The Histone Variant H2A.W Defines Heterochromatin and Promotes Chromatin Condensation in Arabidopsis
Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and...
Saved in:
Published in | Cell Vol. 158; no. 1; pp. 98 - 109 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.07.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and acts in synergy with heterochromatic marks H3K9me2 and DNA methylation to maintain transposon silencing. In vitro, H2A.W enhances chromatin condensation by promoting fiber-to-fiber interactions via its conserved C-terminal motif. In vivo, H2A.W is required for heterochromatin condensation, demonstrating that H2A.W plays critical roles in heterochromatin organization. Similarities in conserved motifs between H2A.W and another H2A variant in metazoans suggest that plants and animals share common mechanisms for heterochromatin condensation.
[Display omitted]
•Genomic features are marked by combination of H2A variants in Arabidopsis•Heterochromatin is specifically marked by H2A.W in correlation with H3K9me2•H2A.W is required for heterochromatin condensation and silencing•A conserved C-terminal motif of H2A.W promotes chromatin condensation
The four H2A variants in Arabidopsis contribute differently to genome organization with H2A.W serving to define and condense heterochromatin. |
---|---|
AbstractList | Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and acts in synergy with heterochromatic marks H3K9me2 and DNA methylation to maintain transposon silencing. In vitro, H2A.W enhances chromatin condensation by promoting fiber-to-fiber interactions via its conserved C-terminal motif. In vivo, H2A.W is required for heterochromatin condensation, demonstrating that H2A.W plays critical roles in heterochromatin organization. Similarities in conserved motifs between H2A.W and another H2A variant in metazoans suggest that plants and animals share common mechanisms for heterochromatin condensation.Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and acts in synergy with heterochromatic marks H3K9me2 and DNA methylation to maintain transposon silencing. In vitro, H2A.W enhances chromatin condensation by promoting fiber-to-fiber interactions via its conserved C-terminal motif. In vivo, H2A.W is required for heterochromatin condensation, demonstrating that H2A.W plays critical roles in heterochromatin organization. Similarities in conserved motifs between H2A.W and another H2A variant in metazoans suggest that plants and animals share common mechanisms for heterochromatin condensation. Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and acts in synergy with heterochromatic marks H3K9me2 and DNA methylation to maintain transposon silencing. In vitro, H2A.W enhances chromatin condensation by promoting fiber-to-fiber interactions via its conserved C-terminal motif. In vivo, H2A.W is required for heterochromatin condensation, demonstrating that H2A.W plays critical roles in heterochromatin organization. Similarities in conserved motifs between H2A.W and another H2A variant in metazoans suggest that plants and animals share common mechanisms for heterochromatin condensation. Histone variants play crucial roles in gene expression, genome integrity and chromosome segregation. However, to what extent histone variants control chromatin architecture remains largely unknown. We report genome-wide profiles of all four types of H2A variants in Arabidopsis and identify that the previously uncharacterized histone variant H2A.W specifically associates with heterochromatin. Genetic analyses show that H2A.W acts in synergy with the heterochromatic marks H3K9me2 and DNA methylation to maintain genome integrity. In vitro , H2A.W enhances chromatin condensation through a higher propensity to promote fiber-to-fiber interactions via its conserved C-terminal motif. In vivo , elimination of H2A.W causes decondensation of heterochromatin and conversely, ectopic expression of H2A.W promotes heterochromatin condensation. These results demonstrate that H2A.W plays critical roles in heterochromatin by promoting higher order chromatin condensation. Since motifs similar to the H2A.W C-terminal motif are present in other histone variants in other organisms, our findings impact our understanding of heterochromatin condensation in eukaryotes. Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and acts in synergy with heterochromatic marks H3K9me2 and DNA methylation to maintain transposon silencing. In vitro, H2A.W enhances chromatin condensation by promoting fiber-to-fiber interactions via its conserved C-terminal motif. In vivo, H2A.W is required for heterochromatin condensation, demonstrating that H2A.W plays critical roles in heterochromatin organization. Similarities in conserved motifs between H2A.W and another H2A variant in metazoans suggest that plants and animals share common mechanisms for heterochromatin condensation. [Display omitted] •Genomic features are marked by combination of H2A variants in Arabidopsis•Heterochromatin is specifically marked by H2A.W in correlation with H3K9me2•H2A.W is required for heterochromatin condensation and silencing•A conserved C-terminal motif of H2A.W promotes chromatin condensation The four H2A variants in Arabidopsis contribute differently to genome organization with H2A.W serving to define and condense heterochromatin. |
Author | Nie, Xin Luger, Karolin Berger, Frédéric Holec, Sarah Zhou, Keda Stroud, Hume Yelagandula, Ramesh Zhong, Xuehua Kawashima, Tomokazu Groth, Martin Jacobsen, Steven E. Muthurajan, Uma M. Feng, Suhua |
AuthorAffiliation | 7 Howard Hughes Medical Institute, Colorado State University, Fort Collins, Colorado 80523, USA 3 Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095 USA 1 Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore 4 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095 USA 5 Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095 USA 2 Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore 6 Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA |
AuthorAffiliation_xml | – name: 5 Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095 USA – name: 1 Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore – name: 3 Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095 USA – name: 4 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095 USA – name: 2 Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore – name: 6 Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA – name: 7 Howard Hughes Medical Institute, Colorado State University, Fort Collins, Colorado 80523, USA |
Author_xml | – sequence: 1 givenname: Ramesh surname: Yelagandula fullname: Yelagandula, Ramesh organization: Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore – sequence: 2 givenname: Hume surname: Stroud fullname: Stroud, Hume organization: Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 3 givenname: Sarah surname: Holec fullname: Holec, Sarah organization: Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore – sequence: 4 givenname: Keda surname: Zhou fullname: Zhou, Keda organization: Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA – sequence: 5 givenname: Suhua surname: Feng fullname: Feng, Suhua organization: Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 6 givenname: Xuehua surname: Zhong fullname: Zhong, Xuehua organization: Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 7 givenname: Uma M. surname: Muthurajan fullname: Muthurajan, Uma M. organization: Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA – sequence: 8 givenname: Xin surname: Nie fullname: Nie, Xin organization: Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore – sequence: 9 givenname: Tomokazu surname: Kawashima fullname: Kawashima, Tomokazu organization: Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore – sequence: 10 givenname: Martin surname: Groth fullname: Groth, Martin organization: Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 11 givenname: Karolin surname: Luger fullname: Luger, Karolin organization: Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA – sequence: 12 givenname: Steven E. surname: Jacobsen fullname: Jacobsen, Steven E. email: jacobsen@ucla.edu organization: Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 13 givenname: Frédéric surname: Berger fullname: Berger, Frédéric email: fred@tll.org.sg organization: Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24995981$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUsFuEzEQtVARTQs_wAHtkcsuY6_X9koIKUqhQaoEhwJHy2vPEkeJHexNJf4ep2kr4FA42eN573nmzZyRkxADEvKSQkOBijfrxuJm0zCgvAHRAIgnZEahlzWnkp2QGUDPaiUkPyVnOa8BQHVd94ycMt73Xa_ojLjrFVZLn6ciXX01yZswVUs2b75VFzj6gLla4oQp2lWKWzP5UJngqs8liFNJLh6eFzE4DLncY6hKPE9m8C7uss_PydPRbDK-uDvPyZcP768Xy_rq0-XHxfyqth0wUQ9iLPVR4MM4toZzPlCLbmTglOCtMdiCFUglGkGd6mnrrHQDgnNSgTJde07eHXV3-2GLzmKYktnoXfJbk37qaLz-MxP8Sn-PN5oLSRXri8DrO4EUf-wxT3rr88FkEzDus2bFQkY72f4bSksngkoh4T-gvGWKMcoL9NXvHTyUfj-wAlBHgE0x54Sjtn669bw05Deagj7shl7rwwf6sBsahC67UajsL-q9-qOkt0cSlrndeEw6W4-hzMUntJN20T9G_wXKQNM8 |
CitedBy_id | crossref_primary_10_1016_j_pbi_2022_102266 crossref_primary_10_1093_nar_gkaa766 crossref_primary_10_1242_jcs_194712 crossref_primary_10_1111_nph_17221 crossref_primary_10_1016_j_pbi_2022_102261 crossref_primary_10_1093_jxb_ery244 crossref_primary_10_1093_jxb_erad029 crossref_primary_10_1093_jxb_erz457 crossref_primary_10_1186_s12870_024_05532_4 crossref_primary_10_1101_gr_253674_119 crossref_primary_10_1016_j_bbagrm_2016_07_002 crossref_primary_10_1007_s13205_022_03181_8 crossref_primary_10_1111_tpj_13133 crossref_primary_10_1016_j_pbi_2017_03_002 crossref_primary_10_1038_nrm_2016_148 crossref_primary_10_1038_s41467_022_35509_6 crossref_primary_10_3389_fpls_2022_884632 crossref_primary_10_1242_jcs_244749 crossref_primary_10_1146_annurev_genet_112414_055048 crossref_primary_10_1038_s41556_021_00661_6 crossref_primary_10_1093_nargab_lqab107 crossref_primary_10_1021_jasms_1c00029 crossref_primary_10_1038_s41467_021_22815_8 crossref_primary_10_3389_fpls_2020_00039 crossref_primary_10_1186_s13059_017_1236_9 crossref_primary_10_1007_s12298_023_01390_w crossref_primary_10_1111_tpj_13381 crossref_primary_10_3103_S0096392523600734 crossref_primary_10_3390_genes6030751 crossref_primary_10_1111_nph_19986 crossref_primary_10_1186_s13072_016_0085_1 crossref_primary_10_1038_s41556_021_00658_1 crossref_primary_10_1266_ggs_21_00041 crossref_primary_10_1016_j_pbi_2023_102408 crossref_primary_10_1016_j_semcdb_2022_05_001 crossref_primary_10_1126_sciadv_adg2699 crossref_primary_10_1016_j_bbagen_2023_130539 crossref_primary_10_1242_dev_202338 crossref_primary_10_1186_s12864_019_5452_4 crossref_primary_10_1073_pnas_1716300115 crossref_primary_10_1073_pnas_1906023116 crossref_primary_10_1007_s10142_020_00756_7 crossref_primary_10_1111_tpj_16875 crossref_primary_10_1007_s00299_016_1999_6 crossref_primary_10_1016_j_ceb_2021_12_002 crossref_primary_10_1111_tpj_12830 crossref_primary_10_1080_15592324_2017_1286438 crossref_primary_10_1186_s13059_019_1672_9 crossref_primary_10_1080_19491034_2017_1384893 crossref_primary_10_1007_s10265_024_01550_3 crossref_primary_10_1016_j_pbi_2022_102248 crossref_primary_10_1016_j_pbi_2020_101991 crossref_primary_10_1093_jxb_eraa230 crossref_primary_10_1042_EBC20180062 crossref_primary_10_1016_j_csbj_2022_08_058 crossref_primary_10_1080_10409238_2017_1279119 crossref_primary_10_1093_plcell_koae034 crossref_primary_10_1016_j_stemcr_2018_02_008 crossref_primary_10_1111_pce_13422 crossref_primary_10_1186_s13059_024_03466_6 crossref_primary_10_1080_15592294_2015_1104446 crossref_primary_10_1371_journal_pgen_1008964 crossref_primary_10_1038_s41477_024_01773_1 crossref_primary_10_1093_nar_gky163 crossref_primary_10_7554_eLife_69396 crossref_primary_10_1016_j_molp_2021_07_001 crossref_primary_10_1016_j_celrep_2023_112738 crossref_primary_10_1038_cdd_2017_77 crossref_primary_10_1016_j_semcdb_2022_02_026 crossref_primary_10_1016_j_jprot_2016_03_002 crossref_primary_10_1093_nar_gkad610 crossref_primary_10_1016_j_tplants_2015_04_005 crossref_primary_10_1038_s41580_020_0262_8 crossref_primary_10_1038_s41477_024_01746_4 crossref_primary_10_1016_j_jprot_2016_03_003 crossref_primary_10_1093_plcell_koac199 crossref_primary_10_1016_j_pbi_2021_102043 crossref_primary_10_1016_j_molcel_2019_10_011 crossref_primary_10_1093_plphys_kiae024 crossref_primary_10_1038_s44319_024_00107_8 crossref_primary_10_3390_cells9020474 crossref_primary_10_3390_ijms22020512 crossref_primary_10_1016_j_cub_2017_03_002 crossref_primary_10_55959_MSU0137_0952_16_78_4_4 crossref_primary_10_1080_15592294_2016_1185580 crossref_primary_10_1186_s13059_024_03163_4 crossref_primary_10_1146_annurev_arplant_070221_050044 crossref_primary_10_1016_j_cub_2020_09_080 crossref_primary_10_1111_nph_13687 crossref_primary_10_1093_pcp_pcw194 crossref_primary_10_1126_sciadv_adn4149 crossref_primary_10_3389_fpls_2014_00474 crossref_primary_10_3389_fpls_2015_00328 crossref_primary_10_1038_nplants_2016_58 crossref_primary_10_1038_s41576_019_0105_7 crossref_primary_10_1242_dev_178962 crossref_primary_10_3389_fpls_2020_603380 crossref_primary_10_1007_s11427_015_4817_4 crossref_primary_10_1080_07388551_2021_1946004 crossref_primary_10_1101_gr_204032_116 crossref_primary_10_1002_pmic_202200104 crossref_primary_10_1093_plcell_koad295 crossref_primary_10_1016_j_pbi_2019_02_008 crossref_primary_10_1371_journal_pgen_1007969 crossref_primary_10_1038_s44319_024_00304_5 crossref_primary_10_1111_nph_19008 crossref_primary_10_3390_ijms241311116 crossref_primary_10_1016_j_gde_2023_102147 crossref_primary_10_1007_s12374_020_09258_2 crossref_primary_10_1038_s41598_024_53264_0 crossref_primary_10_1186_s13059_017_1221_3 crossref_primary_10_1016_j_xplc_2019_100015 crossref_primary_10_1016_j_pbi_2015_05_011 crossref_primary_10_3390_ijms21197241 crossref_primary_10_1016_j_ijbiomac_2023_123401 crossref_primary_10_1101_gad_289397_116 crossref_primary_10_1038_s41467_019_11385_5 crossref_primary_10_1016_j_pbi_2024_102551 crossref_primary_10_1016_j_xplc_2024_100833 crossref_primary_10_1111_gcbb_13084 crossref_primary_10_1111_nph_17970 crossref_primary_10_1111_tpj_16373 crossref_primary_10_3897_CompCytogen_v14i2_51895 crossref_primary_10_1038_s41598_024_51460_6 crossref_primary_10_1186_s12915_023_01568_4 crossref_primary_10_1093_plcell_koae084 crossref_primary_10_1038_s42003_023_04607_6 crossref_primary_10_1093_jxb_eraf030 crossref_primary_10_1242_jcs_199216 crossref_primary_10_1016_j_cell_2023_08_001 crossref_primary_10_1073_pnas_1921055117 crossref_primary_10_1016_j_pbi_2016_07_010 crossref_primary_10_1016_j_molp_2018_03_014 crossref_primary_10_1371_journal_pgen_1009601 crossref_primary_10_1038_s41422_018_0104_9 crossref_primary_10_1016_j_molp_2017_08_014 crossref_primary_10_3389_fpls_2015_01049 crossref_primary_10_1186_s13059_020_02163_4 crossref_primary_10_1111_tpj_15130 crossref_primary_10_1038_s41467_021_27320_6 crossref_primary_10_1126_science_abi7489 crossref_primary_10_1038_s41467_021_22993_5 crossref_primary_10_3389_fpls_2017_00342 crossref_primary_10_7554_eLife_42530 crossref_primary_10_1186_s13059_020_02190_1 crossref_primary_10_1534_g3_117_043539 crossref_primary_10_1007_s11427_024_2784_3 crossref_primary_10_1093_molbev_msaa031 crossref_primary_10_3390_cancers13123003 crossref_primary_10_1111_tpj_15145 crossref_primary_10_1111_tpj_16119 crossref_primary_10_3389_fpls_2021_677849 crossref_primary_10_1016_j_mcpro_2024_100795 crossref_primary_10_3389_fpls_2017_01564 crossref_primary_10_1093_plphys_kiab224 crossref_primary_10_1016_j_pbi_2023_102387 crossref_primary_10_1093_bioinformatics_btw069 crossref_primary_10_1080_19491034_2024_2328719 crossref_primary_10_1093_pcp_pcae140 crossref_primary_10_1016_j_cpb_2024_100408 crossref_primary_10_1101_gr_227116_117 crossref_primary_10_1111_nph_15248 crossref_primary_10_1242_dev_201989 crossref_primary_10_1016_j_str_2024_05_013 crossref_primary_10_1093_plcell_koad233 crossref_primary_10_3389_fpls_2022_984702 crossref_primary_10_1111_tpj_70116 crossref_primary_10_15252_embr_201744445 crossref_primary_10_3389_fpls_2024_1372880 crossref_primary_10_7554_eLife_87714 crossref_primary_10_1073_pnas_1503512112 crossref_primary_10_3390_ijms22136922 crossref_primary_10_1007_s10265_014_0694_3 crossref_primary_10_1016_j_pbi_2018_02_003 crossref_primary_10_7554_eLife_87714_3 crossref_primary_10_1111_nph_14269 crossref_primary_10_3389_fpls_2019_01795 crossref_primary_10_1038_s41467_020_16691_x crossref_primary_10_1093_jxb_eraa098 crossref_primary_10_1093_jb_mvw081 crossref_primary_10_1038_s41438_021_00520_3 crossref_primary_10_3390_ijms242317054 crossref_primary_10_1073_pnas_1713333115 crossref_primary_10_37427_botcro_2025_004 crossref_primary_10_3389_fgene_2023_1229782 crossref_primary_10_3389_fpls_2023_1204279 crossref_primary_10_1073_pnas_1424254112 crossref_primary_10_3389_fpls_2017_00024 crossref_primary_10_1007_s00412_019_00718_4 crossref_primary_10_1093_nar_gky540 crossref_primary_10_3390_plants11111449 crossref_primary_10_1073_pnas_2213540119 crossref_primary_10_1093_molbev_msac019 crossref_primary_10_3390_plants11192620 crossref_primary_10_1016_j_bbagrm_2016_07_015 crossref_primary_10_1038_s41477_020_00810_z crossref_primary_10_1016_j_jare_2024_12_001 |
Cites_doi | 10.1105/tpc.109.071647 10.1371/journal.pone.0003156 10.1126/science.1089835 10.1371/journal.pgen.1000280 10.1111/j.1365-313X.2008.03413.x 10.1371/journal.pgen.1002658 10.1038/ng1637 10.1016/j.cell.2012.07.034 10.1038/nature07324 10.1038/38444 10.1016/j.cell.2010.01.003 10.1073/pnas.212325299 10.1186/1471-2164-9-438 10.1146/annurev.biophys.31.101101.140858 10.1023/A:1003745315540 10.1101/gad.524609 10.1002/j.1460-2075.1989.tb03440.x 10.1002/j.1460-2075.1989.tb08604.x 10.1105/tpc.010425 10.1371/journal.pgen.1002988 10.1016/j.ceb.2012.03.003 10.1038/ng1138 10.1038/nrm3152 10.1126/science.1059745 10.1016/0022-2836(91)90268-B 10.1038/nature731 10.1038/nsmb.1611 10.1016/j.tig.2013.06.002 10.1074/jbc.M111.244871 10.1007/s00412-012-0386-5 10.1038/ncomms2582 10.1098/rsif.2012.1022 10.1073/pnas.0507975102 10.1016/j.tibs.2007.08.004 10.1093/emboj/cdf687 10.1016/S0092-8674(03)00123-5 10.1016/j.cell.2012.10.054 10.1101/gad.1876110 10.1016/j.molcel.2012.06.002 10.1126/science.1063127 10.1038/nrm2861 10.1038/nsmb.2735 10.1093/nar/gks865 10.1016/0968-0004(92)90382-J 10.1016/j.cell.2005.10.002 10.1093/nar/21.10.2383 10.1371/journal.pgen.1002808 10.1073/pnas.1203145109 10.1038/cr.2011.14 10.1371/journal.pbio.0030384 10.1016/j.cub.2010.11.012 10.1038/8803 10.1016/j.cell.2013.02.033 10.1038/nrm3382 10.1091/mbc.E05-08-0706 10.1146/annurev.ge.14.120180.001005 10.1042/BJ20121646 10.1038/nature05980 10.1021/bi961617p 10.1016/j.molcel.2004.10.023 10.1038/nrg2719 10.1101/gr.084947.108 10.1038/31275 10.1093/nar/gkn180 10.1093/nar/gkm618 10.1186/1756-8935-5-7 10.1093/nar/gks645 10.1126/science.8316832 10.1016/j.cub.2012.07.061 10.1006/jmbi.1997.1494 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. Copyright © 2014 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: Copyright © 2014 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2014.06.006 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Nucleic Acids Abstracts MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 109 |
ExternalDocumentID | PMC4671829 24995981 10_1016_j_cell_2014_06_006 S0092867414007272 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: F32 GM096483 – fundername: NIGMS NIH HHS grantid: F32GM096483-01 – fundername: NIGMS NIH HHS grantid: R01 GM067777 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: GM067777 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 5VS 62- 6I. 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AAQFI AAUCE AAVLU AAXJY AAXUO AAYJJ ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHFR AGHSJ AGKMS AHHHB AIDAL AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YYQ YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 6TJ 9M8 AAHBH AAIKJ AALRI AAMRU AAQXK AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGQPQ AI. AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EFKBS EIF NPM 7X8 7TM 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5026-b6f855104bff3a444b1cedf20d8643aae30c6e17ea61d8913dc7dbe0dd7808a53 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 18:32:52 EDT 2025 Thu Jul 10 23:04:57 EDT 2025 Fri Jul 11 07:21:55 EDT 2025 Thu Jul 10 19:32:29 EDT 2025 Mon Jul 21 05:30:32 EDT 2025 Tue Jul 01 02:16:49 EDT 2025 Thu Apr 24 23:11:33 EDT 2025 Fri Feb 23 02:30:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5026-b6f855104bff3a444b1cedf20d8643aae30c6e17ea61d8913dc7dbe0dd7808a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA. These authors contributed equally to this work. Present address: Wisconsin Institute for Discovery, Laboratory of Genetics, University of Wisconsin, Madison, WI53706, USA. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867414007272 |
PMID | 24995981 |
PQID | 1543282214 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4671829 proquest_miscellaneous_2000215739 proquest_miscellaneous_1551617670 proquest_miscellaneous_1543282214 pubmed_primary_24995981 crossref_citationtrail_10_1016_j_cell_2014_06_006 crossref_primary_10_1016_j_cell_2014_06_006 elsevier_sciencedirect_doi_10_1016_j_cell_2014_06_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-03 |
PublicationDateYYYYMMDD | 2014-07-03 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2014 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Lindroth, Cao, Jackson, Zilberman, McCallum, Henikoff, Jacobsen (bib35) 2001; 292 Mito, Henikoff, Henikoff (bib45) 2005; 37 Zilberman, Coleman-Derr, Ballinger, Henikoff (bib65) 2008; 456 Downs, Nussenzweig, Nussenzweig (bib12) 2007; 447 Filipescu, Szenker, Almouzni (bib16) 2013; 29 Fransz, De Jong, Lysak, Castiglione, Schubert (bib18) 2002; 99 Khadake, Rao (bib30) 1997; 36 Poccia, Green (bib47) 1992; 17 Stroud, Greenberg, Feng, Bernatavichute, Jacobsen (bib52) 2013; 152 Bernatavichute, Zhang, Cokus, Pellegrini, Jacobsen (bib2) 2008; 3 Meneghini, Wu, Madhani (bib43) 2003; 112 Szenker, Ray-Gallet, Almouzni (bib55) 2011; 21 Fan, Rangasamy, Luger, Tremethick (bib14) 2004; 16 Chakravarthy, Patel, Bowman (bib7) 2012; 40 Kalashnikova, Porter-Goff, Muthurajan, Luger, Hansen (bib29) 2013; 10 Goldberg, Banaszynski, Noh, Lewis, Elsaesser, Stadler, Dewell, Law, Guo, Li (bib21) 2010; 140 Millar (bib44) 2013; 449 Vongs, Kakutani, Martienssen, Richards (bib61) 1993; 260 Talbert, Ahmad, Almouzni, Ausió, Berger, Bhalla, Bonner, Cande, Chadwick, Chan (bib59) 2012; 5 Churchill, Suzuki (bib8) 1989; 8 Lysak, Fransz, Schubert (bib41) 2006; 323 Jackson, Lindroth, Cao, Jacobsen (bib26) 2002; 416 Du, Zhong, Bernatavichute, Stroud, Feng, Caro, Vashisht, Terragni, Chin, Tu (bib13) 2012; 151 Brutlag (bib5) 1980; 14 Guillemette, Bataille, Gévry, Adam, Blanchette, Robert, Gaudreau (bib22) 2005; 3 Stroud, Do, Du, Zhong, Feng, Johnson, Patel, Jacobsen (bib53) 2014; 21 Fang, Spector (bib15) 2005; 16 Li, Pattenden, Lee, Gutiérrez, Chen, Seidel, Gerton, Workman (bib33) 2005; 102 Wong, Ren, Williams, McGhie, Ahn, Sim, Tam, Earle, Anderson, Mann, Choo (bib63) 2009; 19 Lowary, Widom (bib37) 1998; 276 Jenuwein, Allis (bib28) 2001; 293 Gaspar-Maia, Qadeer, Hasson, Ratnakumar, Leu, Leroy, Liu, Costanzi, Valle-Garcia, Schaniel (bib20) 2013; 4 Loyola, Almouzni (bib38) 2007; 32 Jeddeloh, Stokes, Richards (bib27) 1999; 22 Costanzi, Pehrson (bib10) 1998; 393 Aceituno, Moseyko, Rhee, Gutiérrez (bib1) 2008; 9 Raisner, Hartley, Meneghini, Bao, Liu, Schreiber, Rando, Madhani (bib48) 2005; 123 Lindhout, Fransz, Tessadori, Meckel, Hooykaas, van der Zaal (bib34) 2007; 35 Coleman-Derr, Zilberman (bib9) 2012; 8 De Rop, Padeganeh, Maddox (bib11) 2012; 121 Buttinelli, Panetta, Rhodes, Travers (bib6) 1999; 106 Haag, Pikaard (bib23) 2011; 12 Zemach, Kim, Hsieh, Coleman-Derr, Eshed-Williams, Thao, Harmer, Zilberman (bib64) 2013; 153 Bönisch, Hake (bib4) 2012; 40 Gamble, Frizzell, Yang, Krishnakumar, Kraus (bib19) 2010; 24 Lindsey, Orgeig, Thompson, Davies, Maeder (bib36) 1991; 218 Ingouff, Rademacher, Holec, Soljić, Xin, Readshaw, Foo, Lahouze, Sprunck, Berger (bib25) 2010; 20 Kinoshita, Miura, Choi, Kinoshita, Cao, Jacobsen, Fischer, Kakutani (bib31) 2004; 303 Finnegan, Dennis (bib17) 1993; 21 Luger, Dechassa, Tremethick (bib40) 2012; 13 Muthurajan, McBryant, Lu, Hansen, Luger (bib46) 2011; 286 Soria, Polo, Almouzni (bib50) 2012; 46 Talbert, Bayes, Henikoff (bib58) 2008 Wollmann, Holec, Alden, Clarke, Jacques, Berger (bib62) 2012; 8 Luger, Mäder, Richmond, Sargent, Richmond (bib39) 1997; 389 Talbert, Henikoff (bib56) 2010; 11 Stroud, Otero, Desvoyes, Ramírez-Parra, Jacobsen, Gutierrez (bib51) 2012; 109 Suzuki (bib54) 1989; 8 Law, Jacobsen (bib32) 2010; 11 Hansen (bib24) 2002; 31 Reinders, Wulff, Mirouze, Marí-Ordóñez, Dapp, Rozhon, Bucher, Theiler, Paszkowski (bib49) 2009; 23 Malagnac, Bartee, Bender (bib42) 2002; 21 Talbert, Masuelli, Tyagi, Comai, Henikoff (bib57) 2002; 14 Bian, Belmont (bib3) 2012; 24 Vaillant, Tutois, Jasencakova, Douet, Schubert, Tourmente (bib60) 2008; 54 Churchill (10.1016/j.cell.2014.06.006_bib8) 1989; 8 Stroud (10.1016/j.cell.2014.06.006_bib53) 2014; 21 Bönisch (10.1016/j.cell.2014.06.006_bib4) 2012; 40 Law (10.1016/j.cell.2014.06.006_bib32) 2010; 11 Muthurajan (10.1016/j.cell.2014.06.006_bib46) 2011; 286 Jackson (10.1016/j.cell.2014.06.006_bib26) 2002; 416 Raisner (10.1016/j.cell.2014.06.006_bib48) 2005; 123 Buttinelli (10.1016/j.cell.2014.06.006_bib6) 1999; 106 Jullien (10.1016/j.cell.2014.06.006_bib69) 2012; 22 Khadake (10.1016/j.cell.2014.06.006_bib30) 1997; 36 Loyola (10.1016/j.cell.2014.06.006_bib38) 2007; 32 Dereeper (10.1016/j.cell.2014.06.006_bib66) 2008; 36 Lysak (10.1016/j.cell.2014.06.006_bib41) 2006; 323 Mito (10.1016/j.cell.2014.06.006_bib45) 2005; 37 Lindroth (10.1016/j.cell.2014.06.006_bib35) 2001; 292 Fang (10.1016/j.cell.2014.06.006_bib15) 2005; 16 Johnson (10.1016/j.cell.2014.06.006_bib68) 2008; 4 Filipescu (10.1016/j.cell.2014.06.006_bib16) 2013; 29 Fransz (10.1016/j.cell.2014.06.006_bib18) 2002; 99 De Rop (10.1016/j.cell.2014.06.006_bib11) 2012; 121 Stroud (10.1016/j.cell.2014.06.006_bib72) 2012; 8 Millar (10.1016/j.cell.2014.06.006_bib44) 2013; 449 Talbert (10.1016/j.cell.2014.06.006_bib56) 2010; 11 Du (10.1016/j.cell.2014.06.006_bib13) 2012; 151 Li (10.1016/j.cell.2014.06.006_bib33) 2005; 102 Chakravarthy (10.1016/j.cell.2014.06.006_bib7) 2012; 40 Stroud (10.1016/j.cell.2014.06.006_bib51) 2012; 109 Lindsey (10.1016/j.cell.2014.06.006_bib36) 1991; 218 Haag (10.1016/j.cell.2014.06.006_bib23) 2011; 12 Zemach (10.1016/j.cell.2014.06.006_bib64) 2013; 153 Poccia (10.1016/j.cell.2014.06.006_bib47) 1992; 17 Wollmann (10.1016/j.cell.2014.06.006_bib62) 2012; 8 Aceituno (10.1016/j.cell.2014.06.006_bib1) 2008; 9 Reinders (10.1016/j.cell.2014.06.006_bib49) 2009; 23 Malagnac (10.1016/j.cell.2014.06.006_bib42) 2002; 21 Vongs (10.1016/j.cell.2014.06.006_bib61) 1993; 260 Kalashnikova (10.1016/j.cell.2014.06.006_bib29) 2013; 10 Costanzi (10.1016/j.cell.2014.06.006_bib10) 1998; 393 Brutlag (10.1016/j.cell.2014.06.006_bib5) 1980; 14 Goldberg (10.1016/j.cell.2014.06.006_bib21) 2010; 140 Zilberman (10.1016/j.cell.2014.06.006_bib65) 2008; 456 Kinoshita (10.1016/j.cell.2014.06.006_bib31) 2004; 303 Pillot (10.1016/j.cell.2014.06.006_bib70) 2010; 22 Gamble (10.1016/j.cell.2014.06.006_bib19) 2010; 24 Luger (10.1016/j.cell.2014.06.006_bib39) 1997; 389 Lindhout (10.1016/j.cell.2014.06.006_bib34) 2007; 35 Guillemette (10.1016/j.cell.2014.06.006_bib22) 2005; 3 Jeddeloh (10.1016/j.cell.2014.06.006_bib27) 1999; 22 Coleman-Derr (10.1016/j.cell.2014.06.006_bib9) 2012; 8 Meneghini (10.1016/j.cell.2014.06.006_bib43) 2003; 112 Jenuwein (10.1016/j.cell.2014.06.006_bib28) 2001; 293 Luger (10.1016/j.cell.2014.06.006_bib40) 2012; 13 Vaillant (10.1016/j.cell.2014.06.006_bib60) 2008; 54 Stroud (10.1016/j.cell.2014.06.006_bib52) 2013; 152 Jacob (10.1016/j.cell.2014.06.006_bib67) 2009; 16 Suzuki (10.1016/j.cell.2014.06.006_bib54) 1989; 8 Fan (10.1016/j.cell.2014.06.006_bib14) 2004; 16 Hansen (10.1016/j.cell.2014.06.006_bib24) 2002; 31 Lowary (10.1016/j.cell.2014.06.006_bib37) 1998; 276 Gaspar-Maia (10.1016/j.cell.2014.06.006_bib20) 2013; 4 Wong (10.1016/j.cell.2014.06.006_bib63) 2009; 19 Finnegan (10.1016/j.cell.2014.06.006_bib17) 1993; 21 Szenker (10.1016/j.cell.2014.06.006_bib55) 2011; 21 Talbert (10.1016/j.cell.2014.06.006_bib58) 2008 Talbert (10.1016/j.cell.2014.06.006_bib57) 2002; 14 Soria (10.1016/j.cell.2014.06.006_bib50) 2012; 46 Bian (10.1016/j.cell.2014.06.006_bib3) 2012; 24 Downs (10.1016/j.cell.2014.06.006_bib12) 2007; 447 Bernatavichute (10.1016/j.cell.2014.06.006_bib2) 2008; 3 Saze (10.1016/j.cell.2014.06.006_bib71) 2003; 34 Ingouff (10.1016/j.cell.2014.06.006_bib25) 2010; 20 Talbert (10.1016/j.cell.2014.06.006_bib59) 2012; 5 18811951 - BMC Genomics. 2008;9:438 2556263 - EMBO J. 1989 Dec 20;8(13):4189-95 1502725 - Trends Biochem Sci. 1992 Jun;17(6):223-7 22749398 - Mol Cell. 2012 Jun 29;46(6):722-34 22722606 - Nat Rev Mol Cell Biol. 2012 Jul;13(7):436-47 2470589 - EMBO J. 1989 Mar;8(3):797-804 22570629 - PLoS Genet. 2012;8(5):e1002658 21263457 - Cell Res. 2011 Mar;21(3):421-34 22650316 - Epigenetics Chromatin. 2012 Jun 21;5:7 22459407 - Curr Opin Cell Biol. 2012 Jun;24(3):359-66 23021223 - Cell. 2012 Sep 28;151(1):167-80 17581578 - Nature. 2007 Jun 21;447(7147):951-8 16248679 - PLoS Biol. 2005 Dec;3(12):e384 16155569 - Nat Genet. 2005 Oct;37(10):1090-7 24336224 - Nat Struct Mol Biol. 2014 Jan;21(1):64-72 20142834 - Nat Rev Genet. 2010 Mar;11(3):204-20 15546624 - Mol Cell. 2004 Nov 19;16(4):655-61 19390088 - Genes Dev. 2009 Apr 15;23(8):939-50 23301656 - Biochem J. 2013 Feb 1;449(3):567-79 20008927 - Genes Dev. 2010 Jan 1;24(1):21-32 2023250 - J Mol Biol. 1991 Apr 20;218(4):805-13 12628191 - Cell. 2003 Mar 7;112(5):725-36 22431625 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5370-5 23830582 - Trends Genet. 2013 Nov;29(11):630-40 21532035 - J Biol Chem. 2011 Jul 8;286(27):23852-64 23095988 - Chromosoma. 2012 Dec;121(6):527-38 11349138 - Science. 2001 Jun 15;292(5524):2077-80 11498575 - Science. 2001 Aug 10;293(5532):1074-80 23071449 - PLoS Genet. 2012;8(10):e1002988 21779025 - Nat Rev Mol Cell Biol. 2011 Aug;12(8):483-92 23463008 - Nat Commun. 2013;4:1565 22753032 - Nucleic Acids Res. 2012 Sep 1;40(17):8285-95 12486005 - EMBO J. 2002 Dec 16;21(24):6842-52 12384572 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14584-9 9634239 - Nature. 1998 Jun 11;393(6685):599-601 23446052 - J R Soc Interface. 2013 May 6;10(82):20121022 23313553 - Cell. 2013 Jan 17;152(1-2):352-64 17704126 - Nucleic Acids Res. 2007;35(16):e107 21093266 - Curr Biol. 2010 Dec 7;20(23):2137-43 11898023 - Nature. 2002 Apr 4;416(6880):556-60 17764953 - Trends Biochem Sci. 2007 Sep;32(9):425-33 20197778 - Nat Rev Mol Cell Biol. 2010 Apr;11(4):264-75 10319870 - Nat Genet. 1999 May;22(1):94-7 19196724 - Genome Res. 2009 Mar;19(3):404-14 9033394 - Biochemistry. 1997 Feb 4;36(5):1041-51 11988475 - Annu Rev Biophys Biomol Struct. 2002;31:361-92 6260016 - Annu Rev Genet. 1980;14:121-44 23540698 - Cell. 2013 Mar 28;153(1):193-205 18776934 - PLoS One. 2008;3(9):e3156 20211137 - Cell. 2010 Mar 5;140(5):678-91 23002134 - Nucleic Acids Res. 2012 Nov;40(21):10719-41 8389441 - Nucleic Acids Res. 1993 May 25;21(10):2383-8 18208523 - Plant J. 2008 Apr;54(2):299-309 16344463 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18385-90 8316832 - Science. 1993 Jun 25;260(5116):1926-8 18815594 - Nature. 2008 Nov 6;456(7218):125-9 12034896 - Plant Cell. 2002 May;14(5):1053-66 14631047 - Science. 2004 Jan 23;303(5657):521-3 9514715 - J Mol Biol. 1998 Feb 13;276(1):19-42 16239142 - Cell. 2005 Oct 21;123(2):233-48 16195344 - Mol Biol Cell. 2005 Dec;16(12):5710-8 9305837 - Nature. 1997 Sep 18;389(6648):251-60 10710717 - Genetica. 1999;106(1-2):117-24 |
References_xml | – volume: 21 start-page: 2383 year: 1993 end-page: 2388 ident: bib17 article-title: Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana publication-title: Nucleic Acids Res. – volume: 152 start-page: 352 year: 2013 end-page: 364 ident: bib52 article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome publication-title: Cell – volume: 293 start-page: 1074 year: 2001 end-page: 1080 ident: bib28 article-title: Translating the histone code publication-title: Science – volume: 8 start-page: e1002658 year: 2012 ident: bib62 article-title: Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the publication-title: PLoS Genet. – volume: 11 start-page: 264 year: 2010 end-page: 275 ident: bib56 article-title: Histone variants—ancient wrap artists of the epigenome publication-title: Nat. Rev. Mol. Cell Biol. – volume: 10 start-page: 20121022 year: 2013 ident: bib29 article-title: The role of the nucleosome acidic patch in modulating higher order chromatin structure publication-title: J. R. Soc. Interface – volume: 109 start-page: 5370 year: 2012 end-page: 5375 ident: bib51 article-title: Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana publication-title: Proc. Natl. Acad. Sci. USA – volume: 447 start-page: 951 year: 2007 end-page: 958 ident: bib12 article-title: Chromatin dynamics and the preservation of genetic information publication-title: Nature – volume: 16 start-page: 5710 year: 2005 end-page: 5718 ident: bib15 article-title: Centromere positioning and dynamics in living Arabidopsis plants publication-title: Mol. Biol. Cell – volume: 36 start-page: 1041 year: 1997 end-page: 1051 ident: bib30 article-title: Condensation of DNA and chromatin by an SPKK-containing octapeptide repeat motif present in the C-terminus of histone H1 publication-title: Biochemistry – volume: 153 start-page: 193 year: 2013 end-page: 205 ident: bib64 article-title: The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin publication-title: Cell – volume: 456 start-page: 125 year: 2008 end-page: 129 ident: bib65 article-title: Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks publication-title: Nature – volume: 23 start-page: 939 year: 2009 end-page: 950 ident: bib49 article-title: Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes publication-title: Genes Dev. – volume: 112 start-page: 725 year: 2003 end-page: 736 ident: bib43 article-title: Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin publication-title: Cell – start-page: 193 year: 2008 end-page: 230 ident: bib58 article-title: Evolution of centromeres and kinetochores: A two-part fugue publication-title: The Kinetochore: From Molecular Discoveries to Cancer Therapy – volume: 260 start-page: 1926 year: 1993 end-page: 1928 ident: bib61 article-title: Arabidopsis thaliana DNA methylation mutants publication-title: Science – volume: 286 start-page: 23852 year: 2011 end-page: 23864 ident: bib46 article-title: The linker region of macroH2A promotes self-association of nucleosomal arrays publication-title: J. Biol. Chem. – volume: 123 start-page: 233 year: 2005 end-page: 248 ident: bib48 article-title: Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin publication-title: Cell – volume: 21 start-page: 64 year: 2014 end-page: 72 ident: bib53 article-title: Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis publication-title: Nat. Struct. Mol. Biol. – volume: 276 start-page: 19 year: 1998 end-page: 42 ident: bib37 article-title: New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning publication-title: J. Mol. Biol. – volume: 12 start-page: 483 year: 2011 end-page: 492 ident: bib23 article-title: Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing publication-title: Nat. Rev. Mol. Cell Biol. – volume: 218 start-page: 805 year: 1991 end-page: 813 ident: bib36 article-title: Extended C-terminal tail of wheat histone H2A interacts with DNA of the “linker” region publication-title: J. Mol. Biol. – volume: 151 start-page: 167 year: 2012 end-page: 180 ident: bib13 article-title: Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants publication-title: Cell – volume: 54 start-page: 299 year: 2008 end-page: 309 ident: bib60 article-title: Hypomethylation and hypermethylation of the tandem repetitive 5S rRNA genes in Arabidopsis publication-title: Plant J. – volume: 21 start-page: 6842 year: 2002 end-page: 6852 ident: bib42 article-title: An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation publication-title: EMBO J. – volume: 4 start-page: 1565 year: 2013 ident: bib20 article-title: MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency publication-title: Nat. Commun. – volume: 393 start-page: 599 year: 1998 end-page: 601 ident: bib10 article-title: Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals publication-title: Nature – volume: 3 start-page: e384 year: 2005 ident: bib22 article-title: Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning publication-title: PLoS Biol. – volume: 5 start-page: 7 year: 2012 ident: bib59 article-title: A unified phylogeny-based nomenclature for histone variants publication-title: Epigenetics Chromatin – volume: 20 start-page: 2137 year: 2010 end-page: 2143 ident: bib25 article-title: Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis publication-title: Curr. Biol. – volume: 8 start-page: 4189 year: 1989 end-page: 4195 ident: bib8 article-title: ‘SPKK’ motifs prefer to bind to DNA at A/T-rich sites publication-title: EMBO J. – volume: 35 start-page: e107 year: 2007 ident: bib34 article-title: Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins publication-title: Nucleic Acids Res. – volume: 102 start-page: 18385 year: 2005 end-page: 18390 ident: bib33 article-title: Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling publication-title: Proc. Natl. Acad. Sci. USA – volume: 140 start-page: 678 year: 2010 end-page: 691 ident: bib21 article-title: Distinct factors control histone variant H3.3 localization at specific genomic regions publication-title: Cell – volume: 13 start-page: 436 year: 2012 end-page: 447 ident: bib40 article-title: New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? publication-title: Nat. Rev. Mol. Cell Biol. – volume: 24 start-page: 359 year: 2012 end-page: 366 ident: bib3 article-title: Revisiting higher-order and large-scale chromatin organization publication-title: Curr. Opin. Cell Biol. – volume: 40 start-page: 8285 year: 2012 end-page: 8295 ident: bib7 article-title: The basic linker of macroH2A stabilizes DNA at the entry/exit site of the nucleosome publication-title: Nucleic Acids Res. – volume: 22 start-page: 94 year: 1999 end-page: 97 ident: bib27 article-title: Maintenance of genomic methylation requires a SWI2/SNF2-like protein publication-title: Nat. Genet. – volume: 17 start-page: 223 year: 1992 end-page: 227 ident: bib47 article-title: Packaging and unpackaging the sea urchin sperm genome publication-title: Trends Biochem. Sci. – volume: 14 start-page: 1053 year: 2002 end-page: 1066 ident: bib57 article-title: Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant publication-title: Plant Cell – volume: 99 start-page: 14584 year: 2002 end-page: 14589 ident: bib18 article-title: Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate publication-title: Proc. Natl. Acad. Sci. USA – volume: 449 start-page: 567 year: 2013 end-page: 579 ident: bib44 article-title: Organizing the genome with H2A histone variants publication-title: Biochem. J. – volume: 21 start-page: 421 year: 2011 end-page: 434 ident: bib55 article-title: The double face of the histone variant H3.3 publication-title: Cell Res. – volume: 46 start-page: 722 year: 2012 end-page: 734 ident: bib50 article-title: Prime, repair, restore: the active role of chromatin in the DNA damage response publication-title: Mol. Cell – volume: 8 start-page: e1002988 year: 2012 ident: bib9 article-title: Deposition of histone variant H2A.Z within gene bodies regulates responsive genes publication-title: PLoS Genet. – volume: 11 start-page: 204 year: 2010 end-page: 220 ident: bib32 article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals publication-title: Nat. Rev. Genet. – volume: 29 start-page: 630 year: 2013 end-page: 640 ident: bib16 article-title: Developmental roles of histone H3 variants and their chaperones publication-title: Trends Genet. – volume: 303 start-page: 521 year: 2004 end-page: 523 ident: bib31 article-title: One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation publication-title: Science – volume: 416 start-page: 556 year: 2002 end-page: 560 ident: bib26 article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase publication-title: Nature – volume: 14 start-page: 121 year: 1980 end-page: 144 ident: bib5 article-title: Molecular arrangement and evolution of heterochromatic DNA publication-title: Annu. Rev. Genet. – volume: 3 start-page: e3156 year: 2008 ident: bib2 article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana publication-title: PLoS ONE – volume: 16 start-page: 655 year: 2004 end-page: 661 ident: bib14 article-title: H2A.Z alters the nucleosome surface to promote HP1α-mediated chromatin fiber folding publication-title: Mol. Cell – volume: 32 start-page: 425 year: 2007 end-page: 433 ident: bib38 article-title: Marking histone H3 variants: how, when and why? publication-title: Trends Biochem. Sci. – volume: 292 start-page: 2077 year: 2001 end-page: 2080 ident: bib35 article-title: Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation publication-title: Science – volume: 389 start-page: 251 year: 1997 end-page: 260 ident: bib39 article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution publication-title: Nature – volume: 323 year: 2006 ident: bib41 article-title: Cytogenetic analyses of Arabidopsis publication-title: Methods Mol. Biol. – volume: 121 start-page: 527 year: 2012 end-page: 538 ident: bib11 article-title: CENP-A: the key player behind centromere identity, propagation, and kinetochore assembly publication-title: Chromosoma – volume: 8 start-page: 797 year: 1989 end-page: 804 ident: bib54 article-title: SPKK, a new nucleic acid-binding unit of protein found in histone publication-title: EMBO J. – volume: 24 start-page: 21 year: 2010 end-page: 32 ident: bib19 article-title: The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing publication-title: Genes Dev. – volume: 19 start-page: 404 year: 2009 end-page: 414 ident: bib63 article-title: Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells publication-title: Genome Res. – volume: 9 start-page: 438 year: 2008 ident: bib1 article-title: The rules of gene expression in plants: organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana publication-title: BMC Genomics – volume: 40 start-page: 10719 year: 2012 end-page: 10741 ident: bib4 article-title: Histone H2A variants in nucleosomes and chromatin: more or less stable? publication-title: Nucleic Acids Res. – volume: 106 start-page: 117 year: 1999 end-page: 124 ident: bib6 article-title: The role of histone H1 in chromatin condensation and transcriptional repression publication-title: Genetica – volume: 31 start-page: 361 year: 2002 end-page: 392 ident: bib24 article-title: Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions publication-title: Annu. Rev. Biophys. Biomol. Struct. – volume: 37 start-page: 1090 year: 2005 end-page: 1097 ident: bib45 article-title: Genome-scale profiling of histone H3.3 replacement patterns publication-title: Nat. Genet. – volume: 22 start-page: 307 year: 2010 ident: 10.1016/j.cell.2014.06.006_bib70 article-title: Embryo and endosperm inherit distinct chromatin and transcriptional states from the female gametes in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.109.071647 – volume: 3 start-page: e3156 year: 2008 ident: 10.1016/j.cell.2014.06.006_bib2 article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana publication-title: PLoS ONE doi: 10.1371/journal.pone.0003156 – volume: 303 start-page: 521 year: 2004 ident: 10.1016/j.cell.2014.06.006_bib31 article-title: One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation publication-title: Science doi: 10.1126/science.1089835 – volume: 4 start-page: e1000280 year: 2008 ident: 10.1016/j.cell.2014.06.006_bib68 article-title: SRA-domain proteins required for DRM2-mediated de novo DNA methylation publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000280 – volume: 54 start-page: 299 year: 2008 ident: 10.1016/j.cell.2014.06.006_bib60 article-title: Hypomethylation and hypermethylation of the tandem repetitive 5S rRNA genes in Arabidopsis publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03413.x – volume: 8 start-page: e1002658 year: 2012 ident: 10.1016/j.cell.2014.06.006_bib62 article-title: Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the Arabidopsis transcriptome publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002658 – volume: 37 start-page: 1090 year: 2005 ident: 10.1016/j.cell.2014.06.006_bib45 article-title: Genome-scale profiling of histone H3.3 replacement patterns publication-title: Nat. Genet. doi: 10.1038/ng1637 – volume: 151 start-page: 167 year: 2012 ident: 10.1016/j.cell.2014.06.006_bib13 article-title: Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants publication-title: Cell doi: 10.1016/j.cell.2012.07.034 – volume: 456 start-page: 125 year: 2008 ident: 10.1016/j.cell.2014.06.006_bib65 article-title: Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks publication-title: Nature doi: 10.1038/nature07324 – volume: 389 start-page: 251 year: 1997 ident: 10.1016/j.cell.2014.06.006_bib39 article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution publication-title: Nature doi: 10.1038/38444 – start-page: 193 year: 2008 ident: 10.1016/j.cell.2014.06.006_bib58 article-title: Evolution of centromeres and kinetochores: A two-part fugue – volume: 140 start-page: 678 year: 2010 ident: 10.1016/j.cell.2014.06.006_bib21 article-title: Distinct factors control histone variant H3.3 localization at specific genomic regions publication-title: Cell doi: 10.1016/j.cell.2010.01.003 – volume: 99 start-page: 14584 year: 2002 ident: 10.1016/j.cell.2014.06.006_bib18 article-title: Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.212325299 – volume: 9 start-page: 438 year: 2008 ident: 10.1016/j.cell.2014.06.006_bib1 article-title: The rules of gene expression in plants: organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana publication-title: BMC Genomics doi: 10.1186/1471-2164-9-438 – volume: 31 start-page: 361 year: 2002 ident: 10.1016/j.cell.2014.06.006_bib24 article-title: Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.31.101101.140858 – volume: 106 start-page: 117 year: 1999 ident: 10.1016/j.cell.2014.06.006_bib6 article-title: The role of histone H1 in chromatin condensation and transcriptional repression publication-title: Genetica doi: 10.1023/A:1003745315540 – volume: 23 start-page: 939 year: 2009 ident: 10.1016/j.cell.2014.06.006_bib49 article-title: Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes publication-title: Genes Dev. doi: 10.1101/gad.524609 – volume: 8 start-page: 797 year: 1989 ident: 10.1016/j.cell.2014.06.006_bib54 article-title: SPKK, a new nucleic acid-binding unit of protein found in histone publication-title: EMBO J. doi: 10.1002/j.1460-2075.1989.tb03440.x – volume: 8 start-page: 4189 year: 1989 ident: 10.1016/j.cell.2014.06.006_bib8 article-title: ‘SPKK’ motifs prefer to bind to DNA at A/T-rich sites publication-title: EMBO J. doi: 10.1002/j.1460-2075.1989.tb08604.x – volume: 14 start-page: 1053 year: 2002 ident: 10.1016/j.cell.2014.06.006_bib57 article-title: Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant publication-title: Plant Cell doi: 10.1105/tpc.010425 – volume: 8 start-page: e1002988 year: 2012 ident: 10.1016/j.cell.2014.06.006_bib9 article-title: Deposition of histone variant H2A.Z within gene bodies regulates responsive genes publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002988 – volume: 24 start-page: 359 year: 2012 ident: 10.1016/j.cell.2014.06.006_bib3 article-title: Revisiting higher-order and large-scale chromatin organization publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2012.03.003 – volume: 34 start-page: 65 year: 2003 ident: 10.1016/j.cell.2014.06.006_bib71 article-title: Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis publication-title: Nat. Gen. doi: 10.1038/ng1138 – volume: 12 start-page: 483 year: 2011 ident: 10.1016/j.cell.2014.06.006_bib23 article-title: Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3152 – volume: 292 start-page: 2077 year: 2001 ident: 10.1016/j.cell.2014.06.006_bib35 article-title: Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation publication-title: Science doi: 10.1126/science.1059745 – volume: 218 start-page: 805 year: 1991 ident: 10.1016/j.cell.2014.06.006_bib36 article-title: Extended C-terminal tail of wheat histone H2A interacts with DNA of the “linker” region publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(91)90268-B – volume: 416 start-page: 556 year: 2002 ident: 10.1016/j.cell.2014.06.006_bib26 article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase publication-title: Nature doi: 10.1038/nature731 – volume: 16 start-page: 763 year: 2009 ident: 10.1016/j.cell.2014.06.006_bib67 article-title: ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1611 – volume: 29 start-page: 630 year: 2013 ident: 10.1016/j.cell.2014.06.006_bib16 article-title: Developmental roles of histone H3 variants and their chaperones publication-title: Trends Genet. doi: 10.1016/j.tig.2013.06.002 – volume: 286 start-page: 23852 year: 2011 ident: 10.1016/j.cell.2014.06.006_bib46 article-title: The linker region of macroH2A promotes self-association of nucleosomal arrays publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.244871 – volume: 121 start-page: 527 year: 2012 ident: 10.1016/j.cell.2014.06.006_bib11 article-title: CENP-A: the key player behind centromere identity, propagation, and kinetochore assembly publication-title: Chromosoma doi: 10.1007/s00412-012-0386-5 – volume: 4 start-page: 1565 year: 2013 ident: 10.1016/j.cell.2014.06.006_bib20 article-title: MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency publication-title: Nat. Commun. doi: 10.1038/ncomms2582 – volume: 10 start-page: 20121022 year: 2013 ident: 10.1016/j.cell.2014.06.006_bib29 article-title: The role of the nucleosome acidic patch in modulating higher order chromatin structure publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2012.1022 – volume: 102 start-page: 18385 year: 2005 ident: 10.1016/j.cell.2014.06.006_bib33 article-title: Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0507975102 – volume: 32 start-page: 425 year: 2007 ident: 10.1016/j.cell.2014.06.006_bib38 article-title: Marking histone H3 variants: how, when and why? publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2007.08.004 – volume: 21 start-page: 6842 year: 2002 ident: 10.1016/j.cell.2014.06.006_bib42 article-title: An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation publication-title: EMBO J. doi: 10.1093/emboj/cdf687 – volume: 112 start-page: 725 year: 2003 ident: 10.1016/j.cell.2014.06.006_bib43 article-title: Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin publication-title: Cell doi: 10.1016/S0092-8674(03)00123-5 – volume: 152 start-page: 352 year: 2013 ident: 10.1016/j.cell.2014.06.006_bib52 article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome publication-title: Cell doi: 10.1016/j.cell.2012.10.054 – volume: 24 start-page: 21 year: 2010 ident: 10.1016/j.cell.2014.06.006_bib19 article-title: The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing publication-title: Genes Dev. doi: 10.1101/gad.1876110 – volume: 46 start-page: 722 year: 2012 ident: 10.1016/j.cell.2014.06.006_bib50 article-title: Prime, repair, restore: the active role of chromatin in the DNA damage response publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.06.002 – volume: 293 start-page: 1074 year: 2001 ident: 10.1016/j.cell.2014.06.006_bib28 article-title: Translating the histone code publication-title: Science doi: 10.1126/science.1063127 – volume: 11 start-page: 264 year: 2010 ident: 10.1016/j.cell.2014.06.006_bib56 article-title: Histone variants—ancient wrap artists of the epigenome publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2861 – volume: 21 start-page: 64 year: 2014 ident: 10.1016/j.cell.2014.06.006_bib53 article-title: Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2735 – volume: 40 start-page: 10719 year: 2012 ident: 10.1016/j.cell.2014.06.006_bib4 article-title: Histone H2A variants in nucleosomes and chromatin: more or less stable? publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks865 – volume: 17 start-page: 223 year: 1992 ident: 10.1016/j.cell.2014.06.006_bib47 article-title: Packaging and unpackaging the sea urchin sperm genome publication-title: Trends Biochem. Sci. doi: 10.1016/0968-0004(92)90382-J – volume: 323 year: 2006 ident: 10.1016/j.cell.2014.06.006_bib41 article-title: Cytogenetic analyses of Arabidopsis publication-title: Methods Mol. Biol. – volume: 123 start-page: 233 year: 2005 ident: 10.1016/j.cell.2014.06.006_bib48 article-title: Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin publication-title: Cell doi: 10.1016/j.cell.2005.10.002 – volume: 21 start-page: 2383 year: 1993 ident: 10.1016/j.cell.2014.06.006_bib17 article-title: Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana publication-title: Nucleic Acids Res. doi: 10.1093/nar/21.10.2383 – volume: 8 start-page: e1002808 year: 2012 ident: 10.1016/j.cell.2014.06.006_bib72 article-title: DNA methyltransferases are required to induce heterochromatic re-replication in Arabidopsis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002808 – volume: 109 start-page: 5370 year: 2012 ident: 10.1016/j.cell.2014.06.006_bib51 article-title: Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1203145109 – volume: 21 start-page: 421 year: 2011 ident: 10.1016/j.cell.2014.06.006_bib55 article-title: The double face of the histone variant H3.3 publication-title: Cell Res. doi: 10.1038/cr.2011.14 – volume: 3 start-page: e384 year: 2005 ident: 10.1016/j.cell.2014.06.006_bib22 article-title: Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0030384 – volume: 20 start-page: 2137 year: 2010 ident: 10.1016/j.cell.2014.06.006_bib25 article-title: Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.11.012 – volume: 22 start-page: 94 year: 1999 ident: 10.1016/j.cell.2014.06.006_bib27 article-title: Maintenance of genomic methylation requires a SWI2/SNF2-like protein publication-title: Nat. Genet. doi: 10.1038/8803 – volume: 153 start-page: 193 year: 2013 ident: 10.1016/j.cell.2014.06.006_bib64 article-title: The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin publication-title: Cell doi: 10.1016/j.cell.2013.02.033 – volume: 13 start-page: 436 year: 2012 ident: 10.1016/j.cell.2014.06.006_bib40 article-title: New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3382 – volume: 16 start-page: 5710 year: 2005 ident: 10.1016/j.cell.2014.06.006_bib15 article-title: Centromere positioning and dynamics in living Arabidopsis plants publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E05-08-0706 – volume: 14 start-page: 121 year: 1980 ident: 10.1016/j.cell.2014.06.006_bib5 article-title: Molecular arrangement and evolution of heterochromatic DNA publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.ge.14.120180.001005 – volume: 449 start-page: 567 year: 2013 ident: 10.1016/j.cell.2014.06.006_bib44 article-title: Organizing the genome with H2A histone variants publication-title: Biochem. J. doi: 10.1042/BJ20121646 – volume: 447 start-page: 951 year: 2007 ident: 10.1016/j.cell.2014.06.006_bib12 article-title: Chromatin dynamics and the preservation of genetic information publication-title: Nature doi: 10.1038/nature05980 – volume: 36 start-page: 1041 year: 1997 ident: 10.1016/j.cell.2014.06.006_bib30 article-title: Condensation of DNA and chromatin by an SPKK-containing octapeptide repeat motif present in the C-terminus of histone H1 publication-title: Biochemistry doi: 10.1021/bi961617p – volume: 16 start-page: 655 year: 2004 ident: 10.1016/j.cell.2014.06.006_bib14 article-title: H2A.Z alters the nucleosome surface to promote HP1α-mediated chromatin fiber folding publication-title: Mol. Cell doi: 10.1016/j.molcel.2004.10.023 – volume: 11 start-page: 204 year: 2010 ident: 10.1016/j.cell.2014.06.006_bib32 article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2719 – volume: 19 start-page: 404 year: 2009 ident: 10.1016/j.cell.2014.06.006_bib63 article-title: Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells publication-title: Genome Res. doi: 10.1101/gr.084947.108 – volume: 393 start-page: 599 year: 1998 ident: 10.1016/j.cell.2014.06.006_bib10 article-title: Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals publication-title: Nature doi: 10.1038/31275 – volume: 36 start-page: W465 issue: Web Server issue year: 2008 ident: 10.1016/j.cell.2014.06.006_bib66 article-title: Phylogeny.fr: robust phylogenetic analysis for the non-specialist publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn180 – volume: 35 start-page: e107 year: 2007 ident: 10.1016/j.cell.2014.06.006_bib34 article-title: Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm618 – volume: 5 start-page: 7 year: 2012 ident: 10.1016/j.cell.2014.06.006_bib59 article-title: A unified phylogeny-based nomenclature for histone variants publication-title: Epigenetics Chromatin doi: 10.1186/1756-8935-5-7 – volume: 40 start-page: 8285 year: 2012 ident: 10.1016/j.cell.2014.06.006_bib7 article-title: The basic linker of macroH2A stabilizes DNA at the entry/exit site of the nucleosome publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks645 – volume: 260 start-page: 1926 year: 1993 ident: 10.1016/j.cell.2014.06.006_bib61 article-title: Arabidopsis thaliana DNA methylation mutants publication-title: Science doi: 10.1126/science.8316832 – volume: 22 start-page: 1825 year: 2012 ident: 10.1016/j.cell.2014.06.006_bib69 article-title: DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana publication-title: Curr. Bio. doi: 10.1016/j.cub.2012.07.061 – volume: 276 start-page: 19 year: 1998 ident: 10.1016/j.cell.2014.06.006_bib37 article-title: New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1997.1494 – reference: 22753032 - Nucleic Acids Res. 2012 Sep 1;40(17):8285-95 – reference: 20008927 - Genes Dev. 2010 Jan 1;24(1):21-32 – reference: 22431625 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5370-5 – reference: 14631047 - Science. 2004 Jan 23;303(5657):521-3 – reference: 16239142 - Cell. 2005 Oct 21;123(2):233-48 – reference: 20211137 - Cell. 2010 Mar 5;140(5):678-91 – reference: 21532035 - J Biol Chem. 2011 Jul 8;286(27):23852-64 – reference: 2470589 - EMBO J. 1989 Mar;8(3):797-804 – reference: 8389441 - Nucleic Acids Res. 1993 May 25;21(10):2383-8 – reference: 22650316 - Epigenetics Chromatin. 2012 Jun 21;5:7 – reference: 23540698 - Cell. 2013 Mar 28;153(1):193-205 – reference: 11988475 - Annu Rev Biophys Biomol Struct. 2002;31:361-92 – reference: 12034896 - Plant Cell. 2002 May;14(5):1053-66 – reference: 6260016 - Annu Rev Genet. 1980;14:121-44 – reference: 10319870 - Nat Genet. 1999 May;22(1):94-7 – reference: 19390088 - Genes Dev. 2009 Apr 15;23(8):939-50 – reference: 22459407 - Curr Opin Cell Biol. 2012 Jun;24(3):359-66 – reference: 11898023 - Nature. 2002 Apr 4;416(6880):556-60 – reference: 21263457 - Cell Res. 2011 Mar;21(3):421-34 – reference: 18815594 - Nature. 2008 Nov 6;456(7218):125-9 – reference: 17704126 - Nucleic Acids Res. 2007;35(16):e107 – reference: 23301656 - Biochem J. 2013 Feb 1;449(3):567-79 – reference: 23313553 - Cell. 2013 Jan 17;152(1-2):352-64 – reference: 17764953 - Trends Biochem Sci. 2007 Sep;32(9):425-33 – reference: 2023250 - J Mol Biol. 1991 Apr 20;218(4):805-13 – reference: 21093266 - Curr Biol. 2010 Dec 7;20(23):2137-43 – reference: 9514715 - J Mol Biol. 1998 Feb 13;276(1):19-42 – reference: 23446052 - J R Soc Interface. 2013 May 6;10(82):20121022 – reference: 9305837 - Nature. 1997 Sep 18;389(6648):251-60 – reference: 12384572 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14584-9 – reference: 16195344 - Mol Biol Cell. 2005 Dec;16(12):5710-8 – reference: 23463008 - Nat Commun. 2013;4:1565 – reference: 23021223 - Cell. 2012 Sep 28;151(1):167-80 – reference: 18811951 - BMC Genomics. 2008;9:438 – reference: 15546624 - Mol Cell. 2004 Nov 19;16(4):655-61 – reference: 23002134 - Nucleic Acids Res. 2012 Nov;40(21):10719-41 – reference: 12628191 - Cell. 2003 Mar 7;112(5):725-36 – reference: 16344463 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18385-90 – reference: 12486005 - EMBO J. 2002 Dec 16;21(24):6842-52 – reference: 10710717 - Genetica. 1999;106(1-2):117-24 – reference: 22749398 - Mol Cell. 2012 Jun 29;46(6):722-34 – reference: 23830582 - Trends Genet. 2013 Nov;29(11):630-40 – reference: 22570629 - PLoS Genet. 2012;8(5):e1002658 – reference: 16248679 - PLoS Biol. 2005 Dec;3(12):e384 – reference: 11349138 - Science. 2001 Jun 15;292(5524):2077-80 – reference: 16155569 - Nat Genet. 2005 Oct;37(10):1090-7 – reference: 22722606 - Nat Rev Mol Cell Biol. 2012 Jul;13(7):436-47 – reference: 9634239 - Nature. 1998 Jun 11;393(6685):599-601 – reference: 19196724 - Genome Res. 2009 Mar;19(3):404-14 – reference: 18776934 - PLoS One. 2008;3(9):e3156 – reference: 11498575 - Science. 2001 Aug 10;293(5532):1074-80 – reference: 8316832 - Science. 1993 Jun 25;260(5116):1926-8 – reference: 21779025 - Nat Rev Mol Cell Biol. 2011 Aug;12(8):483-92 – reference: 20142834 - Nat Rev Genet. 2010 Mar;11(3):204-20 – reference: 24336224 - Nat Struct Mol Biol. 2014 Jan;21(1):64-72 – reference: 17581578 - Nature. 2007 Jun 21;447(7147):951-8 – reference: 23071449 - PLoS Genet. 2012;8(10):e1002988 – reference: 9033394 - Biochemistry. 1997 Feb 4;36(5):1041-51 – reference: 18208523 - Plant J. 2008 Apr;54(2):299-309 – reference: 23095988 - Chromosoma. 2012 Dec;121(6):527-38 – reference: 1502725 - Trends Biochem Sci. 1992 Jun;17(6):223-7 – reference: 20197778 - Nat Rev Mol Cell Biol. 2010 Apr;11(4):264-75 – reference: 2556263 - EMBO J. 1989 Dec 20;8(13):4189-95 |
SSID | ssj0008555 |
Score | 2.5518045 |
Snippet | Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis... Histone variants play crucial roles in gene expression, genome integrity and chromosome segregation. However, to what extent histone variants control chromatin... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 98 |
SubjectTerms | Amino Acid Sequence Animalia animals Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - chemistry Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Chromatin Assembly and Disassembly chromosome segregation DNA Methylation DNA Transposable Elements gene expression genome Genome-Wide Association Study heterochromatin Heterochromatin - metabolism histones Histones - chemistry Histones - genetics Histones - metabolism Metazoa Molecular Sequence Data plants (botany) Sequence Alignment transposons |
Title | The Histone Variant H2A.W Defines Heterochromatin and Promotes Chromatin Condensation in Arabidopsis |
URI | https://dx.doi.org/10.1016/j.cell.2014.06.006 https://www.ncbi.nlm.nih.gov/pubmed/24995981 https://www.proquest.com/docview/1543282214 https://www.proquest.com/docview/1551617670 https://www.proquest.com/docview/2000215739 https://pubmed.ncbi.nlm.nih.gov/PMC4671829 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LixQxEA7LguBFfDu-iOBN2u3Oq5PjOLoMguLB1bmFvJptke5hZvfgv7cq_cDxMQeP6VRDulKpR_qrKkJeGhBcFUxZBC8qvLpxhQO7XjDJnNMulE0uVv3ho1pfiPcbuTkhqykXBmGVo-4fdHrW1uOTs5GbZ9u2xRxfw7QCi4itvVmNepgLnZP4Nm9mbaylHLoYGDj5QD0mzgwYL7wcR3iXyDU8sevR343Tn87n7xjKX4zS-W1ya_Qm6XJY8B1ykrq75MbQX_LHPRJBCGguBNIl-gWiYmAjXbPl66_0bWoQ8E7XCIfpw-WuR9e1o66L9FOG6MHkan686rFT7oD8oTBe7pxvY7_dt_v75OL83efVuhjbKhRBQsRVeNUAUyAM803DnRDCV8DshpVRg3viXOJlUKmqk1NVxL-YMdTRpzLGWpfaSf6AnHaw7keEOjBtHnx0w2MtpGE-pUZJ4UvHguJML0g18dOGseY4tr74bidw2TeLe2BxD2xG2KkFeTW_sx0qbhylltM22QO5sWASjr73YtpTCwcKp12X-uu9BZ-SI7a2EsdoJMaFqi7_TYM5UOBP1dwsyMNBVubvgZjXSKOrBakPpGgmwKLfhzNde5mLf4Nhg5DQPP7P735CbuIoA475U3J6tbtOz8CtuvLP87n5CSlqILU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXRHl1gYKR4IRCHcdx4kMPy5YqSx_i0MLejB07ahBKVrutUH8Xf7AzeYnlsQekHuNHYnvG83A-zxDyWgHjylyxILcixKMbExjQ6wGPuTGpyVnRBKs-PpHZmfg4i2cb5Gd_FwZhlZ3sb2V6I627kt1uNXfnZYl3fBVPJWhETO3NE94hKw_91Q_w25Z7030g8hvODz6cTrKgSy0Q5DF4HYGVRQq2AhO2KCIjhLAhfLDgzKWgoo3xEculDxNvZOjwT57LE2c9cy5JWWowVQTI_VtgfSQoDaaz94P4h_e2aRMUiBoYXndTpwWV4Wk84slEEzQU0yz9XRv-ae3-Dtr8RQse3Cf3OvOVjtsV2iIbvnpAbrcJLa8eEgdcR5vII5Wnn8ENB7rRjI_ffaH7vkCEPc0Qf1Pn54sabeWKmsrRTw0mEConQ_GkxtS8LdSIwvN4YWzp6vmyXD4iZzey2I_JZgXj3ibUgC614BSoyCUiVtx6X8hYWGZ4LiOejkjYr6fOuyDnmGvju-7RbN800kAjDXQD6ZMj8nboM29DfKxtHfdk0iuMqkEHre33qqephh2M1aby9eVSgxEbIZg3FOvaxOiIyoT9uw1eugIDLonUiDxpeWWYDzjZKlZpOCLJChcNDTDK-GpNVZ430cZBk4IPqp7-57xfkjvZ6fGRPpqeHD4jd7GmQTtHz8nmxeLS74BNd2FfNHuIkq83vWmvAcCuXos |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Histone+Variant+H2A.W+Defines+Heterochromatin+and+Promotes+Chromatin+Condensation+in+Arabidopsis&rft.jtitle=Cell&rft.au=Yelagandula%2C+Ramesh&rft.au=Stroud%2C+Hume&rft.au=Holec%2C+Sarah&rft.au=Zhou%2C+Keda&rft.date=2014-07-03&rft.issn=0092-8674&rft.volume=158&rft.issue=1&rft.spage=98&rft.epage=109&rft_id=info:doi/10.1016%2Fj.cell.2014.06.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cell_2014_06_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |