Ultrastretchable Conductor Fabricated on Skin‐Like Hydrogel–Elastomer Hybrid Substrates for Skin Electronics
Printing technology can be used for manufacturing stretchable electrodes, which represent essential parts of wearable devices requiring relatively high degrees of stretchability and conductivity. In this work, a strategy for fabricating printable and highly stretchable conductors are proposed by tra...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 26; pp. e1800109 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
27.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Printing technology can be used for manufacturing stretchable electrodes, which represent essential parts of wearable devices requiring relatively high degrees of stretchability and conductivity. In this work, a strategy for fabricating printable and highly stretchable conductors are proposed by transferring printed Ag ink onto stretchable substrates comprising Ecoflex elastomer and tough hydrogel layers using a water‐soluble tape. The elastic modulus of the produced hybrid film is close to that of the hydrogel layer, since the thickness of Ecoflex elastomer film coated on hydrogel is very thin (30 µm). Moreover, the fabricated conductor on hybrid film is stretched up to 1780% strain. The described transfer method is simpler than other techniques utilizing elastomer stamps or sacrificial layers and enables application of printable electronics to the substrates with low elastic moduli (such as hydrogels). The integration of printed electronics with skin‐like low‐modulus substrates can be applied to make wearable devices more comfortable for human skin.
Printable and highly stretchable conductors are realized by transferring printed Ag ink onto stretchable substrates comprising Ecoflex and tough hydrogel layers. The elastic modulus of the produced hybrid film is close to that of the hydrogel layer, since the thickness of Ecoflex coated on hydrogel is very small. The fabricated conductor on hybrid film is stretched up to 1780% strain. |
---|---|
AbstractList | Printing technology can be used for manufacturing stretchable electrodes, which represent essential parts of wearable devices requiring relatively high degrees of stretchability and conductivity. In this work, a strategy for fabricating printable and highly stretchable conductors are proposed by transferring printed Ag ink onto stretchable substrates comprising Ecoflex elastomer and tough hydrogel layers using a water-soluble tape. The elastic modulus of the produced hybrid film is close to that of the hydrogel layer, since the thickness of Ecoflex elastomer film coated on hydrogel is very thin (30 µm). Moreover, the fabricated conductor on hybrid film is stretched up to 1780% strain. The described transfer method is simpler than other techniques utilizing elastomer stamps or sacrificial layers and enables application of printable electronics to the substrates with low elastic moduli (such as hydrogels). The integration of printed electronics with skin-like low-modulus substrates can be applied to make wearable devices more comfortable for human skin.Printing technology can be used for manufacturing stretchable electrodes, which represent essential parts of wearable devices requiring relatively high degrees of stretchability and conductivity. In this work, a strategy for fabricating printable and highly stretchable conductors are proposed by transferring printed Ag ink onto stretchable substrates comprising Ecoflex elastomer and tough hydrogel layers using a water-soluble tape. The elastic modulus of the produced hybrid film is close to that of the hydrogel layer, since the thickness of Ecoflex elastomer film coated on hydrogel is very thin (30 µm). Moreover, the fabricated conductor on hybrid film is stretched up to 1780% strain. The described transfer method is simpler than other techniques utilizing elastomer stamps or sacrificial layers and enables application of printable electronics to the substrates with low elastic moduli (such as hydrogels). The integration of printed electronics with skin-like low-modulus substrates can be applied to make wearable devices more comfortable for human skin. Printing technology can be used for manufacturing stretchable electrodes, which represent essential parts of wearable devices requiring relatively high degrees of stretchability and conductivity. In this work, a strategy for fabricating printable and highly stretchable conductors are proposed by transferring printed Ag ink onto stretchable substrates comprising Ecoflex elastomer and tough hydrogel layers using a water‐soluble tape. The elastic modulus of the produced hybrid film is close to that of the hydrogel layer, since the thickness of Ecoflex elastomer film coated on hydrogel is very thin (30 µm). Moreover, the fabricated conductor on hybrid film is stretched up to 1780% strain. The described transfer method is simpler than other techniques utilizing elastomer stamps or sacrificial layers and enables application of printable electronics to the substrates with low elastic moduli (such as hydrogels). The integration of printed electronics with skin‐like low‐modulus substrates can be applied to make wearable devices more comfortable for human skin. Printable and highly stretchable conductors are realized by transferring printed Ag ink onto stretchable substrates comprising Ecoflex and tough hydrogel layers. The elastic modulus of the produced hybrid film is close to that of the hydrogel layer, since the thickness of Ecoflex coated on hydrogel is very small. The fabricated conductor on hybrid film is stretched up to 1780% strain. Printing technology can be used for manufacturing stretchable electrodes, which represent essential parts of wearable devices requiring relatively high degrees of stretchability and conductivity. In this work, a strategy for fabricating printable and highly stretchable conductors are proposed by transferring printed Ag ink onto stretchable substrates comprising Ecoflex elastomer and tough hydrogel layers using a water-soluble tape. The elastic modulus of the produced hybrid film is close to that of the hydrogel layer, since the thickness of Ecoflex elastomer film coated on hydrogel is very thin (30 µm). Moreover, the fabricated conductor on hybrid film is stretched up to 1780% strain. The described transfer method is simpler than other techniques utilizing elastomer stamps or sacrificial layers and enables application of printable electronics to the substrates with low elastic moduli (such as hydrogels). The integration of printed electronics with skin-like low-modulus substrates can be applied to make wearable devices more comfortable for human skin. |
Author | Yoon, In Seon Jung, Sungmook Kim, Sun Hong Hong, Jae‐Min Lee, Chihak Oh, Youngsu |
Author_xml | – sequence: 1 givenname: Sun Hong surname: Kim fullname: Kim, Sun Hong organization: Korea Institute of Science and Technology (KIST) – sequence: 2 givenname: Sungmook surname: Jung fullname: Jung, Sungmook organization: Korea Research Institute of Chemical Technology (KRICT) – sequence: 3 givenname: In Seon surname: Yoon fullname: Yoon, In Seon organization: Korea University – sequence: 4 givenname: Chihak surname: Lee fullname: Lee, Chihak organization: Korea University – sequence: 5 givenname: Youngsu surname: Oh fullname: Oh, Youngsu organization: Korea University – sequence: 6 givenname: Jae‐Min orcidid: 0000-0001-9238-5451 surname: Hong fullname: Hong, Jae‐Min email: jmhong@kist.re.kr organization: Korea University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29761554$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFq3DAURUVJaSZpt10WQzfZePpkWba1HCaTpDChizRrI0vPrRLZmkoyYXb5hEL_MF8SDZMmEChdCcQ5V-LeI3IwuhEJ-UhhTgGKL1IPcl4AbQAoiDdkRnlB8xIEPyAzEIznoiqbQ3IUwg0AiAqqd-SwEHVFOS9nZHNto5cheozqp-wsZks36klF57Mz2XmjZESduTG7ujXjw_3vtbnF7GKrvfuB9uH-z8om2w3o02XCdXY1dSkuWSHrU8hOy1YWVfRuNCq8J297aQN-eDqPyfXZ6vvyIl9_O_-6XKxzxaEQeVlyzWnPdN1J7GshaSlr1jOlaYNMVbqWSFXdVKrUVHKsGeO0Vl0FAnUHDTsmJ_vcjXe_JgyxHUxQaK0c0U2hLYCJVAMTkNDPr9AbN_kx_S5RvG4Ep02VqE9P1NQNqNuNN4P02_ZvlwmY7wHlXQge-2eEQrsbq92N1T6PlYTylaBMlNG4MfVn7L81sdfujMXtfx5pF6eXixf3ET0pq8o |
CitedBy_id | crossref_primary_10_1002_smll_201906270 crossref_primary_10_1021_acsami_9b23547 crossref_primary_10_1007_s10704_025_00842_6 crossref_primary_10_1021_acsapm_2c01529 crossref_primary_10_1021_acsami_9b19202 crossref_primary_10_1038_s41598_020_61752_2 crossref_primary_10_1089_soro_2018_0116 crossref_primary_10_1007_s11706_021_0537_9 crossref_primary_10_1007_s40843_022_2145_3 crossref_primary_10_1002_admt_202100961 crossref_primary_10_1186_s11671_019_2957_3 crossref_primary_10_1016_j_jcis_2019_01_123 crossref_primary_10_1039_D1RA03392A crossref_primary_10_1088_1361_6463_ac6af4 crossref_primary_10_1088_2058_8585_accaf6 crossref_primary_10_1002_adfm_201910080 crossref_primary_10_1007_s11431_019_1511_4 crossref_primary_10_1016_j_sna_2023_114574 crossref_primary_10_1002_adfm_202301117 crossref_primary_10_1039_C9TB02531F crossref_primary_10_1002_advs_202105146 crossref_primary_10_1002_mame_202000256 crossref_primary_10_1038_s41928_022_00887_8 crossref_primary_10_1002_mame_202000772 crossref_primary_10_1021_acsami_2c21617 crossref_primary_10_1021_acsaenm_2c00020 crossref_primary_10_1088_2053_1591_ab2320 crossref_primary_10_1016_j_mechmat_2023_104560 crossref_primary_10_1002_aelm_201900922 crossref_primary_10_1002_adfm_201904523 crossref_primary_10_1021_acs_langmuir_4c02737 crossref_primary_10_1002_marc_202200047 crossref_primary_10_1039_D0NR07307E crossref_primary_10_1021_acsami_8b21570 crossref_primary_10_1021_acs_biomac_4c01715 crossref_primary_10_1002_smll_202101518 crossref_primary_10_1002_adma_202104690 crossref_primary_10_3390_polym16030375 crossref_primary_10_1021_acsami_2c08333 crossref_primary_10_1002_sdtp_15608 crossref_primary_10_1080_19475411_2021_1952335 crossref_primary_10_1016_j_biomaterials_2023_122075 crossref_primary_10_1002_adfm_202000591 crossref_primary_10_1021_acsnano_3c06207 crossref_primary_10_1002_admi_202102121 crossref_primary_10_1021_acsami_9b05464 crossref_primary_10_1039_D1NA00817J crossref_primary_10_1021_acs_chemrev_1c00531 crossref_primary_10_1016_j_synthmet_2019_116177 crossref_primary_10_1021_acsami_2c15634 crossref_primary_10_1039_C9TB01039D crossref_primary_10_1039_C8CS00706C crossref_primary_10_1021_acs_nanolett_9b05217 crossref_primary_10_1002_adma_201904765 crossref_primary_10_1002_admt_202000249 crossref_primary_10_1039_D0TC00702A crossref_primary_10_1021_acsanm_3c01283 crossref_primary_10_1002_adma_202002178 crossref_primary_10_1002_admi_201902170 crossref_primary_10_1002_adma_201902743 crossref_primary_10_1039_C9TC01980D crossref_primary_10_1002_admt_201900936 crossref_primary_10_1007_s11431_022_2263_7 crossref_primary_10_1016_j_cej_2020_124855 crossref_primary_10_1002_adfm_202112281 crossref_primary_10_1002_advs_202202980 crossref_primary_10_1039_D3MH00056G crossref_primary_10_1002_admt_201800444 crossref_primary_10_1021_acsami_4c03080 crossref_primary_10_1002_adfm_202213335 crossref_primary_10_1002_adma_202313177 crossref_primary_10_1002_adma_202400082 crossref_primary_10_1021_acs_chemrev_0c00897 crossref_primary_10_1002_app_49987 crossref_primary_10_1002_adfm_202204878 crossref_primary_10_1002_adfm_202411588 crossref_primary_10_1007_s40820_023_01314_z crossref_primary_10_1039_D0TC01039A crossref_primary_10_1002_adfm_201901474 crossref_primary_10_1021_accountsmr_1c00142 crossref_primary_10_1002_nano_202100053 crossref_primary_10_3390_polym14132551 crossref_primary_10_3390_polym15061545 crossref_primary_10_1016_j_trac_2019_06_014 crossref_primary_10_3390_mi12091091 crossref_primary_10_3390_polym16081087 crossref_primary_10_1007_s10853_023_09019_9 crossref_primary_10_1021_acs_chemrev_3c00502 crossref_primary_10_1016_j_engfracmech_2024_109896 crossref_primary_10_1002_adma_202300447 crossref_primary_10_1021_acsami_9b13266 crossref_primary_10_1126_sciadv_abn3863 crossref_primary_10_1002_adfm_202416398 crossref_primary_10_1002_adhm_202101089 crossref_primary_10_1038_s41467_025_56502_9 crossref_primary_10_3390_en17112627 crossref_primary_10_1021_acsaem_0c01794 crossref_primary_10_1002_eom2_12356 crossref_primary_10_3389_fchem_2018_00497 crossref_primary_10_1007_s12274_022_4730_7 crossref_primary_10_1063_5_0107318 crossref_primary_10_1002_adfm_201908514 crossref_primary_10_3390_gels10110720 crossref_primary_10_1002_adfm_201903984 crossref_primary_10_1016_j_snb_2022_132775 crossref_primary_10_1038_s41598_023_42921_5 crossref_primary_10_1021_acsami_3c14493 crossref_primary_10_1039_D0QM00868K crossref_primary_10_1063_1_5063657 crossref_primary_10_1021_acsami_0c15578 crossref_primary_10_1021_acsami_9b17354 crossref_primary_10_1016_j_msec_2019_110567 crossref_primary_10_3390_mi15010026 crossref_primary_10_1002_adma_201900663 crossref_primary_10_1002_admt_202301877 crossref_primary_10_1038_s41586_024_07383_3 crossref_primary_10_1142_S0217979222500783 crossref_primary_10_1021_acs_nanolett_2c03173 crossref_primary_10_1002_adma_202001903 crossref_primary_10_1063_5_0124959 crossref_primary_10_1002_advs_202201039 crossref_primary_10_1039_C8CS00595H crossref_primary_10_1002_smll_202305706 crossref_primary_10_1021_acsanm_1c03347 crossref_primary_10_1002_adfm_201808509 crossref_primary_10_1002_cjoc_202300652 crossref_primary_10_3390_bios12080620 crossref_primary_10_1039_D0CC05130F crossref_primary_10_1021_acsami_1c20185 crossref_primary_10_1002_admt_201900363 crossref_primary_10_3390_pr12010124 crossref_primary_10_1002_adma_202303458 crossref_primary_10_1038_s41528_024_00301_7 crossref_primary_10_1186_s40580_022_00326_6 crossref_primary_10_1002_smtd_202300671 crossref_primary_10_1002_admt_202301483 crossref_primary_10_1002_adma_202201342 crossref_primary_10_1021_acsapm_9b00889 crossref_primary_10_1002_aelm_202400212 crossref_primary_10_1093_nsr_nwaa022 crossref_primary_10_1021_acsami_1c15052 crossref_primary_10_1002_adfm_201904532 crossref_primary_10_1016_j_solmat_2024_112784 crossref_primary_10_1002_adfm_202003540 crossref_primary_10_1002_adfm_202004633 crossref_primary_10_1002_aelm_202201021 crossref_primary_10_1002_adma_202310956 crossref_primary_10_1039_D1TA05262D crossref_primary_10_1002_adhm_202002105 crossref_primary_10_1002_adfm_201909540 crossref_primary_10_1007_s10854_019_02108_z crossref_primary_10_1016_j_carbpol_2020_116018 crossref_primary_10_1021_acsaelm_1c01212 crossref_primary_10_1088_2058_8585_ac8be1 crossref_primary_10_1002_adma_201902783 crossref_primary_10_1002_jsid_1129 crossref_primary_10_1021_acsmaterialslett_2c00783 crossref_primary_10_1021_acsami_1c17526 crossref_primary_10_1002_adfm_202316339 crossref_primary_10_1007_s12274_023_5731_x crossref_primary_10_3390_polym15183852 crossref_primary_10_1007_s42486_024_00166_9 crossref_primary_10_1016_j_nanoen_2019_02_054 crossref_primary_10_1021_acs_biomac_9b00642 crossref_primary_10_1126_sciadv_abe5698 crossref_primary_10_1002_aisy_202000117 crossref_primary_10_1021_acsami_1c10055 crossref_primary_10_1021_acsami_9b19272 crossref_primary_10_1038_s41528_023_00268_x crossref_primary_10_29026_oea_2022_210131 crossref_primary_10_1002_smll_202410247 crossref_primary_10_1021_acs_iecr_0c00688 crossref_primary_10_1021_acsami_9b03410 crossref_primary_10_1016_j_jiec_2023_04_040 crossref_primary_10_1016_j_nanoen_2019_01_020 crossref_primary_10_1021_acsami_1c09460 crossref_primary_10_1039_C9TC05639D |
Cites_doi | 10.1038/srep16527 10.1002/adma.201302240 10.1002/adma.201500768 10.1038/ncomms4982 10.1002/smll.201303601 10.1038/nature12401 10.1038/nmat4904 10.1186/s40580-016-0062-1 10.1126/science.1160309 10.1038/nmat2834 10.1038/ncomms12028 10.1038/nmat4635 10.1021/nl903272n 10.1038/nature11409 10.1002/adma.201401364 10.1038/nnano.2016.38 10.1126/sciadv.1601185 10.1039/C7TC03828C 10.1002/adfm.201101775 10.1021/nn4000836 10.1126/science.1206157 10.1002/adhm.201400209 10.1002/adma.201201386 10.1038/nmat2971 10.1109/LED.2011.2161663 10.1002/adhm.201601167 10.1126/science.1182383 10.1002/adfm.201303886 10.1021/mz5002355 10.1038/nature12314 10.1002/smll.201402474 10.1002/adma.201304742 10.1002/adma.201104417 10.1038/nature16521 10.1038/srep20814 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201800109 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29761554 10_1002_adma_201800109 ADMA201800109 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Korea Institute of Science and Technology (KIST) under the Future Resource Research Program funderid: 2E27283 – fundername: Ministry of Trade, Industry, and Energy (MOTIE, Korea) under the Industrial Technology Innovation Program funderid: 10051162 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c5029-445d51f3d7baef79a14a73f3cd18e3c6d7ae1c786c4d1a5e733517cb609edb083 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 10:20:27 EDT 2025 Fri Jul 25 02:59:40 EDT 2025 Wed Feb 19 02:43:54 EST 2025 Thu Apr 24 23:09:24 EDT 2025 Tue Jul 01 00:44:42 EDT 2025 Wed Jan 22 16:58:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | hydrogels ultrastretchable hybrids elastomers Ag flakes |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5029-445d51f3d7baef79a14a73f3cd18e3c6d7ae1c786c4d1a5e733517cb609edb083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9238-5451 |
PMID | 29761554 |
PQID | 2057895186 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2039297390 proquest_journals_2057895186 pubmed_primary_29761554 crossref_primary_10_1002_adma_201800109 crossref_citationtrail_10_1002_adma_201800109 wiley_primary_10_1002_adma_201800109_ADMA201800109 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 27, 2018 |
PublicationDateYYYYMMDD | 2018-06-27 |
PublicationDate_xml | – month: 06 year: 2018 text: June 27, 2018 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 6 2010; 10 2011; 333 2013; 25 2015; 5 2010; 327 2013; 500 2015; 11 2016; 529 2014; 26 2011; 10 2014; 24 2011; 32 2008; 321 2013; 7 2012; 489 2016; 15 2016; 11 2016; 6 2016; 7 2014; 5 2015; 27 2014; 3 2016; 2 2016; 3 2017; 16 2013; 499 2012; 24 2012; 22 2014; 10 2010; 9 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 26 start-page: 2022 year: 2014 publication-title: Adv. Mater. – volume: 321 start-page: 1468 year: 2008 publication-title: Science – volume: 11 start-page: 566 year: 2016 publication-title: Nat. Nanotechnol. – volume: 2 start-page: e1601185 year: 2016 publication-title: Sci. Adv. – volume: 3 start-page: 520 year: 2014 publication-title: ACS Macro Lett. – volume: 16 start-page: 834 year: 2017 publication-title: Nat. Mater. – volume: 500 start-page: 59 year: 2013 publication-title: Nature – volume: 5 start-page: 16527 year: 2015 publication-title: Sci. Rep. – volume: 6 start-page: 1601167 year: 2017 publication-title: Adv. Healthcare Mater. – volume: 9 start-page: 859 year: 2010 publication-title: Nat. Mater. – volume: 5 start-page: 3982 year: 2014 publication-title: Nat. Commun. – volume: 32 start-page: 1424 year: 2011 publication-title: IEEE Electron Device Lett. – volume: 3 start-page: 1919 year: 2014 publication-title: Adv. Healthcare Mater. – volume: 3 start-page: 4 year: 2016 publication-title: Nano Convergence – volume: 7 start-page: 4042 year: 2013 publication-title: ACS Nano – volume: 25 start-page: 5997 year: 2013 publication-title: Adv. Mater. – volume: 24 start-page: 5284 year: 2012 publication-title: Adv. Mater. – volume: 499 start-page: 458 year: 2013 publication-title: Nature – volume: 489 start-page: 133 year: 2012 publication-title: Nature – volume: 10 start-page: 316 year: 2011 publication-title: Nat. Mater. – volume: 529 start-page: 509 year: 2016 publication-title: Nature – volume: 27 start-page: 3060 year: 2015 publication-title: Adv. Mater. – volume: 10 start-page: 490 year: 2010 publication-title: Nano Lett. – volume: 15 start-page: 911 year: 2016 publication-title: Nat. Mater. – volume: 22 start-page: 421 year: 2012 publication-title: Adv. Funct. Mater. – volume: 24 start-page: 2620 year: 2012 publication-title: Adv. Mater. – volume: 10 start-page: 1466 year: 2014 publication-title: Small – volume: 5 start-page: 11733 year: 2017 publication-title: J. Mater. Chem. C – volume: 6 start-page: 20814 year: 2016 publication-title: Sci. Rep. – volume: 7 start-page: 12028 year: 2016 publication-title: Nat. Commun. – volume: 24 start-page: 3846 year: 2014 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 1293 year: 2015 publication-title: Small – volume: 333 start-page: 838 year: 2011 publication-title: Science – volume: 327 start-page: 1603 year: 2010 publication-title: Science – volume: 26 start-page: 4825 year: 2014 publication-title: Adv. Mater. – ident: e_1_2_5_19_1 doi: 10.1038/srep16527 – ident: e_1_2_5_18_1 doi: 10.1002/adma.201302240 – ident: e_1_2_5_8_1 doi: 10.1002/adma.201500768 – ident: e_1_2_5_21_1 doi: 10.1038/ncomms4982 – ident: e_1_2_5_34_1 doi: 10.1002/smll.201303601 – ident: e_1_2_5_24_1 doi: 10.1038/nature12401 – ident: e_1_2_5_25_1 doi: 10.1038/nmat4904 – ident: e_1_2_5_20_1 doi: 10.1186/s40580-016-0062-1 – ident: e_1_2_5_5_1 doi: 10.1126/science.1160309 – ident: e_1_2_5_35_1 doi: 10.1038/nmat2834 – ident: e_1_2_5_30_1 doi: 10.1038/ncomms12028 – ident: e_1_2_5_6_1 doi: 10.1038/nmat4635 – ident: e_1_2_5_26_1 doi: 10.1021/nl903272n – ident: e_1_2_5_28_1 doi: 10.1038/nature11409 – ident: e_1_2_5_22_1 doi: 10.1002/adma.201401364 – ident: e_1_2_5_10_1 doi: 10.1038/nnano.2016.38 – ident: e_1_2_5_16_1 doi: 10.1126/sciadv.1601185 – ident: e_1_2_5_32_1 doi: 10.1039/C7TC03828C – ident: e_1_2_5_7_1 doi: 10.1002/adfm.201101775 – ident: e_1_2_5_11_1 doi: 10.1021/nn4000836 – ident: e_1_2_5_1_1 doi: 10.1126/science.1206157 – ident: e_1_2_5_9_1 doi: 10.1002/adhm.201400209 – ident: e_1_2_5_27_1 doi: 10.1002/adma.201201386 – ident: e_1_2_5_2_1 doi: 10.1038/nmat2971 – ident: e_1_2_5_23_1 doi: 10.1109/LED.2011.2161663 – ident: e_1_2_5_13_1 doi: 10.1002/adhm.201601167 – ident: e_1_2_5_17_1 doi: 10.1126/science.1182383 – ident: e_1_2_5_15_1 doi: 10.1002/adfm.201303886 – ident: e_1_2_5_29_1 doi: 10.1021/mz5002355 – ident: e_1_2_5_3_1 doi: 10.1038/nature12314 – ident: e_1_2_5_31_1 doi: 10.1002/smll.201402474 – ident: e_1_2_5_12_1 doi: 10.1002/adma.201304742 – ident: e_1_2_5_33_1 doi: 10.1002/adma.201104417 – ident: e_1_2_5_4_1 doi: 10.1038/nature16521 – ident: e_1_2_5_14_1 doi: 10.1038/srep20814 |
SSID | ssj0009606 |
Score | 2.626696 |
Snippet | Printing technology can be used for manufacturing stretchable electrodes, which represent essential parts of wearable devices requiring relatively high degrees... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1800109 |
SubjectTerms | Ag flakes Conductors Elastomers Electronics hybrids Hydrogels Modulus of elasticity Stretchability Substrates Thickness ultrastretchable Wearable technology |
Title | Ultrastretchable Conductor Fabricated on Skin‐Like Hydrogel–Elastomer Hybrid Substrates for Skin Electronics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201800109 https://www.ncbi.nlm.nih.gov/pubmed/29761554 https://www.proquest.com/docview/2057895186 https://www.proquest.com/docview/2039297390 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhp-bQpm-3aVGh0JMTy5Is-7ikuyyhySF0ITejx7iUbO3g9R6SU35CoP8wv6QaedfJtoRCe7P1wLJGM_qQZr4h5GPBdKYKk8Y2KapYWCvjQro09obPabDeAgbfnOOTbDoTR2fy7F4Uf88PMRy4oWYEe40Krs3i4I40VLvAG8TycLvjjTA6bCEqOr3jj0J4Hsj2uB9CJvI1a2OSHmx239yV_oCam8g1bD2TJ0SvB917nJzvLzuzb69-43P8n7_aJY9XuJSO-oX0lGxB_Yzs3GMrfE4uZvOu1Rhc4iWNEVf0sKmRLrZp6USbkG8IHG1qihm9bq9vvnw_Bzq9dG3zDea31z_HHql3zQ9ofSEGilG0WoEdd0E9dg7d6HjIy7N4QWaT8dfDabxK2BBbiW40QkgnWcWdMhoqVWgmtOIVt47lwG3mlAZmVZ5Z4ZiWoDiXTFmTJQU448HgS7JdNzW8JtQ4LbnInXSuEgYgzxlYWRntwAOwBCISrwVW2hWbOSbVmJc9D3Na4kyWw0xG5NPQ_qLn8Xiw5d5a_uVKnxe-1ls2D0bzLCIfhmqviXi9omtoltgGsabiRRKRV_26GT7ly_ECWEQkDdL_yxjK0efj0fD25l86vSWP8Bm92lK1R7a7dgnvPH7qzPugI78AUuEVCw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAO5VkIFDASiFPaPOw8DhxW3V1t6W4PqCv1FvwKQl2SKptVVU79CUj8Ev4KP6G_BI-zSVkQQkLqgWMcO_FjZjxjz3wD8DL1eRSnInCll-YulZK5KVOBawSf4loaCWh9cyYH0WhK3x6xozX41sbCNPgQ3YEbcoaV18jgeCC9c4kaypUFDvITe72z9Kvc12enxmqbv9nrmyV-FQTDweHuyF0mFnAlQ3cPSplifh6qWHCdxyn3KY_DPJTKT3QoIxVz7cs4iSRVPmc6DkPmx1JEXqqVMEqL-e41uI5pxBGuv__uErEKDQIL7xeaQUc0aXEivWBntb-r--Bvyu2qrmw3u-Ft-N5OU-Pjcry9qMW2_PwLguR_NY93YGOpepNewyt3YU0X9-DWT4CM9-FkOqsrjvEzhpgxqIzslgUi4pYVGXJhUyppRcqCYNKyi_Mv44_HmozOVFV-0LOL868DY4zU5SddmUKMhSMomC0A8JwY88A2I4Mu9dD8AUyvZMibsF6UhX4ERCjOQpooplROhdZJ4mvJcsGVNjqmpx1wWwrJ5BKwHfOGzLIGajrIcOWybuUceN3VP2mgSv5Yc6sluGwpsubmrRHeRt9OIgdedK-NsMEbJF7ocoF1UJ2Ow9Rz4GFDqN2vTDnecVMHAktuf-lD1utPet3T439p9BxujA4n42y8d7D_BG5iOTrxBfEWrNfVQj816mItnlkGJfD-qin5B2-Xc_s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE48C4EChgJxCltHnYeBw6r7q629CGEWKm34McEoS7JKpsVKqf-BCT-CH-Fv9Bfgu08yoIQElIPHO3YiR8z45l45huAZ6nPozgVgSu9NHeplMxNmQpcLfgUR6kloPXNOTiMJlP66ogdrcG3LhamwYfof7gZzrDy2jD4XOXb56ChXFncID-xtzutW-UennzSRtvi5e5Q7_DzIBiP3u5M3DavgCuZ8faglCnm56GKBcc8TrlPeRzmoVR-gqGMVMzRl3ESSap8zjAOQ-bHUkReikponUW_9xJcprpskkUM35wDVhl7wKL7hXrOEU06mEgv2F4d7-ox-Jtuu6oq27NufAO-d6vUuLgcby1rsSU__wIg-T8t40243ireZNBwyi1Yw-I2XPsJjvEOzKezuuImekaTsgkpIztlYfBwy4qMubAJlVCRsiAmZdnZ6Zf9D8dIJieqKt_j7Oz060ibInX5EStdaSLhiBHLFv53QbRxYLuRUZ94aHEXphcy5Q1YL8oC7wMRirOQJooplVOBmCQ-SpYLrlBrmB464HYEkskWrt1kDZllDdB0kJmdy_qdc-BF337eAJX8seVmR29ZK7AW-qkW3VrbTiIHnvaPtagx90e8wHJp2hhlOg5Tz4F7DZ32n9L15oabOhBYavvLGLLB8GDQlx78S6cncOX1cJzt7x7uPYSrptp48AXxJqzX1RIfaV2xFo8texJ4d9GE_AOOnXKq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrastretchable+Conductor+Fabricated+on+Skin%E2%80%90Like+Hydrogel%E2%80%93Elastomer+Hybrid+Substrates+for+Skin+Electronics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Kim%2C+Sun+Hong&rft.au=Jung%2C+Sungmook&rft.au=Yoon%2C+In+Seon&rft.au=Lee%2C+Chihak&rft.date=2018-06-27&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=26&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201800109&rft.externalDBID=10.1002%252Fadma.201800109&rft.externalDocID=ADMA201800109 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |