An exact method based on Lagrangian decomposition for the 0–1 quadratic knapsack problem

The 0–1 quadratic knapsack problem (QKP) consists in maximizing a quadratic pseudo-Boolean function with positive coefficients subject to a linear capacity constraint. In this paper we present an exact method to solve this problem. This method makes use of the computation of an upper bound for (QKP)...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of operational research Vol. 157; no. 3; pp. 565 - 575
Main Authors Billionnet, Alain, Soutif, Éric
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 16.09.2004
Elsevier
Elsevier Sequoia S.A
SeriesEuropean Journal of Operational Research
Subjects
Online AccessGet full text
ISSN0377-2217
1872-6860
DOI10.1016/S0377-2217(03)00244-3

Cover

Loading…
Abstract The 0–1 quadratic knapsack problem (QKP) consists in maximizing a quadratic pseudo-Boolean function with positive coefficients subject to a linear capacity constraint. In this paper we present an exact method to solve this problem. This method makes use of the computation of an upper bound for (QKP) which is derived from Lagrangian decomposition. It allows us to find the optimum of instances with up to 150 variables whatever their density, and with up to 300 variables for medium and low density.
AbstractList The 0-1 quadratic knapsack problem (QKP) consists in maximizing a quadratic pseudo-Boolean function with positive coefficients subject to a linear capacity constraint. In this paper we present an exact method to solve this problem. This method makes use of the computation of an upper bound for (QKP) which is derived from Lagrangian decomposition. It allows us to find the optimum of instances with up to 150 variables whatever their density, and with up to 300 variables for medium and low density. [PUBLICATION ABSTRACT]
The 0-1 quadratic knapsack problem (QKP) consists of maximizing a pseudo-Boolean quadratic function with positive coefficients subject to a linear capacity constraint. We present in this paper a new exact method for solving this problem. This method makes use of the computation of an upper bound for (QKP) using a technique derived from the Lagrangean decomposition methods. The method we use is applied to very large sized problems and allows to find the optimum of problems up to 150 variables whatever their density is and up to 300 variables for problems with medium and low density.KEY-WORDS:0-1 quadratic optimization, knapsack, Lagrangean decomposition, computational results, branch and bound.
The 0–1 quadratic knapsack problem (QKP) consists in maximizing a quadratic pseudo-Boolean function with positive coefficients subject to a linear capacity constraint. In this paper we present an exact method to solve this problem. This method makes use of the computation of an upper bound for (QKP) which is derived from Lagrangian decomposition. It allows us to find the optimum of instances with up to 150 variables whatever their density, and with up to 300 variables for medium and low density.
Author Soutif, Éric
Billionnet, Alain
Author_xml – sequence: 1
  givenname: Alain
  surname: Billionnet
  fullname: Billionnet, Alain
  email: alain.billionnet@iie.cnam.fr
  organization: CEDRIC––IIE, 18 allée Jean Rostand, 91025 Evry Cedex, France
– sequence: 2
  givenname: Éric
  surname: Soutif
  fullname: Soutif, Éric
  email: eric.soutif@univ-paris1.fr
  organization: CERMSEM UMR CNRS 8095, Université Paris 1 Panthéon-Sorbonne, 106-112 boulevard de l'Hôpital, 75647 Paris Cedex 13, France
BackLink http://econpapers.repec.org/article/eeeejores/v_3a157_3ay_3a2004_3ai_3a3_3ap_3a565-575.htm$$DView record in RePEc
https://hal.science/hal-01124918$$DView record in HAL
BookMark eNqFUcFuEzEQXaEikRY-AcniRA8LM971eiMOKKqAIiJxAC5crFnvbOM0WW9tJ6I3_oE_5EtwGuiBSy09j2S_9zQz77Q4Gf3IRfEc4RUCNq-_QKV1KSXql1CdA8i6LqtHxQxbLcumbeCkmN1TnhSnMa4BABWqWfF9MQr-QTaJLaeV70VHkXvhR7Gkq0DjlaNR9Gz9dvLRJZc_Bh9EWrGA3z9_objZUR8oOSuuR5oi2WsxBd9tePu0eDzQJvKzv_Ws-Pb-3deLy3L5-cPHi8WytApkKhEbDUNn7VDpjhhA6V62oAmb3rYS2061BP0ckOaWGtSkqWubeddJrgZdVWfF-dF3RRszBbelcGs8OXO5WJrDGyDKeo7tHjP3xZGbe7zZcUxm7XdhzO0ZCTXKRrV1Jn06kgJPbO8tOZ-1DxzN3lSESuf7NkMC1Lm4jCpjylCNMkors0rb7Pbm6GaDjzHwYKxLdNhkCuQ2BsEcUjR3KZpDRAYqc5eiOQyn_lP_a-ch3dujjvPm946DidbxaLl3gW0yvXcPOPwBV7C1HQ
CODEN EJORDT
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2942340
crossref_primary_10_1057_jors_2014_76
crossref_primary_10_1007_s10489_017_1025_x
crossref_primary_10_1016_j_knosys_2015_10_004
crossref_primary_10_1007_s10479_019_03290_3
crossref_primary_10_1007_s11590_017_1125_x
crossref_primary_10_1016_j_ejor_2020_10_047
crossref_primary_10_1016_j_cor_2013_08_018
crossref_primary_10_1007_s10589_015_9763_3
crossref_primary_10_3390_su9020236
crossref_primary_10_1007_s10878_019_00517_8
crossref_primary_10_1016_j_cor_2012_11_023
crossref_primary_10_1109_TETCI_2024_3405370
crossref_primary_10_1016_j_apm_2006_11_011
crossref_primary_10_1016_j_cor_2016_08_006
crossref_primary_10_1016_j_ejor_2016_06_013
crossref_primary_10_1007_s10489_021_02717_4
crossref_primary_10_1016_j_swevo_2015_09_005
crossref_primary_10_1287_ijoc_2021_0186
crossref_primary_10_1287_moor_2022_1345
crossref_primary_10_1016_j_cam_2013_09_052
crossref_primary_10_1007_s10479_014_1720_5
crossref_primary_10_1007_s00521_022_07555_0
crossref_primary_10_1007_s10898_012_9872_9
crossref_primary_10_1080_01605682_2023_2228339
crossref_primary_10_1287_ijoc_2017_0789
crossref_primary_10_1016_j_ejor_2024_06_034
crossref_primary_10_1007_s10479_018_3118_2
crossref_primary_10_1287_ijoc_2018_0840
crossref_primary_10_1007_s11067_010_9150_7
crossref_primary_10_1016_j_disopt_2020_100579
crossref_primary_10_3934_jimo_2013_9_531
crossref_primary_10_1016_j_ejor_2024_12_032
crossref_primary_10_1007_s12532_021_00206_w
crossref_primary_10_1016_j_cam_2015_02_016
crossref_primary_10_1007_s00521_023_09200_w
crossref_primary_10_1016_j_cor_2010_12_017
crossref_primary_10_1016_j_eswa_2020_113224
crossref_primary_10_1080_01605682_2020_1843982
crossref_primary_10_1109_TC_2022_3178325
crossref_primary_10_1016_j_dam_2023_02_003
crossref_primary_10_1109_ACCESS_2024_3425711
crossref_primary_10_1016_j_cor_2024_106873
crossref_primary_10_12677_ORF_2014_41002
crossref_primary_10_1137_110820762
crossref_primary_10_1016_j_dam_2007_12_007
crossref_primary_10_1007_s10479_018_2970_4
crossref_primary_10_1016_j_apm_2011_10_017
crossref_primary_10_59313_jsr_a_1203652
crossref_primary_10_1007_s10878_007_9105_1
crossref_primary_10_1007_s10957_011_9885_4
crossref_primary_10_1007_s10288_023_00537_5
crossref_primary_10_1016_j_knosys_2016_01_014
crossref_primary_10_1016_j_apm_2012_07_017
crossref_primary_10_1016_j_asoc_2015_11_045
crossref_primary_10_1016_j_physa_2017_02_052
crossref_primary_10_1155_2014_573731
crossref_primary_10_1016_j_cor_2015_08_002
crossref_primary_10_1080_03155986_2005_11732724
crossref_primary_10_1016_j_cor_2021_105693
crossref_primary_10_1016_j_eswa_2021_116238
crossref_primary_10_1080_10556788_2011_627586
crossref_primary_10_4018_IJAEC_2019100101
crossref_primary_10_1007_s00186_020_00702_0
crossref_primary_10_1080_17445760_2017_1314473
crossref_primary_10_1109_JSAC_2024_3460049
crossref_primary_10_1016_j_ejor_2010_05_039
Cites_doi 10.1287/mnsc.41.4.704
10.1007/BFb0120892
10.1016/0377-2217(94)00286-X
10.1287/ijoc.11.2.125
10.1016/0377-2217(94)00229-0
10.1016/S0377-2217(97)00414-1
ContentType Journal Article
Copyright 2003
Copyright Elsevier Sequoia S.A. Sep 16, 2004
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2003
– notice: Copyright Elsevier Sequoia S.A. Sep 16, 2004
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
DKI
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
1XC
DOI 10.1016/S0377-2217(03)00244-3
DatabaseName CrossRef
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 575
ExternalDocumentID oai_HAL_hal_01124918v1
665850671
eeeejores_v_3a157_3ay_3a2004_3ai_3a3_3ap_3a565_575_htm
10_1016_S0377_2217_03_00244_3
S0377221703002443
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
VH1
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
02
08R
0R
1
41
6XO
8P
AAPBV
ABFLS
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
PQEST
STF
X
X2L
7SC
7TB
8FD
EFKBS
FR3
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c502t-11670fbccf37bae0057d2807a16dc8218b58a0d901a9ca617a7ab869bb2e3f733
IEDL.DBID AIKHN
ISSN 0377-2217
IngestDate Thu Jul 10 08:56:37 EDT 2025
Fri Jul 25 08:07:06 EDT 2025
Wed Aug 18 03:50:57 EDT 2021
Thu Apr 24 23:07:16 EDT 2025
Tue Jul 01 00:32:47 EDT 2025
Fri Feb 23 02:32:17 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Branch-and-bound
Lagrangian decomposition
Knapsack
Computational results
0–1 quadratic programming
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-11670fbccf37bae0057d2807a16dc8218b58a0d901a9ca617a7ab869bb2e3f733
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 204126584
PQPubID 45678
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_01124918v1
proquest_journals_204126584
repec_primary_eeeejores_v_3a157_3ay_3a2004_3ai_3a3_3ap_3a565_575_htm
crossref_citationtrail_10_1016_S0377_2217_03_00244_3
crossref_primary_10_1016_S0377_2217_03_00244_3
elsevier_sciencedirect_doi_10_1016_S0377_2217_03_00244_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-09-16
PublicationDateYYYYMMDD 2004-09-16
PublicationDate_xml – month: 09
  year: 2004
  text: 2004-09-16
  day: 16
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle European Journal of Operational Research
PublicationTitle European journal of operational research
PublicationYear 2004
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Chardaire, Sutter (BIB5) 1995; 41
Billionnet, Faye, Soutif (BIB2) 1999; 112
Chaillou, Hansen, Mahieu (BIB4) 1986; Vol. 1403
Gallo, Hammer, Simeone (BIB6) 1980; 12
Hammer, Rader (BIB7) 1997; 35
Caprara, Pisinger, Toth (BIB3) 1999; 11
Billionnet, Calmels (BIB1) 1996; 92
Michelon, Veuilleux (BIB8) 1996; 92
Michelon (10.1016/S0377-2217(03)00244-3_BIB8) 1996; 92
Gallo (10.1016/S0377-2217(03)00244-3_BIB6) 1980; 12
Billionnet (10.1016/S0377-2217(03)00244-3_BIB1) 1996; 92
Chaillou (10.1016/S0377-2217(03)00244-3_BIB4) 1986; Vol. 1403
Billionnet (10.1016/S0377-2217(03)00244-3_BIB2) 1999; 112
Chardaire (10.1016/S0377-2217(03)00244-3_BIB5) 1995; 41
Hammer (10.1016/S0377-2217(03)00244-3_BIB7) 1997; 35
Caprara (10.1016/S0377-2217(03)00244-3_BIB3) 1999; 11
References_xml – volume: 35
  start-page: 170
  year: 1997
  end-page: 182
  ident: BIB7
  article-title: Efficient methods for solving quadratic 0–1 knapsack problems
  publication-title: INFOR
– volume: 112
  start-page: 664
  year: 1999
  end-page: 672
  ident: BIB2
  article-title: A new upper bound for the 0–1 quadratic knapsack problem
  publication-title: European Journal of Operational Research
– volume: 12
  start-page: 132
  year: 1980
  end-page: 149
  ident: BIB6
  article-title: Quadratic knapsack problems
  publication-title: Mathematical Programming Study
– volume: 41
  start-page: 704
  year: 1995
  end-page: 712
  ident: BIB5
  article-title: A decomposition method for quadratic zero–one programming
  publication-title: Management Science
– volume: 92
  start-page: 326
  year: 1996
  end-page: 341
  ident: BIB8
  article-title: Lagrangean methods for the 0–1 quadratic knapsack problem
  publication-title: European Journal of Operational Research
– volume: Vol. 1403
  year: 1986
  ident: BIB4
  article-title: Best Network Flow Bound for the Quadratic Knapsack Problem
  publication-title: Lecture Notes in Mathematics
– volume: 92
  start-page: 310
  year: 1996
  end-page: 325
  ident: BIB1
  article-title: Linear programming for the 0–1 quadratic knapsack problem
  publication-title: European Journal of Operational Research
– volume: 11
  start-page: 125
  year: 1999
  end-page: 137
  ident: BIB3
  article-title: Exact solution of the quadratic knapsack problem
  publication-title: INFORMS Journal on Computing
– volume: Vol. 1403
  year: 1986
  ident: 10.1016/S0377-2217(03)00244-3_BIB4
  article-title: Best Network Flow Bound for the Quadratic Knapsack Problem
– volume: 41
  start-page: 704
  year: 1995
  ident: 10.1016/S0377-2217(03)00244-3_BIB5
  article-title: A decomposition method for quadratic zero–one programming
  publication-title: Management Science
  doi: 10.1287/mnsc.41.4.704
– volume: 12
  start-page: 132
  year: 1980
  ident: 10.1016/S0377-2217(03)00244-3_BIB6
  article-title: Quadratic knapsack problems
  publication-title: Mathematical Programming Study
  doi: 10.1007/BFb0120892
– volume: 92
  start-page: 326
  year: 1996
  ident: 10.1016/S0377-2217(03)00244-3_BIB8
  article-title: Lagrangean methods for the 0–1 quadratic knapsack problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(94)00286-X
– volume: 11
  start-page: 125
  year: 1999
  ident: 10.1016/S0377-2217(03)00244-3_BIB3
  article-title: Exact solution of the quadratic knapsack problem
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.11.2.125
– volume: 35
  start-page: 170
  year: 1997
  ident: 10.1016/S0377-2217(03)00244-3_BIB7
  article-title: Efficient methods for solving quadratic 0–1 knapsack problems
  publication-title: INFOR
– volume: 92
  start-page: 310
  year: 1996
  ident: 10.1016/S0377-2217(03)00244-3_BIB1
  article-title: Linear programming for the 0–1 quadratic knapsack problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(94)00229-0
– volume: 112
  start-page: 664
  year: 1999
  ident: 10.1016/S0377-2217(03)00244-3_BIB2
  article-title: A new upper bound for the 0–1 quadratic knapsack problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(97)00414-1
SSID ssj0001515
Score 2.0983357
Snippet The 0–1 quadratic knapsack problem (QKP) consists in maximizing a quadratic pseudo-Boolean function with positive coefficients subject to a linear capacity...
The 0-1 quadratic knapsack problem (QKP) consists in maximizing a quadratic pseudo-Boolean function with positive coefficients subject to a linear capacity...
The 0-1 quadratic knapsack problem (QKP) consists of maximizing a pseudo-Boolean quadratic function with positive coefficients subject to a linear capacity...
SourceID hal
proquest
repec
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 565
SubjectTerms 0–1 quadratic programming
Branch-and-bound
Computational Complexity
Computational results
Computer Science
Knapsack
Knapsack problem
Lagrangian decomposition
Mathematical programming
Optimization
Studies
Title An exact method based on Lagrangian decomposition for the 0–1 quadratic knapsack problem
URI https://dx.doi.org/10.1016/S0377-2217(03)00244-3
http://econpapers.repec.org/article/eeeejores/v_3a157_3ay_3a2004_3ai_3a3_3ap_3a565-575.htm
https://www.proquest.com/docview/204126584
https://hal.science/hal-01124918
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB51uxKCAz8LiKVQWYgDHNx1Ym-cHFct1ZaWXqBSxcWyHaddCtmwm1ZwQbwDb8iTME6c7XJAlYjkRLFk52fG831OxjMAL63JnJBZQmOhcyqMKCiSWEZNgehUOBFL7T8NvDtOpifi7en4dAN2u7Uw3q0y2P7WpjfWOtSMwtscVbPZ6D3jyAyRUaOaItAI3oN-zLMEVbs_OTicHq8Mssfs5meClNQ3uF7I03bSVL5i_HXTD-X_gqjeufeVXCOi_YWrnF3Do_37cDcQSTJp7_UBbLhyALc6P_YB3OvyNZAwfAdwZy344EP4OCmJ-6ZtTdos0sQDWk7mJTnSZ4hgZ6g4JHfe5zw4dhEkuAQJI2G_f_6KyNdLnXv9seSi1NVS2wsS0tM8gpP9Nx92pzRkWqB2zOKa-p8xrDDWFlwa7fwK1dyHydFRktsUWYAZp5rlyB10ZjWSHi21SZPMmNjxQnL-GDbLeemeAHGFSLMUeYCQAoGP6RwnJJl0kUzyOHJmCKJ7ucqGMOQ-G8Znde1vhjJRXiaKcdXIRPEh7KyaVW0cjpsapJ3k1F8KpRArbmr6AiW9uowPwD2dHClfh9YQ56tRehUNYatTBBWG_VLFPnqZ53RD2Gt0Y9WJw-3TfOGW6kpxHY0l7r9j8UYKDzMsHEuFBSm2QhKtzusvT___IbbgdutklNEoeQab9eLSPUf-VJtt6O38iLbDKMGzvcODP1nJEYI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFH7qIrEcWAKIUJYR4gCHaWzPxGMfo0IVIO2FVqq4jGZzGwqOSdwKLoj_wD_kl_DGHifhgCphaRxp5JnYfsv32X7zHsALo3PHRZ7ShCtLueYFRRIbUV0gOhWOJ0L5VwMHh-n4mL87GZ5swF63FsaHVQbf3_r0xluHnkG4m4NqOh18iBgyQ2TUqKYINJxtwjZH8_XWuftjFefhEbv5lCAE9YevlvG0UzSdLyP2qpmFsn8B1OaZj5Rco6Hbc1c5s4ZG-3fgVqCRZNSe6V3YcGUPrnVR7D243VVrIMF4e3BzLfXgPfg4Kon7pkxN2hrSxMOZJbOSTNQp4tcpqg2xzkech7AugvSWIF0k0e-fv2Ly9UJZrz2GnJeqWihzTkJxmvtwvP_maG9MQ50FaoZRUlP_KSYqtDEFE1o5vz7V-iQ5Kk6tyZAD6GGmIovMQeVGIeVRQukszbVOHCsEYw9gq5yV7iEQV_Asz1AIXHCEvUhZfBzJhYtFapPY6T7w7uZKE5KQ-1oYn-Uq2gxlIr1MZMRkIxPJ-rC7HFa1WTiuGpB1kpN_qZNEpLhq6HOU9PJvfPrt8WgifR_6QnxajbPLuA87nSLIYPQLmfjcZZ7R9eF1oxvLSRxun2Zzt5CXkql4KHD_HZt3UfgzxcawVdiQYEuk0PKs_vLo_y_iGVwfHx1M5OTt4fsduNGGG-U0Th_DVj2_cE-QSdX6aWMpfwAfJRFN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+exact+method+based+on+Lagrangian+decomposition+for+the+0-1+quadratic+knapsack+problem&rft.jtitle=European+journal+of+operational+research&rft.au=Billionnet%2C+Alain&rft.au=Soutif%2C+Eric&rft.series=European+Journal+of+Operational+Research&rft.date=2004-09-16&rft.pub=Elsevier&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=157&rft.issue=3&rft.spage=565&rft.epage=575&rft_id=info:doi/10.1016%2Fs0377-2217%2803%2900244-3&rft.externalDocID=eeeejores_v_3a157_3ay_3a2004_3ai_3a3_3ap_3a565_575_htm
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon