Reserve Flux Capacity in the Pentose Phosphate Pathway by NADPH Binding Is Conserved across Kingdoms

All organisms evolved defense mechanisms to counteract oxidative stress and buildup of reactive oxygen species (ROS). To test whether a potentially conserved mechanism exists for the rapid response, we investigated immediate metabolic dynamics of Escherichia coli, yeast, and human dermal fibroblasts...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 19; pp. 1133 - 1144
Main Authors Christodoulou, Dimitris, Kuehne, Andreas, Estermann, Alexandra, Fuhrer, Tobias, Lang, Paul, Sauer, Uwe
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.09.2019
Elsevier
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2019.08.047

Cover

Loading…
Abstract All organisms evolved defense mechanisms to counteract oxidative stress and buildup of reactive oxygen species (ROS). To test whether a potentially conserved mechanism exists for the rapid response, we investigated immediate metabolic dynamics of Escherichia coli, yeast, and human dermal fibroblasts to oxidative stress that we found to be conserved between species. To elucidate the regulatory mechanisms that implement this metabolic response, we developed mechanistic kinetic models for each organism's central metabolism and systematically tested activation and inactivation of each irreversible reaction by each metabolite. This ensemble modeling predicts in vivo relevant metabolite-enzyme interactions based on their ability to quantitatively describe metabolite dynamics. All three species appear to inhibit their oxidative pentose phosphate pathway during normal growth by the redox cofactor NADPH and relieve this inhibition to increase the pathway flux for detoxification of ROS during stress, with the sole exception of yeast when exposed to high levels of stress. [Display omitted] •Characterization of immediate metabolic response to oxidative stress•The metabolic response in glycolysis and PP pathway depends on stress severity•Identification of NADPH feedback inhibition on G6PDH as key regulatory interaction•The identified oxidative stress regulatory interaction is conserved across kingdoms Biological Sciences; Metabolism; Systems Biology; Metabolic Flux Analysis; Metabolomics; Computational Biology; Bioinformatics
AbstractList All organisms evolved defense mechanisms to counteract oxidative stress and buildup of reactive oxygen species (ROS). To test whether a potentially conserved mechanism exists for the rapid response, we investigated immediate metabolic dynamics of Escherichia coli, yeast, and human dermal fibroblasts to oxidative stress that we found to be conserved between species. To elucidate the regulatory mechanisms that implement this metabolic response, we developed mechanistic kinetic models for each organism's central metabolism and systematically tested activation and inactivation of each irreversible reaction by each metabolite. This ensemble modeling predicts in vivo relevant metabolite-enzyme interactions based on their ability to quantitatively describe metabolite dynamics. All three species appear to inhibit their oxidative pentose phosphate pathway during normal growth by the redox cofactor NADPH and relieve this inhibition to increase the pathway flux for detoxification of ROS during stress, with the sole exception of yeast when exposed to high levels of stress. : Biological Sciences; Metabolism; Systems Biology; Metabolic Flux Analysis; Metabolomics; Computational Biology; Bioinformatics Subject Areas: Biological Sciences, Metabolism, Systems Biology, Metabolic Flux Analysis, Metabolomics, Computational Biology, Bioinformatics
All organisms evolved defense mechanisms to counteract oxidative stress and buildup of reactive oxygen species (ROS). To test whether a potentially conserved mechanism exists for the rapid response, we investigated immediate metabolic dynamics of Escherichia coli, yeast, and human dermal fibroblasts to oxidative stress that we found to be conserved between species. To elucidate the regulatory mechanisms that implement this metabolic response, we developed mechanistic kinetic models for each organism's central metabolism and systematically tested activation and inactivation of each irreversible reaction by each metabolite. This ensemble modeling predicts in vivo relevant metabolite-enzyme interactions based on their ability to quantitatively describe metabolite dynamics. All three species appear to inhibit their oxidative pentose phosphate pathway during normal growth by the redox cofactor NADPH and relieve this inhibition to increase the pathway flux for detoxification of ROS during stress, with the sole exception of yeast when exposed to high levels of stress.
All organisms evolved defense mechanisms to counteract oxidative stress and buildup of reactive oxygen species (ROS). To test whether a potentially conserved mechanism exists for the rapid response, we investigated immediate metabolic dynamics of Escherichia coli, yeast, and human dermal fibroblasts to oxidative stress that we found to be conserved between species. To elucidate the regulatory mechanisms that implement this metabolic response, we developed mechanistic kinetic models for each organism's central metabolism and systematically tested activation and inactivation of each irreversible reaction by each metabolite. This ensemble modeling predicts in vivo relevant metabolite-enzyme interactions based on their ability to quantitatively describe metabolite dynamics. All three species appear to inhibit their oxidative pentose phosphate pathway during normal growth by the redox cofactor NADPH and relieve this inhibition to increase the pathway flux for detoxification of ROS during stress, with the sole exception of yeast when exposed to high levels of stress.All organisms evolved defense mechanisms to counteract oxidative stress and buildup of reactive oxygen species (ROS). To test whether a potentially conserved mechanism exists for the rapid response, we investigated immediate metabolic dynamics of Escherichia coli, yeast, and human dermal fibroblasts to oxidative stress that we found to be conserved between species. To elucidate the regulatory mechanisms that implement this metabolic response, we developed mechanistic kinetic models for each organism's central metabolism and systematically tested activation and inactivation of each irreversible reaction by each metabolite. This ensemble modeling predicts in vivo relevant metabolite-enzyme interactions based on their ability to quantitatively describe metabolite dynamics. All three species appear to inhibit their oxidative pentose phosphate pathway during normal growth by the redox cofactor NADPH and relieve this inhibition to increase the pathway flux for detoxification of ROS during stress, with the sole exception of yeast when exposed to high levels of stress.
All organisms evolved defense mechanisms to counteract oxidative stress and buildup of reactive oxygen species (ROS). To test whether a potentially conserved mechanism exists for the rapid response, we investigated immediate metabolic dynamics of Escherichia coli , yeast, and human dermal fibroblasts to oxidative stress that we found to be conserved between species. To elucidate the regulatory mechanisms that implement this metabolic response, we developed mechanistic kinetic models for each organism's central metabolism and systematically tested activation and inactivation of each irreversible reaction by each metabolite. This ensemble modeling predicts in vivo relevant metabolite-enzyme interactions based on their ability to quantitatively describe metabolite dynamics. All three species appear to inhibit their oxidative pentose phosphate pathway during normal growth by the redox cofactor NADPH and relieve this inhibition to increase the pathway flux for detoxification of ROS during stress, with the sole exception of yeast when exposed to high levels of stress. • Characterization of immediate metabolic response to oxidative stress • The metabolic response in glycolysis and PP pathway depends on stress severity • Identification of NADPH feedback inhibition on G6PDH as key regulatory interaction • The identified oxidative stress regulatory interaction is conserved across kingdoms Biological Sciences; Metabolism; Systems Biology; Metabolic Flux Analysis; Metabolomics; Computational Biology; Bioinformatics
All organisms evolved defense mechanisms to counteract oxidative stress and buildup of reactive oxygen species (ROS). To test whether a potentially conserved mechanism exists for the rapid response, we investigated immediate metabolic dynamics of Escherichia coli, yeast, and human dermal fibroblasts to oxidative stress that we found to be conserved between species. To elucidate the regulatory mechanisms that implement this metabolic response, we developed mechanistic kinetic models for each organism's central metabolism and systematically tested activation and inactivation of each irreversible reaction by each metabolite. This ensemble modeling predicts in vivo relevant metabolite-enzyme interactions based on their ability to quantitatively describe metabolite dynamics. All three species appear to inhibit their oxidative pentose phosphate pathway during normal growth by the redox cofactor NADPH and relieve this inhibition to increase the pathway flux for detoxification of ROS during stress, with the sole exception of yeast when exposed to high levels of stress. [Display omitted] •Characterization of immediate metabolic response to oxidative stress•The metabolic response in glycolysis and PP pathway depends on stress severity•Identification of NADPH feedback inhibition on G6PDH as key regulatory interaction•The identified oxidative stress regulatory interaction is conserved across kingdoms Biological Sciences; Metabolism; Systems Biology; Metabolic Flux Analysis; Metabolomics; Computational Biology; Bioinformatics
Author Estermann, Alexandra
Sauer, Uwe
Kuehne, Andreas
Lang, Paul
Christodoulou, Dimitris
Fuhrer, Tobias
AuthorAffiliation 2 Systems Biology Graduate School, Zurich 8057, Switzerland
1 Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
AuthorAffiliation_xml – name: 1 Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
– name: 2 Systems Biology Graduate School, Zurich 8057, Switzerland
Author_xml – sequence: 1
  givenname: Dimitris
  surname: Christodoulou
  fullname: Christodoulou, Dimitris
  organization: Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
– sequence: 2
  givenname: Andreas
  surname: Kuehne
  fullname: Kuehne, Andreas
  organization: Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
– sequence: 3
  givenname: Alexandra
  surname: Estermann
  fullname: Estermann, Alexandra
  organization: Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
– sequence: 4
  givenname: Tobias
  surname: Fuhrer
  fullname: Fuhrer, Tobias
  organization: Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
– sequence: 5
  givenname: Paul
  surname: Lang
  fullname: Lang, Paul
  organization: Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: Uwe
  surname: Sauer
  fullname: Sauer, Uwe
  email: sauer@imsb.biol.ethz.ch
  organization: Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31536961$$D View this record in MEDLINE/PubMed
BookMark eNp9Ul1vEzEQtFAR_aB_gAfkR15y2Oc7ny0hpBJaGlFBheDZ8tl7OUcXO7Uvgfx7nKRFLQ-VLK21OzMr7cwpOvLBA0JvKCkoofz9onDJuKIkVBZEFKRqXqCTshZyQkhVHj36H6PzlBaEkDK_SvJX6JjRmnHJ6QmyPyBB3AC-GtZ_8FSvtHHjFjuPxx7wLfgxpFz7kFa9HvNPj_1vvcXtFn-7-Hx7jT85b52f41nC0-D3WhZrE0NK-Gse2LBMr9HLTg8Jzu_rGfp1dflzej25-f5lNr24mZialM2Ed8KwsmadNoKRlta85rwRBBpZE84tNbLuuDCVAd20TUPbylaya03LteGkZWdodtC1QS_UKrqljlsVtFP7RohzpePozACKalO3BDppaVVZW2neSdMwyzowLHey1seD1mrdLsGafImohyeiTyfe9WoeNooLRoVgWeDdvUAMd2tIo1pmx2AYtIewTqosZV01pOQ0Q98-3vVvyYNNGSAOgP1dI3Qqu6RHF3ar3aAoUbtQqIXahULtQqGIUDkUmVr-R31Qf5b04UCC7NbGQVQZAd6AdRHMmM_pnqP_BeT10NY
CitedBy_id crossref_primary_10_1016_j_freeradbiomed_2025_03_030
crossref_primary_10_1016_j_freeradbiomed_2023_06_021
crossref_primary_10_1016_j_freeradbiomed_2022_10_302
crossref_primary_10_1038_s42003_022_04156_4
crossref_primary_10_1146_annurev_biophys_030722_021957
crossref_primary_10_1128_jvi_01363_22
crossref_primary_10_3390_ijms232214479
crossref_primary_10_1002_mnfr_202100400
crossref_primary_10_1038_s41467_023_44098_x
crossref_primary_10_1186_s12934_023_02123_0
crossref_primary_10_3390_pr8080893
crossref_primary_10_1016_j_micres_2024_127955
crossref_primary_10_3390_fermentation10030166
crossref_primary_10_1038_s42255_022_00550_8
crossref_primary_10_1002_adma_202109726
crossref_primary_10_3390_jcm11082177
crossref_primary_10_1016_j_isci_2022_104681
crossref_primary_10_1016_j_rbc_2025_100049
crossref_primary_10_1080_13510002_2021_1966183
crossref_primary_10_3390_microorganisms12010112
crossref_primary_10_1038_s42255_023_00863_2
crossref_primary_10_1016_j_celrep_2020_01_013
crossref_primary_10_1016_j_freeradbiomed_2025_03_006
crossref_primary_10_1038_s42255_023_00781_3
crossref_primary_10_1107_S2053230X22001091
crossref_primary_10_1038_s41467_023_42364_6
crossref_primary_10_1038_s42255_021_00523_3
crossref_primary_10_1002_ptr_7045
crossref_primary_10_1016_j_cbd_2021_100946
crossref_primary_10_1016_j_cels_2021_04_009
crossref_primary_10_1016_j_isci_2020_101880
crossref_primary_10_1021_acs_analchem_9b05709
crossref_primary_10_1038_s41589_022_01091_7
crossref_primary_10_1016_j_isci_2021_102753
crossref_primary_10_1016_j_rbmo_2023_01_005
crossref_primary_10_1038_s41598_021_94585_8
crossref_primary_10_1016_j_coisb_2021_100390
crossref_primary_10_1038_s41396_020_00884_9
crossref_primary_10_1161_CIRCULATIONAHA_124_067876
crossref_primary_10_1016_j_chemosphere_2021_131373
Cites_doi 10.1016/0378-4274(95)03570-2
10.1038/nchembio.2077
10.1128/JB.187.5.1581-1590.2005
10.1146/annurev-pharmtox-011112-140320
10.1146/annurev.biochem.77.061606.161055
10.1128/JB.01523-08
10.1093/nar/gkw1092
10.3109/10715761003667554
10.1016/j.cellsig.2012.01.008
10.1096/fj.00-0074com
10.1038/nrd4002
10.1038/msb.2013.11
10.1042/bj2490293
10.1038/nbt0709-604
10.1126/science.1118439
10.1074/jbc.273.35.22480
10.1111/brv.12140
10.1007/s00203-006-0153-1
10.1016/S0899-9007(02)00916-4
10.1074/jbc.274.38.27002
10.1038/nbt.1499
10.1016/j.cels.2018.04.009
10.1016/j.abb.2012.04.014
10.1074/jbc.M311657200
10.1042/bj20030414
10.1021/ac201267k
10.1021/ac100101d
10.1016/j.redox.2015.09.005
10.1016/S1353-8020(02)00018-4
10.1016/j.celrep.2017.08.066
10.1111/j.1567-1364.2010.00713.x
10.1515/BC.2003.064
10.1523/JNEUROSCI.20-24-08972.2000
10.1080/01926230290166724
10.1085/jgp.201210772
10.1038/cr.2010.178
10.1098/rstb.2005.1764
10.1097/01.WCB.0000050065.57184.BB
10.1002/jcp.10119
10.1186/1477-3163-5-14
10.1111/1574-6976.12026
10.1016/S0955-0674(03)00002-4
10.1038/nbt.2489
10.1161/01.HYP.25.2.155
10.1126/science.1211485
10.1016/j.cels.2015.09.008
10.1038/nrmicro3032
10.1093/nar/28.1.27
10.1016/j.molcel.2015.06.017
10.1128/JB.01795-06
10.1073/pnas.78.11.7124
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
2019 The Author(s) 2019
Copyright_xml – notice: 2019 The Author(s)
– notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Author(s) 2019
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2019.08.047
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 1144
ExternalDocumentID oai_doaj_org_article_1ac5b0ef9d144dd4a6f9c73d3fec344d
PMC6831883
31536961
10_1016_j_isci_2019_08_047
S2589004219303256
Genre Journal Article
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c5027-6f8c3253fac830b156566780e795066d1c95f68c4cea7b771b4d49fbcb6ac60b3
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:22:12 EDT 2025
Thu Aug 21 18:01:26 EDT 2025
Fri Jul 11 03:52:38 EDT 2025
Thu Apr 03 06:58:59 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Tue Jul 01 01:03:26 EDT 2025
Tue May 16 22:28:48 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Biological Sciences
Metabolomics
Computational Biology
Metabolism
Metabolic Flux Analysis
Systems Biology
Bioinformatics
Language English
License This is an open access article under the CC BY license.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5027-6f8c3253fac830b156566780e795066d1c95f68c4cea7b771b4d49fbcb6ac60b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally
OpenAccessLink https://doaj.org/article/1ac5b0ef9d144dd4a6f9c73d3fec344d
PMID 31536961
PQID 2295470261
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_1ac5b0ef9d144dd4a6f9c73d3fec344d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6831883
proquest_miscellaneous_2295470261
pubmed_primary_31536961
crossref_citationtrail_10_1016_j_isci_2019_08_047
crossref_primary_10_1016_j_isci_2019_08_047
elsevier_sciencedirect_doi_10_1016_j_isci_2019_08_047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-27
PublicationDateYYYYMMDD 2019-09-27
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Fang, Yang, Wu (bib11) 2002; 18
Dan Dunn, Alvarez, Zhang, Soldati (bib9) 2015; 6
Miyamoto, Koh, Park, Fujiwara, Sakiyama, Misonou, Ookawara, Suzuki, Honke, Taniguchi (bib38) 2003; 384
Imlay (bib21) 2013; 11
Kohen, Nyska (bib26) 2002; 30
Finkel (bib12) 2003; 15
Colussi, Albertini, Coppola, Rovidati, Galli, Ghibelli (bib8) 2000; 14
Ray, Huang, Tsuji (bib45) 2012; 24
Kanehisa, Furumichi, Tanabe, Sato, Morishima (bib25) 2017; 45
Link, Kochanowski, Sauer (bib29) 2013; 31
Kuehne, Emmert, Soehle, Winnefeld, Fischer, Wenck, Gallinat, Terstegen, Lucius, Hildebrand, Zamboni (bib27) 2015; 59
Liu, He, Yao (bib31) 2018; 2018
Murakami, Tsubouchi, Fukayama, Ogawa, Yoshino (bib40) 2006; 186
Shenton, Grant (bib51) 2003; 374
Liou, Storz (bib30) 2010; 44
Zhang, Wang, Vikash, Ye, Wu, Liu, Dong (bib61) 2016; 2016
Waris, Ahsan (bib58) 2006; 5
Raymond, Segrè (bib46) 2006; 311
Christen, Sauer (bib6) 2011; 11
Buescher, Moco, Sauer, Zamboni (bib4) 2010; 82
Ralser, Wamelink, Kowald, Gerisch, Heeren, Struys, Klipp, Jakobs, Breitenbach, Lehrach, Krobitsch (bib43) 2007; 6
Anastasiou, Poulogiannis, Asara, Boxer, Jiang, Shen, Bellinger, Sasaki, Locasale, Auld (bib2) 2011; 334
Fuhrer, Sauer (bib13) 2009; 191
Mytilineou, Kramer, Yabut (bib41) 2002; 8
Inoue, Matsuda, Sugiyama, Izawa, Kimura (bib22) 1999; 274
Reznik, Christodoulou, Goldford, Briars, Sauer, Segrè, Noor (bib47) 2017; 20
Sandoval, Arenas, Vásquez (bib49) 2011; 6
Fuhrer, Heer, Begemann, Zamboni (bib15) 2011; 83
Vatansever, de Melo, Avci, Vecchio, Sadasivam, Gupta, Chandran, Karimi, Parizotto, Yin (bib57) 2013; 37
Chechik, Oh, Rando, Weissman, Regev, Koller (bib5) 2008; 26
Zeller, Kümmel, Ewald, Jol, Niebel, Picotti, Aebersold, Sauer, Zamboni, Heinemann (bib60) 2007; 189
Imlay (bib20) 2008; 77
Christodoulou, Link, Fuhrer, Kochanowski, Gerosa, Sauer (bib7) 2018; 6
Turkheimer, Hinz, Cunningham (bib56) 2003; 23
Gorrini, Harris, Mak (bib18) 2013; 12
Fuhrer, Fischer, Sauer (bib14) 2005; 187
Alexander (bib1) 1995; 25
Lemons, Feng, Bennett, Legesse-Miller, Johnson, Raitman, Pollina, Rabitz, Rabinowitz, Coller (bib28) 2010; 8
Gerosa, Haverkorn van Rijsewijk, Christodoulou, Kochanowski, Schmidt, Noor, Sauer (bib16) 2015; 1
Morgan, Liu (bib39) 2011; 21
Ralser, Wamelink, Latkolik, Jansen, Lehrach, Jakobs (bib44) 2009; 27
Doroshow (bib10) 1995; 82–83
Llobell, Lopez-Ruiz, Peinado, Lopez-Barea (bib32) 1988; 249
Tretter, Adam-Vizi (bib55) 2005; 360
Park, Rubin, Xu, Amador-Noguez, Fan, Shlomi, Rabinowitz (bib42) 2016; 12
Godon, Lagniel, Lee, Buhler, Kieffer, Perrot, Boucherie, Toledano, Labarre (bib17) 1998; 273
Martindale, Holbrook (bib35) 2002; 192
Rui, Shen, Zhou, Liu, Chen, Pan, Liu, Wu, Zheng, Shi (bib48) 2010; 55
Stincone, Prigione, Cramer, Wamelink, Campbell, Cheung, Olin-Sandoval, Grüning, Krüger, Tauqeer Alam (bib52) 2015; 90
Harman (bib19) 1981; 78
Zampar, Kümmel, Ewald, Jol, Niebel, Picotti, Aebersold, Sauer, Zamboni, Heinemann (bib59) 2014; 9
Messiha, Kent, Malys, Carroll, Swainston, Mendes, Smallbone (bib36) 2014
Sauer, Canonaco, Heri, Perrenoud, Fischer (bib50) 2004; 279
Tretter, Adam-Vizi (bib54) 2000; 20
Aon, Stanley, Sivakumaran, Kembro, O'Rourke, Paolocci, Cortassa (bib3) 2012; 139
Ma (bib34) 2013; 53
Kanehisa, Goto (bib24) 2000; 28
Mishra, Imlay (bib37) 2012; 525
Lemons (10.1016/j.isci.2019.08.047_bib28) 2010; 8
Gorrini (10.1016/j.isci.2019.08.047_bib18) 2013; 12
Mishra (10.1016/j.isci.2019.08.047_bib37) 2012; 525
Anastasiou (10.1016/j.isci.2019.08.047_bib2) 2011; 334
Link (10.1016/j.isci.2019.08.047_bib29) 2013; 31
Murakami (10.1016/j.isci.2019.08.047_bib40) 2006; 186
Finkel (10.1016/j.isci.2019.08.047_bib12) 2003; 15
Chechik (10.1016/j.isci.2019.08.047_bib5) 2008; 26
Kanehisa (10.1016/j.isci.2019.08.047_bib25) 2017; 45
Messiha (10.1016/j.isci.2019.08.047_bib36) 2014
Martindale (10.1016/j.isci.2019.08.047_bib35) 2002; 192
Zhang (10.1016/j.isci.2019.08.047_bib61) 2016; 2016
Sauer (10.1016/j.isci.2019.08.047_bib50) 2004; 279
Zampar (10.1016/j.isci.2019.08.047_bib59) 2014; 9
Fuhrer (10.1016/j.isci.2019.08.047_bib13) 2009; 191
Tretter (10.1016/j.isci.2019.08.047_bib54) 2000; 20
Christodoulou (10.1016/j.isci.2019.08.047_bib7) 2018; 6
Aon (10.1016/j.isci.2019.08.047_bib3) 2012; 139
Alexander (10.1016/j.isci.2019.08.047_bib1) 1995; 25
Buescher (10.1016/j.isci.2019.08.047_bib4) 2010; 82
Fuhrer (10.1016/j.isci.2019.08.047_bib14) 2005; 187
Liu (10.1016/j.isci.2019.08.047_bib31) 2018; 2018
Ralser (10.1016/j.isci.2019.08.047_bib43) 2007; 6
Harman (10.1016/j.isci.2019.08.047_bib19) 1981; 78
Liou (10.1016/j.isci.2019.08.047_bib30) 2010; 44
Dan Dunn (10.1016/j.isci.2019.08.047_bib9) 2015; 6
Tretter (10.1016/j.isci.2019.08.047_bib55) 2005; 360
Reznik (10.1016/j.isci.2019.08.047_bib47) 2017; 20
Waris (10.1016/j.isci.2019.08.047_bib58) 2006; 5
Doroshow (10.1016/j.isci.2019.08.047_bib10) 1995; 82–83
Fuhrer (10.1016/j.isci.2019.08.047_bib15) 2011; 83
Ray (10.1016/j.isci.2019.08.047_bib45) 2012; 24
Sandoval (10.1016/j.isci.2019.08.047_bib49) 2011; 6
Ma (10.1016/j.isci.2019.08.047_bib34) 2013; 53
Park (10.1016/j.isci.2019.08.047_bib42) 2016; 12
Morgan (10.1016/j.isci.2019.08.047_bib39) 2011; 21
Rui (10.1016/j.isci.2019.08.047_bib48) 2010; 55
Miyamoto (10.1016/j.isci.2019.08.047_bib38) 2003; 384
Christen (10.1016/j.isci.2019.08.047_bib6) 2011; 11
Stincone (10.1016/j.isci.2019.08.047_bib52) 2015; 90
Zeller (10.1016/j.isci.2019.08.047_bib60) 2007; 189
Vatansever (10.1016/j.isci.2019.08.047_bib57) 2013; 37
Kuehne (10.1016/j.isci.2019.08.047_bib27) 2015; 59
Ralser (10.1016/j.isci.2019.08.047_bib44) 2009; 27
Imlay (10.1016/j.isci.2019.08.047_bib20) 2008; 77
Gerosa (10.1016/j.isci.2019.08.047_bib16) 2015; 1
Mytilineou (10.1016/j.isci.2019.08.047_bib41) 2002; 8
Raymond (10.1016/j.isci.2019.08.047_bib46) 2006; 311
Godon (10.1016/j.isci.2019.08.047_bib17) 1998; 273
Llobell (10.1016/j.isci.2019.08.047_bib32) 1988; 249
Inoue (10.1016/j.isci.2019.08.047_bib22) 1999; 274
Fang (10.1016/j.isci.2019.08.047_bib11) 2002; 18
Kanehisa (10.1016/j.isci.2019.08.047_bib24) 2000; 28
Turkheimer (10.1016/j.isci.2019.08.047_bib56) 2003; 23
Imlay (10.1016/j.isci.2019.08.047_bib21) 2013; 11
Colussi (10.1016/j.isci.2019.08.047_bib8) 2000; 14
Kohen (10.1016/j.isci.2019.08.047_bib26) 2002; 30
Shenton (10.1016/j.isci.2019.08.047_bib51) 2003; 374
References_xml – volume: 30
  start-page: 620
  year: 2002
  end-page: 650
  ident: bib26
  article-title: Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification
  publication-title: Toxicol. Pathol.
– volume: 311
  start-page: 1764
  year: 2006
  end-page: 1767
  ident: bib46
  article-title: The effect of oxygen on biochemical networks and the evolution of complex life
  publication-title: Science
– volume: 20
  start-page: 8972
  year: 2000
  end-page: 8979
  ident: bib54
  article-title: Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress
  publication-title: J. Neurosci.
– volume: 14
  start-page: 2266
  year: 2000
  end-page: 2276
  ident: bib8
  article-title: H2O2-induced block of glycolysis as an active ADP-ribosylation reaction protecting cells from apoptosis
  publication-title: FASEB J.
– volume: 55
  start-page: 831
  year: 2010
  end-page: 840
  ident: bib48
  article-title: A systematic investigation of
  publication-title: BMC Syst. Biol.
– volume: 12
  start-page: 931
  year: 2013
  end-page: 947
  ident: bib18
  article-title: Modulation of oxidative stress as an anticancer strategy
  publication-title: Nat. Rev. Drug Discov.
– volume: 11
  start-page: 443
  year: 2013
  end-page: 454
  ident: bib21
  article-title: The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium
  publication-title: Nat. Rev. Microbiol.
– volume: 1
  start-page: 270
  year: 2015
  end-page: 282
  ident: bib16
  article-title: Pseudo-transition analysis identifies the key regulators of dynamic metabolic adaptations from steady-state data
  publication-title: Cell Syst.
– volume: 82–83
  start-page: 395
  year: 1995
  end-page: 398
  ident: bib10
  article-title: Glutathione peroxidase and oxidative stress
  publication-title: Toxicol. Lett.
– volume: 31
  start-page: 357
  year: 2013
  end-page: 361
  ident: bib29
  article-title: Systematic identification of allosteric protein-metabolite interactions that control enzyme activity in vivo
  publication-title: Nat. Biotechnol.
– volume: 24
  start-page: 981
  year: 2012
  end-page: 990
  ident: bib45
  article-title: Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
  publication-title: Cell Signal.
– volume: 6
  start-page: 569
  year: 2018
  end-page: 578.e7
  ident: bib7
  article-title: Reserve flux capacity in the pentose phosphate pathway enables
  publication-title: Cell Syst.
– volume: 44
  start-page: 479
  year: 2010
  end-page: 496
  ident: bib30
  article-title: Reactive oxygen species in cancer
  publication-title: Free Radic. Res.
– volume: 59
  start-page: 359
  year: 2015
  end-page: 371
  ident: bib27
  article-title: Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells
  publication-title: Mol. Cell
– volume: 82
  start-page: 4403
  year: 2010
  end-page: 4412
  ident: bib4
  article-title: Ultrahigh performance liquid chromatography−tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites
  publication-title: Anal. Chem.
– volume: 139
  start-page: 479
  year: 2012
  end-page: 491
  ident: bib3
  article-title: Glutathione/thioredoxin systems modulate mitochondrial H
  publication-title: J. Gen. Physiol.
– volume: 374
  start-page: 513
  year: 2003
  end-page: 519
  ident: bib51
  article-title: Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast
  publication-title: Biochem. J.
– volume: 189
  start-page: 3784
  year: 2007
  end-page: 3792
  ident: bib60
  article-title: Regulation of hydrogen peroxide-dependent gene expression in
  publication-title: J. Bacteriol.
– volume: 15
  start-page: 247
  year: 2003
  end-page: 254
  ident: bib12
  article-title: Oxidant signals and oxidative stress
  publication-title: Curr. Opin. Cell Biol.
– volume: 27
  start-page: 604
  year: 2009
  end-page: 605
  ident: bib44
  article-title: Metabolic reconfiguration precedes transcriptional regulation in the antioxidant response
  publication-title: Nat. Biotechnol.
– volume: 6
  start-page: 472
  year: 2015
  end-page: 485
  ident: bib9
  article-title: Reactive oxygen species and mitochondria: a nexus of cellular homeostasis
  publication-title: Redox Biol.
– volume: 21
  start-page: 103
  year: 2011
  end-page: 115
  ident: bib39
  article-title: Crosstalk of reactive oxygen species and NF-κB signaling
  publication-title: Cell Res.
– volume: 53
  start-page: 401
  year: 2013
  end-page: 426
  ident: bib34
  article-title: Role of Nrf2 in oxidative stress and toxicity
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– volume: 26
  start-page: 1251
  year: 2008
  end-page: 1259
  ident: bib5
  article-title: Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network
  publication-title: Nat. Biotechnol.
– volume: 77
  start-page: 755
  year: 2008
  end-page: 776
  ident: bib20
  article-title: Cellular defenses against superoxide and hydrogen peroxide
  publication-title: Annu. Rev. Biochem.
– volume: 525
  start-page: 145
  year: 2012
  end-page: 160
  ident: bib37
  article-title: Why do bacteria use so many enzymes to scavenge hydrogen peroxide?
  publication-title: Arch. Biochem. Biophys.
– volume: 5
  start-page: 14
  year: 2006
  ident: bib58
  article-title: Reactive oxygen species: role in the development of cancer and various chronic conditions
  publication-title: J. Carcinog.
– volume: 384
  start-page: 567
  year: 2003
  end-page: 574
  ident: bib38
  article-title: Oxidative stress caused by inactivation of glutathione peroxidase and adaptive responses
  publication-title: Biol. Chem.
– volume: 249
  start-page: 293
  year: 1988
  end-page: 296
  ident: bib32
  article-title: Glutathione reductase directly mediates the stimulation of yeast glucose-6-phosphate dehydrogenase by GSSG
  publication-title: Biochem. J.
– volume: 186
  start-page: 385
  year: 2006
  end-page: 392
  ident: bib40
  article-title: Oxidative inactivation of reduced NADP-generating enzymes in
  publication-title: Arch. Microbiol.
– volume: 274
  start-page: 27002
  year: 1999
  end-page: 27009
  ident: bib22
  article-title: Genetic analysis of glutathione peroxidase in oxidative stress response of
  publication-title: J. Biol. Chem.
– volume: 90
  start-page: 927
  year: 2015
  end-page: 963
  ident: bib52
  article-title: The return of metabolism: biochemistry and physiology of the pentose phosphate pathway
  publication-title: Biol. Rev.
– volume: 360
  start-page: 2335
  year: 2005
  end-page: 2345
  ident: bib55
  article-title: Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 18
  ident: bib61
  article-title: ROS and ROS-mediated cellular signaling
  publication-title: Oxid. Med. Cell Longev.
– volume: 83
  start-page: 7074
  year: 2011
  end-page: 7080
  ident: bib15
  article-title: High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection–time-of-flight mass spectrometry
  publication-title: Anal. Chem.
– volume: 191
  start-page: 2112
  year: 2009
  end-page: 2121
  ident: bib13
  article-title: Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism
  publication-title: J. Bacteriol.
– volume: 78
  start-page: 7124
  year: 1981
  end-page: 7128
  ident: bib19
  article-title: The aging process
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 11
  start-page: 263
  year: 2011
  end-page: 272
  ident: bib6
  article-title: Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13C flux analysis and metabolomics
  publication-title: FEMS Yeast Res.
– volume: 273
  start-page: 22480
  year: 1998
  end-page: 22489
  ident: bib17
  article-title: The H2O2 stimulon in
  publication-title: J. Biol. Chem.
– volume: 28
  start-page: 27
  year: 2000
  end-page: 30
  ident: bib24
  article-title: KEGG: Kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res.
– volume: 9
  start-page: 651
  year: 2014
  ident: bib59
  article-title: Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast
  publication-title: Mol. Syst. Biol.
– volume: 279
  start-page: 6613
  year: 2004
  end-page: 6619
  ident: bib50
  article-title: The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of
  publication-title: J. Biol. Chem.
– volume: 45
  start-page: D353
  year: 2017
  end-page: D361
  ident: bib25
  article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs
  publication-title: Nucleic Acids Res.
– volume: 23
  start-page: 490
  year: 2003
  end-page: 498
  ident: bib56
  article-title: On the undecidability among kinetic models: from model selection to model averaging
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 187
  start-page: 1581
  year: 2005
  end-page: 1590
  ident: bib14
  article-title: Experimental identification and quantification of glucose metabolism in seven bacterial species
  publication-title: J. Bacteriol.
– year: 2014
  ident: bib36
  article-title: Enzyme characterisation and kinetic modelling of the pentose phosphate pathway in yeast
  publication-title: PeerJ Inc.
– volume: 192
  start-page: 1
  year: 2002
  end-page: 15
  ident: bib35
  article-title: Cellular response to oxidative stress: signaling for suicide and survival
  publication-title: J. Cell Physiol.
– volume: 20
  start-page: 2666
  year: 2017
  end-page: 2677
  ident: bib47
  article-title: Genome-scale architecture of small molecule regulatory networks and the fundamental trade-off between regulation and enzymatic activity
  publication-title: Cell Rep.
– volume: 6
  start-page: 10
  year: 2007
  ident: bib43
  article-title: Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress
  publication-title: J. Biol.
– volume: 12
  start-page: 482
  year: 2016
  end-page: 489
  ident: bib42
  article-title: Metabolite concentrations, fluxes and free energies imply efficient enzyme usage
  publication-title: Nat. Chem. Biol.
– volume: 2018
  start-page: 3408467
  year: 2018
  ident: bib31
  article-title: The antioxidative function of alpha-ketoglutarate and its applications
  publication-title: Biomed. Res. Int.
– volume: 8
  start-page: 385
  year: 2002
  end-page: 387
  ident: bib41
  article-title: Glutathione depletion and oxidative stress
  publication-title: Parkinsonism Relat. Disord.
– volume: 6
  start-page: e25573
  year: 2011
  ident: bib49
  article-title: Glucose-6-Phosphate dehydrogenase protects
  publication-title: PLoS One
– volume: 8
  start-page: e1000514
  year: 2010
  ident: bib28
  article-title: Quiescent fibroblasts exhibit high metabolic activity
  publication-title: PLoS Biology
– volume: 334
  start-page: 1278
  year: 2011
  end-page: 1283
  ident: bib2
  article-title: Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses
  publication-title: Science
– volume: 37
  start-page: 955
  year: 2013
  end-page: 989
  ident: bib57
  article-title: Antimicrobial strategies centered around reactive oxygen species – bactericidal antibiotics, photodynamic therapy, and beyond
  publication-title: FEMS Microbiol. Rev.
– volume: 25
  start-page: 155
  year: 1995
  end-page: 161
  ident: bib1
  article-title: Theodore Cooper Memorial Lecture. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective
  publication-title: Hypertension
– volume: 18
  start-page: 872
  year: 2002
  end-page: 879
  ident: bib11
  article-title: Free radicals, antioxidants, and nutrition
  publication-title: Nutrition
– volume: 82–83
  start-page: 395
  year: 1995
  ident: 10.1016/j.isci.2019.08.047_bib10
  article-title: Glutathione peroxidase and oxidative stress
  publication-title: Toxicol. Lett.
  doi: 10.1016/0378-4274(95)03570-2
– volume: 12
  start-page: 482
  year: 2016
  ident: 10.1016/j.isci.2019.08.047_bib42
  article-title: Metabolite concentrations, fluxes and free energies imply efficient enzyme usage
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2077
– volume: 6
  start-page: e25573
  year: 2011
  ident: 10.1016/j.isci.2019.08.047_bib49
  article-title: Glucose-6-Phosphate dehydrogenase protects Escherichia coli from tellurite-mediated oxidative stress
– volume: 187
  start-page: 1581
  year: 2005
  ident: 10.1016/j.isci.2019.08.047_bib14
  article-title: Experimental identification and quantification of glucose metabolism in seven bacterial species
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.187.5.1581-1590.2005
– volume: 53
  start-page: 401
  year: 2013
  ident: 10.1016/j.isci.2019.08.047_bib34
  article-title: Role of Nrf2 in oxidative stress and toxicity
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-011112-140320
– volume: 77
  start-page: 755
  year: 2008
  ident: 10.1016/j.isci.2019.08.047_bib20
  article-title: Cellular defenses against superoxide and hydrogen peroxide
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.77.061606.161055
– volume: 191
  start-page: 2112
  year: 2009
  ident: 10.1016/j.isci.2019.08.047_bib13
  article-title: Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01523-08
– volume: 45
  start-page: D353
  year: 2017
  ident: 10.1016/j.isci.2019.08.047_bib25
  article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1092
– volume: 44
  start-page: 479
  year: 2010
  ident: 10.1016/j.isci.2019.08.047_bib30
  article-title: Reactive oxygen species in cancer
  publication-title: Free Radic. Res.
  doi: 10.3109/10715761003667554
– volume: 24
  start-page: 981
  year: 2012
  ident: 10.1016/j.isci.2019.08.047_bib45
  article-title: Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
  publication-title: Cell Signal.
  doi: 10.1016/j.cellsig.2012.01.008
– volume: 14
  start-page: 2266
  year: 2000
  ident: 10.1016/j.isci.2019.08.047_bib8
  article-title: H2O2-induced block of glycolysis as an active ADP-ribosylation reaction protecting cells from apoptosis
  publication-title: FASEB J.
  doi: 10.1096/fj.00-0074com
– volume: 12
  start-page: 931
  year: 2013
  ident: 10.1016/j.isci.2019.08.047_bib18
  article-title: Modulation of oxidative stress as an anticancer strategy
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd4002
– volume: 2018
  start-page: 3408467
  year: 2018
  ident: 10.1016/j.isci.2019.08.047_bib31
  article-title: The antioxidative function of alpha-ketoglutarate and its applications
  publication-title: Biomed. Res. Int.
– volume: 9
  start-page: 651
  year: 2014
  ident: 10.1016/j.isci.2019.08.047_bib59
  article-title: Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2013.11
– volume: 249
  start-page: 293
  year: 1988
  ident: 10.1016/j.isci.2019.08.047_bib32
  article-title: Glutathione reductase directly mediates the stimulation of yeast glucose-6-phosphate dehydrogenase by GSSG
  publication-title: Biochem. J.
  doi: 10.1042/bj2490293
– volume: 27
  start-page: 604
  year: 2009
  ident: 10.1016/j.isci.2019.08.047_bib44
  article-title: Metabolic reconfiguration precedes transcriptional regulation in the antioxidant response
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0709-604
– volume: 311
  start-page: 1764
  year: 2006
  ident: 10.1016/j.isci.2019.08.047_bib46
  article-title: The effect of oxygen on biochemical networks and the evolution of complex life
  publication-title: Science
  doi: 10.1126/science.1118439
– volume: 273
  start-page: 22480
  year: 1998
  ident: 10.1016/j.isci.2019.08.047_bib17
  article-title: The H2O2 stimulon in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.35.22480
– volume: 90
  start-page: 927
  year: 2015
  ident: 10.1016/j.isci.2019.08.047_bib52
  article-title: The return of metabolism: biochemistry and physiology of the pentose phosphate pathway
  publication-title: Biol. Rev.
  doi: 10.1111/brv.12140
– volume: 186
  start-page: 385
  year: 2006
  ident: 10.1016/j.isci.2019.08.047_bib40
  article-title: Oxidative inactivation of reduced NADP-generating enzymes in E. coli: iron-dependent inactivation with affinity cleavage of NADP-isocitrate dehydrogenase
  publication-title: Arch. Microbiol.
  doi: 10.1007/s00203-006-0153-1
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.isci.2019.08.047_bib61
  article-title: ROS and ROS-mediated cellular signaling
  publication-title: Oxid. Med. Cell Longev.
– volume: 18
  start-page: 872
  year: 2002
  ident: 10.1016/j.isci.2019.08.047_bib11
  article-title: Free radicals, antioxidants, and nutrition
  publication-title: Nutrition
  doi: 10.1016/S0899-9007(02)00916-4
– volume: 274
  start-page: 27002
  year: 1999
  ident: 10.1016/j.isci.2019.08.047_bib22
  article-title: Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.38.27002
– volume: 26
  start-page: 1251
  year: 2008
  ident: 10.1016/j.isci.2019.08.047_bib5
  article-title: Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1499
– volume: 55
  start-page: 831
  year: 2010
  ident: 10.1016/j.isci.2019.08.047_bib48
  article-title: A systematic investigation of Escherichia coli central carbon metabolism in response to superoxide stress
  publication-title: BMC Syst. Biol.
– volume: 6
  start-page: 569
  year: 2018
  ident: 10.1016/j.isci.2019.08.047_bib7
  article-title: Reserve flux capacity in the pentose phosphate pathway enables Escherichia coli’s rapid response to oxidative stress
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2018.04.009
– volume: 525
  start-page: 145
  year: 2012
  ident: 10.1016/j.isci.2019.08.047_bib37
  article-title: Why do bacteria use so many enzymes to scavenge hydrogen peroxide?
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2012.04.014
– volume: 6
  start-page: 10
  year: 2007
  ident: 10.1016/j.isci.2019.08.047_bib43
  article-title: Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress
  publication-title: J. Biol.
– volume: 279
  start-page: 6613
  year: 2004
  ident: 10.1016/j.isci.2019.08.047_bib50
  article-title: The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M311657200
– volume: 374
  start-page: 513
  issue: Pt 2
  year: 2003
  ident: 10.1016/j.isci.2019.08.047_bib51
  article-title: Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae
  publication-title: Biochem. J.
  doi: 10.1042/bj20030414
– volume: 83
  start-page: 7074
  year: 2011
  ident: 10.1016/j.isci.2019.08.047_bib15
  article-title: High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection–time-of-flight mass spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac201267k
– volume: 82
  start-page: 4403
  year: 2010
  ident: 10.1016/j.isci.2019.08.047_bib4
  article-title: Ultrahigh performance liquid chromatography−tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites
  publication-title: Anal. Chem.
  doi: 10.1021/ac100101d
– volume: 6
  start-page: 472
  year: 2015
  ident: 10.1016/j.isci.2019.08.047_bib9
  article-title: Reactive oxygen species and mitochondria: a nexus of cellular homeostasis
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2015.09.005
– volume: 8
  start-page: 385
  year: 2002
  ident: 10.1016/j.isci.2019.08.047_bib41
  article-title: Glutathione depletion and oxidative stress
  publication-title: Parkinsonism Relat. Disord.
  doi: 10.1016/S1353-8020(02)00018-4
– volume: 20
  start-page: 2666
  year: 2017
  ident: 10.1016/j.isci.2019.08.047_bib47
  article-title: Genome-scale architecture of small molecule regulatory networks and the fundamental trade-off between regulation and enzymatic activity
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.08.066
– volume: 8
  start-page: e1000514
  year: 2010
  ident: 10.1016/j.isci.2019.08.047_bib28
  article-title: Quiescent fibroblasts exhibit high metabolic activity
– volume: 11
  start-page: 263
  year: 2011
  ident: 10.1016/j.isci.2019.08.047_bib6
  article-title: Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13C flux analysis and metabolomics
  publication-title: FEMS Yeast Res.
  doi: 10.1111/j.1567-1364.2010.00713.x
– volume: 384
  start-page: 567
  year: 2003
  ident: 10.1016/j.isci.2019.08.047_bib38
  article-title: Oxidative stress caused by inactivation of glutathione peroxidase and adaptive responses
  publication-title: Biol. Chem.
  doi: 10.1515/BC.2003.064
– volume: 20
  start-page: 8972
  year: 2000
  ident: 10.1016/j.isci.2019.08.047_bib54
  article-title: Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-24-08972.2000
– volume: 30
  start-page: 620
  year: 2002
  ident: 10.1016/j.isci.2019.08.047_bib26
  article-title: Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification
  publication-title: Toxicol. Pathol.
  doi: 10.1080/01926230290166724
– volume: 139
  start-page: 479
  year: 2012
  ident: 10.1016/j.isci.2019.08.047_bib3
  article-title: Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.201210772
– volume: 21
  start-page: 103
  year: 2011
  ident: 10.1016/j.isci.2019.08.047_bib39
  article-title: Crosstalk of reactive oxygen species and NF-κB signaling
  publication-title: Cell Res.
  doi: 10.1038/cr.2010.178
– volume: 360
  start-page: 2335
  year: 2005
  ident: 10.1016/j.isci.2019.08.047_bib55
  article-title: Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2005.1764
– year: 2014
  ident: 10.1016/j.isci.2019.08.047_bib36
  article-title: Enzyme characterisation and kinetic modelling of the pentose phosphate pathway in yeast
  publication-title: PeerJ Inc.
– volume: 23
  start-page: 490
  year: 2003
  ident: 10.1016/j.isci.2019.08.047_bib56
  article-title: On the undecidability among kinetic models: from model selection to model averaging
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/01.WCB.0000050065.57184.BB
– volume: 192
  start-page: 1
  year: 2002
  ident: 10.1016/j.isci.2019.08.047_bib35
  article-title: Cellular response to oxidative stress: signaling for suicide and survival
  publication-title: J. Cell Physiol.
  doi: 10.1002/jcp.10119
– volume: 5
  start-page: 14
  year: 2006
  ident: 10.1016/j.isci.2019.08.047_bib58
  article-title: Reactive oxygen species: role in the development of cancer and various chronic conditions
  publication-title: J. Carcinog.
  doi: 10.1186/1477-3163-5-14
– volume: 37
  start-page: 955
  year: 2013
  ident: 10.1016/j.isci.2019.08.047_bib57
  article-title: Antimicrobial strategies centered around reactive oxygen species – bactericidal antibiotics, photodynamic therapy, and beyond
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/1574-6976.12026
– volume: 15
  start-page: 247
  year: 2003
  ident: 10.1016/j.isci.2019.08.047_bib12
  article-title: Oxidant signals and oxidative stress
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(03)00002-4
– volume: 31
  start-page: 357
  year: 2013
  ident: 10.1016/j.isci.2019.08.047_bib29
  article-title: Systematic identification of allosteric protein-metabolite interactions that control enzyme activity in vivo
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2489
– volume: 25
  start-page: 155
  year: 1995
  ident: 10.1016/j.isci.2019.08.047_bib1
  article-title: Theodore Cooper Memorial Lecture. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective
  publication-title: Hypertension
  doi: 10.1161/01.HYP.25.2.155
– volume: 334
  start-page: 1278
  year: 2011
  ident: 10.1016/j.isci.2019.08.047_bib2
  article-title: Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses
  publication-title: Science
  doi: 10.1126/science.1211485
– volume: 1
  start-page: 270
  year: 2015
  ident: 10.1016/j.isci.2019.08.047_bib16
  article-title: Pseudo-transition analysis identifies the key regulators of dynamic metabolic adaptations from steady-state data
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2015.09.008
– volume: 11
  start-page: 443
  year: 2013
  ident: 10.1016/j.isci.2019.08.047_bib21
  article-title: The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3032
– volume: 28
  start-page: 27
  year: 2000
  ident: 10.1016/j.isci.2019.08.047_bib24
  article-title: KEGG: Kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.27
– volume: 59
  start-page: 359
  year: 2015
  ident: 10.1016/j.isci.2019.08.047_bib27
  article-title: Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.06.017
– volume: 189
  start-page: 3784
  year: 2007
  ident: 10.1016/j.isci.2019.08.047_bib60
  article-title: Regulation of hydrogen peroxide-dependent gene expression in Rhodobacter sphaeroides: regulatory functions of OxyR
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01795-06
– volume: 78
  start-page: 7124
  year: 1981
  ident: 10.1016/j.isci.2019.08.047_bib19
  article-title: The aging process
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.78.11.7124
SSID ssj0002002496
Score 2.3014796
Snippet All organisms evolved defense mechanisms to counteract oxidative stress and buildup of reactive oxygen species (ROS). To test whether a potentially conserved...
All organisms evolved defense mechanisms to counteract oxidative stress and buildup of reactive oxygen species (ROS). To test whether a potentially conserved...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1133
SubjectTerms Bioinformatics
Biological Sciences
Computational Biology
Metabolic Flux Analysis
Metabolism
Metabolomics
Systems Biology
Title Reserve Flux Capacity in the Pentose Phosphate Pathway by NADPH Binding Is Conserved across Kingdoms
URI https://dx.doi.org/10.1016/j.isci.2019.08.047
https://www.ncbi.nlm.nih.gov/pubmed/31536961
https://www.proquest.com/docview/2295470261
https://pubmed.ncbi.nlm.nih.gov/PMC6831883
https://doaj.org/article/1ac5b0ef9d144dd4a6f9c73d3fec344d
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT70gELQsFGQkblVEHNtxfGwLq4VDtYdW6s3yp3arklRNF-i_Z8bJrnapVC6cIiWO48lMMs_y-D1CPjFntatiLLSvYiGcFIW2rCpsHRiXjVPWZbbP83p2Kb5fyastqS-sCRvogYcX95lZL10Zkw4A_UMQtk7aKx54ip7DGfz7Qs7bmkxd5-U1pMLLynISa4IgNMcdM0NxF-54xbounfk7UVtlKytl8v6d5PQYfP5dQ7mVlKYvyPMRTdKTwYqX5FlsX5GA1XR3PyOd3qx-0zPIhh6gNl22FMAenUNPXQ_HRdffLgBp0jmAwF_2gboHen7yZT6jp8u81YV-6ynqeWJfgdo8cooaKKH70b8ml9OvF2ezYhRTKLyEqWdRp8bzSvJkfcNLxzKQU00ZlZYAOwLzWqa68cJHq5xSzIkgdHLe1dbXpeMHZK_t2viG0IYhaUxKlS-TUOAP7ZxVXgeugw-MTQhbv0zjR6ZxFLy4MeuSsmuDDjDoAIMqmEJNyPHmntuBZ-PJ1qfoo01L5MjOJyByzBg55l-RMyFy7WEzwo0BRkBXyycf_nEdDga-RVxgsW3sVr1BaXShcFY7IYdDeGyGyCG11BqvqJ3A2bFh90q7XGS-77qBH2_D3_4Po9-RfTQFK14qdUT27u9W8T3Aqnv3IX9BfwD3ECFu
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reserve+Flux+Capacity+in+the+Pentose+Phosphate+Pathway+by+NADPH+Binding+Is+Conserved+across+Kingdoms&rft.jtitle=iScience&rft.au=Christodoulou%2C+Dimitris&rft.au=Kuehne%2C+Andreas&rft.au=Estermann%2C+Alexandra&rft.au=Fuhrer%2C+Tobias&rft.date=2019-09-27&rft.eissn=2589-0042&rft.volume=19&rft.spage=1133&rft_id=info:doi/10.1016%2Fj.isci.2019.08.047&rft_id=info%3Apmid%2F31536961&rft.externalDocID=31536961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon