Galectin-1 in regenerating motoneurons
The exogenous application of recombinant galectin‐1 has recently been shown to promote the rate of peripheral nerve regeneration. Endogenous neuronal galectin‐1 expression has recently been demonstrated to increase after axotomy. Here we demonstrate a significant increase in the endogenous neuronal...
Saved in:
Published in | The European journal of neuroscience Vol. 20; no. 11; pp. 2872 - 2880 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science Ltd
01.12.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The exogenous application of recombinant galectin‐1 has recently been shown to promote the rate of peripheral nerve regeneration. Endogenous neuronal galectin‐1 expression has recently been demonstrated to increase after axotomy. Here we demonstrate a significant increase in the endogenous neuronal expression of galectin‐1 mRNA in facial motoneurons after either a nerve resection or crush injury in mice. This increase in galectin‐1 expression was due in part to the loss of target‐derived factor(s) as indicated by both the return of galectin‐1 expression to control levels following target re‐innervation and the increase in galectin‐1 expression after blockade of axonal transport by an interneuronal colchicine injection. Furthermore, interneuronal injections of glial‐derived neurotrophic factor into the uninjured nerve also increased galectin‐1 mRNA expression within facial motoneurons suggesting that positive signals may also be involved in the regulation of galectin‐1 expression. Galectin‐1 null mutant mice showed an attenuated rate of functional recovery of whisking movement after a facial nerve crush. |
---|---|
AbstractList | The exogenous application of recombinant galectin‐1 has recently been shown to promote the rate of peripheral nerve regeneration. Endogenous neuronal galectin‐1 expression has recently been demonstrated to increase after axotomy. Here we demonstrate a significant increase in the endogenous neuronal expression of galectin‐1 mRNA in facial motoneurons after either a nerve resection or crush injury in mice. This increase in galectin‐1 expression was due in part to the loss of target‐derived factor(s) as indicated by both the return of galectin‐1 expression to control levels following target re‐innervation and the increase in galectin‐1 expression after blockade of axonal transport by an interneuronal colchicine injection. Furthermore, interneuronal injections of glial‐derived neurotrophic factor into the uninjured nerve also increased galectin‐1 mRNA expression within facial motoneurons suggesting that positive signals may also be involved in the regulation of galectin‐1 expression. Galectin‐1 null mutant mice showed an attenuated rate of functional recovery of whisking movement after a facial nerve crush. Abstract The exogenous application of recombinant galectin‐1 has recently been shown to promote the rate of peripheral nerve regeneration. Endogenous neuronal galectin‐1 expression has recently been demonstrated to increase after axotomy. Here we demonstrate a significant increase in the endogenous neuronal expression of galectin‐1 mRNA in facial motoneurons after either a nerve resection or crush injury in mice. This increase in galectin‐1 expression was due in part to the loss of target‐derived factor(s) as indicated by both the return of galectin‐1 expression to control levels following target re‐innervation and the increase in galectin‐1 expression after blockade of axonal transport by an interneuronal colchicine injection. Furthermore, interneuronal injections of glial‐derived neurotrophic factor into the uninjured nerve also increased galectin‐1 mRNA expression within facial motoneurons suggesting that positive signals may also be involved in the regulation of galectin‐1 expression. Galectin‐1 null mutant mice showed an attenuated rate of functional recovery of whisking movement after a facial nerve crush. |
Author | McGraw, J. Poirier, F. Steeves, J. D. Ramer, M. S. Tetzlaff, W. Horie, H. McPhail, L. T. Oschipok, L. W. |
Author_xml | – sequence: 1 givenname: J. surname: McGraw fullname: McGraw, J. organization: ICORD (International Collaboration On Repair Discoveries), 6270 University Boulevard, University of British Columbia, Vancouver, Canada, V6T 1Z4 – sequence: 2 givenname: L. T. surname: McPhail fullname: McPhail, L. T. organization: ICORD (International Collaboration On Repair Discoveries), 6270 University Boulevard, University of British Columbia, Vancouver, Canada, V6T 1Z4 – sequence: 3 givenname: L. W. surname: Oschipok fullname: Oschipok, L. W. organization: ICORD (International Collaboration On Repair Discoveries), 6270 University Boulevard, University of British Columbia, Vancouver, Canada, V6T 1Z4 – sequence: 4 givenname: H. surname: Horie fullname: Horie, H. organization: Advanced Research Center Biological Sciences, Waseda University, Nishitokyo, Japan – sequence: 5 givenname: F. surname: Poirier fullname: Poirier, F. organization: Departement de Biologie du Developpement, Institut Jacques Monod, Paris, France – sequence: 6 givenname: J. D. surname: Steeves fullname: Steeves, J. D. organization: ICORD (International Collaboration On Repair Discoveries), 6270 University Boulevard, University of British Columbia, Vancouver, Canada, V6T 1Z4 – sequence: 7 givenname: M. S. surname: Ramer fullname: Ramer, M. S. organization: ICORD (International Collaboration On Repair Discoveries), 6270 University Boulevard, University of British Columbia, Vancouver, Canada, V6T 1Z4 – sequence: 8 givenname: W. surname: Tetzlaff fullname: Tetzlaff, W. organization: ICORD (International Collaboration On Repair Discoveries), 6270 University Boulevard, University of British Columbia, Vancouver, Canada, V6T 1Z4 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15579141$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkD1PwzAQhi1UBKXwF1CnbgnnxJ8DA6qggKrCAJTNcp0LSkmTYrei_fcktIIRvNg6P--d7jkhnaqukJA-hZg252IeUyYg0lyoOAFgMaQKknhzQLo_Hx3SBc3TSFHxekxOQpgDgBKMH5FjyrnUlNEuGYxsiW5VVBHtF1Xf4xtW6G1TeOsv6lUzdu3rKpySw9yWAc_2d48831w_DW-j8cPobng1jhyHJIkyyTLhHKN55oTEHITIrBI8n2lImANqVZYrJy3MkGXKaWvdTEuQEtHKzKY9Mtj1Xfr6Y41hZRZFcFiWtsJ6HYyQVHAtkj9BKlOqmaYNqHag83UIHnOz9MXC-q2hYFqZZm5aZ6Z1ZlqZ5lum2TTR8_2M9WyB2W9wb68BLnfAZ1Hi9t-NzfX9pH01-WiXL8IKNz9569-bRVPJzXQyMunwcToeD18MT78ApeqTgw |
CitedBy_id | crossref_primary_10_1016_j_expneurol_2009_09_007 crossref_primary_10_1186_1756_6606_4_35 crossref_primary_10_1007_s12035_022_03125_6 crossref_primary_10_1113_EP090751 crossref_primary_10_2478_s11658_008_0039_0 crossref_primary_10_1007_s12035_018_1426_9 crossref_primary_10_1111_j_1742_4658_2005_04699_x crossref_primary_10_1007_s00441_012_1425_5 crossref_primary_10_1016_j_neuint_2013_01_008 crossref_primary_10_1038_srep09621 crossref_primary_10_1093_glycob_cwl025 crossref_primary_10_1016_j_brainresrev_2006_09_005 crossref_primary_10_1016_j_mcn_2014_12_006 crossref_primary_10_1111_nan_12123 crossref_primary_10_1016_j_pneurobio_2009_05_004 crossref_primary_10_3389_fnmol_2016_00139 crossref_primary_10_2174_1570159X17666191016092221 crossref_primary_10_1016_j_aanat_2011_01_010 crossref_primary_10_1073_pnas_0603883103 crossref_primary_10_1093_hmg_ddx162 crossref_primary_10_15252_embj_201696056 crossref_primary_10_1007_s13311_015_0415_1 crossref_primary_10_3389_fnmol_2015_00043 crossref_primary_10_1016_S1672_2930_06_50023_6 crossref_primary_10_1038_nn1897 crossref_primary_10_1007_s00441_012_1416_6 crossref_primary_10_1111_j_1750_3639_2005_tb00507_x crossref_primary_10_1186_1742_2094_8_110 crossref_primary_10_1002_dvdy_21123 crossref_primary_10_1038_cdd_2014_14 crossref_primary_10_1182_blood_2007_03_077792 |
Cites_doi | 10.1111/j.1460-9568.2003.03012.x 10.1016/S0168-0102(00)00142-5 10.1016/0006-8993(96)00287-9 10.1002/jnr.10701 10.1111/j.1460-9568.1996.tb01588.x 10.1006/exnr.1994.1131 10.1002/cne.903350409 10.1073/pnas.83.7.2248 10.1016/j.neuroscience.2004.06.075 10.1016/S0014-4886(03)00183-3 10.1023/B:GLYC.0000014093.23509.92 10.1006/exnr.1999.7040 10.1083/jcb.110.5.1681 10.1523/JNEUROSCI.22-12-04955.2002 10.1111/j.1460-9568.1997.tb01499.x 10.1002/(SICI)1096-9861(19991129)414:4<495::AID-CNE6>3.0.CO;2-S 10.1016/j.expneurol.2003.10.001 10.1523/JNEUROSCI.10-03-01004.1990 10.1006/dbio.1996.0257 10.1016/0006-8993(70)90345-8 10.1007/BF02740621 10.1016/S0889-1591(02)00017-X 10.1523/JNEUROSCI.4483-03.2004 10.1523/JNEUROSCI.18-17-06713.1998 10.1111/j.1365-2990.1994.tb01013.x 10.1038/373341a0 10.1111/j.1460-9568.1990.tb00472.x 10.1016/S0169-328X(98)00017-5 10.1016/0092-8674(94)90498-7 10.1006/exnr.2002.8040 10.1007/s001090050232 10.1016/j.neuroscience.2004.01.034 10.1523/JNEUROSCI.22-16-07121.2002 10.1073/pnas.97.21.11377 10.1093/jnen/62.2.162 10.1007/BF01195555 10.1097/00001756-200006050-00011 10.1016/0306-4522(90)90155-W 10.1007/BF00236312 10.1006/exnr.1994.1173 10.1523/JNEUROSCI.11-04-00972.1991 10.1006/dbio.1993.1203 10.1016/S0304-4165(99)00177-4 10.1523/JNEUROSCI.23-06-02284.2003 10.1523/JNEUROSCI.19-22-09964.1999 10.1523/JNEUROSCI.19-21-09322.1999 10.1046/j.1460-9568.2003.03102.x 10.1002/cne.1076 10.1242/dev.119.4.1229 10.1002/(SICI)1097-4547(19980515)52:4<405::AID-JNR4>3.0.CO;2-D 10.1002/(SICI)1097-4695(199801)34:1<1::AID-NEU1>3.3.CO;2-P 10.1126/science.7973664 10.1016/S0168-0102(03)00035-X 10.1016/S1471-4906(02)02232-9 |
ContentType | Journal Article |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 |
DOI | 10.1111/j.1460-9568.2004.03802.x |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Neurosciences Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
EndPage | 2880 |
ExternalDocumentID | 10_1111_j_1460_9568_2004_03802_x 15579141 EJN3802 ark_67375_WNG_3CPWLLCV_5 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 |
ID | FETCH-LOGICAL-c5022-d74d6cc41fdc67ef066da865fb9024c01a8df8c7a0be4d8c9aacb97077eea7da3 |
IEDL.DBID | DR2 |
ISSN | 0953-816X |
IngestDate | Fri Aug 16 11:50:51 EDT 2024 Fri Aug 16 03:53:25 EDT 2024 Fri Aug 23 01:13:43 EDT 2024 Sat Sep 28 07:45:24 EDT 2024 Sat Aug 24 00:57:17 EDT 2024 Wed Oct 30 09:57:47 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5022-d74d6cc41fdc67ef066da865fb9024c01a8df8c7a0be4d8c9aacb97077eea7da3 |
Notes | ark:/67375/WNG-3CPWLLCV-5 istex:95661708FFA5707CB8F1AE45558F108151E0F1DB ArticleID:EJN3802 M.S.R. and W.T. contributed equally to the work. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 15579141 |
PQID | 17319491 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_67165962 proquest_miscellaneous_17319491 crossref_primary_10_1111_j_1460_9568_2004_03802_x pubmed_primary_15579141 wiley_primary_10_1111_j_1460_9568_2004_03802_x_EJN3802 istex_primary_ark_67375_WNG_3CPWLLCV_5 |
PublicationCentury | 2000 |
PublicationDate | 2004-12 December 2004 2004-Dec 2004-12-00 20041201 |
PublicationDateYYYYMMDD | 2004-12-01 |
PublicationDate_xml | – month: 12 year: 2004 text: 2004-12 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: France |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2004 |
Publisher | Blackwell Science Ltd |
Publisher_xml | – name: Blackwell Science Ltd |
References | Cragg, B.G. (1970) What is the signal for chromatolysis? Brain Res., 23, 1-21. McGraw, J., Oschipok, L., Liu, J., Hiebert, G.W., Mak, C.F.W., Horie, H., Kadoya, T., Steeves, J.D., Ramer, M.S. & Tetzlaff, W. (2004) Galectin-1 expression correlates with the regenerative potential of rubrospinal and spinal motoneurons. Neuroscience, 28, 713-719.DOI: 10.1016/j.neuroscience.2004.06.075 Poirier, F. & Robertson, E.J. (1993) Normal development of mice carrying a null mutation in the gene encoding the L14 S-type lectin. Development, 119, 1229-1236. Horie, H., Kadoya, T., Hikawa, N., Sango, K., Inoue, H., Takeshita, K., Asawa, R., Hiroi, T., Sato, M., Yoshioka, T. & Ishikawa, Y. (2004) Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J. Neurosci., 24, 1873-1880.DOI: 10.1523/JNEUROSCI.4483-03.2004 Calcutt, N.A., McMurray, H.F., Moorhouse, D.F., Bache, M., Parthasarathy, S., Powell, H.C. & Mizisin, A.P. (1994) Inhibition of macrophage chemotaxis and peripheral nerve regeneration in normal and hyperglycemic rats by the aldose reductase inhibitor Tolrestat. Exp. Neurol., 128, 226-232. Lu, X. & Richardson, P.M. (1991) Inflammation near the nerve cell body enhances axonal regeneration. J. Neurosci., 11, 972-978. Fernandes, K.J., Fan, D.P., Tsui, B.J., Cassar, S.L. & Tetzlaff, W. (1999) Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: differential regulation of GAP-43, tubulins, and neurofilament-M. J. Comp. Neurol., 414, 495-510.DOI: 10.1002/(SICI)1096-9861(19991129)414:4<495::AID-CNE6>3.0.CO;2-S Hoke, A., Cheng, C. & Zochodne, D.W. (2000) Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats. Neuroreport, 11, 1651-1654. Fu, S.Y. & Gordon, T. (1997) The cellular and molecular basis of peripheral nerve regeneration. Mol. Neurobiol., 14, 67-116. Paxinos, G. (1985) The Rat Nervous System. Academic Press, Sydney; Orlando. Puche, A.C., Poirier, F., Hair, M., Bartlett, P.F. & Key, B. (1996) Role of galectin-1 in the developing mouse olfactory system. Dev. Biol., 179, 274-287.DOI: 10.1006/dbio.1996.0257 Chen, S. & Bisby, M.A. (1993) Long-term consequences of impaired regeneration on facial motoneurons in the C57BL/Ola mouse. J. Comp. Neurol., 335, 576-585. Hynes, M.A., Gitt, M., Barondes, S.H., Jessell, T.M. & Buck, L.B. (1990) Selective expression of an endogenous lactose-binding lectin gene in subsets of central and peripheral neurons. J. Neurosci., 10, 1004-1013. McGraw, T.S., Mickle, J.P., Shaw, G. & Streit, W.J. (2002) Axonally transported peripheral signals regulate alpha-internexin expression in regenerating motoneurons. J. Neurosci., 22, 4955-4963. Rabinovich, G.A., Baum, L.G., Tinari, N., Paganelli, R., Natoli, C., Liu, F.T. & Iacobelli, S. (2002) Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol., 23, 313-320.DOI: 10.1016/S1471-4906(02)02232-9 Tomov, T.L., Guntinas-Lichius, O., Grosheva, M., Streppel, M., Schraermeyer, U., Neiss, W.F. & Angelov, D.N. (2002) An example of neural plasticity evoked by putative behavioral demand and early use of vibrissal hairs after facial nerve transection. Exp. Neurol., 178, 207-218.DOI: 10.1006/exnr.2002.8040 Akazawa, C., Nakamura, Y., Sango, K., Horie, H. & Kohsaka, S. (2004) Distribution of the galectin-1 mRNA in the rat nervous system: its transient upregulation in rat facial motor neurons after facial nerve axotomy. Neuroscience, 125, 171-178.DOI: 10.1016/j.neuroscience.2004.01.034 Bormann, P., Zumsteg, V.M., Roth, L.W. & Reinhard, E. (1998) Target contact regulates GAP-43 and alpha-tubulin mRNA levels in regenerating retinal ganglion cells. J. Neurosci. Res., 52, 405-419. Yan, Q., Matheson, C. & Lopez, O.T. (1995) In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature, 373, 341-344.DOI: 10.1038/373341a0 Horie, H., Inagaki, Y., Sohma, Y., Nozawa, R., Okawa, K., Hasegawa, M., Muramatsu, N., Kawano, H., Horie, M., Koyama, H., Sakai, I., Takeshita, K., Kowada, Y., Takano, M. & Kadoya, T. (1999) Galectin-1 regulates initial axonal growth in peripheral nerves after axotomy. J. Neurosci., 19, 9964-9974. Hughes, R.C. (1999) Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim. Biophys. Acta, 1473, 172-185. Perry, V.H., Brown, M.C., Lunn, E.R., Tree, P. & Gordon, S. (1990) Evidence that very slow Wallerian degeneration in C57BL/Ola mice is an intrinsic property of the peripheral nerve. Eur. J. Neurosci., 2, 802-808. Henderson, C.E., Phillips, H.S., Pollock, R.A., Davies, A.M., Lemeulle, C., Armanini, M., Simmons, L., Moffet, B., Vandlen, R.A. & Simpson, L.C. (1994) GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle Science, 266, 1062-1064. [published erratum appears in Science 1995 February 10; 267 (5199): 777]. Leitner, M.L., Molliver, D.C., Osborne, P.A., Vejsada, R., Golden, J.P., Lampe, P.A., Kato, A.C., Milbrandt, J. & Johnson, E.M. Jr (1999) Analysis of the retrograde transport of glial cell line-derived neurotrophic factor (GDNF), neurturin, and persephin suggests that in vivo signaling for the GDNF family is GFRalpha coreceptor-specific. J. Neurosci., 19, 9322-9331. Naveilhan, P.E.I., Shamy, W.M. & Ernfors, P. (1997) Differential regulation of mRNAs for GDNF and its receptors Ret and GDNFR alpha after sciatic nerve lesion in the mouse. Eur. J. Neurosci., 9, 1450-1460. Woolf, C.J., Reynolds, M.L., Molander, C., O'Brien, C., Lindsay, R.M. & Benowitz, L.I. (1990) The growth-associated protein GAP-43 appears in dorsal root ganglion cells and in the dorsal horn of the rat spinal cord following peripheral nerve injury. Neuroscience, 34, 465-478.DOI: 10.1016/0306-4522(90)90155-W Serpe, C.J., Tetzlaff, J.E., Coers, S., Sanders, V.M. & Jones, K.J. (2002) Functional recovery after facial nerve crush is delayed in severe combined immunodeficient mice. Brain Behav. Immun., 16, 808-812.DOI: 10.1016/S0889-1591(02)00017-X Conforti, L., Tarlton, A., Mack, T.G., Mi, W., Buckmaster, E.A., Wagner, D., Perry, V.H. & Coleman, M.P. (2000) A Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the slow Wallerian degeneration (WldS) mouse. Proc. Natl Acad. Sci. USA, 97, 11377-11382. Sango, K., Tokashiki, A., Horie, M., Kawano, H., Watabe, K., Horie, H. & Kadoya, T. (2004) Synthesis, localization and externalization of galectin-1 in mature dorsal root ganglion neurons and Schwann cells. Eur. J. Neurosci., 19, 55-64. Luk, H.W., Noble, L.J. & Werb, Z. (2003) Macrophages contribute to the maintenance of stable regenerating neurites following peripheral nerve injury. J. Neurosci. Res., 73, 644-658.DOI: 10.1002/jnr.10701 Ramer, M.S., Bradbury, E.J., Michael, G.J., Lever, I.J. & McMahon, S.B. (2003) Glial cell line-derived neurotrophic factor increases calcitonin gene-related peptide immunoreactivity in sensory and motoneurons in vivo. Eur. J. Neurosci., 18, 2713-2721.DOI: 10.1111/j.1460-9568.2003.03012.x Barondes, S.H., Castronovo, V., Cooper, D.N., Cummings, R.D., Drickamer, K., Feizi, T., Gitt, M.A., Hirabayashi, J., Hughes, C. & Kasai, K. (1994) Galectins: a family of animal beta-galactoside-binding lectins. Cell, 76, 597-598. Boyd, J.G. & Gordon, T. (2003) Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp. Neurol., 183, 610-619. Ferri, C.C., Moore, F.A. & Bisby, M.A. (1998) Effects of facial nerve injury on mouse motoneurons lacking the p75 low-affinity neurotrophin receptor. J. Neurobiol., 34, 1-9.DOI: 10.1002/(SICI)1097-4695(199801)34:1<1::AID-NEU1>3.3.CO;2-P Burazin, T.C. & Gundlach, A.L. (1998) Up-regulation of GDNFR-alpha and c-ret mRNA in facial motor neurons following facial nerve injury in the rat. Brain Res. Mol. Brain Res., 55, 331-336. Steward, O., Schauwecker, P.E., Guth, L., Zhang, Z., Fujiki, M., Inman, D., Wrathall, J., Kempermann, G., Gage, F.H., Saatman, K.E., Raghupathi, R. & McIntosh, T. (1999) Genetic approaches to neurotrauma research: opportunities and potential pitfalls of murine models. Exp. Neurol., 157, 19-42.DOI: 10.1006/exnr.1999.7040 Horie, H. & Kadoya, T. (2000) Identification of oxidized galectin-1 as an initial repair regulatory factor after axotomy in peripheral nerves. Neurosci. Res., 38, 131-137.DOI: 10.1016/S0168-0102(00)00142-5 Cooper, D.N. & Barondes, S.H. (1990) Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. J. Cell. Biol., 110, 1681-1691. Gilad, V.H., Tetzlaff, W.G., Rabey, J.M. & Gilad, G.M. (1996) Accelerated recovery following polyamines and aminoguanidine treatment after facial nerve injury in rats. Brain Res., 724, 141-144.DOI: 10.1016/0006-8993(96)00287-9 Wu, W., Mathew, T.C. & Miller, F.D. (1993) Evidence that the loss of homeostatic signals induces regeneration-associated alterations in neuronal gene expression. Dev. Biol., 158, 456-466.DOI: 10.1006/dbio.1993.1203 Enver, M.K. & Hall, S.M. (1994) Are Schwann cells essential for axonal regeneration into muscle autografts? Neuropathol. Appl. Neurobiol., 20, 587-598. Isokawa-Akesson, M. & Komisaruk, B.R. (1987) Difference in projections to the lateral and medial facial nucleus: anatomically separate pathways for rhythmical vibrissa movement in rats. Exp. Brain Res., 65, 385-398. Kamijo, Y., Koyama, J., Oikawa, S., Koizumi, Y., Yokouchi, K., Fukushima, N. & Moriizumi, T. (2003) Regenerative process of the facial nerve: rate of regeneration of fibers and their bifurcations. Neurosci. Res., 46, 135-143. Fukaya, K., Hasegawa, M., Mashitani, T., Kadoya, T., Horie, H., Hayashi, Y., Fujisawa, H., Tachibana, O., Kida, S. & Yamashita, J. (2003) Oxidized galectin-1 stimulates the migration of Schwann cells from both proximal and distal stumps of transected nerves and promotes axonal regeneration after peripheral nerve injury. J. Neuropathol. Exp. Neurol., 62, 162-172. 2002; 16 1990; 10 2004; 125 1991; 11 2004; 28 1993; 22 2004; 24 2003; 18 1995; 373 1997; 9 1994; 20 1994; 266 1998; 18 1986; 83 2000 1999; 19 1997; 14 2000; 11 2000; 97 1970; 23 2003; 46 1985 1998; 52 1999; 414 1996; 179 1993; 335 1996; 8 1998; 55 1994; 76 1990; 34 2004; 185 2002; 178 2003; 73 1996; 724 1990; 2 1994; 128 1987; 65 2000; 38 1993; 119 2004; 19 2002; 23 2002; 22 2003; 183 1999; 157 1999; 1473 1993; 158 1994; 129 1990; 110 2003; 62 1998; 76 1998; 34 2001; 436 2003; 23 e_1_2_14_31_1 e_1_2_14_52_1 e_1_2_14_50_1 e_1_2_14_10_1 e_1_2_14_35_1 e_1_2_14_56_1 e_1_2_14_12_1 e_1_2_14_33_1 e_1_2_14_54_1 e_1_2_14_39_1 e_1_2_14_16_1 e_1_2_14_37_1 e_1_2_14_6_1 e_1_2_14_8_1 e_1_2_14_2_1 e_1_2_14_20_1 e_1_2_14_4_1 e_1_2_14_45_1 e_1_2_14_24_1 e_1_2_14_43_1 Fernandes K.J.L. (e_1_2_14_17_1) 2000 e_1_2_14_22_1 e_1_2_14_28_1 e_1_2_14_49_1 e_1_2_14_26_1 e_1_2_14_47_1 e_1_2_14_19_1 Paxinos G. (e_1_2_14_41_1) 1985 Dailey A.T. (e_1_2_14_14_1) 1998; 18 e_1_2_14_30_1 e_1_2_14_53_1 e_1_2_14_51_1 e_1_2_14_11_1 e_1_2_14_57_1 e_1_2_14_13_1 e_1_2_14_32_1 Leitner M.L. (e_1_2_14_34_1) 1999; 19 e_1_2_14_55_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_36_1 e_1_2_14_29_1 e_1_2_14_5_1 e_1_2_14_7_1 e_1_2_14_9_1 e_1_2_14_42_1 e_1_2_14_3_1 e_1_2_14_40_1 e_1_2_14_23_1 e_1_2_14_46_1 e_1_2_14_21_1 e_1_2_14_44_1 e_1_2_14_27_1 e_1_2_14_25_1 e_1_2_14_48_1 e_1_2_14_18_1 |
References_xml | – volume: 110 start-page: 1681 year: 1990 end-page: 1691 article-title: Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism publication-title: J. Cell. Biol. – year: 1985 – volume: 2 start-page: 802 year: 1990 end-page: 808 article-title: Evidence that very slow Wallerian degeneration in C57BL/Ola mice is an intrinsic property of the peripheral nerve publication-title: Eur. J. Neurosci. – volume: 179 start-page: 274 year: 1996 end-page: 287 article-title: Role of galectin‐1 in the developing mouse olfactory system publication-title: Dev. Biol. – volume: 14 start-page: 67 year: 1997 end-page: 116 article-title: The cellular and molecular basis of peripheral nerve regeneration publication-title: Mol. Neurobiol. – volume: 129 start-page: 311 year: 1994 end-page: 320 article-title: The downregulation of GAP‐43 is not responsible for the failure of regeneration in freeze‐killed nerve grafts in the rat publication-title: Exp. Neurol. – volume: 724 start-page: 141 year: 1996 end-page: 144 article-title: Accelerated recovery following polyamines and aminoguanidine treatment after facial nerve injury in rats publication-title: Brain Res. – volume: 18 start-page: 2713 year: 2003 end-page: 2721 article-title: Glial cell line‐derived neurotrophic factor increases calcitonin gene‐related peptide immunoreactivity in sensory and motoneurons publication-title: Eur. J. Neurosci. – volume: 22 start-page: 7121 year: 2002 end-page: 7131 article-title: Transplantation of olfactory mucosa minimizes axonal branching and promotes the recovery of vibrissae motor performance after facial nerve repair in rats publication-title: J. Neurosci. – volume: 23 start-page: 1 year: 1970 end-page: 21 article-title: What is the signal for chromatolysis? publication-title: Brain Res. – volume: 19 start-page: 55 year: 2004 end-page: 64 article-title: Synthesis, localization and externalization of galectin‐1 in mature dorsal root ganglion neurons and Schwann cells publication-title: Eur. J. Neurosci. – volume: 266 start-page: 1062 year: 1994 end-page: 1064 article-title: GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle publication-title: Science – volume: 28 start-page: 713 year: 2004 end-page: 719 article-title: Galectin‐1 expression correlates with the regenerative potential of rubrospinal and spinal motoneurons publication-title: Neuroscience – volume: 83 start-page: 2248 year: 1986 end-page: 2252 article-title: Selective expression of endogenous lactose‐binding lectins and lactoseries glycoconjugates in subsets of rat sensory neurons publication-title: PNAS – volume: 38 start-page: 131 year: 2000 end-page: 137 article-title: Identification of oxidized galectin‐1 as an initial repair regulatory factor after axotomy in peripheral nerves publication-title: Neurosci. Res. – volume: 157 start-page: 19 year: 1999 end-page: 42 article-title: Genetic approaches to neurotrauma research: opportunities and potential pitfalls of murine models publication-title: Exp. Neurol. – volume: 9 start-page: 1450 year: 1997 end-page: 1460 article-title: Differential regulation of mRNAs for GDNF and its receptors Ret and GDNFR alpha after sciatic nerve lesion in the mouse publication-title: Eur. J. Neurosci. – volume: 23 start-page: 2284 year: 2003 end-page: 2293 article-title: Macrophage‐derived factors stimulate optic nerve regeneration publication-title: J. Neurosci. – volume: 76 start-page: 597 year: 1994 end-page: 598 article-title: Galectins: a family of animal beta‐galactoside‐binding lectins publication-title: Cell – volume: 335 start-page: 576 year: 1993 end-page: 585 article-title: Long‐term consequences of impaired regeneration on facial motoneurons in the C57BL/Ola mouse publication-title: J. Comp. Neurol. – volume: 34 start-page: 1 year: 1998 end-page: 9 article-title: Effects of facial nerve injury on mouse motoneurons lacking the p75 low‐affinity neurotrophin receptor publication-title: J. Neurobiol. – volume: 76 start-page: 402 year: 1998 end-page: 412 article-title: Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death publication-title: J. Mol. Med. – volume: 23 start-page: 313 year: 2002 end-page: 320 article-title: Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? publication-title: Trends Immunol. – volume: 373 start-page: 341 year: 1995 end-page: 344 article-title: neurotrophic effects of GDNF on neonatal and adult facial motor neurons publication-title: Nature – volume: 11 start-page: 1651 year: 2000 end-page: 1654 article-title: Expression of glial cell line‐derived neurotrophic factor family of growth factors in peripheral nerve injury in rats publication-title: Neuroreport – volume: 8 start-page: 1018 year: 1996 end-page: 1029 article-title: Increased expression of BDNF and trkB mRNA in rat facial motoneurons after axotomy publication-title: Eur. J. Neurosci. – volume: 183 start-page: 610 year: 2003 end-page: 619 article-title: Glial cell line‐derived neurotrophic factor and brain‐derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons publication-title: Exp. Neurol. – volume: 11 start-page: 972 year: 1991 end-page: 978 article-title: Inflammation near the nerve cell body enhances axonal regeneration publication-title: J. Neurosci. – volume: 119 start-page: 1229 year: 1993 end-page: 1236 article-title: Normal development of mice carrying a null mutation in the gene encoding the L14 S‐type lectin publication-title: Development – volume: 73 start-page: 644 year: 2003 end-page: 658 article-title: Macrophages contribute to the maintenance of stable regenerating neurites following peripheral nerve injury publication-title: J. Neurosci. Res. – volume: 178 start-page: 207 year: 2002 end-page: 218 article-title: An example of neural plasticity evoked by putative behavioral demand and early use of vibrissal hairs after facial nerve transection publication-title: Exp. Neurol. – volume: 1473 start-page: 172 year: 1999 end-page: 185 article-title: Secretion of the galectin family of mammalian carbohydrate‐binding proteins publication-title: Biochim. Biophys. Acta – volume: 46 start-page: 135 year: 2003 end-page: 143 article-title: Regenerative process of the facial nerve: rate of regeneration of fibers and their bifurcations publication-title: Neurosci. Res. – year: 2000 – volume: 52 start-page: 405 year: 1998 end-page: 419 article-title: Target contact regulates GAP‐43 and alpha‐tubulin mRNA levels in regenerating retinal ganglion cells publication-title: J. Neurosci. Res. – volume: 24 start-page: 1873 year: 2004 end-page: 1880 article-title: Oxidized galectin‐1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy publication-title: J. Neurosci. – volume: 65 start-page: 385 year: 1987 end-page: 398 article-title: Difference in projections to the lateral and medial facial nucleus: anatomically separate pathways for rhythmical vibrissa movement in rats publication-title: Exp. Brain Res. – volume: 97 start-page: 11377 year: 2000 end-page: 11382 article-title: A Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the slow Wallerian degeneration (WldS) mouse publication-title: Proc. Natl Acad. Sci. USA – volume: 158 start-page: 456 year: 1993 end-page: 466 article-title: Evidence that the loss of homeostatic signals induces regeneration‐associated alterations in neuronal gene expression publication-title: Dev. Biol. – volume: 19 start-page: 615 year: 2004 end-page: 619 article-title: The involvement of galectin‐1 in skeletal muscle determination, differentiation and regeneration publication-title: Glycoconj. J. – volume: 125 start-page: 171 year: 2004 end-page: 178 article-title: Distribution of the galectin‐1 mRNA in the rat nervous system: its transient upregulation in rat facial motor neurons after facial nerve axotomy publication-title: Neuroscience – volume: 20 start-page: 587 year: 1994 end-page: 598 article-title: Are Schwann cells essential for axonal regeneration into muscle autografts? publication-title: Neuropathol. Appl. Neurobiol. – volume: 55 start-page: 331 year: 1998 end-page: 336 article-title: Up‐regulation of GDNFR‐alpha and c‐ret mRNA in facial motor neurons following facial nerve injury in the rat publication-title: Brain Res. Mol. Brain Res. – volume: 414 start-page: 495 year: 1999 end-page: 510 article-title: Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: differential regulation of GAP‐43, tubulins, and neurofilament‐M publication-title: J. Comp. Neurol. – volume: 19 start-page: 9964 year: 1999 end-page: 9974 article-title: Galectin‐1 regulates initial axonal growth in peripheral nerves after axotomy publication-title: J. Neurosci. – volume: 436 start-page: 399 year: 2001 end-page: 410 article-title: GDNF gene delivery to injured adult CNS motor neurons promotes axonal growth, expression of the trophic neuropeptide CGRP, and cellular protection publication-title: J. Comp. Neurol. – volume: 10 start-page: 1004 year: 1990 end-page: 1013 article-title: Selective expression of an endogenous lactose‐binding lectin gene in subsets of central and peripheral neurons publication-title: J. Neurosci. – volume: 22 start-page: 4955 year: 2002 end-page: 4963 article-title: Axonally transported peripheral signals regulate alpha‐internexin expression in regenerating motoneurons publication-title: J. Neurosci. – volume: 185 start-page: 182 year: 2004 end-page: 190 article-title: Axotomy abolishes NeuN expression in facial but not rubrospinal neurons publication-title: Exp. Neurol. – volume: 62 start-page: 162 year: 2003 end-page: 172 article-title: Oxidized galectin‐1 stimulates the migration of Schwann cells from both proximal and distal stumps of transected nerves and promotes axonal regeneration after peripheral nerve injury publication-title: J. Neuropathol. Exp. Neurol. – volume: 22 start-page: 311 year: 1993 end-page: 321 article-title: Prolonged survival of transected nerve fibres in C57BL/Ola mice is an intrinsic characteristic of the axon publication-title: J. Neurocytol. – volume: 128 start-page: 226 year: 1994 end-page: 232 article-title: Inhibition of macrophage chemotaxis and peripheral nerve regeneration in normal and hyperglycemic rats by the aldose reductase inhibitor Tolrestat publication-title: Exp. Neurol. – volume: 19 start-page: 9322 year: 1999 end-page: 9331 article-title: Analysis of the retrograde transport of glial cell line‐derived neurotrophic factor (GDNF), neurturin, and persephin suggests that signaling for the GDNF family is GFRalpha coreceptor‐specific publication-title: J. Neurosci. – volume: 16 start-page: 808 year: 2002 end-page: 812 article-title: Functional recovery after facial nerve crush is delayed in severe combined immunodeficient mice publication-title: Brain Behav. Immun. – volume: 18 start-page: 6713 year: 1998 end-page: 6722 article-title: Complement depletion reduces macrophage infiltration and activation during Wallerian degeneration and axonal regeneration publication-title: J. Neurosci. – volume: 34 start-page: 465 year: 1990 end-page: 478 article-title: The growth‐associated protein GAP‐43 appears in dorsal root ganglion cells and in the dorsal horn of the rat spinal cord following peripheral nerve injury publication-title: Neuroscience – ident: e_1_2_14_47_1 doi: 10.1111/j.1460-9568.2003.03012.x – ident: e_1_2_14_27_1 doi: 10.1016/S0168-0102(00)00142-5 – ident: e_1_2_14_21_1 doi: 10.1016/0006-8993(96)00287-9 – ident: e_1_2_14_36_1 doi: 10.1002/jnr.10701 – ident: e_1_2_14_33_1 doi: 10.1111/j.1460-9568.1996.tb01588.x – ident: e_1_2_14_8_1 doi: 10.1006/exnr.1994.1131 – ident: e_1_2_14_9_1 doi: 10.1002/cne.903350409 – ident: e_1_2_14_48_1 doi: 10.1073/pnas.83.7.2248 – ident: e_1_2_14_38_1 doi: 10.1016/j.neuroscience.2004.06.075 – volume-title: The Rat Nervous System year: 1985 ident: e_1_2_14_41_1 contributor: fullname: Paxinos G. – ident: e_1_2_14_6_1 doi: 10.1016/S0014-4886(03)00183-3 – ident: e_1_2_14_53_1 doi: 10.1023/B:GLYC.0000014093.23509.92 – ident: e_1_2_14_51_1 doi: 10.1006/exnr.1999.7040 – ident: e_1_2_14_12_1 doi: 10.1083/jcb.110.5.1681 – ident: e_1_2_14_37_1 doi: 10.1523/JNEUROSCI.22-12-04955.2002 – ident: e_1_2_14_40_1 doi: 10.1111/j.1460-9568.1997.tb01499.x – ident: e_1_2_14_16_1 doi: 10.1002/(SICI)1096-9861(19991129)414:4<495::AID-CNE6>3.0.CO;2-S – ident: e_1_2_14_39_1 doi: 10.1016/j.expneurol.2003.10.001 – ident: e_1_2_14_30_1 doi: 10.1523/JNEUROSCI.10-03-01004.1990 – ident: e_1_2_14_45_1 doi: 10.1006/dbio.1996.0257 – ident: e_1_2_14_13_1 doi: 10.1016/0006-8993(70)90345-8 – ident: e_1_2_14_19_1 doi: 10.1007/BF02740621 – ident: e_1_2_14_50_1 doi: 10.1016/S0889-1591(02)00017-X – ident: e_1_2_14_28_1 doi: 10.1523/JNEUROSCI.4483-03.2004 – volume: 18 start-page: 6713 year: 1998 ident: e_1_2_14_14_1 article-title: Complement depletion reduces macrophage infiltration and activation during Wallerian degeneration and axonal regeneration publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-17-06713.1998 contributor: fullname: Dailey A.T. – ident: e_1_2_14_15_1 doi: 10.1111/j.1365-2990.1994.tb01013.x – ident: e_1_2_14_56_1 doi: 10.1038/373341a0 – ident: e_1_2_14_43_1 doi: 10.1111/j.1460-9568.1990.tb00472.x – ident: e_1_2_14_7_1 doi: 10.1016/S0169-328X(98)00017-5 – ident: e_1_2_14_3_1 doi: 10.1016/0092-8674(94)90498-7 – ident: e_1_2_14_52_1 doi: 10.1006/exnr.2002.8040 – ident: e_1_2_14_42_1 doi: 10.1007/s001090050232 – ident: e_1_2_14_2_1 doi: 10.1016/j.neuroscience.2004.01.034 – ident: e_1_2_14_23_1 doi: 10.1523/JNEUROSCI.22-16-07121.2002 – ident: e_1_2_14_11_1 doi: 10.1073/pnas.97.21.11377 – ident: e_1_2_14_20_1 doi: 10.1093/jnen/62.2.162 – volume-title: Regeneration in the Central Nervous System year: 2000 ident: e_1_2_14_17_1 contributor: fullname: Fernandes K.J.L. – ident: e_1_2_14_22_1 doi: 10.1007/BF01195555 – ident: e_1_2_14_25_1 doi: 10.1097/00001756-200006050-00011 – ident: e_1_2_14_54_1 doi: 10.1016/0306-4522(90)90155-W – ident: e_1_2_14_31_1 doi: 10.1007/BF00236312 – ident: e_1_2_14_10_1 doi: 10.1006/exnr.1994.1173 – ident: e_1_2_14_35_1 doi: 10.1523/JNEUROSCI.11-04-00972.1991 – ident: e_1_2_14_55_1 doi: 10.1006/dbio.1993.1203 – ident: e_1_2_14_29_1 doi: 10.1016/S0304-4165(99)00177-4 – ident: e_1_2_14_57_1 doi: 10.1523/JNEUROSCI.23-06-02284.2003 – ident: e_1_2_14_26_1 doi: 10.1523/JNEUROSCI.19-22-09964.1999 – volume: 19 start-page: 9322 year: 1999 ident: e_1_2_14_34_1 article-title: Analysis of the retrograde transport of glial cell line‐derived neurotrophic factor (GDNF), neurturin, and persephin suggests that in vivo signaling for the GDNF family is GFRalpha coreceptor‐specific publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-21-09322.1999 contributor: fullname: Leitner M.L. – ident: e_1_2_14_49_1 doi: 10.1046/j.1460-9568.2003.03102.x – ident: e_1_2_14_4_1 doi: 10.1002/cne.1076 – ident: e_1_2_14_44_1 doi: 10.1242/dev.119.4.1229 – ident: e_1_2_14_5_1 doi: 10.1002/(SICI)1097-4547(19980515)52:4<405::AID-JNR4>3.0.CO;2-D – ident: e_1_2_14_18_1 doi: 10.1002/(SICI)1097-4695(199801)34:1<1::AID-NEU1>3.3.CO;2-P – ident: e_1_2_14_24_1 doi: 10.1126/science.7973664 – ident: e_1_2_14_32_1 doi: 10.1016/S0168-0102(03)00035-X – ident: e_1_2_14_46_1 doi: 10.1016/S1471-4906(02)02232-9 |
SSID | ssj0008645 |
Score | 2.0003164 |
Snippet | The exogenous application of recombinant galectin‐1 has recently been shown to promote the rate of peripheral nerve regeneration. Endogenous neuronal... The exogenous application of recombinant galectin-1 has recently been shown to promote the rate of peripheral nerve regeneration. Endogenous neuronal... Abstract The exogenous application of recombinant galectin‐1 has recently been shown to promote the rate of peripheral nerve regeneration. Endogenous neuronal... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2872 |
SubjectTerms | Animals Axotomy - methods Cell Count - methods Colchicine - pharmacology Facial Nerve Injuries - metabolism Facial Nerve Injuries - physiopathology Functional Laterality - physiology Galectin 1 - genetics Galectin 1 - metabolism GDNF Gene Expression Regulation - drug effects Gene Expression Regulation - physiology Glial Cell Line-Derived Neurotrophic Factor In Situ Hybridization - methods L-14 Mice Mice, Knockout motoneurons Motor Neurons - drug effects Motor Neurons - metabolism Nerve Crush - methods Nerve Growth Factors - pharmacology Nerve Regeneration - physiology Recovery of Function regeneration-associated genes RL14 RNA, Messenger - metabolism Time Factors Vibrissae - physiology |
Title | Galectin-1 in regenerating motoneurons |
URI | https://api.istex.fr/ark:/67375/WNG-3CPWLLCV-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1460-9568.2004.03802.x https://www.ncbi.nlm.nih.gov/pubmed/15579141 https://search.proquest.com/docview/17319491 https://search.proquest.com/docview/67165962 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VcGgvpYU-tg-aQ4V6ySre-JXjsrAgRFdVVcreLD8rtCJU-5BoT_wEfmN_ST3OBrSISlXVWw524sx47G_smW8A3kvHGdU9l8eVj-c0SJ9rUtKcUxaQDysibswd_jjihyf0aMzGy_gnzIVp-CFuDtzQMtJ6jQauzeyukRc5prslN69blLLodRFPklJgdNfe51smKclTvWJkV8sl4ePVoJ57X7SyU62j0C_vg6GrqDZtS8MNmLQ_1ESjTLqLuenan3e4Hv_PHz-Bx0v0mvWb6fYUHvh6E7b6dfTcz39kO1mKJ00H9ZvwcNDWktuCDwcarwfO6l9X1yQ7q7Op_5b4rjHoOouz5SLxatazZ3Ay3P8yOMyXNRpyyzARwAnquLWUBGe58CEiGKclZ8FUcfe3BdHSBWmFLoynTtpKa2sqUQjhvRZOl89hrY7feAlZhGKm54XXzEVQFJsxY00wlgdeasJCB0irD_W9oeJQKy5MoVA0WFiTqiQaddmBnaS4mw56OsFQNsHU6ehAlYNPp8fHg6-KdeBdq1kVZYO3Jrr2F4uZIiKuUrQif27Bo8-JRYw68KKZErfDY0xUhMa-PCn2r8et9o9G-PTqXzu-hkctJWVB3sDafLrwbyN8mpttWO_v7u0Ot5OB_Aa-cAzv |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB5VcKCXPqCPtLTsoUK9bLTO-rVHlAIpDVFVQcnN8hMh2qUKiQSc-hP6G_kl9XizoCAqVVVve7B3vTMe-xt75huAd9JxRnXP5XHl4zkN0uealDTnlAXkw4qIG3OH90d8cEj3xmw8LweEuTANP8TNgRtaRlqv0cDxQPqulRc55rslP69blLLodSOgXI7WX2Idhw9fbrmkJE8Vi5FfLZeEjxfDeu5908JetYxiv7gPiC7i2rQx7TyGb-0vNfEop93Z1HTt1R22x__0z0_g0RzAZlvNjHsKD3y9CmtbdXTev19mm1kKKU1n9auw0m_Lya3B-12NNwQn9fXPXyQ7qbOJP06U1xh3ncUJc5aoNevzZ3C4s33QH-TzMg25ZZgL4AR13FpKgrNc-BBBjNOSs2CqCABsQbR0QVqhC-Opk7bS2ppKFEJ4r4XT5XNYquM3XkIW0ZjpeeE1cxEXxWbMWBOM5YGXmrDQAdIqRP1o2DjUghdTKBQN1takKolGXXRgM2nupoOenGI0m2DqaLSryv7no-Gw_1WxDmy0qlVRNnhxomt_NjtXRMSFilbkzy14dDuxjlEHXjRz4nZ4jImK0NiXJ83-9bjV9t4In179a8cNWBkc7A_V8OPo02t42DJUFmQdlqaTmX8T0dTUvE1W8hsSnA-V |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hVgIuPFoegUL3gCouG62zfu2xSpuWEqIKUZqb5SeqIrZVmkiFEz-B39hfUo832ypVkRDitgd71zvjsb-xZ74BeCcdZ1T3XB5XPp7TIH2uSUlzTllAPqyIuDF3-NOI7x_RgzEbL-KfMBem4Ye4PnBDy0jrNRr4mQu3jbzIMd0tuXndopRFrxvx5CrlEQgjQPp8QyUleSpYjPRquSR8vBzVc-eblraqVZT6xV04dBnWpn1p8Bgm7R814SiT7nxmuvbnLbLH__PLT-DRAr5m2818ewr3fL0G69t1dN2__8i2shRQmk7q1-BBvy0mtw7v9zTeD5zUl79-k-ykzqb-WyK8xqjrLE6X00SsWZ8_g6PB7pf-fr4o0pBbhpkATlDHraUkOMuFDxHCOC05C6aK278tiJYuSCt0YTx10lZaW1OJQgjvtXC6fA4rdfzGS8giFjM9L7xmLqKi2IwZa4KxPPBSExY6QFp9qLOGi0Mt-TCFQtFgZU2qkmjURQe2kuKuO-jpBGPZBFPHoz1V9g-Ph8P-V8U6sNlqVkXZ4LWJrv3p_FwREZcpWpE_t-DR6cQqRh140UyJm-ExJipCY1-eFPvX41a7ByN8evWvHTfh_uHOQA0_jD6-hoctPWVBNmBlNp37NxFKzczbZCNXyakORA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Galectin-1+in+regenerating+motoneurons&rft.jtitle=The+European+journal+of+neuroscience&rft.au=McGraw%2C+J.&rft.au=McPhail%2C+L.+T.&rft.au=Oschipok%2C+L.+W.&rft.au=Horie%2C+H.&rft.date=2004-12-01&rft.pub=Blackwell+Science+Ltd&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=20&rft.issue=11&rft.spage=2872&rft.epage=2880&rft_id=info:doi/10.1111%2Fj.1460-9568.2004.03802.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_3CPWLLCV_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |