Ultrastretchable Conductor Fabricated on Skin‐Like Hydrogel–Elastomer Hybrid Substrates for Skin Electronics

Printing technology can be used for manufacturing stretchable electrodes, which represent essential parts of wearable devices requiring relatively high degrees of stretchability and conductivity. In this work, a strategy for fabricating printable and highly stretchable conductors are proposed by tra...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 26; pp. e1800109 - n/a
Main Authors Kim, Sun Hong, Jung, Sungmook, Yoon, In Seon, Lee, Chihak, Oh, Youngsu, Hong, Jae‐Min
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 27.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Printing technology can be used for manufacturing stretchable electrodes, which represent essential parts of wearable devices requiring relatively high degrees of stretchability and conductivity. In this work, a strategy for fabricating printable and highly stretchable conductors are proposed by transferring printed Ag ink onto stretchable substrates comprising Ecoflex elastomer and tough hydrogel layers using a water‐soluble tape. The elastic modulus of the produced hybrid film is close to that of the hydrogel layer, since the thickness of Ecoflex elastomer film coated on hydrogel is very thin (30 µm). Moreover, the fabricated conductor on hybrid film is stretched up to 1780% strain. The described transfer method is simpler than other techniques utilizing elastomer stamps or sacrificial layers and enables application of printable electronics to the substrates with low elastic moduli (such as hydrogels). The integration of printed electronics with skin‐like low‐modulus substrates can be applied to make wearable devices more comfortable for human skin. Printable and highly stretchable conductors are realized by transferring printed Ag ink onto stretchable substrates comprising Ecoflex and tough hydrogel layers. The elastic modulus of the produced hybrid film is close to that of the hydrogel layer, since the thickness of Ecoflex coated on hydrogel is very small. The fabricated conductor on hybrid film is stretched up to 1780% strain.
AbstractList Printing technology can be used for manufacturing stretchable electrodes, which represent essential parts of wearable devices requiring relatively high degrees of stretchability and conductivity. In this work, a strategy for fabricating printable and highly stretchable conductors are proposed by transferring printed Ag ink onto stretchable substrates comprising Ecoflex elastomer and tough hydrogel layers using a water-soluble tape. The elastic modulus of the produced hybrid film is close to that of the hydrogel layer, since the thickness of Ecoflex elastomer film coated on hydrogel is very thin (30 µm). Moreover, the fabricated conductor on hybrid film is stretched up to 1780% strain. The described transfer method is simpler than other techniques utilizing elastomer stamps or sacrificial layers and enables application of printable electronics to the substrates with low elastic moduli (such as hydrogels). The integration of printed electronics with skin-like low-modulus substrates can be applied to make wearable devices more comfortable for human skin.Printing technology can be used for manufacturing stretchable electrodes, which represent essential parts of wearable devices requiring relatively high degrees of stretchability and conductivity. In this work, a strategy for fabricating printable and highly stretchable conductors are proposed by transferring printed Ag ink onto stretchable substrates comprising Ecoflex elastomer and tough hydrogel layers using a water-soluble tape. The elastic modulus of the produced hybrid film is close to that of the hydrogel layer, since the thickness of Ecoflex elastomer film coated on hydrogel is very thin (30 µm). Moreover, the fabricated conductor on hybrid film is stretched up to 1780% strain. The described transfer method is simpler than other techniques utilizing elastomer stamps or sacrificial layers and enables application of printable electronics to the substrates with low elastic moduli (such as hydrogels). The integration of printed electronics with skin-like low-modulus substrates can be applied to make wearable devices more comfortable for human skin.
Printing technology can be used for manufacturing stretchable electrodes, which represent essential parts of wearable devices requiring relatively high degrees of stretchability and conductivity. In this work, a strategy for fabricating printable and highly stretchable conductors are proposed by transferring printed Ag ink onto stretchable substrates comprising Ecoflex elastomer and tough hydrogel layers using a water‐soluble tape. The elastic modulus of the produced hybrid film is close to that of the hydrogel layer, since the thickness of Ecoflex elastomer film coated on hydrogel is very thin (30 µm). Moreover, the fabricated conductor on hybrid film is stretched up to 1780% strain. The described transfer method is simpler than other techniques utilizing elastomer stamps or sacrificial layers and enables application of printable electronics to the substrates with low elastic moduli (such as hydrogels). The integration of printed electronics with skin‐like low‐modulus substrates can be applied to make wearable devices more comfortable for human skin. Printable and highly stretchable conductors are realized by transferring printed Ag ink onto stretchable substrates comprising Ecoflex and tough hydrogel layers. The elastic modulus of the produced hybrid film is close to that of the hydrogel layer, since the thickness of Ecoflex coated on hydrogel is very small. The fabricated conductor on hybrid film is stretched up to 1780% strain.
Printing technology can be used for manufacturing stretchable electrodes, which represent essential parts of wearable devices requiring relatively high degrees of stretchability and conductivity. In this work, a strategy for fabricating printable and highly stretchable conductors are proposed by transferring printed Ag ink onto stretchable substrates comprising Ecoflex elastomer and tough hydrogel layers using a water-soluble tape. The elastic modulus of the produced hybrid film is close to that of the hydrogel layer, since the thickness of Ecoflex elastomer film coated on hydrogel is very thin (30 µm). Moreover, the fabricated conductor on hybrid film is stretched up to 1780% strain. The described transfer method is simpler than other techniques utilizing elastomer stamps or sacrificial layers and enables application of printable electronics to the substrates with low elastic moduli (such as hydrogels). The integration of printed electronics with skin-like low-modulus substrates can be applied to make wearable devices more comfortable for human skin.
Author Yoon, In Seon
Jung, Sungmook
Kim, Sun Hong
Hong, Jae‐Min
Lee, Chihak
Oh, Youngsu
Author_xml – sequence: 1
  givenname: Sun Hong
  surname: Kim
  fullname: Kim, Sun Hong
  organization: Korea Institute of Science and Technology (KIST)
– sequence: 2
  givenname: Sungmook
  surname: Jung
  fullname: Jung, Sungmook
  organization: Korea Research Institute of Chemical Technology (KRICT)
– sequence: 3
  givenname: In Seon
  surname: Yoon
  fullname: Yoon, In Seon
  organization: Korea University
– sequence: 4
  givenname: Chihak
  surname: Lee
  fullname: Lee, Chihak
  organization: Korea University
– sequence: 5
  givenname: Youngsu
  surname: Oh
  fullname: Oh, Youngsu
  organization: Korea University
– sequence: 6
  givenname: Jae‐Min
  orcidid: 0000-0001-9238-5451
  surname: Hong
  fullname: Hong, Jae‐Min
  email: jmhong@kist.re.kr
  organization: Korea University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29761554$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFq3DAURUVJaSZpt10WQzfZePpkWba1HCaTpDChizRrI0vPrRLZmkoyYXb5hEL_MF8SDZMmEChdCcQ5V-LeI3IwuhEJ-UhhTgGKL1IPcl4AbQAoiDdkRnlB8xIEPyAzEIznoiqbQ3IUwg0AiAqqd-SwEHVFOS9nZHNto5cheozqp-wsZks36klF57Mz2XmjZESduTG7ujXjw_3vtbnF7GKrvfuB9uH-z8om2w3o02XCdXY1dSkuWSHrU8hOy1YWVfRuNCq8J297aQN-eDqPyfXZ6vvyIl9_O_-6XKxzxaEQeVlyzWnPdN1J7GshaSlr1jOlaYNMVbqWSFXdVKrUVHKsGeO0Vl0FAnUHDTsmJ_vcjXe_JgyxHUxQaK0c0U2hLYCJVAMTkNDPr9AbN_kx_S5RvG4Ep02VqE9P1NQNqNuNN4P02_ZvlwmY7wHlXQge-2eEQrsbq92N1T6PlYTylaBMlNG4MfVn7L81sdfujMXtfx5pF6eXixf3ET0pq8o
CitedBy_id crossref_primary_10_1002_smll_201906270
crossref_primary_10_1021_acsami_9b23547
crossref_primary_10_1007_s10704_025_00842_6
crossref_primary_10_1021_acsapm_2c01529
crossref_primary_10_1021_acsami_9b19202
crossref_primary_10_1038_s41598_020_61752_2
crossref_primary_10_1089_soro_2018_0116
crossref_primary_10_1007_s11706_021_0537_9
crossref_primary_10_1007_s40843_022_2145_3
crossref_primary_10_1002_admt_202100961
crossref_primary_10_1186_s11671_019_2957_3
crossref_primary_10_1016_j_jcis_2019_01_123
crossref_primary_10_1039_D1RA03392A
crossref_primary_10_1088_1361_6463_ac6af4
crossref_primary_10_1088_2058_8585_accaf6
crossref_primary_10_1002_adfm_201910080
crossref_primary_10_1007_s11431_019_1511_4
crossref_primary_10_1016_j_sna_2023_114574
crossref_primary_10_1002_adfm_202301117
crossref_primary_10_1039_C9TB02531F
crossref_primary_10_1002_advs_202105146
crossref_primary_10_1002_mame_202000256
crossref_primary_10_1038_s41928_022_00887_8
crossref_primary_10_1002_mame_202000772
crossref_primary_10_1021_acsami_2c21617
crossref_primary_10_1021_acsaenm_2c00020
crossref_primary_10_1088_2053_1591_ab2320
crossref_primary_10_1016_j_mechmat_2023_104560
crossref_primary_10_1002_aelm_201900922
crossref_primary_10_1002_adfm_201904523
crossref_primary_10_1021_acs_langmuir_4c02737
crossref_primary_10_1002_marc_202200047
crossref_primary_10_1039_D0NR07307E
crossref_primary_10_1021_acsami_8b21570
crossref_primary_10_1021_acs_biomac_4c01715
crossref_primary_10_1002_smll_202101518
crossref_primary_10_1002_adma_202104690
crossref_primary_10_3390_polym16030375
crossref_primary_10_1021_acsami_2c08333
crossref_primary_10_1002_sdtp_15608
crossref_primary_10_1080_19475411_2021_1952335
crossref_primary_10_1016_j_biomaterials_2023_122075
crossref_primary_10_1002_adfm_202000591
crossref_primary_10_1021_acsnano_3c06207
crossref_primary_10_1002_admi_202102121
crossref_primary_10_1021_acsami_9b05464
crossref_primary_10_1039_D1NA00817J
crossref_primary_10_1021_acs_chemrev_1c00531
crossref_primary_10_1016_j_synthmet_2019_116177
crossref_primary_10_1021_acsami_2c15634
crossref_primary_10_1039_C9TB01039D
crossref_primary_10_1039_C8CS00706C
crossref_primary_10_1021_acs_nanolett_9b05217
crossref_primary_10_1002_adma_201904765
crossref_primary_10_1002_admt_202000249
crossref_primary_10_1039_D0TC00702A
crossref_primary_10_1021_acsanm_3c01283
crossref_primary_10_1002_adma_202002178
crossref_primary_10_1002_admi_201902170
crossref_primary_10_1002_adma_201902743
crossref_primary_10_1039_C9TC01980D
crossref_primary_10_1002_admt_201900936
crossref_primary_10_1007_s11431_022_2263_7
crossref_primary_10_1016_j_cej_2020_124855
crossref_primary_10_1002_adfm_202112281
crossref_primary_10_1002_advs_202202980
crossref_primary_10_1039_D3MH00056G
crossref_primary_10_1002_admt_201800444
crossref_primary_10_1021_acsami_4c03080
crossref_primary_10_1002_adfm_202213335
crossref_primary_10_1002_adma_202313177
crossref_primary_10_1002_adma_202400082
crossref_primary_10_1021_acs_chemrev_0c00897
crossref_primary_10_1002_app_49987
crossref_primary_10_1002_adfm_202204878
crossref_primary_10_1002_adfm_202411588
crossref_primary_10_1007_s40820_023_01314_z
crossref_primary_10_1039_D0TC01039A
crossref_primary_10_1002_adfm_201901474
crossref_primary_10_1021_accountsmr_1c00142
crossref_primary_10_1002_nano_202100053
crossref_primary_10_3390_polym14132551
crossref_primary_10_3390_polym15061545
crossref_primary_10_1016_j_trac_2019_06_014
crossref_primary_10_3390_mi12091091
crossref_primary_10_3390_polym16081087
crossref_primary_10_1007_s10853_023_09019_9
crossref_primary_10_1021_acs_chemrev_3c00502
crossref_primary_10_1016_j_engfracmech_2024_109896
crossref_primary_10_1002_adma_202300447
crossref_primary_10_1021_acsami_9b13266
crossref_primary_10_1126_sciadv_abn3863
crossref_primary_10_1002_adfm_202416398
crossref_primary_10_1002_adhm_202101089
crossref_primary_10_1038_s41467_025_56502_9
crossref_primary_10_3390_en17112627
crossref_primary_10_1021_acsaem_0c01794
crossref_primary_10_1002_eom2_12356
crossref_primary_10_3389_fchem_2018_00497
crossref_primary_10_1007_s12274_022_4730_7
crossref_primary_10_1063_5_0107318
crossref_primary_10_1002_adfm_201908514
crossref_primary_10_3390_gels10110720
crossref_primary_10_1002_adfm_201903984
crossref_primary_10_1016_j_snb_2022_132775
crossref_primary_10_1038_s41598_023_42921_5
crossref_primary_10_1021_acsami_3c14493
crossref_primary_10_1039_D0QM00868K
crossref_primary_10_1063_1_5063657
crossref_primary_10_1021_acsami_0c15578
crossref_primary_10_1021_acsami_9b17354
crossref_primary_10_1016_j_msec_2019_110567
crossref_primary_10_3390_mi15010026
crossref_primary_10_1002_adma_201900663
crossref_primary_10_1002_admt_202301877
crossref_primary_10_1038_s41586_024_07383_3
crossref_primary_10_1142_S0217979222500783
crossref_primary_10_1021_acs_nanolett_2c03173
crossref_primary_10_1002_adma_202001903
crossref_primary_10_1063_5_0124959
crossref_primary_10_1002_advs_202201039
crossref_primary_10_1039_C8CS00595H
crossref_primary_10_1002_smll_202305706
crossref_primary_10_1021_acsanm_1c03347
crossref_primary_10_1002_adfm_201808509
crossref_primary_10_1002_cjoc_202300652
crossref_primary_10_3390_bios12080620
crossref_primary_10_1039_D0CC05130F
crossref_primary_10_1021_acsami_1c20185
crossref_primary_10_1002_admt_201900363
crossref_primary_10_3390_pr12010124
crossref_primary_10_1002_adma_202303458
crossref_primary_10_1038_s41528_024_00301_7
crossref_primary_10_1186_s40580_022_00326_6
crossref_primary_10_1002_smtd_202300671
crossref_primary_10_1002_admt_202301483
crossref_primary_10_1002_adma_202201342
crossref_primary_10_1021_acsapm_9b00889
crossref_primary_10_1002_aelm_202400212
crossref_primary_10_1093_nsr_nwaa022
crossref_primary_10_1021_acsami_1c15052
crossref_primary_10_1002_adfm_201904532
crossref_primary_10_1016_j_solmat_2024_112784
crossref_primary_10_1002_adfm_202003540
crossref_primary_10_1002_adfm_202004633
crossref_primary_10_1002_aelm_202201021
crossref_primary_10_1002_adma_202310956
crossref_primary_10_1039_D1TA05262D
crossref_primary_10_1002_adhm_202002105
crossref_primary_10_1002_adfm_201909540
crossref_primary_10_1007_s10854_019_02108_z
crossref_primary_10_1016_j_carbpol_2020_116018
crossref_primary_10_1021_acsaelm_1c01212
crossref_primary_10_1088_2058_8585_ac8be1
crossref_primary_10_1002_adma_201902783
crossref_primary_10_1002_jsid_1129
crossref_primary_10_1021_acsmaterialslett_2c00783
crossref_primary_10_1021_acsami_1c17526
crossref_primary_10_1002_adfm_202316339
crossref_primary_10_1007_s12274_023_5731_x
crossref_primary_10_3390_polym15183852
crossref_primary_10_1007_s42486_024_00166_9
crossref_primary_10_1016_j_nanoen_2019_02_054
crossref_primary_10_1021_acs_biomac_9b00642
crossref_primary_10_1126_sciadv_abe5698
crossref_primary_10_1002_aisy_202000117
crossref_primary_10_1021_acsami_1c10055
crossref_primary_10_1021_acsami_9b19272
crossref_primary_10_1038_s41528_023_00268_x
crossref_primary_10_29026_oea_2022_210131
crossref_primary_10_1002_smll_202410247
crossref_primary_10_1021_acs_iecr_0c00688
crossref_primary_10_1021_acsami_9b03410
crossref_primary_10_1016_j_jiec_2023_04_040
crossref_primary_10_1016_j_nanoen_2019_01_020
crossref_primary_10_1021_acsami_1c09460
crossref_primary_10_1039_C9TC05639D
Cites_doi 10.1038/srep16527
10.1002/adma.201302240
10.1002/adma.201500768
10.1038/ncomms4982
10.1002/smll.201303601
10.1038/nature12401
10.1038/nmat4904
10.1186/s40580-016-0062-1
10.1126/science.1160309
10.1038/nmat2834
10.1038/ncomms12028
10.1038/nmat4635
10.1021/nl903272n
10.1038/nature11409
10.1002/adma.201401364
10.1038/nnano.2016.38
10.1126/sciadv.1601185
10.1039/C7TC03828C
10.1002/adfm.201101775
10.1021/nn4000836
10.1126/science.1206157
10.1002/adhm.201400209
10.1002/adma.201201386
10.1038/nmat2971
10.1109/LED.2011.2161663
10.1002/adhm.201601167
10.1126/science.1182383
10.1002/adfm.201303886
10.1021/mz5002355
10.1038/nature12314
10.1002/smll.201402474
10.1002/adma.201304742
10.1002/adma.201104417
10.1038/nature16521
10.1038/srep20814
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201800109
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29761554
10_1002_adma_201800109
ADMA201800109
Genre article
Journal Article
GrantInformation_xml – fundername: Korea Institute of Science and Technology (KIST) under the Future Resource Research Program
  funderid: 2E27283
– fundername: Ministry of Trade, Industry, and Energy (MOTIE, Korea) under the Industrial Technology Innovation Program
  funderid: 10051162
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c5029-445d51f3d7baef79a14a73f3cd18e3c6d7ae1c786c4d1a5e733517cb609edb083
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 10:20:27 EDT 2025
Fri Jul 25 02:59:40 EDT 2025
Wed Feb 19 02:43:54 EST 2025
Thu Apr 24 23:09:24 EDT 2025
Tue Jul 01 00:44:42 EDT 2025
Wed Jan 22 16:58:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords hydrogels
ultrastretchable
hybrids
elastomers
Ag flakes
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5029-445d51f3d7baef79a14a73f3cd18e3c6d7ae1c786c4d1a5e733517cb609edb083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9238-5451
PMID 29761554
PQID 2057895186
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2039297390
proquest_journals_2057895186
pubmed_primary_29761554
crossref_primary_10_1002_adma_201800109
crossref_citationtrail_10_1002_adma_201800109
wiley_primary_10_1002_adma_201800109_ADMA201800109
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 27, 2018
PublicationDateYYYYMMDD 2018-06-27
PublicationDate_xml – month: 06
  year: 2018
  text: June 27, 2018
  day: 27
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 6
2010; 10
2011; 333
2013; 25
2015; 5
2010; 327
2013; 500
2015; 11
2016; 529
2014; 26
2011; 10
2014; 24
2011; 32
2008; 321
2013; 7
2012; 489
2016; 15
2016; 11
2016; 6
2016; 7
2014; 5
2015; 27
2014; 3
2016; 2
2016; 3
2017; 16
2013; 499
2012; 24
2012; 22
2014; 10
2010; 9
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 26
  start-page: 2022
  year: 2014
  publication-title: Adv. Mater.
– volume: 321
  start-page: 1468
  year: 2008
  publication-title: Science
– volume: 11
  start-page: 566
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: e1601185
  year: 2016
  publication-title: Sci. Adv.
– volume: 3
  start-page: 520
  year: 2014
  publication-title: ACS Macro Lett.
– volume: 16
  start-page: 834
  year: 2017
  publication-title: Nat. Mater.
– volume: 500
  start-page: 59
  year: 2013
  publication-title: Nature
– volume: 5
  start-page: 16527
  year: 2015
  publication-title: Sci. Rep.
– volume: 6
  start-page: 1601167
  year: 2017
  publication-title: Adv. Healthcare Mater.
– volume: 9
  start-page: 859
  year: 2010
  publication-title: Nat. Mater.
– volume: 5
  start-page: 3982
  year: 2014
  publication-title: Nat. Commun.
– volume: 32
  start-page: 1424
  year: 2011
  publication-title: IEEE Electron Device Lett.
– volume: 3
  start-page: 1919
  year: 2014
  publication-title: Adv. Healthcare Mater.
– volume: 3
  start-page: 4
  year: 2016
  publication-title: Nano Convergence
– volume: 7
  start-page: 4042
  year: 2013
  publication-title: ACS Nano
– volume: 25
  start-page: 5997
  year: 2013
  publication-title: Adv. Mater.
– volume: 24
  start-page: 5284
  year: 2012
  publication-title: Adv. Mater.
– volume: 499
  start-page: 458
  year: 2013
  publication-title: Nature
– volume: 489
  start-page: 133
  year: 2012
  publication-title: Nature
– volume: 10
  start-page: 316
  year: 2011
  publication-title: Nat. Mater.
– volume: 529
  start-page: 509
  year: 2016
  publication-title: Nature
– volume: 27
  start-page: 3060
  year: 2015
  publication-title: Adv. Mater.
– volume: 10
  start-page: 490
  year: 2010
  publication-title: Nano Lett.
– volume: 15
  start-page: 911
  year: 2016
  publication-title: Nat. Mater.
– volume: 22
  start-page: 421
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 2620
  year: 2012
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1466
  year: 2014
  publication-title: Small
– volume: 5
  start-page: 11733
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 6
  start-page: 20814
  year: 2016
  publication-title: Sci. Rep.
– volume: 7
  start-page: 12028
  year: 2016
  publication-title: Nat. Commun.
– volume: 24
  start-page: 3846
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 1293
  year: 2015
  publication-title: Small
– volume: 333
  start-page: 838
  year: 2011
  publication-title: Science
– volume: 327
  start-page: 1603
  year: 2010
  publication-title: Science
– volume: 26
  start-page: 4825
  year: 2014
  publication-title: Adv. Mater.
– ident: e_1_2_5_19_1
  doi: 10.1038/srep16527
– ident: e_1_2_5_18_1
  doi: 10.1002/adma.201302240
– ident: e_1_2_5_8_1
  doi: 10.1002/adma.201500768
– ident: e_1_2_5_21_1
  doi: 10.1038/ncomms4982
– ident: e_1_2_5_34_1
  doi: 10.1002/smll.201303601
– ident: e_1_2_5_24_1
  doi: 10.1038/nature12401
– ident: e_1_2_5_25_1
  doi: 10.1038/nmat4904
– ident: e_1_2_5_20_1
  doi: 10.1186/s40580-016-0062-1
– ident: e_1_2_5_5_1
  doi: 10.1126/science.1160309
– ident: e_1_2_5_35_1
  doi: 10.1038/nmat2834
– ident: e_1_2_5_30_1
  doi: 10.1038/ncomms12028
– ident: e_1_2_5_6_1
  doi: 10.1038/nmat4635
– ident: e_1_2_5_26_1
  doi: 10.1021/nl903272n
– ident: e_1_2_5_28_1
  doi: 10.1038/nature11409
– ident: e_1_2_5_22_1
  doi: 10.1002/adma.201401364
– ident: e_1_2_5_10_1
  doi: 10.1038/nnano.2016.38
– ident: e_1_2_5_16_1
  doi: 10.1126/sciadv.1601185
– ident: e_1_2_5_32_1
  doi: 10.1039/C7TC03828C
– ident: e_1_2_5_7_1
  doi: 10.1002/adfm.201101775
– ident: e_1_2_5_11_1
  doi: 10.1021/nn4000836
– ident: e_1_2_5_1_1
  doi: 10.1126/science.1206157
– ident: e_1_2_5_9_1
  doi: 10.1002/adhm.201400209
– ident: e_1_2_5_27_1
  doi: 10.1002/adma.201201386
– ident: e_1_2_5_2_1
  doi: 10.1038/nmat2971
– ident: e_1_2_5_23_1
  doi: 10.1109/LED.2011.2161663
– ident: e_1_2_5_13_1
  doi: 10.1002/adhm.201601167
– ident: e_1_2_5_17_1
  doi: 10.1126/science.1182383
– ident: e_1_2_5_15_1
  doi: 10.1002/adfm.201303886
– ident: e_1_2_5_29_1
  doi: 10.1021/mz5002355
– ident: e_1_2_5_3_1
  doi: 10.1038/nature12314
– ident: e_1_2_5_31_1
  doi: 10.1002/smll.201402474
– ident: e_1_2_5_12_1
  doi: 10.1002/adma.201304742
– ident: e_1_2_5_33_1
  doi: 10.1002/adma.201104417
– ident: e_1_2_5_4_1
  doi: 10.1038/nature16521
– ident: e_1_2_5_14_1
  doi: 10.1038/srep20814
SSID ssj0009606
Score 2.626696
Snippet Printing technology can be used for manufacturing stretchable electrodes, which represent essential parts of wearable devices requiring relatively high degrees...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1800109
SubjectTerms Ag flakes
Conductors
Elastomers
Electronics
hybrids
Hydrogels
Modulus of elasticity
Stretchability
Substrates
Thickness
ultrastretchable
Wearable technology
Title Ultrastretchable Conductor Fabricated on Skin‐Like Hydrogel–Elastomer Hybrid Substrates for Skin Electronics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201800109
https://www.ncbi.nlm.nih.gov/pubmed/29761554
https://www.proquest.com/docview/2057895186
https://www.proquest.com/docview/2039297390
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhp-bQpm-3aVGh0JMTy5Is-7ikuyyhySF0ITejx7iUbO3g9R6SU35CoP8wv6QaedfJtoRCe7P1wLJGM_qQZr4h5GPBdKYKk8Y2KapYWCvjQro09obPabDeAgbfnOOTbDoTR2fy7F4Uf88PMRy4oWYEe40Krs3i4I40VLvAG8TycLvjjTA6bCEqOr3jj0J4Hsj2uB9CJvI1a2OSHmx239yV_oCam8g1bD2TJ0SvB917nJzvLzuzb69-43P8n7_aJY9XuJSO-oX0lGxB_Yzs3GMrfE4uZvOu1Rhc4iWNEVf0sKmRLrZp6USbkG8IHG1qihm9bq9vvnw_Bzq9dG3zDea31z_HHql3zQ9ofSEGilG0WoEdd0E9dg7d6HjIy7N4QWaT8dfDabxK2BBbiW40QkgnWcWdMhoqVWgmtOIVt47lwG3mlAZmVZ5Z4ZiWoDiXTFmTJQU448HgS7JdNzW8JtQ4LbnInXSuEgYgzxlYWRntwAOwBCISrwVW2hWbOSbVmJc9D3Na4kyWw0xG5NPQ_qLn8Xiw5d5a_uVKnxe-1ls2D0bzLCIfhmqviXi9omtoltgGsabiRRKRV_26GT7ly_ECWEQkDdL_yxjK0efj0fD25l86vSWP8Bm92lK1R7a7dgnvPH7qzPugI78AUuEVCw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAO5VkIFDASiFPaPOw8DhxW3V1t6W4PqCv1FvwKQl2SKptVVU79CUj8Ev4KP6G_BI-zSVkQQkLqgWMcO_FjZjxjz3wD8DL1eRSnInCll-YulZK5KVOBawSf4loaCWh9cyYH0WhK3x6xozX41sbCNPgQ3YEbcoaV18jgeCC9c4kaypUFDvITe72z9Kvc12enxmqbv9nrmyV-FQTDweHuyF0mFnAlQ3cPSplifh6qWHCdxyn3KY_DPJTKT3QoIxVz7cs4iSRVPmc6DkPmx1JEXqqVMEqL-e41uI5pxBGuv__uErEKDQIL7xeaQUc0aXEivWBntb-r--Bvyu2qrmw3u-Ft-N5OU-Pjcry9qMW2_PwLguR_NY93YGOpepNewyt3YU0X9-DWT4CM9-FkOqsrjvEzhpgxqIzslgUi4pYVGXJhUyppRcqCYNKyi_Mv44_HmozOVFV-0LOL868DY4zU5SddmUKMhSMomC0A8JwY88A2I4Mu9dD8AUyvZMibsF6UhX4ERCjOQpooplROhdZJ4mvJcsGVNjqmpx1wWwrJ5BKwHfOGzLIGajrIcOWybuUceN3VP2mgSv5Yc6sluGwpsubmrRHeRt9OIgdedK-NsMEbJF7ocoF1UJ2Ow9Rz4GFDqN2vTDnecVMHAktuf-lD1utPet3T439p9BxujA4n42y8d7D_BG5iOTrxBfEWrNfVQj816mItnlkGJfD-qin5B2-Xc_s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE48C4EChgJxCltHnYeBw6r7q629CGEWKm34McEoS7JKpsVKqf-BCT-CH-Fv9Bfgu08yoIQElIPHO3YiR8z45l45huAZ6nPozgVgSu9NHeplMxNmQpcLfgUR6kloPXNOTiMJlP66ogdrcG3LhamwYfof7gZzrDy2jD4XOXb56ChXFncID-xtzutW-UennzSRtvi5e5Q7_DzIBiP3u5M3DavgCuZ8faglCnm56GKBcc8TrlPeRzmoVR-gqGMVMzRl3ESSap8zjAOQ-bHUkReikponUW_9xJcprpskkUM35wDVhl7wKL7hXrOEU06mEgv2F4d7-ox-Jtuu6oq27NufAO-d6vUuLgcby1rsSU__wIg-T8t40243ireZNBwyi1Yw-I2XPsJjvEOzKezuuImekaTsgkpIztlYfBwy4qMubAJlVCRsiAmZdnZ6Zf9D8dIJieqKt_j7Oz060ibInX5EStdaSLhiBHLFv53QbRxYLuRUZ94aHEXphcy5Q1YL8oC7wMRirOQJooplVOBmCQ-SpYLrlBrmB464HYEkskWrt1kDZllDdB0kJmdy_qdc-BF337eAJX8seVmR29ZK7AW-qkW3VrbTiIHnvaPtagx90e8wHJp2hhlOg5Tz4F7DZ32n9L15oabOhBYavvLGLLB8GDQlx78S6cncOX1cJzt7x7uPYSrptp48AXxJqzX1RIfaV2xFo8texJ4d9GE_AOOnXKq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrastretchable+Conductor+Fabricated+on+Skin%E2%80%90Like+Hydrogel%E2%80%93Elastomer+Hybrid+Substrates+for+Skin+Electronics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Kim%2C+Sun+Hong&rft.au=Jung%2C+Sungmook&rft.au=Yoon%2C+In+Seon&rft.au=Lee%2C+Chihak&rft.date=2018-06-27&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=26&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201800109&rft.externalDBID=10.1002%252Fadma.201800109&rft.externalDocID=ADMA201800109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon