An exact method based on Lagrangian decomposition for the 0–1 quadratic knapsack problem
The 0–1 quadratic knapsack problem (QKP) consists in maximizing a quadratic pseudo-Boolean function with positive coefficients subject to a linear capacity constraint. In this paper we present an exact method to solve this problem. This method makes use of the computation of an upper bound for (QKP)...
Saved in:
Published in | European journal of operational research Vol. 157; no. 3; pp. 565 - 575 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
16.09.2004
Elsevier Elsevier Sequoia S.A |
Series | European Journal of Operational Research |
Subjects | |
Online Access | Get full text |
ISSN | 0377-2217 1872-6860 |
DOI | 10.1016/S0377-2217(03)00244-3 |
Cover
Loading…
Abstract | The 0–1 quadratic knapsack problem (QKP) consists in maximizing a quadratic pseudo-Boolean function with positive coefficients subject to a linear capacity constraint. In this paper we present an exact method to solve this problem. This method makes use of the computation of an upper bound for (QKP) which is derived from Lagrangian decomposition. It allows us to find the optimum of instances with up to 150 variables whatever their density, and with up to 300 variables for medium and low density. |
---|---|
AbstractList | The 0-1 quadratic knapsack problem (QKP) consists in maximizing a quadratic pseudo-Boolean function with positive coefficients subject to a linear capacity constraint. In this paper we present an exact method to solve this problem. This method makes use of the computation of an upper bound for (QKP) which is derived from Lagrangian decomposition. It allows us to find the optimum of instances with up to 150 variables whatever their density, and with up to 300 variables for medium and low density. [PUBLICATION ABSTRACT] The 0-1 quadratic knapsack problem (QKP) consists of maximizing a pseudo-Boolean quadratic function with positive coefficients subject to a linear capacity constraint. We present in this paper a new exact method for solving this problem. This method makes use of the computation of an upper bound for (QKP) using a technique derived from the Lagrangean decomposition methods. The method we use is applied to very large sized problems and allows to find the optimum of problems up to 150 variables whatever their density is and up to 300 variables for problems with medium and low density.KEY-WORDS:0-1 quadratic optimization, knapsack, Lagrangean decomposition, computational results, branch and bound. The 0–1 quadratic knapsack problem (QKP) consists in maximizing a quadratic pseudo-Boolean function with positive coefficients subject to a linear capacity constraint. In this paper we present an exact method to solve this problem. This method makes use of the computation of an upper bound for (QKP) which is derived from Lagrangian decomposition. It allows us to find the optimum of instances with up to 150 variables whatever their density, and with up to 300 variables for medium and low density. |
Author | Soutif, Éric Billionnet, Alain |
Author_xml | – sequence: 1 givenname: Alain surname: Billionnet fullname: Billionnet, Alain email: alain.billionnet@iie.cnam.fr organization: CEDRIC––IIE, 18 allée Jean Rostand, 91025 Evry Cedex, France – sequence: 2 givenname: Éric surname: Soutif fullname: Soutif, Éric email: eric.soutif@univ-paris1.fr organization: CERMSEM UMR CNRS 8095, Université Paris 1 Panthéon-Sorbonne, 106-112 boulevard de l'Hôpital, 75647 Paris Cedex 13, France |
BackLink | http://econpapers.repec.org/article/eeeejores/v_3a157_3ay_3a2004_3ai_3a3_3ap_3a565-575.htm$$DView record in RePEc https://hal.science/hal-01124918$$DView record in HAL |
BookMark | eNqFUcFuEzEQXaEikRY-AcniRA8LM971eiMOKKqAIiJxAC5crFnvbOM0WW9tJ6I3_oE_5EtwGuiBSy09j2S_9zQz77Q4Gf3IRfEc4RUCNq-_QKV1KSXql1CdA8i6LqtHxQxbLcumbeCkmN1TnhSnMa4BABWqWfF9MQr-QTaJLaeV70VHkXvhR7Gkq0DjlaNR9Gz9dvLRJZc_Bh9EWrGA3z9_objZUR8oOSuuR5oi2WsxBd9tePu0eDzQJvKzv_Ws-Pb-3deLy3L5-cPHi8WytApkKhEbDUNn7VDpjhhA6V62oAmb3rYS2061BP0ckOaWGtSkqWubeddJrgZdVWfF-dF3RRszBbelcGs8OXO5WJrDGyDKeo7tHjP3xZGbe7zZcUxm7XdhzO0ZCTXKRrV1Jn06kgJPbO8tOZ-1DxzN3lSESuf7NkMC1Lm4jCpjylCNMkors0rb7Pbm6GaDjzHwYKxLdNhkCuQ2BsEcUjR3KZpDRAYqc5eiOQyn_lP_a-ch3dujjvPm946DidbxaLl3gW0yvXcPOPwBV7C1HQ |
CODEN | EJORDT |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2942340 crossref_primary_10_1057_jors_2014_76 crossref_primary_10_1007_s10489_017_1025_x crossref_primary_10_1016_j_knosys_2015_10_004 crossref_primary_10_1007_s10479_019_03290_3 crossref_primary_10_1007_s11590_017_1125_x crossref_primary_10_1016_j_ejor_2020_10_047 crossref_primary_10_1016_j_cor_2013_08_018 crossref_primary_10_1007_s10589_015_9763_3 crossref_primary_10_3390_su9020236 crossref_primary_10_1007_s10878_019_00517_8 crossref_primary_10_1016_j_cor_2012_11_023 crossref_primary_10_1109_TETCI_2024_3405370 crossref_primary_10_1016_j_apm_2006_11_011 crossref_primary_10_1016_j_cor_2016_08_006 crossref_primary_10_1016_j_ejor_2016_06_013 crossref_primary_10_1007_s10489_021_02717_4 crossref_primary_10_1016_j_swevo_2015_09_005 crossref_primary_10_1287_ijoc_2021_0186 crossref_primary_10_1287_moor_2022_1345 crossref_primary_10_1016_j_cam_2013_09_052 crossref_primary_10_1007_s10479_014_1720_5 crossref_primary_10_1007_s00521_022_07555_0 crossref_primary_10_1007_s10898_012_9872_9 crossref_primary_10_1080_01605682_2023_2228339 crossref_primary_10_1287_ijoc_2017_0789 crossref_primary_10_1016_j_ejor_2024_06_034 crossref_primary_10_1007_s10479_018_3118_2 crossref_primary_10_1287_ijoc_2018_0840 crossref_primary_10_1007_s11067_010_9150_7 crossref_primary_10_1016_j_disopt_2020_100579 crossref_primary_10_3934_jimo_2013_9_531 crossref_primary_10_1016_j_ejor_2024_12_032 crossref_primary_10_1007_s12532_021_00206_w crossref_primary_10_1016_j_cam_2015_02_016 crossref_primary_10_1007_s00521_023_09200_w crossref_primary_10_1016_j_cor_2010_12_017 crossref_primary_10_1016_j_eswa_2020_113224 crossref_primary_10_1080_01605682_2020_1843982 crossref_primary_10_1109_TC_2022_3178325 crossref_primary_10_1016_j_dam_2023_02_003 crossref_primary_10_1109_ACCESS_2024_3425711 crossref_primary_10_1016_j_cor_2024_106873 crossref_primary_10_12677_ORF_2014_41002 crossref_primary_10_1137_110820762 crossref_primary_10_1016_j_dam_2007_12_007 crossref_primary_10_1007_s10479_018_2970_4 crossref_primary_10_1016_j_apm_2011_10_017 crossref_primary_10_59313_jsr_a_1203652 crossref_primary_10_1007_s10878_007_9105_1 crossref_primary_10_1007_s10957_011_9885_4 crossref_primary_10_1007_s10288_023_00537_5 crossref_primary_10_1016_j_knosys_2016_01_014 crossref_primary_10_1016_j_apm_2012_07_017 crossref_primary_10_1016_j_asoc_2015_11_045 crossref_primary_10_1016_j_physa_2017_02_052 crossref_primary_10_1155_2014_573731 crossref_primary_10_1016_j_cor_2015_08_002 crossref_primary_10_1080_03155986_2005_11732724 crossref_primary_10_1016_j_cor_2021_105693 crossref_primary_10_1016_j_eswa_2021_116238 crossref_primary_10_1080_10556788_2011_627586 crossref_primary_10_4018_IJAEC_2019100101 crossref_primary_10_1007_s00186_020_00702_0 crossref_primary_10_1080_17445760_2017_1314473 crossref_primary_10_1109_JSAC_2024_3460049 crossref_primary_10_1016_j_ejor_2010_05_039 |
Cites_doi | 10.1287/mnsc.41.4.704 10.1007/BFb0120892 10.1016/0377-2217(94)00286-X 10.1287/ijoc.11.2.125 10.1016/0377-2217(94)00229-0 10.1016/S0377-2217(97)00414-1 |
ContentType | Journal Article |
Copyright | 2003 Copyright Elsevier Sequoia S.A. Sep 16, 2004 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2003 – notice: Copyright Elsevier Sequoia S.A. Sep 16, 2004 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION DKI X2L 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D 1XC |
DOI | 10.1016/S0377-2217(03)00244-3 |
DatabaseName | CrossRef RePEc IDEAS RePEc Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Business |
EISSN | 1872-6860 |
EndPage | 575 |
ExternalDocumentID | oai_HAL_hal_01124918v1 665850671 eeeejores_v_3a157_3ay_3a2004_3ai_3a3_3ap_3a565_575_htm 10_1016_S0377_2217_03_00244_3 S0377221703002443 |
Genre | Feature |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29G 4.4 41~ 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN AAYOK ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADIYS ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SCC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U VH1 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 02 08R 0R 1 41 6XO 8P AAPBV ABFLS ADALY DKI G- HZ IPNFZ K M MS PQEST STF X X2L 7SC 7TB 8FD EFKBS FR3 JQ2 L7M L~C L~D 1XC |
ID | FETCH-LOGICAL-c502t-11670fbccf37bae0057d2807a16dc8218b58a0d901a9ca617a7ab869bb2e3f733 |
IEDL.DBID | AIKHN |
ISSN | 0377-2217 |
IngestDate | Thu Jul 10 08:56:37 EDT 2025 Fri Jul 25 08:07:06 EDT 2025 Wed Aug 18 03:50:57 EDT 2021 Thu Apr 24 23:07:16 EDT 2025 Tue Jul 01 00:32:47 EDT 2025 Fri Feb 23 02:32:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Branch-and-bound Lagrangian decomposition Knapsack Computational results 0–1 quadratic programming |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-11670fbccf37bae0057d2807a16dc8218b58a0d901a9ca617a7ab869bb2e3f733 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 204126584 |
PQPubID | 45678 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_hal_01124918v1 proquest_journals_204126584 repec_primary_eeeejores_v_3a157_3ay_3a2004_3ai_3a3_3ap_3a565_575_htm crossref_citationtrail_10_1016_S0377_2217_03_00244_3 crossref_primary_10_1016_S0377_2217_03_00244_3 elsevier_sciencedirect_doi_10_1016_S0377_2217_03_00244_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-09-16 |
PublicationDateYYYYMMDD | 2004-09-16 |
PublicationDate_xml | – month: 09 year: 2004 text: 2004-09-16 day: 16 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationSeriesTitle | European Journal of Operational Research |
PublicationTitle | European journal of operational research |
PublicationYear | 2004 |
Publisher | Elsevier B.V Elsevier Elsevier Sequoia S.A |
Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: Elsevier Sequoia S.A |
References | Chardaire, Sutter (BIB5) 1995; 41 Billionnet, Faye, Soutif (BIB2) 1999; 112 Chaillou, Hansen, Mahieu (BIB4) 1986; Vol. 1403 Gallo, Hammer, Simeone (BIB6) 1980; 12 Hammer, Rader (BIB7) 1997; 35 Caprara, Pisinger, Toth (BIB3) 1999; 11 Billionnet, Calmels (BIB1) 1996; 92 Michelon, Veuilleux (BIB8) 1996; 92 Michelon (10.1016/S0377-2217(03)00244-3_BIB8) 1996; 92 Gallo (10.1016/S0377-2217(03)00244-3_BIB6) 1980; 12 Billionnet (10.1016/S0377-2217(03)00244-3_BIB1) 1996; 92 Chaillou (10.1016/S0377-2217(03)00244-3_BIB4) 1986; Vol. 1403 Billionnet (10.1016/S0377-2217(03)00244-3_BIB2) 1999; 112 Chardaire (10.1016/S0377-2217(03)00244-3_BIB5) 1995; 41 Hammer (10.1016/S0377-2217(03)00244-3_BIB7) 1997; 35 Caprara (10.1016/S0377-2217(03)00244-3_BIB3) 1999; 11 |
References_xml | – volume: 35 start-page: 170 year: 1997 end-page: 182 ident: BIB7 article-title: Efficient methods for solving quadratic 0–1 knapsack problems publication-title: INFOR – volume: 112 start-page: 664 year: 1999 end-page: 672 ident: BIB2 article-title: A new upper bound for the 0–1 quadratic knapsack problem publication-title: European Journal of Operational Research – volume: 12 start-page: 132 year: 1980 end-page: 149 ident: BIB6 article-title: Quadratic knapsack problems publication-title: Mathematical Programming Study – volume: 41 start-page: 704 year: 1995 end-page: 712 ident: BIB5 article-title: A decomposition method for quadratic zero–one programming publication-title: Management Science – volume: 92 start-page: 326 year: 1996 end-page: 341 ident: BIB8 article-title: Lagrangean methods for the 0–1 quadratic knapsack problem publication-title: European Journal of Operational Research – volume: Vol. 1403 year: 1986 ident: BIB4 article-title: Best Network Flow Bound for the Quadratic Knapsack Problem publication-title: Lecture Notes in Mathematics – volume: 92 start-page: 310 year: 1996 end-page: 325 ident: BIB1 article-title: Linear programming for the 0–1 quadratic knapsack problem publication-title: European Journal of Operational Research – volume: 11 start-page: 125 year: 1999 end-page: 137 ident: BIB3 article-title: Exact solution of the quadratic knapsack problem publication-title: INFORMS Journal on Computing – volume: Vol. 1403 year: 1986 ident: 10.1016/S0377-2217(03)00244-3_BIB4 article-title: Best Network Flow Bound for the Quadratic Knapsack Problem – volume: 41 start-page: 704 year: 1995 ident: 10.1016/S0377-2217(03)00244-3_BIB5 article-title: A decomposition method for quadratic zero–one programming publication-title: Management Science doi: 10.1287/mnsc.41.4.704 – volume: 12 start-page: 132 year: 1980 ident: 10.1016/S0377-2217(03)00244-3_BIB6 article-title: Quadratic knapsack problems publication-title: Mathematical Programming Study doi: 10.1007/BFb0120892 – volume: 92 start-page: 326 year: 1996 ident: 10.1016/S0377-2217(03)00244-3_BIB8 article-title: Lagrangean methods for the 0–1 quadratic knapsack problem publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(94)00286-X – volume: 11 start-page: 125 year: 1999 ident: 10.1016/S0377-2217(03)00244-3_BIB3 article-title: Exact solution of the quadratic knapsack problem publication-title: INFORMS Journal on Computing doi: 10.1287/ijoc.11.2.125 – volume: 35 start-page: 170 year: 1997 ident: 10.1016/S0377-2217(03)00244-3_BIB7 article-title: Efficient methods for solving quadratic 0–1 knapsack problems publication-title: INFOR – volume: 92 start-page: 310 year: 1996 ident: 10.1016/S0377-2217(03)00244-3_BIB1 article-title: Linear programming for the 0–1 quadratic knapsack problem publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(94)00229-0 – volume: 112 start-page: 664 year: 1999 ident: 10.1016/S0377-2217(03)00244-3_BIB2 article-title: A new upper bound for the 0–1 quadratic knapsack problem publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(97)00414-1 |
SSID | ssj0001515 |
Score | 2.0983357 |
Snippet | The 0–1 quadratic knapsack problem (QKP) consists in maximizing a quadratic pseudo-Boolean function with positive coefficients subject to a linear capacity... The 0-1 quadratic knapsack problem (QKP) consists in maximizing a quadratic pseudo-Boolean function with positive coefficients subject to a linear capacity... The 0-1 quadratic knapsack problem (QKP) consists of maximizing a pseudo-Boolean quadratic function with positive coefficients subject to a linear capacity... |
SourceID | hal proquest repec crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 565 |
SubjectTerms | 0–1 quadratic programming Branch-and-bound Computational Complexity Computational results Computer Science Knapsack Knapsack problem Lagrangian decomposition Mathematical programming Optimization Studies |
Title | An exact method based on Lagrangian decomposition for the 0–1 quadratic knapsack problem |
URI | https://dx.doi.org/10.1016/S0377-2217(03)00244-3 http://econpapers.repec.org/article/eeeejores/v_3a157_3ay_3a2004_3ai_3a3_3ap_3a565-575.htm https://www.proquest.com/docview/204126584 https://hal.science/hal-01124918 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB51uxKCAz8LiKVQWYgDHNx1Ym-cHFct1ZaWXqBSxcWyHaddCtmwm1ZwQbwDb8iTME6c7XJAlYjkRLFk52fG831OxjMAL63JnJBZQmOhcyqMKCiSWEZNgehUOBFL7T8NvDtOpifi7en4dAN2u7Uw3q0y2P7WpjfWOtSMwtscVbPZ6D3jyAyRUaOaItAI3oN-zLMEVbs_OTicHq8Mssfs5meClNQ3uF7I03bSVL5i_HXTD-X_gqjeufeVXCOi_YWrnF3Do_37cDcQSTJp7_UBbLhyALc6P_YB3OvyNZAwfAdwZy344EP4OCmJ-6ZtTdos0sQDWk7mJTnSZ4hgZ6g4JHfe5zw4dhEkuAQJI2G_f_6KyNdLnXv9seSi1NVS2wsS0tM8gpP9Nx92pzRkWqB2zOKa-p8xrDDWFlwa7fwK1dyHydFRktsUWYAZp5rlyB10ZjWSHi21SZPMmNjxQnL-GDbLeemeAHGFSLMUeYCQAoGP6RwnJJl0kUzyOHJmCKJ7ucqGMOQ-G8Znde1vhjJRXiaKcdXIRPEh7KyaVW0cjpsapJ3k1F8KpRArbmr6AiW9uowPwD2dHClfh9YQ56tRehUNYatTBBWG_VLFPnqZ53RD2Gt0Y9WJw-3TfOGW6kpxHY0l7r9j8UYKDzMsHEuFBSm2QhKtzusvT___IbbgdutklNEoeQab9eLSPUf-VJtt6O38iLbDKMGzvcODP1nJEYI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFH7qIrEcWAKIUJYR4gCHaWzPxGMfo0IVIO2FVqq4jGZzGwqOSdwKLoj_wD_kl_DGHifhgCphaRxp5JnYfsv32X7zHsALo3PHRZ7ShCtLueYFRRIbUV0gOhWOJ0L5VwMHh-n4mL87GZ5swF63FsaHVQbf3_r0xluHnkG4m4NqOh18iBgyQ2TUqKYINJxtwjZH8_XWuftjFefhEbv5lCAE9YevlvG0UzSdLyP2qpmFsn8B1OaZj5Rco6Hbc1c5s4ZG-3fgVqCRZNSe6V3YcGUPrnVR7D243VVrIMF4e3BzLfXgPfg4Kon7pkxN2hrSxMOZJbOSTNQp4tcpqg2xzkech7AugvSWIF0k0e-fv2Ly9UJZrz2GnJeqWihzTkJxmvtwvP_maG9MQ50FaoZRUlP_KSYqtDEFE1o5vz7V-iQ5Kk6tyZAD6GGmIovMQeVGIeVRQukszbVOHCsEYw9gq5yV7iEQV_Asz1AIXHCEvUhZfBzJhYtFapPY6T7w7uZKE5KQ-1oYn-Uq2gxlIr1MZMRkIxPJ-rC7HFa1WTiuGpB1kpN_qZNEpLhq6HOU9PJvfPrt8WgifR_6QnxajbPLuA87nSLIYPQLmfjcZZ7R9eF1oxvLSRxun2Zzt5CXkql4KHD_HZt3UfgzxcawVdiQYEuk0PKs_vLo_y_iGVwfHx1M5OTt4fsduNGGG-U0Th_DVj2_cE-QSdX6aWMpfwAfJRFN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+exact+method+based+on+Lagrangian+decomposition+for+the+0-1+quadratic+knapsack+problem&rft.jtitle=European+journal+of+operational+research&rft.au=Billionnet%2C+Alain&rft.au=Soutif%2C+Eric&rft.series=European+Journal+of+Operational+Research&rft.date=2004-09-16&rft.pub=Elsevier&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=157&rft.issue=3&rft.spage=565&rft.epage=575&rft_id=info:doi/10.1016%2Fs0377-2217%2803%2900244-3&rft.externalDocID=eeeejores_v_3a157_3ay_3a2004_3ai_3a3_3ap_3a565_575_htm |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |