWJ AAHHS AAJEY AAONW ABCQN ABEML ABIJN ABPVW ABUWG ACBWZ ACCFJ ACSCC ACXQS ADBBV ADIZJ ADJCN ADZOD AEEZP AEIMD AENEX AEQDE AFBPY AFKRA AFPKN AFZJQ AHFXO AHMDM AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BCNDV BDRZF BENPR BFHJK BGLVJ BHBCM BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DU5 DWQXO EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ IAO ITC IX1 J0M JPC K6V K7- KQQ LAW LC2 LC3 LH4 LP6 LP7 LW6 M2O MK4 N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D P62 PQQKQ PROAC Q.N Q11 QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ TUS V2E W8V W99 WBKPD WIH WQJ WRC WYUIH XBAML XG1 XPP XSW XV2 ~IA ~WT RHU RHW AAYXX ACCMX AMVHM CITATION ICD PHGZM PHGZT PMFND 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U AAMOE AANHP ACRPL ACYXJ ADNMO ADTPV AGQPQ AOWAS D8T DG3 ZZAVC PUEGO |
ID | FETCH-LOGICAL-c502t-11889b22e276006aa00934f7ec1b651dbc206939962cb84969602a3cfeaf7bc23 |
IEDL.DBID | BENPR |
ISSN | 1076-2787 1099-0526 |
IngestDate | Wed Aug 27 01:21:35 EDT 2025 Thu Aug 21 06:37:11 EDT 2025 Fri Jul 25 21:08:50 EDT 2025 Tue Jun 10 21:03:09 EDT 2025 Tue Jul 01 02:02:02 EDT 2025 Thu Apr 24 22:55:48 EDT 2025 Sun Jun 02 18:54:58 EDT 2024 Thu Nov 28 18:42:01 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2020 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-11889b22e276006aa00934f7ec1b651dbc206939962cb84969602a3cfeaf7bc23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7885-0369 |
OpenAccessLink | https://dx.doi.org/10.1155/2020/8812019 |
PQID | 2448259173 |
PQPubID | 2029978 |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_027a2ab583744698af4d4af9d9583b8f swepub_primary_oai_DiVA_org_kau_80334 proquest_journals_2448259173 gale_infotracacademiconefile_A697097381 crossref_primary_10_1155_2020_8812019 crossref_citationtrail_10_1155_2020_8812019 hindawi_primary_10_1155_2020_8812019 emarefa_primary_1144585 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: Hoboken |
PublicationTitle | Complexity (New York, N.Y.) |
PublicationYear | 2020 |
Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | 1 3 6 7 8 9 (2) 2020 |
References_xml | – ident: 1 doi: 10.1098/rstb.2013.0089 – ident: 3 doi: 10.1007/s13593-014-0246-1 – ident: 7 doi: 10.1038/srep16564 – ident: 9 doi: 10.1016/j.compag.2017.02.026 – year: 2020 ident: 2 – ident: 6 doi: 10.3389/fpls.2016.01419 – ident: 8 doi: 10.1016/j.asoc.2019.105933 |
SSID | ssj0009637 |
Score | 2.5575016 |
Snippet | Vegetable and fruit plants facilitate around 7.5 billion people around the globe, playing a crucial role in sustaining life on the planet. The rapid increase... |
SourceID | doaj swepub proquest gale crossref hindawi emarefa |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Agricultural ecology Algorithms Analysis Artificial neural networks Automation Bactericides Business metrics Classification Computer Science Crop production Data collection Datasets Datavetenskap Deep learning Feature extraction Fungicides Neural networks Parameter identification Plant diseases Tomatoes |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQEhI9VAX6SEsrH6jaqopIHNuJj1u2CCH6OLAVN8uObbGCZit2KRK_nhnH2S6HigvKIYpjxZ7M2DOfH58J2as8OF1T89yVqs45B7ijbGhy8AxCGe7himyf3-XRhB-fibOVo75wTVhPD9z_uH2ATYYZKwBIcTzt0ATuuAnKKUiyTcDeF3zeAKYGul0Z2TIB28icgU0OS96FQLRf7Dfg1yK7zoozipz9cWOugWez7KM3zhEd30zvx6CrvKLRFx0-I09TEElHfeW3yJrvtsmTb0sG1vk22UqNdk4_JmbpTztk8gM6iN_TW3BX9OeVj8dDeEcPZt3fZIHwVaTriLe4PnxOIaqlpzP47oyeeBPouJ_SoWO_iMu4uudkcvj19OAoT-cq5K0o2CIHTNEoy5hnOCsnjcFhDR5q35ZWitLZlhVSQeQiWWsbjvw5BTNVG6CQGl5WL8h6N-v8K0K9MFVwrpZlsBxyWyucciwYAJZ1YDwjn4cfrNtEOo7CXeoIPoTQqA6d1JGR98vcf3qyjf_k-4K6WuZBiuyYAIajk-HohwwnIy-Tpv-VBegS4FNGPqDmNTZxqGxr0k4FEBnJsvRIqhpZjpoyI3vJOB6o7-5gOTp1EXMNcRWgc0DLFYjdW9M9gcbTX6Mo0IW51k1RVfz1Y4j9hmxi1fpRpF2yvri69m8hrlrYd7EJ3QFUghih priority: 102 providerName: Directory of Open Access Journals – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagUiU4IFpegRb5UAQVikgc24mP2y7VCvE6dKu9WXZsixWQRc0WJH49M453y7ZCRTlESRzbkxl75ovtz4QcVB6crql57kpV55wD3FE2NDl4BqEM93BEts-PcjLl72ZilkiS-utD-ODtEJ4XbxpwRAXSe94GA0NQPpldcuvKSI0JQEbmDAxwNb_9yrsbnicS9MdVuAauzbpD3v6CUPjXfDPg_JtENDqek_vkXooY6WhQ8Q655btdcvfDmm613yU7qYX29FWikT58QKafoDf4Pv8Nvol-PvdxLwjv6PGi-5nMDXJFbo54ipPBewohLD1dQL4L-t6bQMfD-A0d-2Wcs9U9JNOTt6fHkzxtopC3omDLHABEoyxjnuEQnDQG_2HwUPu2tFKUzraskArCFMla23AkyymYqdoAhdTwsHpEtrpF558Q6oWpgnO1LIPlkNpa4ZRjwQCKrAPjGXm9-sC6TQzjKNw3HZGGEBrVoZM6MvJinfrHwKzxj3RHqKt1GuTDjjfARnRqXhrAtWHGCoDbHPfENIE7boJyCm7ZJmTkcdL0ZVkAJQErZeQlal5je4bKtiYtSwCRkRlLj6SqkdKoKTNykIzjhvrurSxHp_6g1xBEARQHaFyB2IM1bQg0np-NokBfzYVuiqriT_-vtGfkDl4OP4X2yNby_MLvQ5i0tM9jI_kDp9gF9g priority: 102 providerName: Hindawi Publishing |
Title | Optimizing Pretrained Convolutional Neural Networks for Tomato Leaf Disease Detection |
URI | https://search.emarefa.net/detail/BIM-1144585 https://dx.doi.org/10.1155/2020/8812019 https://www.proquest.com/docview/2448259173 https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-80334 https://doaj.org/article/027a2ab583744698af4d4af9d9583b8f |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Rb9MwED6xTkjwgNiAERiVH4YAoWiJYyfOE-rWlQrBmKYV9c2yExsqIBltBxK_nrPjttsDoEqtmlp23Dvf3Xd2vgM4yAw6XVWwuE7LImYM4U6prYjRM_BSMYMvz_Z5mo8n7N2UT0PCbRGOVa5sojfUdVu5HPkhuiEEMwgusjeXP2JXNcrtroYSGluwjSZYiB5sH52cnp1vaHdzz5qJGCePKerm6ug75w71J4cC_Ztn2bnmlDx3v39AV-F3tbbVt784lPxrdjMWvc4v6n3S6D7cC8EkGXTS34FbptmFux_WTKyLXdgJi3dBXgaG6VcPYPIRDcX32W90W-RsbnyZCFOT47b5GTQRe3W0Hf7DnxNfEIxuyUWL_bbkvVGWDLutHTI0S3-cq3kIk9HJxfE4DvUV4oondBkjthClptRQtzuXK-XSG8wWpkp1ztNaVzTJS4xgclppwRyPTkJVVlkcpMAfs0fQa9rGPAZiuMpsXRd5ajXD1lrzuqypVQgwC0tZBK9Xf7CsAvm4m9w36UEI59KJQwZxRPB83fqyI934S7sjJ6t1G0eV7S-0888yrDyJuFtRpTkicebKZSrLaqZsWZd4SQsbwV6Q9GYsRJkIoyJ44SQv3VLHm61UeGIBp-xIs-QgLwvHdiTSCA6CcvznfvdXmiODqVjIjWLjtDttujGh4ezTwE_oq7qSIsky9uTf3TyFO27QLk-0D73l_Mo8w8hpqfuwJUZv-2GR9H3-Ad_Px9M_UcsUnQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgQcEC2vQAEfWgFCqyZeex8HhEJDaGlaOCSoN2Pv2hAB2ZKkVPCj-I3MeL1JewBOVQ5RNpbX9oxn5vPjG4DN2KLT1amIyk6eRkIg3MmNyyL0DDLXwuLHs30eJrsj8fZIHq3A7-YuDB2rbGyiN9RlVdAa-Ta6IQQzCC7il8ffI8oaRburTQqNWi327c9ThGyzF3s9lO8W5_3Xw53dKGQViArZ5vMII-osN5xbTntSidYE6oVLbdExieyUpuDtJEe_nfDCZILYY9pcx4Wz2qX4Z4z1XoLLIkZPTjfT-2-WJL-J5-hERJVEHGdCc9BeSlpjaG9n6E09p88ZF-gzBfjrwBp_64VnuPKZMPnp-Hzke5bN1HvA_k24EUJX1q11bQ1W7GQdrh8seF9n67AWTMWMPQ181s9uwegdmqVv41_oJNn7qfVJKWzJdqrJj6D3WCuRhPgvfyp9xjCWZsMK663YAIeE9eqNJNazc394bHIbRhcy7ndgdVJN7D1gVurYlWWadJwRWNoYWeYldxrhbOq4aMHzZoBVEajOqXNflYc8UioShwriaMHWovRxTfHxl3KvSFaLMkTM7R9U008qzHOFKF9zbSTifkHJObUTpdAuL3N8ZDLXgrtB0st3IaZF0NaCJyR5RYYFG1vocD8Cu0wUXaqb5ClxK2WdFmwG5fhPezcazVHBMM3Uchpht2ttOteh3vhD13foiz5RWTuOxf1_V_MYru4ODwZqsHe4_wCuUQPqFaoNWJ1PT-xDjNnm5pGfKAw-XvTM_APT1UvB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Pretrained+Convolutional+Neural+Networks+for+Tomato+Leaf+Disease+Detection&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Ahmad%2C+Iftikhar&rft.au=Hamid%2C+Muhammad&rft.au=Yousaf%2C+Suhail&rft.au=Tanveer+Shah%2C+Syed&rft.date=2020&rft.issn=1076-2787&rft.volume=2020&rft_id=info:doi/10.1155%2F2020%2F8812019&rft.externalDocID=oai_DiVA_org_kau_80334 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon |