The Histone Variant H2A.W Defines Heterochromatin and Promotes Chromatin Condensation in Arabidopsis

Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 158; no. 1; pp. 98 - 109
Main Authors Yelagandula, Ramesh, Stroud, Hume, Holec, Sarah, Zhou, Keda, Feng, Suhua, Zhong, Xuehua, Muthurajan, Uma M., Nie, Xin, Kawashima, Tomokazu, Groth, Martin, Luger, Karolin, Jacobsen, Steven E., Berger, Frédéric
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.07.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and acts in synergy with heterochromatic marks H3K9me2 and DNA methylation to maintain transposon silencing. In vitro, H2A.W enhances chromatin condensation by promoting fiber-to-fiber interactions via its conserved C-terminal motif. In vivo, H2A.W is required for heterochromatin condensation, demonstrating that H2A.W plays critical roles in heterochromatin organization. Similarities in conserved motifs between H2A.W and another H2A variant in metazoans suggest that plants and animals share common mechanisms for heterochromatin condensation. [Display omitted] •Genomic features are marked by combination of H2A variants in Arabidopsis•Heterochromatin is specifically marked by H2A.W in correlation with H3K9me2•H2A.W is required for heterochromatin condensation and silencing•A conserved C-terminal motif of H2A.W promotes chromatin condensation The four H2A variants in Arabidopsis contribute differently to genome organization with H2A.W serving to define and condense heterochromatin.
AbstractList Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and acts in synergy with heterochromatic marks H3K9me2 and DNA methylation to maintain transposon silencing. In vitro, H2A.W enhances chromatin condensation by promoting fiber-to-fiber interactions via its conserved C-terminal motif. In vivo, H2A.W is required for heterochromatin condensation, demonstrating that H2A.W plays critical roles in heterochromatin organization. Similarities in conserved motifs between H2A.W and another H2A variant in metazoans suggest that plants and animals share common mechanisms for heterochromatin condensation.Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and acts in synergy with heterochromatic marks H3K9me2 and DNA methylation to maintain transposon silencing. In vitro, H2A.W enhances chromatin condensation by promoting fiber-to-fiber interactions via its conserved C-terminal motif. In vivo, H2A.W is required for heterochromatin condensation, demonstrating that H2A.W plays critical roles in heterochromatin organization. Similarities in conserved motifs between H2A.W and another H2A variant in metazoans suggest that plants and animals share common mechanisms for heterochromatin condensation.
Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and acts in synergy with heterochromatic marks H3K9me2 and DNA methylation to maintain transposon silencing. In vitro, H2A.W enhances chromatin condensation by promoting fiber-to-fiber interactions via its conserved C-terminal motif. In vivo, H2A.W is required for heterochromatin condensation, demonstrating that H2A.W plays critical roles in heterochromatin organization. Similarities in conserved motifs between H2A.W and another H2A variant in metazoans suggest that plants and animals share common mechanisms for heterochromatin condensation.
Histone variants play crucial roles in gene expression, genome integrity and chromosome segregation. However, to what extent histone variants control chromatin architecture remains largely unknown. We report genome-wide profiles of all four types of H2A variants in Arabidopsis and identify that the previously uncharacterized histone variant H2A.W specifically associates with heterochromatin. Genetic analyses show that H2A.W acts in synergy with the heterochromatic marks H3K9me2 and DNA methylation to maintain genome integrity. In vitro , H2A.W enhances chromatin condensation through a higher propensity to promote fiber-to-fiber interactions via its conserved C-terminal motif. In vivo , elimination of H2A.W causes decondensation of heterochromatin and conversely, ectopic expression of H2A.W promotes heterochromatin condensation. These results demonstrate that H2A.W plays critical roles in heterochromatin by promoting higher order chromatin condensation. Since motifs similar to the H2A.W C-terminal motif are present in other histone variants in other organisms, our findings impact our understanding of heterochromatin condensation in eukaryotes.
Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and acts in synergy with heterochromatic marks H3K9me2 and DNA methylation to maintain transposon silencing. In vitro, H2A.W enhances chromatin condensation by promoting fiber-to-fiber interactions via its conserved C-terminal motif. In vivo, H2A.W is required for heterochromatin condensation, demonstrating that H2A.W plays critical roles in heterochromatin organization. Similarities in conserved motifs between H2A.W and another H2A variant in metazoans suggest that plants and animals share common mechanisms for heterochromatin condensation. [Display omitted] •Genomic features are marked by combination of H2A variants in Arabidopsis•Heterochromatin is specifically marked by H2A.W in correlation with H3K9me2•H2A.W is required for heterochromatin condensation and silencing•A conserved C-terminal motif of H2A.W promotes chromatin condensation The four H2A variants in Arabidopsis contribute differently to genome organization with H2A.W serving to define and condense heterochromatin.
Author Nie, Xin
Luger, Karolin
Berger, Frédéric
Holec, Sarah
Zhou, Keda
Stroud, Hume
Yelagandula, Ramesh
Zhong, Xuehua
Kawashima, Tomokazu
Groth, Martin
Jacobsen, Steven E.
Muthurajan, Uma M.
Feng, Suhua
AuthorAffiliation 7 Howard Hughes Medical Institute, Colorado State University, Fort Collins, Colorado 80523, USA
3 Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095 USA
1 Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
4 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095 USA
5 Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095 USA
2 Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
6 Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
AuthorAffiliation_xml – name: 5 Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095 USA
– name: 1 Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
– name: 3 Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095 USA
– name: 4 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095 USA
– name: 2 Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
– name: 6 Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
– name: 7 Howard Hughes Medical Institute, Colorado State University, Fort Collins, Colorado 80523, USA
Author_xml – sequence: 1
  givenname: Ramesh
  surname: Yelagandula
  fullname: Yelagandula, Ramesh
  organization: Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore
– sequence: 2
  givenname: Hume
  surname: Stroud
  fullname: Stroud, Hume
  organization: Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 3
  givenname: Sarah
  surname: Holec
  fullname: Holec, Sarah
  organization: Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore
– sequence: 4
  givenname: Keda
  surname: Zhou
  fullname: Zhou, Keda
  organization: Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
– sequence: 5
  givenname: Suhua
  surname: Feng
  fullname: Feng, Suhua
  organization: Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 6
  givenname: Xuehua
  surname: Zhong
  fullname: Zhong, Xuehua
  organization: Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 7
  givenname: Uma M.
  surname: Muthurajan
  fullname: Muthurajan, Uma M.
  organization: Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
– sequence: 8
  givenname: Xin
  surname: Nie
  fullname: Nie, Xin
  organization: Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore
– sequence: 9
  givenname: Tomokazu
  surname: Kawashima
  fullname: Kawashima, Tomokazu
  organization: Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore
– sequence: 10
  givenname: Martin
  surname: Groth
  fullname: Groth, Martin
  organization: Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 11
  givenname: Karolin
  surname: Luger
  fullname: Luger, Karolin
  organization: Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
– sequence: 12
  givenname: Steven E.
  surname: Jacobsen
  fullname: Jacobsen, Steven E.
  email: jacobsen@ucla.edu
  organization: Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 13
  givenname: Frédéric
  surname: Berger
  fullname: Berger, Frédéric
  email: fred@tll.org.sg
  organization: Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24995981$$D View this record in MEDLINE/PubMed
BookMark eNqNUsFuEzEQtVARTQs_wAHtkcsuY6_X9koIKUqhQaoEhwJHy2vPEkeJHexNJf4ep2kr4FA42eN573nmzZyRkxADEvKSQkOBijfrxuJm0zCgvAHRAIgnZEahlzWnkp2QGUDPaiUkPyVnOa8BQHVd94ycMt73Xa_ojLjrFVZLn6ciXX01yZswVUs2b75VFzj6gLla4oQp2lWKWzP5UJngqs8liFNJLh6eFzE4DLncY6hKPE9m8C7uss_PydPRbDK-uDvPyZcP768Xy_rq0-XHxfyqth0wUQ9iLPVR4MM4toZzPlCLbmTglOCtMdiCFUglGkGd6mnrrHQDgnNSgTJde07eHXV3-2GLzmKYktnoXfJbk37qaLz-MxP8Sn-PN5oLSRXri8DrO4EUf-wxT3rr88FkEzDus2bFQkY72f4bSksngkoh4T-gvGWKMcoL9NXvHTyUfj-wAlBHgE0x54Sjtn669bw05Deagj7shl7rwwf6sBsahC67UajsL-q9-qOkt0cSlrndeEw6W4-hzMUntJN20T9G_wXKQNM8
CitedBy_id crossref_primary_10_1016_j_pbi_2022_102266
crossref_primary_10_1093_nar_gkaa766
crossref_primary_10_1242_jcs_194712
crossref_primary_10_1111_nph_17221
crossref_primary_10_1016_j_pbi_2022_102261
crossref_primary_10_1093_jxb_ery244
crossref_primary_10_1093_jxb_erad029
crossref_primary_10_1093_jxb_erz457
crossref_primary_10_1186_s12870_024_05532_4
crossref_primary_10_1101_gr_253674_119
crossref_primary_10_1016_j_bbagrm_2016_07_002
crossref_primary_10_1007_s13205_022_03181_8
crossref_primary_10_1111_tpj_13133
crossref_primary_10_1016_j_pbi_2017_03_002
crossref_primary_10_1038_nrm_2016_148
crossref_primary_10_1038_s41467_022_35509_6
crossref_primary_10_3389_fpls_2022_884632
crossref_primary_10_1242_jcs_244749
crossref_primary_10_1146_annurev_genet_112414_055048
crossref_primary_10_1038_s41556_021_00661_6
crossref_primary_10_1093_nargab_lqab107
crossref_primary_10_1021_jasms_1c00029
crossref_primary_10_1038_s41467_021_22815_8
crossref_primary_10_3389_fpls_2020_00039
crossref_primary_10_1186_s13059_017_1236_9
crossref_primary_10_1007_s12298_023_01390_w
crossref_primary_10_1111_tpj_13381
crossref_primary_10_3103_S0096392523600734
crossref_primary_10_3390_genes6030751
crossref_primary_10_1111_nph_19986
crossref_primary_10_1186_s13072_016_0085_1
crossref_primary_10_1038_s41556_021_00658_1
crossref_primary_10_1266_ggs_21_00041
crossref_primary_10_1016_j_pbi_2023_102408
crossref_primary_10_1016_j_semcdb_2022_05_001
crossref_primary_10_1126_sciadv_adg2699
crossref_primary_10_1016_j_bbagen_2023_130539
crossref_primary_10_1242_dev_202338
crossref_primary_10_1186_s12864_019_5452_4
crossref_primary_10_1073_pnas_1716300115
crossref_primary_10_1073_pnas_1906023116
crossref_primary_10_1007_s10142_020_00756_7
crossref_primary_10_1111_tpj_16875
crossref_primary_10_1007_s00299_016_1999_6
crossref_primary_10_1016_j_ceb_2021_12_002
crossref_primary_10_1111_tpj_12830
crossref_primary_10_1080_15592324_2017_1286438
crossref_primary_10_1186_s13059_019_1672_9
crossref_primary_10_1080_19491034_2017_1384893
crossref_primary_10_1007_s10265_024_01550_3
crossref_primary_10_1016_j_pbi_2022_102248
crossref_primary_10_1016_j_pbi_2020_101991
crossref_primary_10_1093_jxb_eraa230
crossref_primary_10_1042_EBC20180062
crossref_primary_10_1016_j_csbj_2022_08_058
crossref_primary_10_1080_10409238_2017_1279119
crossref_primary_10_1093_plcell_koae034
crossref_primary_10_1016_j_stemcr_2018_02_008
crossref_primary_10_1111_pce_13422
crossref_primary_10_1186_s13059_024_03466_6
crossref_primary_10_1080_15592294_2015_1104446
crossref_primary_10_1371_journal_pgen_1008964
crossref_primary_10_1038_s41477_024_01773_1
crossref_primary_10_1093_nar_gky163
crossref_primary_10_7554_eLife_69396
crossref_primary_10_1016_j_molp_2021_07_001
crossref_primary_10_1016_j_celrep_2023_112738
crossref_primary_10_1038_cdd_2017_77
crossref_primary_10_1016_j_semcdb_2022_02_026
crossref_primary_10_1016_j_jprot_2016_03_002
crossref_primary_10_1093_nar_gkad610
crossref_primary_10_1016_j_tplants_2015_04_005
crossref_primary_10_1038_s41580_020_0262_8
crossref_primary_10_1038_s41477_024_01746_4
crossref_primary_10_1016_j_jprot_2016_03_003
crossref_primary_10_1093_plcell_koac199
crossref_primary_10_1016_j_pbi_2021_102043
crossref_primary_10_1016_j_molcel_2019_10_011
crossref_primary_10_1093_plphys_kiae024
crossref_primary_10_1038_s44319_024_00107_8
crossref_primary_10_3390_cells9020474
crossref_primary_10_3390_ijms22020512
crossref_primary_10_1016_j_cub_2017_03_002
crossref_primary_10_55959_MSU0137_0952_16_78_4_4
crossref_primary_10_1080_15592294_2016_1185580
crossref_primary_10_1186_s13059_024_03163_4
crossref_primary_10_1146_annurev_arplant_070221_050044
crossref_primary_10_1016_j_cub_2020_09_080
crossref_primary_10_1111_nph_13687
crossref_primary_10_1093_pcp_pcw194
crossref_primary_10_1126_sciadv_adn4149
crossref_primary_10_3389_fpls_2014_00474
crossref_primary_10_3389_fpls_2015_00328
crossref_primary_10_1038_nplants_2016_58
crossref_primary_10_1038_s41576_019_0105_7
crossref_primary_10_1242_dev_178962
crossref_primary_10_3389_fpls_2020_603380
crossref_primary_10_1007_s11427_015_4817_4
crossref_primary_10_1080_07388551_2021_1946004
crossref_primary_10_1101_gr_204032_116
crossref_primary_10_1002_pmic_202200104
crossref_primary_10_1093_plcell_koad295
crossref_primary_10_1016_j_pbi_2019_02_008
crossref_primary_10_1371_journal_pgen_1007969
crossref_primary_10_1038_s44319_024_00304_5
crossref_primary_10_1111_nph_19008
crossref_primary_10_3390_ijms241311116
crossref_primary_10_1016_j_gde_2023_102147
crossref_primary_10_1007_s12374_020_09258_2
crossref_primary_10_1038_s41598_024_53264_0
crossref_primary_10_1186_s13059_017_1221_3
crossref_primary_10_1016_j_xplc_2019_100015
crossref_primary_10_1016_j_pbi_2015_05_011
crossref_primary_10_3390_ijms21197241
crossref_primary_10_1016_j_ijbiomac_2023_123401
crossref_primary_10_1101_gad_289397_116
crossref_primary_10_1038_s41467_019_11385_5
crossref_primary_10_1016_j_pbi_2024_102551
crossref_primary_10_1016_j_xplc_2024_100833
crossref_primary_10_1111_gcbb_13084
crossref_primary_10_1111_nph_17970
crossref_primary_10_1111_tpj_16373
crossref_primary_10_3897_CompCytogen_v14i2_51895
crossref_primary_10_1038_s41598_024_51460_6
crossref_primary_10_1186_s12915_023_01568_4
crossref_primary_10_1093_plcell_koae084
crossref_primary_10_1038_s42003_023_04607_6
crossref_primary_10_1093_jxb_eraf030
crossref_primary_10_1242_jcs_199216
crossref_primary_10_1016_j_cell_2023_08_001
crossref_primary_10_1073_pnas_1921055117
crossref_primary_10_1016_j_pbi_2016_07_010
crossref_primary_10_1016_j_molp_2018_03_014
crossref_primary_10_1371_journal_pgen_1009601
crossref_primary_10_1038_s41422_018_0104_9
crossref_primary_10_1016_j_molp_2017_08_014
crossref_primary_10_3389_fpls_2015_01049
crossref_primary_10_1186_s13059_020_02163_4
crossref_primary_10_1111_tpj_15130
crossref_primary_10_1038_s41467_021_27320_6
crossref_primary_10_1126_science_abi7489
crossref_primary_10_1038_s41467_021_22993_5
crossref_primary_10_3389_fpls_2017_00342
crossref_primary_10_7554_eLife_42530
crossref_primary_10_1186_s13059_020_02190_1
crossref_primary_10_1534_g3_117_043539
crossref_primary_10_1007_s11427_024_2784_3
crossref_primary_10_1093_molbev_msaa031
crossref_primary_10_3390_cancers13123003
crossref_primary_10_1111_tpj_15145
crossref_primary_10_1111_tpj_16119
crossref_primary_10_3389_fpls_2021_677849
crossref_primary_10_1016_j_mcpro_2024_100795
crossref_primary_10_3389_fpls_2017_01564
crossref_primary_10_1093_plphys_kiab224
crossref_primary_10_1016_j_pbi_2023_102387
crossref_primary_10_1093_bioinformatics_btw069
crossref_primary_10_1080_19491034_2024_2328719
crossref_primary_10_1093_pcp_pcae140
crossref_primary_10_1016_j_cpb_2024_100408
crossref_primary_10_1101_gr_227116_117
crossref_primary_10_1111_nph_15248
crossref_primary_10_1242_dev_201989
crossref_primary_10_1016_j_str_2024_05_013
crossref_primary_10_1093_plcell_koad233
crossref_primary_10_3389_fpls_2022_984702
crossref_primary_10_1111_tpj_70116
crossref_primary_10_15252_embr_201744445
crossref_primary_10_3389_fpls_2024_1372880
crossref_primary_10_7554_eLife_87714
crossref_primary_10_1073_pnas_1503512112
crossref_primary_10_3390_ijms22136922
crossref_primary_10_1007_s10265_014_0694_3
crossref_primary_10_1016_j_pbi_2018_02_003
crossref_primary_10_7554_eLife_87714_3
crossref_primary_10_1111_nph_14269
crossref_primary_10_3389_fpls_2019_01795
crossref_primary_10_1038_s41467_020_16691_x
crossref_primary_10_1093_jxb_eraa098
crossref_primary_10_1093_jb_mvw081
crossref_primary_10_1038_s41438_021_00520_3
crossref_primary_10_3390_ijms242317054
crossref_primary_10_1073_pnas_1713333115
crossref_primary_10_37427_botcro_2025_004
crossref_primary_10_3389_fgene_2023_1229782
crossref_primary_10_3389_fpls_2023_1204279
crossref_primary_10_1073_pnas_1424254112
crossref_primary_10_3389_fpls_2017_00024
crossref_primary_10_1007_s00412_019_00718_4
crossref_primary_10_1093_nar_gky540
crossref_primary_10_3390_plants11111449
crossref_primary_10_1073_pnas_2213540119
crossref_primary_10_1093_molbev_msac019
crossref_primary_10_3390_plants11192620
crossref_primary_10_1016_j_bbagrm_2016_07_015
crossref_primary_10_1038_s41477_020_00810_z
crossref_primary_10_1016_j_jare_2024_12_001
Cites_doi 10.1105/tpc.109.071647
10.1371/journal.pone.0003156
10.1126/science.1089835
10.1371/journal.pgen.1000280
10.1111/j.1365-313X.2008.03413.x
10.1371/journal.pgen.1002658
10.1038/ng1637
10.1016/j.cell.2012.07.034
10.1038/nature07324
10.1038/38444
10.1016/j.cell.2010.01.003
10.1073/pnas.212325299
10.1186/1471-2164-9-438
10.1146/annurev.biophys.31.101101.140858
10.1023/A:1003745315540
10.1101/gad.524609
10.1002/j.1460-2075.1989.tb03440.x
10.1002/j.1460-2075.1989.tb08604.x
10.1105/tpc.010425
10.1371/journal.pgen.1002988
10.1016/j.ceb.2012.03.003
10.1038/ng1138
10.1038/nrm3152
10.1126/science.1059745
10.1016/0022-2836(91)90268-B
10.1038/nature731
10.1038/nsmb.1611
10.1016/j.tig.2013.06.002
10.1074/jbc.M111.244871
10.1007/s00412-012-0386-5
10.1038/ncomms2582
10.1098/rsif.2012.1022
10.1073/pnas.0507975102
10.1016/j.tibs.2007.08.004
10.1093/emboj/cdf687
10.1016/S0092-8674(03)00123-5
10.1016/j.cell.2012.10.054
10.1101/gad.1876110
10.1016/j.molcel.2012.06.002
10.1126/science.1063127
10.1038/nrm2861
10.1038/nsmb.2735
10.1093/nar/gks865
10.1016/0968-0004(92)90382-J
10.1016/j.cell.2005.10.002
10.1093/nar/21.10.2383
10.1371/journal.pgen.1002808
10.1073/pnas.1203145109
10.1038/cr.2011.14
10.1371/journal.pbio.0030384
10.1016/j.cub.2010.11.012
10.1038/8803
10.1016/j.cell.2013.02.033
10.1038/nrm3382
10.1091/mbc.E05-08-0706
10.1146/annurev.ge.14.120180.001005
10.1042/BJ20121646
10.1038/nature05980
10.1021/bi961617p
10.1016/j.molcel.2004.10.023
10.1038/nrg2719
10.1101/gr.084947.108
10.1038/31275
10.1093/nar/gkn180
10.1093/nar/gkm618
10.1186/1756-8935-5-7
10.1093/nar/gks645
10.1126/science.8316832
10.1016/j.cub.2012.07.061
10.1006/jmbi.1997.1494
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
7S9
L.6
5PM
DOI 10.1016/j.cell.2014.06.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Nucleic Acids Abstracts


MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 109
ExternalDocumentID PMC4671829
24995981
10_1016_j_cell_2014_06_006
S0092867414007272
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: F32 GM096483
– fundername: NIGMS NIH HHS
  grantid: F32GM096483-01
– fundername: NIGMS NIH HHS
  grantid: R01 GM067777
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: GM067777
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
5VS
62-
6I.
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
AAYJJ
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YYQ
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
6TJ
9M8
AAHBH
AAIKJ
AALRI
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGQPQ
AI.
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7TM
7S9
L.6
5PM
ID FETCH-LOGICAL-c5026-b6f855104bff3a444b1cedf20d8643aae30c6e17ea61d8913dc7dbe0dd7808a53
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 18:32:52 EDT 2025
Thu Jul 10 23:04:57 EDT 2025
Fri Jul 11 07:21:55 EDT 2025
Thu Jul 10 19:32:29 EDT 2025
Mon Jul 21 05:30:32 EDT 2025
Tue Jul 01 02:16:49 EDT 2025
Thu Apr 24 23:11:33 EDT 2025
Fri Feb 23 02:30:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5026-b6f855104bff3a444b1cedf20d8643aae30c6e17ea61d8913dc7dbe0dd7808a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
These authors contributed equally to this work.
Present address: Wisconsin Institute for Discovery, Laboratory of Genetics, University of Wisconsin, Madison, WI53706, USA.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867414007272
PMID 24995981
PQID 1543282214
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4671829
proquest_miscellaneous_2000215739
proquest_miscellaneous_1551617670
proquest_miscellaneous_1543282214
pubmed_primary_24995981
crossref_citationtrail_10_1016_j_cell_2014_06_006
crossref_primary_10_1016_j_cell_2014_06_006
elsevier_sciencedirect_doi_10_1016_j_cell_2014_06_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-03
PublicationDateYYYYMMDD 2014-07-03
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lindroth, Cao, Jackson, Zilberman, McCallum, Henikoff, Jacobsen (bib35) 2001; 292
Mito, Henikoff, Henikoff (bib45) 2005; 37
Zilberman, Coleman-Derr, Ballinger, Henikoff (bib65) 2008; 456
Downs, Nussenzweig, Nussenzweig (bib12) 2007; 447
Filipescu, Szenker, Almouzni (bib16) 2013; 29
Fransz, De Jong, Lysak, Castiglione, Schubert (bib18) 2002; 99
Khadake, Rao (bib30) 1997; 36
Poccia, Green (bib47) 1992; 17
Stroud, Greenberg, Feng, Bernatavichute, Jacobsen (bib52) 2013; 152
Bernatavichute, Zhang, Cokus, Pellegrini, Jacobsen (bib2) 2008; 3
Meneghini, Wu, Madhani (bib43) 2003; 112
Szenker, Ray-Gallet, Almouzni (bib55) 2011; 21
Fan, Rangasamy, Luger, Tremethick (bib14) 2004; 16
Chakravarthy, Patel, Bowman (bib7) 2012; 40
Kalashnikova, Porter-Goff, Muthurajan, Luger, Hansen (bib29) 2013; 10
Goldberg, Banaszynski, Noh, Lewis, Elsaesser, Stadler, Dewell, Law, Guo, Li (bib21) 2010; 140
Millar (bib44) 2013; 449
Vongs, Kakutani, Martienssen, Richards (bib61) 1993; 260
Talbert, Ahmad, Almouzni, Ausió, Berger, Bhalla, Bonner, Cande, Chadwick, Chan (bib59) 2012; 5
Churchill, Suzuki (bib8) 1989; 8
Lysak, Fransz, Schubert (bib41) 2006; 323
Jackson, Lindroth, Cao, Jacobsen (bib26) 2002; 416
Du, Zhong, Bernatavichute, Stroud, Feng, Caro, Vashisht, Terragni, Chin, Tu (bib13) 2012; 151
Brutlag (bib5) 1980; 14
Guillemette, Bataille, Gévry, Adam, Blanchette, Robert, Gaudreau (bib22) 2005; 3
Stroud, Do, Du, Zhong, Feng, Johnson, Patel, Jacobsen (bib53) 2014; 21
Fang, Spector (bib15) 2005; 16
Li, Pattenden, Lee, Gutiérrez, Chen, Seidel, Gerton, Workman (bib33) 2005; 102
Wong, Ren, Williams, McGhie, Ahn, Sim, Tam, Earle, Anderson, Mann, Choo (bib63) 2009; 19
Lowary, Widom (bib37) 1998; 276
Jenuwein, Allis (bib28) 2001; 293
Gaspar-Maia, Qadeer, Hasson, Ratnakumar, Leu, Leroy, Liu, Costanzi, Valle-Garcia, Schaniel (bib20) 2013; 4
Loyola, Almouzni (bib38) 2007; 32
Jeddeloh, Stokes, Richards (bib27) 1999; 22
Costanzi, Pehrson (bib10) 1998; 393
Aceituno, Moseyko, Rhee, Gutiérrez (bib1) 2008; 9
Raisner, Hartley, Meneghini, Bao, Liu, Schreiber, Rando, Madhani (bib48) 2005; 123
Lindhout, Fransz, Tessadori, Meckel, Hooykaas, van der Zaal (bib34) 2007; 35
Coleman-Derr, Zilberman (bib9) 2012; 8
De Rop, Padeganeh, Maddox (bib11) 2012; 121
Buttinelli, Panetta, Rhodes, Travers (bib6) 1999; 106
Haag, Pikaard (bib23) 2011; 12
Zemach, Kim, Hsieh, Coleman-Derr, Eshed-Williams, Thao, Harmer, Zilberman (bib64) 2013; 153
Bönisch, Hake (bib4) 2012; 40
Gamble, Frizzell, Yang, Krishnakumar, Kraus (bib19) 2010; 24
Lindsey, Orgeig, Thompson, Davies, Maeder (bib36) 1991; 218
Ingouff, Rademacher, Holec, Soljić, Xin, Readshaw, Foo, Lahouze, Sprunck, Berger (bib25) 2010; 20
Kinoshita, Miura, Choi, Kinoshita, Cao, Jacobsen, Fischer, Kakutani (bib31) 2004; 303
Finnegan, Dennis (bib17) 1993; 21
Luger, Dechassa, Tremethick (bib40) 2012; 13
Muthurajan, McBryant, Lu, Hansen, Luger (bib46) 2011; 286
Soria, Polo, Almouzni (bib50) 2012; 46
Talbert, Bayes, Henikoff (bib58) 2008
Wollmann, Holec, Alden, Clarke, Jacques, Berger (bib62) 2012; 8
Luger, Mäder, Richmond, Sargent, Richmond (bib39) 1997; 389
Talbert, Henikoff (bib56) 2010; 11
Stroud, Otero, Desvoyes, Ramírez-Parra, Jacobsen, Gutierrez (bib51) 2012; 109
Suzuki (bib54) 1989; 8
Law, Jacobsen (bib32) 2010; 11
Hansen (bib24) 2002; 31
Reinders, Wulff, Mirouze, Marí-Ordóñez, Dapp, Rozhon, Bucher, Theiler, Paszkowski (bib49) 2009; 23
Malagnac, Bartee, Bender (bib42) 2002; 21
Talbert, Masuelli, Tyagi, Comai, Henikoff (bib57) 2002; 14
Bian, Belmont (bib3) 2012; 24
Vaillant, Tutois, Jasencakova, Douet, Schubert, Tourmente (bib60) 2008; 54
Churchill (10.1016/j.cell.2014.06.006_bib8) 1989; 8
Stroud (10.1016/j.cell.2014.06.006_bib53) 2014; 21
Bönisch (10.1016/j.cell.2014.06.006_bib4) 2012; 40
Law (10.1016/j.cell.2014.06.006_bib32) 2010; 11
Muthurajan (10.1016/j.cell.2014.06.006_bib46) 2011; 286
Jackson (10.1016/j.cell.2014.06.006_bib26) 2002; 416
Raisner (10.1016/j.cell.2014.06.006_bib48) 2005; 123
Buttinelli (10.1016/j.cell.2014.06.006_bib6) 1999; 106
Jullien (10.1016/j.cell.2014.06.006_bib69) 2012; 22
Khadake (10.1016/j.cell.2014.06.006_bib30) 1997; 36
Loyola (10.1016/j.cell.2014.06.006_bib38) 2007; 32
Dereeper (10.1016/j.cell.2014.06.006_bib66) 2008; 36
Lysak (10.1016/j.cell.2014.06.006_bib41) 2006; 323
Mito (10.1016/j.cell.2014.06.006_bib45) 2005; 37
Lindroth (10.1016/j.cell.2014.06.006_bib35) 2001; 292
Fang (10.1016/j.cell.2014.06.006_bib15) 2005; 16
Johnson (10.1016/j.cell.2014.06.006_bib68) 2008; 4
Filipescu (10.1016/j.cell.2014.06.006_bib16) 2013; 29
Fransz (10.1016/j.cell.2014.06.006_bib18) 2002; 99
De Rop (10.1016/j.cell.2014.06.006_bib11) 2012; 121
Stroud (10.1016/j.cell.2014.06.006_bib72) 2012; 8
Millar (10.1016/j.cell.2014.06.006_bib44) 2013; 449
Talbert (10.1016/j.cell.2014.06.006_bib56) 2010; 11
Du (10.1016/j.cell.2014.06.006_bib13) 2012; 151
Li (10.1016/j.cell.2014.06.006_bib33) 2005; 102
Chakravarthy (10.1016/j.cell.2014.06.006_bib7) 2012; 40
Stroud (10.1016/j.cell.2014.06.006_bib51) 2012; 109
Lindsey (10.1016/j.cell.2014.06.006_bib36) 1991; 218
Haag (10.1016/j.cell.2014.06.006_bib23) 2011; 12
Zemach (10.1016/j.cell.2014.06.006_bib64) 2013; 153
Poccia (10.1016/j.cell.2014.06.006_bib47) 1992; 17
Wollmann (10.1016/j.cell.2014.06.006_bib62) 2012; 8
Aceituno (10.1016/j.cell.2014.06.006_bib1) 2008; 9
Reinders (10.1016/j.cell.2014.06.006_bib49) 2009; 23
Malagnac (10.1016/j.cell.2014.06.006_bib42) 2002; 21
Vongs (10.1016/j.cell.2014.06.006_bib61) 1993; 260
Kalashnikova (10.1016/j.cell.2014.06.006_bib29) 2013; 10
Costanzi (10.1016/j.cell.2014.06.006_bib10) 1998; 393
Brutlag (10.1016/j.cell.2014.06.006_bib5) 1980; 14
Goldberg (10.1016/j.cell.2014.06.006_bib21) 2010; 140
Zilberman (10.1016/j.cell.2014.06.006_bib65) 2008; 456
Kinoshita (10.1016/j.cell.2014.06.006_bib31) 2004; 303
Pillot (10.1016/j.cell.2014.06.006_bib70) 2010; 22
Gamble (10.1016/j.cell.2014.06.006_bib19) 2010; 24
Luger (10.1016/j.cell.2014.06.006_bib39) 1997; 389
Lindhout (10.1016/j.cell.2014.06.006_bib34) 2007; 35
Guillemette (10.1016/j.cell.2014.06.006_bib22) 2005; 3
Jeddeloh (10.1016/j.cell.2014.06.006_bib27) 1999; 22
Coleman-Derr (10.1016/j.cell.2014.06.006_bib9) 2012; 8
Meneghini (10.1016/j.cell.2014.06.006_bib43) 2003; 112
Jenuwein (10.1016/j.cell.2014.06.006_bib28) 2001; 293
Luger (10.1016/j.cell.2014.06.006_bib40) 2012; 13
Vaillant (10.1016/j.cell.2014.06.006_bib60) 2008; 54
Stroud (10.1016/j.cell.2014.06.006_bib52) 2013; 152
Jacob (10.1016/j.cell.2014.06.006_bib67) 2009; 16
Suzuki (10.1016/j.cell.2014.06.006_bib54) 1989; 8
Fan (10.1016/j.cell.2014.06.006_bib14) 2004; 16
Hansen (10.1016/j.cell.2014.06.006_bib24) 2002; 31
Lowary (10.1016/j.cell.2014.06.006_bib37) 1998; 276
Gaspar-Maia (10.1016/j.cell.2014.06.006_bib20) 2013; 4
Wong (10.1016/j.cell.2014.06.006_bib63) 2009; 19
Finnegan (10.1016/j.cell.2014.06.006_bib17) 1993; 21
Szenker (10.1016/j.cell.2014.06.006_bib55) 2011; 21
Talbert (10.1016/j.cell.2014.06.006_bib58) 2008
Talbert (10.1016/j.cell.2014.06.006_bib57) 2002; 14
Soria (10.1016/j.cell.2014.06.006_bib50) 2012; 46
Bian (10.1016/j.cell.2014.06.006_bib3) 2012; 24
Downs (10.1016/j.cell.2014.06.006_bib12) 2007; 447
Bernatavichute (10.1016/j.cell.2014.06.006_bib2) 2008; 3
Saze (10.1016/j.cell.2014.06.006_bib71) 2003; 34
Ingouff (10.1016/j.cell.2014.06.006_bib25) 2010; 20
Talbert (10.1016/j.cell.2014.06.006_bib59) 2012; 5
18811951 - BMC Genomics. 2008;9:438
2556263 - EMBO J. 1989 Dec 20;8(13):4189-95
1502725 - Trends Biochem Sci. 1992 Jun;17(6):223-7
22749398 - Mol Cell. 2012 Jun 29;46(6):722-34
22722606 - Nat Rev Mol Cell Biol. 2012 Jul;13(7):436-47
2470589 - EMBO J. 1989 Mar;8(3):797-804
22570629 - PLoS Genet. 2012;8(5):e1002658
21263457 - Cell Res. 2011 Mar;21(3):421-34
22650316 - Epigenetics Chromatin. 2012 Jun 21;5:7
22459407 - Curr Opin Cell Biol. 2012 Jun;24(3):359-66
23021223 - Cell. 2012 Sep 28;151(1):167-80
17581578 - Nature. 2007 Jun 21;447(7147):951-8
16248679 - PLoS Biol. 2005 Dec;3(12):e384
16155569 - Nat Genet. 2005 Oct;37(10):1090-7
24336224 - Nat Struct Mol Biol. 2014 Jan;21(1):64-72
20142834 - Nat Rev Genet. 2010 Mar;11(3):204-20
15546624 - Mol Cell. 2004 Nov 19;16(4):655-61
19390088 - Genes Dev. 2009 Apr 15;23(8):939-50
23301656 - Biochem J. 2013 Feb 1;449(3):567-79
20008927 - Genes Dev. 2010 Jan 1;24(1):21-32
2023250 - J Mol Biol. 1991 Apr 20;218(4):805-13
12628191 - Cell. 2003 Mar 7;112(5):725-36
22431625 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5370-5
23830582 - Trends Genet. 2013 Nov;29(11):630-40
21532035 - J Biol Chem. 2011 Jul 8;286(27):23852-64
23095988 - Chromosoma. 2012 Dec;121(6):527-38
11349138 - Science. 2001 Jun 15;292(5524):2077-80
11498575 - Science. 2001 Aug 10;293(5532):1074-80
23071449 - PLoS Genet. 2012;8(10):e1002988
21779025 - Nat Rev Mol Cell Biol. 2011 Aug;12(8):483-92
23463008 - Nat Commun. 2013;4:1565
22753032 - Nucleic Acids Res. 2012 Sep 1;40(17):8285-95
12486005 - EMBO J. 2002 Dec 16;21(24):6842-52
12384572 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14584-9
9634239 - Nature. 1998 Jun 11;393(6685):599-601
23446052 - J R Soc Interface. 2013 May 6;10(82):20121022
23313553 - Cell. 2013 Jan 17;152(1-2):352-64
17704126 - Nucleic Acids Res. 2007;35(16):e107
21093266 - Curr Biol. 2010 Dec 7;20(23):2137-43
11898023 - Nature. 2002 Apr 4;416(6880):556-60
17764953 - Trends Biochem Sci. 2007 Sep;32(9):425-33
20197778 - Nat Rev Mol Cell Biol. 2010 Apr;11(4):264-75
10319870 - Nat Genet. 1999 May;22(1):94-7
19196724 - Genome Res. 2009 Mar;19(3):404-14
9033394 - Biochemistry. 1997 Feb 4;36(5):1041-51
11988475 - Annu Rev Biophys Biomol Struct. 2002;31:361-92
6260016 - Annu Rev Genet. 1980;14:121-44
23540698 - Cell. 2013 Mar 28;153(1):193-205
18776934 - PLoS One. 2008;3(9):e3156
20211137 - Cell. 2010 Mar 5;140(5):678-91
23002134 - Nucleic Acids Res. 2012 Nov;40(21):10719-41
8389441 - Nucleic Acids Res. 1993 May 25;21(10):2383-8
18208523 - Plant J. 2008 Apr;54(2):299-309
16344463 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18385-90
8316832 - Science. 1993 Jun 25;260(5116):1926-8
18815594 - Nature. 2008 Nov 6;456(7218):125-9
12034896 - Plant Cell. 2002 May;14(5):1053-66
14631047 - Science. 2004 Jan 23;303(5657):521-3
9514715 - J Mol Biol. 1998 Feb 13;276(1):19-42
16239142 - Cell. 2005 Oct 21;123(2):233-48
16195344 - Mol Biol Cell. 2005 Dec;16(12):5710-8
9305837 - Nature. 1997 Sep 18;389(6648):251-60
10710717 - Genetica. 1999;106(1-2):117-24
References_xml – volume: 21
  start-page: 2383
  year: 1993
  end-page: 2388
  ident: bib17
  article-title: Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana
  publication-title: Nucleic Acids Res.
– volume: 152
  start-page: 352
  year: 2013
  end-page: 364
  ident: bib52
  article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome
  publication-title: Cell
– volume: 293
  start-page: 1074
  year: 2001
  end-page: 1080
  ident: bib28
  article-title: Translating the histone code
  publication-title: Science
– volume: 8
  start-page: e1002658
  year: 2012
  ident: bib62
  article-title: Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the
  publication-title: PLoS Genet.
– volume: 11
  start-page: 264
  year: 2010
  end-page: 275
  ident: bib56
  article-title: Histone variants—ancient wrap artists of the epigenome
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 10
  start-page: 20121022
  year: 2013
  ident: bib29
  article-title: The role of the nucleosome acidic patch in modulating higher order chromatin structure
  publication-title: J. R. Soc. Interface
– volume: 109
  start-page: 5370
  year: 2012
  end-page: 5375
  ident: bib51
  article-title: Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 447
  start-page: 951
  year: 2007
  end-page: 958
  ident: bib12
  article-title: Chromatin dynamics and the preservation of genetic information
  publication-title: Nature
– volume: 16
  start-page: 5710
  year: 2005
  end-page: 5718
  ident: bib15
  article-title: Centromere positioning and dynamics in living Arabidopsis plants
  publication-title: Mol. Biol. Cell
– volume: 36
  start-page: 1041
  year: 1997
  end-page: 1051
  ident: bib30
  article-title: Condensation of DNA and chromatin by an SPKK-containing octapeptide repeat motif present in the C-terminus of histone H1
  publication-title: Biochemistry
– volume: 153
  start-page: 193
  year: 2013
  end-page: 205
  ident: bib64
  article-title: The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin
  publication-title: Cell
– volume: 456
  start-page: 125
  year: 2008
  end-page: 129
  ident: bib65
  article-title: Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks
  publication-title: Nature
– volume: 23
  start-page: 939
  year: 2009
  end-page: 950
  ident: bib49
  article-title: Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes
  publication-title: Genes Dev.
– volume: 112
  start-page: 725
  year: 2003
  end-page: 736
  ident: bib43
  article-title: Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin
  publication-title: Cell
– start-page: 193
  year: 2008
  end-page: 230
  ident: bib58
  article-title: Evolution of centromeres and kinetochores: A two-part fugue
  publication-title: The Kinetochore: From Molecular Discoveries to Cancer Therapy
– volume: 260
  start-page: 1926
  year: 1993
  end-page: 1928
  ident: bib61
  article-title: Arabidopsis thaliana DNA methylation mutants
  publication-title: Science
– volume: 286
  start-page: 23852
  year: 2011
  end-page: 23864
  ident: bib46
  article-title: The linker region of macroH2A promotes self-association of nucleosomal arrays
  publication-title: J. Biol. Chem.
– volume: 123
  start-page: 233
  year: 2005
  end-page: 248
  ident: bib48
  article-title: Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin
  publication-title: Cell
– volume: 21
  start-page: 64
  year: 2014
  end-page: 72
  ident: bib53
  article-title: Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis
  publication-title: Nat. Struct. Mol. Biol.
– volume: 276
  start-page: 19
  year: 1998
  end-page: 42
  ident: bib37
  article-title: New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning
  publication-title: J. Mol. Biol.
– volume: 12
  start-page: 483
  year: 2011
  end-page: 492
  ident: bib23
  article-title: Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 218
  start-page: 805
  year: 1991
  end-page: 813
  ident: bib36
  article-title: Extended C-terminal tail of wheat histone H2A interacts with DNA of the “linker” region
  publication-title: J. Mol. Biol.
– volume: 151
  start-page: 167
  year: 2012
  end-page: 180
  ident: bib13
  article-title: Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants
  publication-title: Cell
– volume: 54
  start-page: 299
  year: 2008
  end-page: 309
  ident: bib60
  article-title: Hypomethylation and hypermethylation of the tandem repetitive 5S rRNA genes in Arabidopsis
  publication-title: Plant J.
– volume: 21
  start-page: 6842
  year: 2002
  end-page: 6852
  ident: bib42
  article-title: An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation
  publication-title: EMBO J.
– volume: 4
  start-page: 1565
  year: 2013
  ident: bib20
  article-title: MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency
  publication-title: Nat. Commun.
– volume: 393
  start-page: 599
  year: 1998
  end-page: 601
  ident: bib10
  article-title: Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals
  publication-title: Nature
– volume: 3
  start-page: e384
  year: 2005
  ident: bib22
  article-title: Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning
  publication-title: PLoS Biol.
– volume: 5
  start-page: 7
  year: 2012
  ident: bib59
  article-title: A unified phylogeny-based nomenclature for histone variants
  publication-title: Epigenetics Chromatin
– volume: 20
  start-page: 2137
  year: 2010
  end-page: 2143
  ident: bib25
  article-title: Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis
  publication-title: Curr. Biol.
– volume: 8
  start-page: 4189
  year: 1989
  end-page: 4195
  ident: bib8
  article-title: ‘SPKK’ motifs prefer to bind to DNA at A/T-rich sites
  publication-title: EMBO J.
– volume: 35
  start-page: e107
  year: 2007
  ident: bib34
  article-title: Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins
  publication-title: Nucleic Acids Res.
– volume: 102
  start-page: 18385
  year: 2005
  end-page: 18390
  ident: bib33
  article-title: Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 140
  start-page: 678
  year: 2010
  end-page: 691
  ident: bib21
  article-title: Distinct factors control histone variant H3.3 localization at specific genomic regions
  publication-title: Cell
– volume: 13
  start-page: 436
  year: 2012
  end-page: 447
  ident: bib40
  article-title: New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 24
  start-page: 359
  year: 2012
  end-page: 366
  ident: bib3
  article-title: Revisiting higher-order and large-scale chromatin organization
  publication-title: Curr. Opin. Cell Biol.
– volume: 40
  start-page: 8285
  year: 2012
  end-page: 8295
  ident: bib7
  article-title: The basic linker of macroH2A stabilizes DNA at the entry/exit site of the nucleosome
  publication-title: Nucleic Acids Res.
– volume: 22
  start-page: 94
  year: 1999
  end-page: 97
  ident: bib27
  article-title: Maintenance of genomic methylation requires a SWI2/SNF2-like protein
  publication-title: Nat. Genet.
– volume: 17
  start-page: 223
  year: 1992
  end-page: 227
  ident: bib47
  article-title: Packaging and unpackaging the sea urchin sperm genome
  publication-title: Trends Biochem. Sci.
– volume: 14
  start-page: 1053
  year: 2002
  end-page: 1066
  ident: bib57
  article-title: Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant
  publication-title: Plant Cell
– volume: 99
  start-page: 14584
  year: 2002
  end-page: 14589
  ident: bib18
  article-title: Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 449
  start-page: 567
  year: 2013
  end-page: 579
  ident: bib44
  article-title: Organizing the genome with H2A histone variants
  publication-title: Biochem. J.
– volume: 21
  start-page: 421
  year: 2011
  end-page: 434
  ident: bib55
  article-title: The double face of the histone variant H3.3
  publication-title: Cell Res.
– volume: 46
  start-page: 722
  year: 2012
  end-page: 734
  ident: bib50
  article-title: Prime, repair, restore: the active role of chromatin in the DNA damage response
  publication-title: Mol. Cell
– volume: 8
  start-page: e1002988
  year: 2012
  ident: bib9
  article-title: Deposition of histone variant H2A.Z within gene bodies regulates responsive genes
  publication-title: PLoS Genet.
– volume: 11
  start-page: 204
  year: 2010
  end-page: 220
  ident: bib32
  article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals
  publication-title: Nat. Rev. Genet.
– volume: 29
  start-page: 630
  year: 2013
  end-page: 640
  ident: bib16
  article-title: Developmental roles of histone H3 variants and their chaperones
  publication-title: Trends Genet.
– volume: 303
  start-page: 521
  year: 2004
  end-page: 523
  ident: bib31
  article-title: One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation
  publication-title: Science
– volume: 416
  start-page: 556
  year: 2002
  end-page: 560
  ident: bib26
  article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase
  publication-title: Nature
– volume: 14
  start-page: 121
  year: 1980
  end-page: 144
  ident: bib5
  article-title: Molecular arrangement and evolution of heterochromatic DNA
  publication-title: Annu. Rev. Genet.
– volume: 3
  start-page: e3156
  year: 2008
  ident: bib2
  article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana
  publication-title: PLoS ONE
– volume: 16
  start-page: 655
  year: 2004
  end-page: 661
  ident: bib14
  article-title: H2A.Z alters the nucleosome surface to promote HP1α-mediated chromatin fiber folding
  publication-title: Mol. Cell
– volume: 32
  start-page: 425
  year: 2007
  end-page: 433
  ident: bib38
  article-title: Marking histone H3 variants: how, when and why?
  publication-title: Trends Biochem. Sci.
– volume: 292
  start-page: 2077
  year: 2001
  end-page: 2080
  ident: bib35
  article-title: Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation
  publication-title: Science
– volume: 389
  start-page: 251
  year: 1997
  end-page: 260
  ident: bib39
  article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution
  publication-title: Nature
– volume: 323
  year: 2006
  ident: bib41
  article-title: Cytogenetic analyses of Arabidopsis
  publication-title: Methods Mol. Biol.
– volume: 121
  start-page: 527
  year: 2012
  end-page: 538
  ident: bib11
  article-title: CENP-A: the key player behind centromere identity, propagation, and kinetochore assembly
  publication-title: Chromosoma
– volume: 8
  start-page: 797
  year: 1989
  end-page: 804
  ident: bib54
  article-title: SPKK, a new nucleic acid-binding unit of protein found in histone
  publication-title: EMBO J.
– volume: 24
  start-page: 21
  year: 2010
  end-page: 32
  ident: bib19
  article-title: The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing
  publication-title: Genes Dev.
– volume: 19
  start-page: 404
  year: 2009
  end-page: 414
  ident: bib63
  article-title: Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells
  publication-title: Genome Res.
– volume: 9
  start-page: 438
  year: 2008
  ident: bib1
  article-title: The rules of gene expression in plants: organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana
  publication-title: BMC Genomics
– volume: 40
  start-page: 10719
  year: 2012
  end-page: 10741
  ident: bib4
  article-title: Histone H2A variants in nucleosomes and chromatin: more or less stable?
  publication-title: Nucleic Acids Res.
– volume: 106
  start-page: 117
  year: 1999
  end-page: 124
  ident: bib6
  article-title: The role of histone H1 in chromatin condensation and transcriptional repression
  publication-title: Genetica
– volume: 31
  start-page: 361
  year: 2002
  end-page: 392
  ident: bib24
  article-title: Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
– volume: 37
  start-page: 1090
  year: 2005
  end-page: 1097
  ident: bib45
  article-title: Genome-scale profiling of histone H3.3 replacement patterns
  publication-title: Nat. Genet.
– volume: 22
  start-page: 307
  year: 2010
  ident: 10.1016/j.cell.2014.06.006_bib70
  article-title: Embryo and endosperm inherit distinct chromatin and transcriptional states from the female gametes in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.071647
– volume: 3
  start-page: e3156
  year: 2008
  ident: 10.1016/j.cell.2014.06.006_bib2
  article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003156
– volume: 303
  start-page: 521
  year: 2004
  ident: 10.1016/j.cell.2014.06.006_bib31
  article-title: One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation
  publication-title: Science
  doi: 10.1126/science.1089835
– volume: 4
  start-page: e1000280
  year: 2008
  ident: 10.1016/j.cell.2014.06.006_bib68
  article-title: SRA-domain proteins required for DRM2-mediated de novo DNA methylation
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000280
– volume: 54
  start-page: 299
  year: 2008
  ident: 10.1016/j.cell.2014.06.006_bib60
  article-title: Hypomethylation and hypermethylation of the tandem repetitive 5S rRNA genes in Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03413.x
– volume: 8
  start-page: e1002658
  year: 2012
  ident: 10.1016/j.cell.2014.06.006_bib62
  article-title: Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the Arabidopsis transcriptome
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002658
– volume: 37
  start-page: 1090
  year: 2005
  ident: 10.1016/j.cell.2014.06.006_bib45
  article-title: Genome-scale profiling of histone H3.3 replacement patterns
  publication-title: Nat. Genet.
  doi: 10.1038/ng1637
– volume: 151
  start-page: 167
  year: 2012
  ident: 10.1016/j.cell.2014.06.006_bib13
  article-title: Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants
  publication-title: Cell
  doi: 10.1016/j.cell.2012.07.034
– volume: 456
  start-page: 125
  year: 2008
  ident: 10.1016/j.cell.2014.06.006_bib65
  article-title: Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks
  publication-title: Nature
  doi: 10.1038/nature07324
– volume: 389
  start-page: 251
  year: 1997
  ident: 10.1016/j.cell.2014.06.006_bib39
  article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution
  publication-title: Nature
  doi: 10.1038/38444
– start-page: 193
  year: 2008
  ident: 10.1016/j.cell.2014.06.006_bib58
  article-title: Evolution of centromeres and kinetochores: A two-part fugue
– volume: 140
  start-page: 678
  year: 2010
  ident: 10.1016/j.cell.2014.06.006_bib21
  article-title: Distinct factors control histone variant H3.3 localization at specific genomic regions
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.003
– volume: 99
  start-page: 14584
  year: 2002
  ident: 10.1016/j.cell.2014.06.006_bib18
  article-title: Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.212325299
– volume: 9
  start-page: 438
  year: 2008
  ident: 10.1016/j.cell.2014.06.006_bib1
  article-title: The rules of gene expression in plants: organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-438
– volume: 31
  start-page: 361
  year: 2002
  ident: 10.1016/j.cell.2014.06.006_bib24
  article-title: Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.31.101101.140858
– volume: 106
  start-page: 117
  year: 1999
  ident: 10.1016/j.cell.2014.06.006_bib6
  article-title: The role of histone H1 in chromatin condensation and transcriptional repression
  publication-title: Genetica
  doi: 10.1023/A:1003745315540
– volume: 23
  start-page: 939
  year: 2009
  ident: 10.1016/j.cell.2014.06.006_bib49
  article-title: Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes
  publication-title: Genes Dev.
  doi: 10.1101/gad.524609
– volume: 8
  start-page: 797
  year: 1989
  ident: 10.1016/j.cell.2014.06.006_bib54
  article-title: SPKK, a new nucleic acid-binding unit of protein found in histone
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1989.tb03440.x
– volume: 8
  start-page: 4189
  year: 1989
  ident: 10.1016/j.cell.2014.06.006_bib8
  article-title: ‘SPKK’ motifs prefer to bind to DNA at A/T-rich sites
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1989.tb08604.x
– volume: 14
  start-page: 1053
  year: 2002
  ident: 10.1016/j.cell.2014.06.006_bib57
  article-title: Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant
  publication-title: Plant Cell
  doi: 10.1105/tpc.010425
– volume: 8
  start-page: e1002988
  year: 2012
  ident: 10.1016/j.cell.2014.06.006_bib9
  article-title: Deposition of histone variant H2A.Z within gene bodies regulates responsive genes
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002988
– volume: 24
  start-page: 359
  year: 2012
  ident: 10.1016/j.cell.2014.06.006_bib3
  article-title: Revisiting higher-order and large-scale chromatin organization
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2012.03.003
– volume: 34
  start-page: 65
  year: 2003
  ident: 10.1016/j.cell.2014.06.006_bib71
  article-title: Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis
  publication-title: Nat. Gen.
  doi: 10.1038/ng1138
– volume: 12
  start-page: 483
  year: 2011
  ident: 10.1016/j.cell.2014.06.006_bib23
  article-title: Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3152
– volume: 292
  start-page: 2077
  year: 2001
  ident: 10.1016/j.cell.2014.06.006_bib35
  article-title: Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation
  publication-title: Science
  doi: 10.1126/science.1059745
– volume: 218
  start-page: 805
  year: 1991
  ident: 10.1016/j.cell.2014.06.006_bib36
  article-title: Extended C-terminal tail of wheat histone H2A interacts with DNA of the “linker” region
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(91)90268-B
– volume: 416
  start-page: 556
  year: 2002
  ident: 10.1016/j.cell.2014.06.006_bib26
  article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase
  publication-title: Nature
  doi: 10.1038/nature731
– volume: 16
  start-page: 763
  year: 2009
  ident: 10.1016/j.cell.2014.06.006_bib67
  article-title: ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1611
– volume: 29
  start-page: 630
  year: 2013
  ident: 10.1016/j.cell.2014.06.006_bib16
  article-title: Developmental roles of histone H3 variants and their chaperones
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2013.06.002
– volume: 286
  start-page: 23852
  year: 2011
  ident: 10.1016/j.cell.2014.06.006_bib46
  article-title: The linker region of macroH2A promotes self-association of nucleosomal arrays
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.244871
– volume: 121
  start-page: 527
  year: 2012
  ident: 10.1016/j.cell.2014.06.006_bib11
  article-title: CENP-A: the key player behind centromere identity, propagation, and kinetochore assembly
  publication-title: Chromosoma
  doi: 10.1007/s00412-012-0386-5
– volume: 4
  start-page: 1565
  year: 2013
  ident: 10.1016/j.cell.2014.06.006_bib20
  article-title: MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2582
– volume: 10
  start-page: 20121022
  year: 2013
  ident: 10.1016/j.cell.2014.06.006_bib29
  article-title: The role of the nucleosome acidic patch in modulating higher order chromatin structure
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2012.1022
– volume: 102
  start-page: 18385
  year: 2005
  ident: 10.1016/j.cell.2014.06.006_bib33
  article-title: Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0507975102
– volume: 32
  start-page: 425
  year: 2007
  ident: 10.1016/j.cell.2014.06.006_bib38
  article-title: Marking histone H3 variants: how, when and why?
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2007.08.004
– volume: 21
  start-page: 6842
  year: 2002
  ident: 10.1016/j.cell.2014.06.006_bib42
  article-title: An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf687
– volume: 112
  start-page: 725
  year: 2003
  ident: 10.1016/j.cell.2014.06.006_bib43
  article-title: Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00123-5
– volume: 152
  start-page: 352
  year: 2013
  ident: 10.1016/j.cell.2014.06.006_bib52
  article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome
  publication-title: Cell
  doi: 10.1016/j.cell.2012.10.054
– volume: 24
  start-page: 21
  year: 2010
  ident: 10.1016/j.cell.2014.06.006_bib19
  article-title: The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing
  publication-title: Genes Dev.
  doi: 10.1101/gad.1876110
– volume: 46
  start-page: 722
  year: 2012
  ident: 10.1016/j.cell.2014.06.006_bib50
  article-title: Prime, repair, restore: the active role of chromatin in the DNA damage response
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.06.002
– volume: 293
  start-page: 1074
  year: 2001
  ident: 10.1016/j.cell.2014.06.006_bib28
  article-title: Translating the histone code
  publication-title: Science
  doi: 10.1126/science.1063127
– volume: 11
  start-page: 264
  year: 2010
  ident: 10.1016/j.cell.2014.06.006_bib56
  article-title: Histone variants—ancient wrap artists of the epigenome
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2861
– volume: 21
  start-page: 64
  year: 2014
  ident: 10.1016/j.cell.2014.06.006_bib53
  article-title: Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2735
– volume: 40
  start-page: 10719
  year: 2012
  ident: 10.1016/j.cell.2014.06.006_bib4
  article-title: Histone H2A variants in nucleosomes and chromatin: more or less stable?
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks865
– volume: 17
  start-page: 223
  year: 1992
  ident: 10.1016/j.cell.2014.06.006_bib47
  article-title: Packaging and unpackaging the sea urchin sperm genome
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/0968-0004(92)90382-J
– volume: 323
  year: 2006
  ident: 10.1016/j.cell.2014.06.006_bib41
  article-title: Cytogenetic analyses of Arabidopsis
  publication-title: Methods Mol. Biol.
– volume: 123
  start-page: 233
  year: 2005
  ident: 10.1016/j.cell.2014.06.006_bib48
  article-title: Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin
  publication-title: Cell
  doi: 10.1016/j.cell.2005.10.002
– volume: 21
  start-page: 2383
  year: 1993
  ident: 10.1016/j.cell.2014.06.006_bib17
  article-title: Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/21.10.2383
– volume: 8
  start-page: e1002808
  year: 2012
  ident: 10.1016/j.cell.2014.06.006_bib72
  article-title: DNA methyltransferases are required to induce heterochromatic re-replication in Arabidopsis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002808
– volume: 109
  start-page: 5370
  year: 2012
  ident: 10.1016/j.cell.2014.06.006_bib51
  article-title: Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1203145109
– volume: 21
  start-page: 421
  year: 2011
  ident: 10.1016/j.cell.2014.06.006_bib55
  article-title: The double face of the histone variant H3.3
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.14
– volume: 3
  start-page: e384
  year: 2005
  ident: 10.1016/j.cell.2014.06.006_bib22
  article-title: Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0030384
– volume: 20
  start-page: 2137
  year: 2010
  ident: 10.1016/j.cell.2014.06.006_bib25
  article-title: Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2010.11.012
– volume: 22
  start-page: 94
  year: 1999
  ident: 10.1016/j.cell.2014.06.006_bib27
  article-title: Maintenance of genomic methylation requires a SWI2/SNF2-like protein
  publication-title: Nat. Genet.
  doi: 10.1038/8803
– volume: 153
  start-page: 193
  year: 2013
  ident: 10.1016/j.cell.2014.06.006_bib64
  article-title: The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.033
– volume: 13
  start-page: 436
  year: 2012
  ident: 10.1016/j.cell.2014.06.006_bib40
  article-title: New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3382
– volume: 16
  start-page: 5710
  year: 2005
  ident: 10.1016/j.cell.2014.06.006_bib15
  article-title: Centromere positioning and dynamics in living Arabidopsis plants
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E05-08-0706
– volume: 14
  start-page: 121
  year: 1980
  ident: 10.1016/j.cell.2014.06.006_bib5
  article-title: Molecular arrangement and evolution of heterochromatic DNA
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.ge.14.120180.001005
– volume: 449
  start-page: 567
  year: 2013
  ident: 10.1016/j.cell.2014.06.006_bib44
  article-title: Organizing the genome with H2A histone variants
  publication-title: Biochem. J.
  doi: 10.1042/BJ20121646
– volume: 447
  start-page: 951
  year: 2007
  ident: 10.1016/j.cell.2014.06.006_bib12
  article-title: Chromatin dynamics and the preservation of genetic information
  publication-title: Nature
  doi: 10.1038/nature05980
– volume: 36
  start-page: 1041
  year: 1997
  ident: 10.1016/j.cell.2014.06.006_bib30
  article-title: Condensation of DNA and chromatin by an SPKK-containing octapeptide repeat motif present in the C-terminus of histone H1
  publication-title: Biochemistry
  doi: 10.1021/bi961617p
– volume: 16
  start-page: 655
  year: 2004
  ident: 10.1016/j.cell.2014.06.006_bib14
  article-title: H2A.Z alters the nucleosome surface to promote HP1α-mediated chromatin fiber folding
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.10.023
– volume: 11
  start-page: 204
  year: 2010
  ident: 10.1016/j.cell.2014.06.006_bib32
  article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2719
– volume: 19
  start-page: 404
  year: 2009
  ident: 10.1016/j.cell.2014.06.006_bib63
  article-title: Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells
  publication-title: Genome Res.
  doi: 10.1101/gr.084947.108
– volume: 393
  start-page: 599
  year: 1998
  ident: 10.1016/j.cell.2014.06.006_bib10
  article-title: Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals
  publication-title: Nature
  doi: 10.1038/31275
– volume: 36
  start-page: W465
  issue: Web Server issue
  year: 2008
  ident: 10.1016/j.cell.2014.06.006_bib66
  article-title: Phylogeny.fr: robust phylogenetic analysis for the non-specialist
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn180
– volume: 35
  start-page: e107
  year: 2007
  ident: 10.1016/j.cell.2014.06.006_bib34
  article-title: Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm618
– volume: 5
  start-page: 7
  year: 2012
  ident: 10.1016/j.cell.2014.06.006_bib59
  article-title: A unified phylogeny-based nomenclature for histone variants
  publication-title: Epigenetics Chromatin
  doi: 10.1186/1756-8935-5-7
– volume: 40
  start-page: 8285
  year: 2012
  ident: 10.1016/j.cell.2014.06.006_bib7
  article-title: The basic linker of macroH2A stabilizes DNA at the entry/exit site of the nucleosome
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks645
– volume: 260
  start-page: 1926
  year: 1993
  ident: 10.1016/j.cell.2014.06.006_bib61
  article-title: Arabidopsis thaliana DNA methylation mutants
  publication-title: Science
  doi: 10.1126/science.8316832
– volume: 22
  start-page: 1825
  year: 2012
  ident: 10.1016/j.cell.2014.06.006_bib69
  article-title: DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana
  publication-title: Curr. Bio.
  doi: 10.1016/j.cub.2012.07.061
– volume: 276
  start-page: 19
  year: 1998
  ident: 10.1016/j.cell.2014.06.006_bib37
  article-title: New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1997.1494
– reference: 22753032 - Nucleic Acids Res. 2012 Sep 1;40(17):8285-95
– reference: 20008927 - Genes Dev. 2010 Jan 1;24(1):21-32
– reference: 22431625 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5370-5
– reference: 14631047 - Science. 2004 Jan 23;303(5657):521-3
– reference: 16239142 - Cell. 2005 Oct 21;123(2):233-48
– reference: 20211137 - Cell. 2010 Mar 5;140(5):678-91
– reference: 21532035 - J Biol Chem. 2011 Jul 8;286(27):23852-64
– reference: 2470589 - EMBO J. 1989 Mar;8(3):797-804
– reference: 8389441 - Nucleic Acids Res. 1993 May 25;21(10):2383-8
– reference: 22650316 - Epigenetics Chromatin. 2012 Jun 21;5:7
– reference: 23540698 - Cell. 2013 Mar 28;153(1):193-205
– reference: 11988475 - Annu Rev Biophys Biomol Struct. 2002;31:361-92
– reference: 12034896 - Plant Cell. 2002 May;14(5):1053-66
– reference: 6260016 - Annu Rev Genet. 1980;14:121-44
– reference: 10319870 - Nat Genet. 1999 May;22(1):94-7
– reference: 19390088 - Genes Dev. 2009 Apr 15;23(8):939-50
– reference: 22459407 - Curr Opin Cell Biol. 2012 Jun;24(3):359-66
– reference: 11898023 - Nature. 2002 Apr 4;416(6880):556-60
– reference: 21263457 - Cell Res. 2011 Mar;21(3):421-34
– reference: 18815594 - Nature. 2008 Nov 6;456(7218):125-9
– reference: 17704126 - Nucleic Acids Res. 2007;35(16):e107
– reference: 23301656 - Biochem J. 2013 Feb 1;449(3):567-79
– reference: 23313553 - Cell. 2013 Jan 17;152(1-2):352-64
– reference: 17764953 - Trends Biochem Sci. 2007 Sep;32(9):425-33
– reference: 2023250 - J Mol Biol. 1991 Apr 20;218(4):805-13
– reference: 21093266 - Curr Biol. 2010 Dec 7;20(23):2137-43
– reference: 9514715 - J Mol Biol. 1998 Feb 13;276(1):19-42
– reference: 23446052 - J R Soc Interface. 2013 May 6;10(82):20121022
– reference: 9305837 - Nature. 1997 Sep 18;389(6648):251-60
– reference: 12384572 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14584-9
– reference: 16195344 - Mol Biol Cell. 2005 Dec;16(12):5710-8
– reference: 23463008 - Nat Commun. 2013;4:1565
– reference: 23021223 - Cell. 2012 Sep 28;151(1):167-80
– reference: 18811951 - BMC Genomics. 2008;9:438
– reference: 15546624 - Mol Cell. 2004 Nov 19;16(4):655-61
– reference: 23002134 - Nucleic Acids Res. 2012 Nov;40(21):10719-41
– reference: 12628191 - Cell. 2003 Mar 7;112(5):725-36
– reference: 16344463 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18385-90
– reference: 12486005 - EMBO J. 2002 Dec 16;21(24):6842-52
– reference: 10710717 - Genetica. 1999;106(1-2):117-24
– reference: 22749398 - Mol Cell. 2012 Jun 29;46(6):722-34
– reference: 23830582 - Trends Genet. 2013 Nov;29(11):630-40
– reference: 22570629 - PLoS Genet. 2012;8(5):e1002658
– reference: 16248679 - PLoS Biol. 2005 Dec;3(12):e384
– reference: 11349138 - Science. 2001 Jun 15;292(5524):2077-80
– reference: 16155569 - Nat Genet. 2005 Oct;37(10):1090-7
– reference: 22722606 - Nat Rev Mol Cell Biol. 2012 Jul;13(7):436-47
– reference: 9634239 - Nature. 1998 Jun 11;393(6685):599-601
– reference: 19196724 - Genome Res. 2009 Mar;19(3):404-14
– reference: 18776934 - PLoS One. 2008;3(9):e3156
– reference: 11498575 - Science. 2001 Aug 10;293(5532):1074-80
– reference: 8316832 - Science. 1993 Jun 25;260(5116):1926-8
– reference: 21779025 - Nat Rev Mol Cell Biol. 2011 Aug;12(8):483-92
– reference: 20142834 - Nat Rev Genet. 2010 Mar;11(3):204-20
– reference: 24336224 - Nat Struct Mol Biol. 2014 Jan;21(1):64-72
– reference: 17581578 - Nature. 2007 Jun 21;447(7147):951-8
– reference: 23071449 - PLoS Genet. 2012;8(10):e1002988
– reference: 9033394 - Biochemistry. 1997 Feb 4;36(5):1041-51
– reference: 18208523 - Plant J. 2008 Apr;54(2):299-309
– reference: 23095988 - Chromosoma. 2012 Dec;121(6):527-38
– reference: 1502725 - Trends Biochem Sci. 1992 Jun;17(6):223-7
– reference: 20197778 - Nat Rev Mol Cell Biol. 2010 Apr;11(4):264-75
– reference: 2556263 - EMBO J. 1989 Dec 20;8(13):4189-95
SSID ssj0008555
Score 2.5518045
Snippet Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis...
Histone variants play crucial roles in gene expression, genome integrity and chromosome segregation. However, to what extent histone variants control chromatin...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 98
SubjectTerms Amino Acid Sequence
Animalia
animals
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - chemistry
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Chromatin Assembly and Disassembly
chromosome segregation
DNA Methylation
DNA Transposable Elements
gene expression
genome
Genome-Wide Association Study
heterochromatin
Heterochromatin - metabolism
histones
Histones - chemistry
Histones - genetics
Histones - metabolism
Metazoa
Molecular Sequence Data
plants (botany)
Sequence Alignment
transposons
Title The Histone Variant H2A.W Defines Heterochromatin and Promotes Chromatin Condensation in Arabidopsis
URI https://dx.doi.org/10.1016/j.cell.2014.06.006
https://www.ncbi.nlm.nih.gov/pubmed/24995981
https://www.proquest.com/docview/1543282214
https://www.proquest.com/docview/1551617670
https://www.proquest.com/docview/2000215739
https://pubmed.ncbi.nlm.nih.gov/PMC4671829
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LixQxEA7LguBFfDu-iOBN2u3Oq5PjOLoMguLB1bmFvJptke5hZvfgv7cq_cDxMQeP6VRDulKpR_qrKkJeGhBcFUxZBC8qvLpxhQO7XjDJnNMulE0uVv3ho1pfiPcbuTkhqykXBmGVo-4fdHrW1uOTs5GbZ9u2xRxfw7QCi4itvVmNepgLnZP4Nm9mbaylHLoYGDj5QD0mzgwYL7wcR3iXyDU8sevR343Tn87n7xjKX4zS-W1ya_Qm6XJY8B1ykrq75MbQX_LHPRJBCGguBNIl-gWiYmAjXbPl66_0bWoQ8E7XCIfpw-WuR9e1o66L9FOG6MHkan686rFT7oD8oTBe7pxvY7_dt_v75OL83efVuhjbKhRBQsRVeNUAUyAM803DnRDCV8DshpVRg3viXOJlUKmqk1NVxL-YMdTRpzLGWpfaSf6AnHaw7keEOjBtHnx0w2MtpGE-pUZJ4UvHguJML0g18dOGseY4tr74bidw2TeLe2BxD2xG2KkFeTW_sx0qbhylltM22QO5sWASjr73YtpTCwcKp12X-uu9BZ-SI7a2EsdoJMaFqi7_TYM5UOBP1dwsyMNBVubvgZjXSKOrBakPpGgmwKLfhzNde5mLf4Nhg5DQPP7P735CbuIoA475U3J6tbtOz8CtuvLP87n5CSlqILU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXRHl1gYKR4IRCHcdx4kMPy5YqSx_i0MLejB07ahBKVrutUH8Xf7AzeYnlsQekHuNHYnvG83A-zxDyWgHjylyxILcixKMbExjQ6wGPuTGpyVnRBKs-PpHZmfg4i2cb5Gd_FwZhlZ3sb2V6I627kt1uNXfnZYl3fBVPJWhETO3NE94hKw_91Q_w25Z7030g8hvODz6cTrKgSy0Q5DF4HYGVRQq2AhO2KCIjhLAhfLDgzKWgoo3xEculDxNvZOjwT57LE2c9cy5JWWowVQTI_VtgfSQoDaaz94P4h_e2aRMUiBoYXndTpwWV4Wk84slEEzQU0yz9XRv-ae3-Dtr8RQse3Cf3OvOVjtsV2iIbvnpAbrcJLa8eEgdcR5vII5Wnn8ENB7rRjI_ffaH7vkCEPc0Qf1Pn54sabeWKmsrRTw0mEConQ_GkxtS8LdSIwvN4YWzp6vmyXD4iZzey2I_JZgXj3ibUgC614BSoyCUiVtx6X8hYWGZ4LiOejkjYr6fOuyDnmGvju-7RbN800kAjDXQD6ZMj8nboM29DfKxtHfdk0iuMqkEHre33qqephh2M1aby9eVSgxEbIZg3FOvaxOiIyoT9uw1eugIDLonUiDxpeWWYDzjZKlZpOCLJChcNDTDK-GpNVZ430cZBk4IPqp7-57xfkjvZ6fGRPpqeHD4jd7GmQTtHz8nmxeLS74BNd2FfNHuIkq83vWmvAcCuXos
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Histone+Variant+H2A.W+Defines+Heterochromatin+and+Promotes+Chromatin+Condensation+in+Arabidopsis&rft.jtitle=Cell&rft.au=Yelagandula%2C+Ramesh&rft.au=Stroud%2C+Hume&rft.au=Holec%2C+Sarah&rft.au=Zhou%2C+Keda&rft.date=2014-07-03&rft.issn=0092-8674&rft.volume=158&rft.issue=1&rft.spage=98&rft.epage=109&rft_id=info:doi/10.1016%2Fj.cell.2014.06.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cell_2014_06_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon