Local energy depletion in the basal forebrain increases sleep

Sleep saves energy, but can brain energy depletion induce sleep? We used 2,4‐dinitrophenol (DNP), a molecule which prevents the synthesis of ATP, to induce local energy depletion in the basal forebrain of rats. Three‐hour DNP infusions induced elevations in extracellular concentrations of lactate, p...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 17; no. 4; pp. 863 - 869
Main Authors Kalinchuk, Anna V., Urrila, Anna-Sofia, Alanko, Lauri, Heiskanen, Silja, Wigren, Henna-Kaisa, Suomela, Maricel, Stenberg, Dag, Porkka-Heiskanen, Tarja
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science, Ltd 01.02.2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sleep saves energy, but can brain energy depletion induce sleep? We used 2,4‐dinitrophenol (DNP), a molecule which prevents the synthesis of ATP, to induce local energy depletion in the basal forebrain of rats. Three‐hour DNP infusions induced elevations in extracellular concentrations of lactate, pyruvate and adenosine, as well as increases in non‐REM sleep during the following night. Sleep was not affected when DNP was administered to adjacent brain areas, although the metabolic changes were similar. The amount and the timing of the increase in non‐REM sleep, as well as in the concentrations of lactate, pyruvate and adenosine with 0.5–1.0 mm DNP infusion, were comparable to those induced by 3 h of sleep deprivation. Here we show that energy depletion in localized brain areas can generate sleep. The energy depletion model of sleep induction could be applied to in vitro research into the cellular mechanisms of prolonged wakefulness.
AbstractList Sleep saves energy, but can brain energy depletion induce sleep? We used 2,4‐dinitrophenol (DNP), a molecule which prevents the synthesis of ATP, to induce local energy depletion in the basal forebrain of rats. Three‐hour DNP infusions induced elevations in extracellular concentrations of lactate, pyruvate and adenosine, as well as increases in non‐REM sleep during the following night. Sleep was not affected when DNP was administered to adjacent brain areas, although the metabolic changes were similar. The amount and the timing of the increase in non‐REM sleep, as well as in the concentrations of lactate, pyruvate and adenosine with 0.5–1.0 mm DNP infusion, were comparable to those induced by 3 h of sleep deprivation. Here we show that energy depletion in localized brain areas can generate sleep. The energy depletion model of sleep induction could be applied to in vitro research into the cellular mechanisms of prolonged wakefulness.
Abstract Sleep saves energy, but can brain energy depletion induce sleep? We used 2,4‐dinitrophenol (DNP), a molecule which prevents the synthesis of ATP, to induce local energy depletion in the basal forebrain of rats. Three‐hour DNP infusions induced elevations in extracellular concentrations of lactate, pyruvate and adenosine, as well as increases in non‐REM sleep during the following night. Sleep was not affected when DNP was administered to adjacent brain areas, although the metabolic changes were similar. The amount and the timing of the increase in non‐REM sleep, as well as in the concentrations of lactate, pyruvate and adenosine with 0.5–1.0 m m DNP infusion, were comparable to those induced by 3 h of sleep deprivation. Here we show that energy depletion in localized brain areas can generate sleep. The energy depletion model of sleep induction could be applied to in vitro research into the cellular mechanisms of prolonged wakefulness.
Sleep saves energy, but can brain energy depletion induce sleep? We used 2,4-dinitrophenol (DNP), a molecule which prevents the synthesis of ATP, to induce local energy depletion in the basal forebrain of rats. Three-hour DNP infusions induced elevations in extracellular concentrations of lactate, pyruvate and adenosine, as well as increases in non-REM sleep during the following night. Sleep was not affected when DNP was administered to adjacent brain areas, although the metabolic changes were similar. The amount and the timing of the increase in non-REM sleep, as well as in the concentrations of lactate, pyruvate and adenosine with 0.5-1.0mm DNP infusion, were comparable to those induced by 3h of sleep deprivation. Here we show that energy depletion in localized brain areas can generate sleep. The energy depletion model of sleep induction could be applied to in vitro research into the cellular mechanisms of prolonged wakefulness.
Author Suomela, Maricel
Alanko, Lauri
Kalinchuk, Anna V.
Wigren, Henna-Kaisa
Stenberg, Dag
Porkka-Heiskanen, Tarja
Urrila, Anna-Sofia
Heiskanen, Silja
Author_xml – sequence: 1
  givenname: Anna V.
  surname: Kalinchuk
  fullname: Kalinchuk, Anna V.
  organization: Department of Physiology, Institute of Biomedicine, PO Box 63, 00014 University of Helsinki, Finland
– sequence: 2
  givenname: Anna-Sofia
  surname: Urrila
  fullname: Urrila, Anna-Sofia
  organization: Department of Physiology, Institute of Biomedicine, PO Box 63, 00014 University of Helsinki, Finland
– sequence: 3
  givenname: Lauri
  surname: Alanko
  fullname: Alanko, Lauri
  organization: Department of Physiology, Institute of Biomedicine, PO Box 63, 00014 University of Helsinki, Finland
– sequence: 4
  givenname: Silja
  surname: Heiskanen
  fullname: Heiskanen, Silja
  organization: Department of Physiology, Institute of Biomedicine, PO Box 63, 00014 University of Helsinki, Finland
– sequence: 5
  givenname: Henna-Kaisa
  surname: Wigren
  fullname: Wigren, Henna-Kaisa
  organization: Department of Physiology, Institute of Biomedicine, PO Box 63, 00014 University of Helsinki, Finland
– sequence: 6
  givenname: Maricel
  surname: Suomela
  fullname: Suomela, Maricel
  organization: Department of Physiology, Institute of Biomedicine, PO Box 63, 00014 University of Helsinki, Finland
– sequence: 7
  givenname: Dag
  surname: Stenberg
  fullname: Stenberg, Dag
  organization: Department of Physiology, Institute of Biomedicine, PO Box 63, 00014 University of Helsinki, Finland
– sequence: 8
  givenname: Tarja
  surname: Porkka-Heiskanen
  fullname: Porkka-Heiskanen, Tarja
  organization: Department of Physiology, Institute of Biomedicine, PO Box 63, 00014 University of Helsinki, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12603276$$D View this record in MEDLINE/PubMed
BookMark eNqNkMlOwzAQhi0EgrK8AsqRS8J4jXPggBB7VYRYb5YTTyAlTYrdivbtSWgFV04eef5v7Pl2yWbTNkhIRCGhINTxOKFCQZxJpRMGwBNgkrNksUEGv41NMoBM8lhT9bpDdkMYA4BWQm6THcoUcJaqATkZtoWtI2zQvy0jh9MaZ1XbRFUTzd4xym3oumXrMfe26q8LjzZgiEKNON0nW6WtAx6szz3ydHH-eHYVD-8ur89Oh3EhgbFYac2LDEtAS1XJc546h1xTl0ttWfcTBoUolXPaCkEzUYqcsdy5TCJFSBXfI0eruVPffs4xzMykCgXWtW2wnQdDdbeZBA19VK-ihW9D8Fiaqa8m1i8NBdPLM2PTOzK9I9PLMz_yzKJDD9evzPMJuj9wbasLnKwCX1WNy38PNuc3o77q-HjFV2GGi1_e-g-jUp5K8zK6NBcvo-xB3N6bZ_4NbTuNzA
CitedBy_id crossref_primary_10_1111_jsr_12523
crossref_primary_10_1097_WNR_0b013e3282f262f6
crossref_primary_10_18699_VJ18_353
crossref_primary_10_3389_fncom_2014_00174
crossref_primary_10_1016_j_cophys_2018_08_004
crossref_primary_10_1111_ejn_12766
crossref_primary_10_3389_fnins_2019_00740
crossref_primary_10_1111_j_1471_4159_2006_04314_x
crossref_primary_10_1021_acschemneuro_0c00510
crossref_primary_10_2174_1871527321666220512092718
crossref_primary_10_1016_j_conb_2013_02_010
crossref_primary_10_1016_j_neuroscience_2006_02_010
crossref_primary_10_1016_j_metabol_2006_07_009
crossref_primary_10_1016_j_sleep_2024_04_031
crossref_primary_10_1111_j_1460_9568_2004_03583_x
crossref_primary_10_1111_ejn_14197
crossref_primary_10_3892_etm_2013_1182
crossref_primary_10_1016_j_neuroscience_2012_03_029
crossref_primary_10_1016_j_bcp_2021_114416
crossref_primary_10_1186_1742_2094_9_91
crossref_primary_10_1523_JNEUROSCI_5773_08_2009
crossref_primary_10_1155_2013_103949
crossref_primary_10_1046_j_0962_1105_2003_00372_x
crossref_primary_10_1152_jn_00528_2011
crossref_primary_10_1016_j_neubiorev_2007_02_004
crossref_primary_10_1093_cercor_bhq041
crossref_primary_10_1093_cercor_bhs189
crossref_primary_10_1111_j_1365_2869_2004_00401_x
crossref_primary_10_1016_j_sleep_2007_03_005
crossref_primary_10_1111_j_1471_4159_2006_04077_x
crossref_primary_10_1016_j_neures_2017_04_008
crossref_primary_10_1111_j_1479_8425_2010_00472_x
crossref_primary_10_1016_j_pneurobio_2004_06_004
crossref_primary_10_1016_j_pscychresns_2006_01_010
crossref_primary_10_3109_02699052_2014_888768
crossref_primary_10_1007_s11916_013_0369_0
crossref_primary_10_1016_j_neuroscience_2007_04_046
crossref_primary_10_1016_j_neurobiolaging_2008_10_006
crossref_primary_10_1016_j_neuroscience_2007_09_062
crossref_primary_10_1038_s41598_018_29511_6
crossref_primary_10_1111_j_1460_9568_2009_06719_x
crossref_primary_10_1016_j_neuropharm_2018_10_022
crossref_primary_10_1046_j_0962_1105_2003_00367_x
crossref_primary_10_1111_j_1471_4159_2010_07100_x
crossref_primary_10_1093_brain_awh686
crossref_primary_10_1136_bmjopen_2021_056564
crossref_primary_10_1016_j_neuroscience_2015_12_007
crossref_primary_10_1111_j_1460_9568_2006_05019_x
crossref_primary_10_1016_j_neurobiolaging_2006_06_008
crossref_primary_10_1007_s00429_016_1281_2
crossref_primary_10_1016_j_neuroscience_2008_08_040
crossref_primary_10_1016_S0165_0270_03_00229_2
crossref_primary_10_1097_WNR_0b013e32831af03d
crossref_primary_10_1016_j_neuroscience_2007_03_009
crossref_primary_10_1523_JNEUROSCI_1585_07_2008
Cites_doi 10.1126/science.221974
10.1046/j.1471-4159.1997.69041484.x
10.1002/mrm.1910350202
10.1046/j.0953-816x.2001.01503.x
10.1016/0006-8993(95)00668-G
10.1073/pnas.88.13.5829
10.1098/rstb.1999.0471
10.1016/0160-5402(89)90040-5
10.1038/jcbfm.1988.17
10.1016/0301-0082(94)00057-O
10.1126/science.3260686
10.1007/BF00182732
10.1093/brain/120.7.1173
10.1097/00001756-200011090-00018
10.1046/j.1460-9568.2002.02081.x
10.1523/JNEUROSCI.22-17-07680.2002
10.2337/diacare.21.3.341
10.1038/jcbfm.1986.97
10.1152/ajplegacy.1970.218.5.1434
10.1016/S0197-0186(96)00055-1
10.1111/j.1365-2869.1994.tb00123.x
10.1126/science.8303279
10.1097/00001756-199809140-00016
10.1002/(SICI)1096-9861(19970630)383:2<163::AID-CNE4>3.0.CO;2-Z
10.1016/0006-8993(92)90522-B
10.1161/01.RES.47.4.568
10.1016/S0079-6123(08)62381-X
10.1016/0091-3057(73)90065-8
10.1126/science.276.5316.1265
10.1016/S0306-4522(00)00220-7
10.1016/S0169-328X(99)00219-3
10.1111/j.1471-4159.1972.tb01358.x
10.1007/978-1-4899-0056-2_18
10.1146/annurev.neuro.24.1.31
10.1016/S0306-4522(01)00111-7
10.1016/0197-0186(93)90095-M
10.1097/00001756-200106130-00013
10.1046/j.1365-2869.1999.00008.x
10.1046/j.1365-2869.2000.00230.x
10.1038/267067a0
ContentType Journal Article
Copyright Federation of European Neuroscience Societies
Copyright_xml – notice: Federation of European Neuroscience Societies
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
DOI 10.1046/j.1460-9568.2003.02532.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
DatabaseTitleList
CrossRef
MEDLINE
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
EndPage 869
ExternalDocumentID 10_1046_j_1460_9568_2003_02532_x
12603276
EJN2532
ark_67375_WNG_FWN9S4KQ_V
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
ID FETCH-LOGICAL-c5022-6883c9ef0ea16f3b37dde381db58a203220c4f6dd8a44194f4b22bdd95e1e0763
IEDL.DBID DR2
ISSN 0953-816X
IngestDate Fri Aug 16 08:19:58 EDT 2024
Fri Aug 23 02:59:28 EDT 2024
Sat Sep 28 08:38:09 EDT 2024
Sat Aug 24 00:43:44 EDT 2024
Wed Oct 30 09:57:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5022-6883c9ef0ea16f3b37dde381db58a203220c4f6dd8a44194f4b22bdd95e1e0763
Notes ark:/67375/WNG-FWN9S4KQ-V
ArticleID:EJN2532
istex:04914436909DC9AC3D2F7DC4BCA730DE3B767073
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 12603276
PQID 1808650806
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_1808650806
crossref_primary_10_1046_j_1460_9568_2003_02532_x
pubmed_primary_12603276
wiley_primary_10_1046_j_1460_9568_2003_02532_x_EJN2532
istex_primary_ark_67375_WNG_FWN9S4KQ_V
PublicationCentury 2000
PublicationDate 2003-02
February 2003
2003-Feb
2003-02-00
20030201
PublicationDateYYYYMMDD 2003-02-01
PublicationDate_xml – month: 02
  year: 2003
  text: 2003-02
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: France
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2003
Publisher Blackwell Science, Ltd
Publisher_xml – name: Blackwell Science, Ltd
References Frahm, J., Kruger, G., Merboldt, K.D. & Kleinschmidt, A. (1996) Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magnetic Res. Med., 35, 143-148.
Bennett, H.J., White, T.D. & Semba, K. (2000) Activation of metabotropic glutamate receptors increases extracellular adenosine in vivo. Neuroreport, 11, 3489-3492.
Lloyd, H.G.E., Lindström, K. & Fredholm, B.B. (1993) Intracellular formation and release of adenosine from rat hippocampal slices evoked by electrical stimulation or energy depletion. Neurochem. Int., 23, 173-185.
Hu, Y. & Wilson, G.S. (1997) A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J. Neurochem., 69, 1484-1490.
Magistretti, P.J. & Pellerin, L. (1997) Metabolic coupling during activation. A cellular view. Adv. Exp. Med. Biol., 413, 161-166.
Fujibayashi, Y., Yonekura, Y., Takemura, Y., Wada, K., Matsumoto, K., Tamaki, N., Yamamoto, K., Konishi, J. & Yokoyama, A. (1990) Myocardial accumulation of iodinated beta-methyl-branched fatty acid analogue, iodine-125-15-(p-iodophenyl)-3-(R,S) methylpentadecanoic acid (BMIPP), in relation to ATP concentration. J. Nucl. Med., 31, 1818-1822.
Jones, B.E. (1993) The organization of central cholinergic systems and their functional importance in sleep-wake states. Prog. Brain Res., 98, 61-71.
Borbély, A.A. (1982) A two process model of sleep regulation. Human Neurobiol., 1, 195-204.
Shram, N., Netchiporouk, L. & Cespuglio, R. (2002) Lactate in the brain of the freely moving rat: voltametric monitoring of the changes related to the sleep-wake states. Eur. J. Neurosci., 16, 461-466.
Walker, J.M., Garber, A., Berger, R.J. & Heller, H.C. (1979) Sleep and estivation (shallow torpor): continuous processes of energy conservation. Science, 204, 1098-1100.
Winn, H.R., Welsh, J.E., Rubio, R. & Berne, R.M. (1980) Changes in brain adenosine during bicuculline-induced seizures in rats. Effects of hypoxia altered systemic blood pressure. Circ. Res., 47, 568-577.
Gritti, I., Mainville, L., Mancia, M. & Jones, B.E. (1997) GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. J. Comp. Neurol., 383, 163-177.
Rainnie, D.G., Grunze, H.C., McCarley, R.W. & Greene, R.W. (1994) Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal. Science, 263, 689-692.
King, P., Kong, M.F., Parkin, H., Macdonald, I.A. & Tattersall, R.B. (1998) Well-being, cerebral function, and physical fatigue after nocturnal hypoglycemia in IDDM. Diabetes Care, 21, 341-345.
Porkka-Heiskanen, T., Strecker, R.E. & McCarley, R.W. (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience, 99, 507-517.
Basheer, R., Rainnie, D.G., Porkka-Heiskanen, T., Ramesh, V. & McCarley, R.W. (2001a) Adenosine, prolonged wakefulness and A1-activated NF-kB DNA binding in the basal forebrain of the rat. Neuroscience, 104, 731-739.
Panksepp, J., Jalowiec, J.E., Zolovick, A.J., Stern, W.C. & Morgane, P.J. (1973) Inhibition of glycolytic metabolism and sleep-waking states in cats. Pharmacol. Biochem. Behav., 1, 117-119.
Reich, P., Geyer, M.A. & Karnovsky, M.L. (1972) Metabolism of brain during sleep and wakefulness. J. Neurochem., 19, 487-497.
Benington, J.H. & Heller, H.C. (1995) Restoration of brain energy metabolism as the function of sleep. Prog. Neurobiol., 45, 347-360.
Rosenberg, P.A. & Li, Y. (1995) Adenylyl cyclase activation underlies intracellular cyclic AMP accumulation, cyclic AMP transport, and extracellular adenosine accumulation evoked by beta-adrenergic receptor stimulation in mixed cultures of neurons and astrocytes derived from rat cerebral cortex. Brain Res., 692, 227-232.
Dunwiddie, T.V. & Masino, S.A. (2001) The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci., 24, 31-55.
Vyazovskiy, V., Borbély, A.A. & Tobler, I. (2000) Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat. J. Sleep Res., 9, 367-371.
Braun, A.R., Balkin, T.J., Wesensten, N.J., Carson, R.E., Varga, M., Baldwin, P., Selbie, S., Belenky, G. & Herscovitch, P. (1997) Regional cerebral blood flow throughout the sleep-wake cycle. An \mathrm{H}^{15}_{2}O PET study. Brain, 120, 1173-1197.
Hallström, Å., Carlsson, A., Hillered, L. & Ungerstedt, U. (1989) Simultaneous determination of lactate, pyruvate and ascorbate in microdialysis samples from rat brain, blood, fat and muscle using high-performance liquid chromatography. J. Pharmacol. Meth., 21, 113-124.
Magistretti, P.J. & Pellerin, L. (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Phil. Transact. Royal Soc. London, 354, 1155-1163.
Basheer, R., Porkka-Heiskanen, T., Stenberg, D. & McCarley, R.W. (1999). Adenosine and behavioral state control: adenosine increases c-Fos protein and AP I binding in basal forebrain of rats. Mol. Brain Res., 73, 1-10.
Basheer, R., Arrigoni, E., Thatte, H., Greene, R.W., Ambudkar, I.S. & McCarley, R.W. (2002) Adenosine induces inositol 1,4,5-triphosphate receptor-mediated mobilization of intracellular calcium stores in basal forebrain cholinergic neurons. J. Neurosci., 22, 7680-7686.
Kennedy, C., Gillin, J.C., Mendelson, W., Suda, S., Miyaoka, M., Ito, M., Nakamura, R.K., Storch, F.I., Pettigrew, K., Mishkin, M. & Sokoloff, L. (1981) Local cerebral glucose utilization in slow-wave sleep. Transact. Am. Neurol. Assoc., 106, 25-28.
Netchiporouk, L., Shram, N., Salvert, D. & Cespuglio, R. (2001) Brain extracellular glucose assessed by voltammetry throughout the rat sleep-wake cycle. Eur. J. Neurosci., 13, 1429-1434.
Grob, R.L. (1985) Modern Practice of Gas Chromatography. John Wiley & Sons, New York.
Van Wylen, D.G., Park, T.S., Rubio, R. & Berne, R.M. (1986) Increases in cerebral interstitial fluid adenosine concentration during hypoxia, local potassium infusion, and ischemia. J. Cereb. Blood Flow. Metab., 6, 522-528.
Brundege, J.M. & Dunwiddie, T.V. (1998) Metabolic regulation of endogenous adenosine release from single neurons. Neuroreport, 9, 3007-3011.
Cirelli, C. & Tononi, M.C. (1999) Differences in brain gene expression between sleep and waking as revealed by mRNA differential display and cDNA microarray technology. J. Sleep Res., Genetic Approaches to Sleep and Sleep Disorders, 8 (Suppl. 1), 44-52.
Doolette, D.J. (1997) Mechanism of adenosine accumulation in the hippocampal slice during energy deprivation. Neurochem. Int., 30, 211-223.
Prichard, J., Rothman, D.L., Novotny, E.J., Petroff, O. & Shulman, R.G. (1991) Lactate rise detected by 1H NMR in human visual cortex during physiological stimulation. Proc. Natl Acad. Sci. USA, 88, 5829-5831.
White, T.D. (1977) Direct detection of depolarisation-induced release of ATP from a synaptosomal preparation. Nature, 267, 67-68.
Kattler, H., Dijk, D.J. & Borbély, A.A. (1994) Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J. Sleep Res., 3, 159-164.
Van den Noort, S. & Brine, K. (1970) Effect of sleep on brain labile phosphates and metabolic rate. Am. J. Physiol., 218, 1434-1439.
Kuhr, W.G. & Korf, J. (1988) Extracellular lactic acid as an indicator of brain metabolism: continuous on-line measurement in conscious, freely moving rats with intrastriatal dialysis. J. Cereb. Blood Flow Metab., 8, 130-137.
Maquet, P., Dive, D., Salmon, E., Sadzot, B., Franco, G., Poirrier, R., Von Frenckell, R. & Franck, G. (1992) Cerebral glucose utilization during stage 2 sleep in man. Brain Res., 571, 149-153.
Fox, P.T., Raichle, M.E., Mintun, M.A. & Dence, C. (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science, 241, 462-464.
Haas, H.L. & Greene, R.W. (1988) Endogenous adenosine inhibits hippocampal CA1 neurones: further evidence from extra- and intracellular recording. Naunyn-Schmied. Arch. Pharmacol., 337, 561-565.
Radulovacki, M. (1985) Role of adenosine in sleep in rats. Rev. Clin. Bas. Pharmacol., 5, 327-339.
Casarett, L.J. (1996) In Klaasen, C.D. (ed.), Casarett and Doull's Toxicology: the Basic Science of Poisons. McGraw-Hill, New York.
Porkka-Heiskanen, T., Strecker, R.E., Bjorkum, A.A., Thakkar, M., Greene, R.W. & McCarley, R. (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science, 276, 1265-1268.
Basheer, R., Halldner, L., Alanko, L., McCarley, R.W., Fredholm, B.B. & Porkka-Heiskanen, T. (2001b) Opposite changes in adenosine A1 and A2a receptor mRNA following sleep deprivation. Neuroreport, 12, 1577-1580.
2002; 16
1990; 31
1979; 204
1993; 23
1997; 413
1980; 47
2001a; 104
1989; 21
1985; 5
1997; 69
2000; 9
1997; 276
1996
1981; 106
1988; 241
1999; 8
1996; 35
1995; 692
2001; 24
1998; 21
1977; 267
1979
1972; 19
1982; 1
1992; 571
1997; 30
1997; 383
1991; 88
1997; 120
1995; 45
2000; 11
1993; 98
2000; 99
1994; 263
1988; 8
2002; 22
1986; 6
1985
1999; 73
2001b; 12
1999; 354
1970; 218
1994; 3
2001; 13
1973; 1
1988; 337
1998; 9
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Casarett L.J. (e_1_2_6_11_1) 1996
Basheer R. (e_1_2_6_3_1) 2002; 22
e_1_2_6_13_1
e_1_2_6_36_1
Borbély A.A. (e_1_2_6_8_1) 1982; 1
e_1_2_6_14_1
e_1_2_6_35_1
Grob R.L. (e_1_2_6_19_1) 1985
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
Van den Noort S. (e_1_2_6_43_1) 1970; 218
Fujibayashi Y. (e_1_2_6_17_1) 1990; 31
e_1_2_6_40_1
e_1_2_6_9_1
Wayne R. (e_1_2_6_47_1) 1996
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
Radulovacki M. (e_1_2_6_38_1) 1985; 5
e_1_2_6_48_1
e_1_2_6_24_1
e_1_2_6_49_1
Heytler P.G. (e_1_2_6_22_1) 1979
e_1_2_6_23_1
e_1_2_6_2_1
Kennedy C. (e_1_2_6_26_1) 1981; 106
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – year: 1985
– volume: 16
  start-page: 461
  year: 2002
  end-page: 466
  article-title: Lactate in the brain of the freely moving rat: voltametric monitoring of the changes related to the sleep–wake states
  publication-title: Eur. J. Neurosci.
– volume: 263
  start-page: 689
  year: 1994
  end-page: 692
  article-title: Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal
  publication-title: Science
– volume: 88
  start-page: 5829
  year: 1991
  end-page: 5831
  article-title: Lactate rise detected by 1H NMR in human visual cortex during physiological stimulation
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 1
  start-page: 195
  year: 1982
  end-page: 204
  article-title: A two process model of sleep regulation
  publication-title: Human Neurobiol.
– volume: 9
  start-page: 3007
  year: 1998
  end-page: 3011
  article-title: Metabolic regulation of endogenous adenosine release from single neurons
  publication-title: Neuroreport
– volume: 104
  start-page: 731
  year: 2001a
  end-page: 739
  article-title: Adenosine, prolonged wakefulness and A1‐activated NF‐kB DNA binding in the basal forebrain of the rat
  publication-title: Neuroscience
– volume: 204
  start-page: 1098
  year: 1979
  end-page: 1100
  article-title: Sleep and estivation (shallow torpor): continuous processes of energy conservation
  publication-title: Science
– volume: 98
  start-page: 61
  year: 1993
  end-page: 71
  article-title: The organization of central cholinergic systems and their functional importance in sleep–wake states
  publication-title: Prog. Brain Res.
– volume: 383
  start-page: 163
  year: 1997
  end-page: 177
  article-title: GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat
  publication-title: J. Comp. Neurol.
– start-page: 462
  year: 1979
  end-page: 473
– volume: 413
  start-page: 161
  year: 1997
  end-page: 166
  article-title: Metabolic coupling during activation. A cellular view
  publication-title: Adv. Exp. Med. Biol.
– volume: 8
  start-page: 44
  issue: Suppl. 1
  year: 1999
  end-page: 52
  article-title: Differences in brain gene expression between sleep and waking as revealed by mRNA differential display and cDNA microarray technology
  publication-title: J. Sleep Res., Genetic Approaches to Sleep and Sleep Disorders
– volume: 5
  start-page: 327
  year: 1985
  end-page: 339
  article-title: Role of adenosine in sleep in rats
  publication-title: Rev. Clin. Bas. Pharmacol.
– volume: 19
  start-page: 487
  year: 1972
  end-page: 497
  article-title: Metabolism of brain during sleep and wakefulness
  publication-title: J. Neurochem.
– year: 1996
– volume: 106
  start-page: 25
  year: 1981
  end-page: 28
  article-title: Local cerebral glucose utilization in slow‐wave sleep
  publication-title: Transact. Am. Neurol. Assoc.
– volume: 35
  start-page: 143
  year: 1996
  end-page: 148
  article-title: Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man
  publication-title: Magnetic Res. Med.
– volume: 354
  start-page: 1155
  year: 1999
  end-page: 1163
  article-title: Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging
  publication-title: Phil. Transact. Royal Soc. London
– volume: 21
  start-page: 341
  year: 1998
  end-page: 345
  article-title: Well‐being, cerebral function, and physical fatigue after nocturnal hypoglycemia in IDDM
  publication-title: Diabetes Care
– start-page: 969
  year: 1996
  end-page: 986
– volume: 337
  start-page: 561
  year: 1988
  end-page: 565
  article-title: Endogenous adenosine inhibits hippocampal CA1 neurones: further evidence from extra‐ and intracellular recording
  publication-title: Naunyn-Schmied. Arch. Pharmacol.
– volume: 6
  start-page: 522
  year: 1986
  end-page: 528
  article-title: Increases in cerebral interstitial fluid adenosine concentration during hypoxia, local potassium infusion, and ischemia
  publication-title: J. Cereb. Blood Flow. Metab.
– volume: 9
  start-page: 367
  year: 2000
  end-page: 371
  article-title: Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat
  publication-title: J. Sleep Res.
– volume: 692
  start-page: 227
  year: 1995
  end-page: 232
  article-title: Adenylyl cyclase activation underlies intracellular cyclic AMP accumulation, cyclic AMP transport, and extracellular adenosine accumulation evoked by beta‐adrenergic receptor stimulation in mixed cultures of neurons and astrocytes derived from rat cerebral cortex
  publication-title: Brain Res.
– volume: 24
  start-page: 31
  year: 2001
  end-page: 55
  article-title: The role and regulation of adenosine in the central nervous system
  publication-title: Annu. Rev. Neurosci.
– volume: 31
  start-page: 1818
  year: 1990
  end-page: 1822
  article-title: Myocardial accumulation of iodinated beta‐methyl‐branched fatty acid analogue, iodine‐125‐15‐(p‐iodophenyl)‐3‐(R,S) methylpentadecanoic acid (BMIPP), in relation to ATP concentration
  publication-title: J. Nucl. Med.
– volume: 13
  start-page: 1429
  year: 2001
  end-page: 1434
  article-title: Brain extracellular glucose assessed by voltammetry throughout the rat sleep‐wake cycle
  publication-title: Eur. J. Neurosci.
– volume: 218
  start-page: 1434
  year: 1970
  end-page: 1439
  article-title: Effect of sleep on brain labile phosphates and metabolic rate
  publication-title: Am. J. Physiol.
– volume: 3
  start-page: 159
  year: 1994
  end-page: 164
  article-title: Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans
  publication-title: J. Sleep Res.
– volume: 22
  start-page: 7680
  year: 2002
  end-page: 7686
  article-title: Adenosine induces inositol 1,4,5‐triphosphate receptor‐mediated mobilization of intracellular calcium stores in basal forebrain cholinergic neurons
  publication-title: J. Neurosci.
– volume: 241
  start-page: 462
  year: 1988
  end-page: 464
  article-title: Nonoxidative glucose consumption during focal physiologic neural activity
  publication-title: Science
– volume: 69
  start-page: 1484
  year: 1997
  end-page: 1490
  article-title: A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid‐response enzyme‐based sensor
  publication-title: J. Neurochem.
– volume: 1
  start-page: 117
  year: 1973
  end-page: 119
  article-title: Inhibition of glycolytic metabolism and sleep‐waking states in cats
  publication-title: Pharmacol. Biochem. Behav.
– volume: 276
  start-page: 1265
  year: 1997
  end-page: 1268
  article-title: Adenosine: a mediator of the sleep‐inducing effects of prolonged wakefulness
  publication-title: Science
– volume: 267
  start-page: 67
  year: 1977
  end-page: 68
  article-title: Direct detection of depolarisation‐induced release of ATP from a synaptosomal preparation
  publication-title: Nature
– volume: 120
  start-page: 1173
  year: 1997
  end-page: 1197
  article-title: Regional cerebral blood flow throughout the sleep‐wake cycle. An O PET study
  publication-title: Brain
– volume: 11
  start-page: 3489
  year: 2000
  end-page: 3492
  article-title: Activation of metabotropic glutamate receptors increases extracellular adenosine
  publication-title: Neuroreport
– volume: 30
  start-page: 211
  year: 1997
  end-page: 223
  article-title: Mechanism of adenosine accumulation in the hippocampal slice during energy deprivation
  publication-title: Neurochem. Int.
– volume: 47
  start-page: 568
  year: 1980
  end-page: 577
  article-title: Changes in brain adenosine during bicuculline‐induced seizures in rats. Effects of hypoxia altered systemic blood pressure
  publication-title: Circ. Res.
– volume: 571
  start-page: 149
  year: 1992
  end-page: 153
  article-title: Cerebral glucose utilization during stage 2 sleep in man
  publication-title: Brain Res.
– volume: 73
  start-page: 1
  year: 1999
  end-page: 10
  article-title: Adenosine and behavioral state control: adenosine increases c‐Fos protein and AP I binding in basal forebrain of rats
  publication-title: Mol. Brain Res.
– volume: 45
  start-page: 347
  year: 1995
  end-page: 360
  article-title: Restoration of brain energy metabolism as the function of sleep
  publication-title: Prog. Neurobiol.
– volume: 99
  start-page: 507
  year: 2000
  end-page: 517
  article-title: Brain site‐specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study
  publication-title: Neuroscience
– volume: 21
  start-page: 113
  year: 1989
  end-page: 124
  article-title: Simultaneous determination of lactate, pyruvate and ascorbate in microdialysis samples from rat brain, blood, fat and muscle using high‐performance liquid chromatography
  publication-title: J. Pharmacol. Meth.
– volume: 23
  start-page: 173
  year: 1993
  end-page: 185
  article-title: Intracellular formation and release of adenosine from rat hippocampal slices evoked by electrical stimulation or energy depletion
  publication-title: Neurochem. Int.
– volume: 12
  start-page: 1577
  year: 2001b
  end-page: 1580
  article-title: Opposite changes in adenosine A1 and A2a receptor mRNA following sleep deprivation
  publication-title: Neuroreport
– volume: 8
  start-page: 130
  year: 1988
  end-page: 137
  article-title: Extracellular lactic acid as an indicator of brain metabolism: continuous on‐line measurement in conscious, freely moving rats with intrastriatal dialysis
  publication-title: J. Cereb. Blood Flow Metab.
– ident: e_1_2_6_46_1
  doi: 10.1126/science.221974
– ident: e_1_2_6_23_1
  doi: 10.1046/j.1471-4159.1997.69041484.x
– ident: e_1_2_6_16_1
  doi: 10.1002/mrm.1910350202
– ident: e_1_2_6_33_1
  doi: 10.1046/j.0953-816x.2001.01503.x
– volume: 5
  start-page: 327
  year: 1985
  ident: e_1_2_6_38_1
  article-title: Role of adenosine in sleep in rats
  publication-title: Rev. Clin. Bas. Pharmacol.
  contributor:
    fullname: Radulovacki M.
– ident: e_1_2_6_41_1
  doi: 10.1016/0006-8993(95)00668-G
– ident: e_1_2_6_37_1
  doi: 10.1073/pnas.88.13.5829
– ident: e_1_2_6_31_1
  doi: 10.1098/rstb.1999.0471
– start-page: 969
  volume-title: Casarett and Doull's Toxicology: the Basic Science of Poisons
  year: 1996
  ident: e_1_2_6_47_1
  contributor:
    fullname: Wayne R.
– start-page: 462
  volume-title: Methods in Enzymology
  year: 1979
  ident: e_1_2_6_22_1
  contributor:
    fullname: Heytler P.G.
– volume-title: Modern Practice of Gas Chromatography
  year: 1985
  ident: e_1_2_6_19_1
  contributor:
    fullname: Grob R.L.
– ident: e_1_2_6_21_1
  doi: 10.1016/0160-5402(89)90040-5
– ident: e_1_2_6_28_1
  doi: 10.1038/jcbfm.1988.17
– ident: e_1_2_6_6_1
  doi: 10.1016/0301-0082(94)00057-O
– ident: e_1_2_6_15_1
  doi: 10.1126/science.3260686
– volume: 1
  start-page: 195
  year: 1982
  ident: e_1_2_6_8_1
  article-title: A two process model of sleep regulation
  publication-title: Human Neurobiol.
  contributor:
    fullname: Borbély A.A.
– ident: e_1_2_6_20_1
  doi: 10.1007/BF00182732
– ident: e_1_2_6_9_1
  doi: 10.1093/brain/120.7.1173
– ident: e_1_2_6_7_1
  doi: 10.1097/00001756-200011090-00018
– ident: e_1_2_6_42_1
  doi: 10.1046/j.1460-9568.2002.02081.x
– volume: 22
  start-page: 7680
  year: 2002
  ident: e_1_2_6_3_1
  article-title: Adenosine induces inositol 1,4,5‐triphosphate receptor‐mediated mobilization of intracellular calcium stores in basal forebrain cholinergic neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-17-07680.2002
  contributor:
    fullname: Basheer R.
– volume: 106
  start-page: 25
  year: 1981
  ident: e_1_2_6_26_1
  article-title: Local cerebral glucose utilization in slow‐wave sleep
  publication-title: Transact. Am. Neurol. Assoc.
  contributor:
    fullname: Kennedy C.
– ident: e_1_2_6_27_1
  doi: 10.2337/diacare.21.3.341
– ident: e_1_2_6_44_1
  doi: 10.1038/jcbfm.1986.97
– volume: 218
  start-page: 1434
  year: 1970
  ident: e_1_2_6_43_1
  article-title: Effect of sleep on brain labile phosphates and metabolic rate
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajplegacy.1970.218.5.1434
  contributor:
    fullname: Van den Noort S.
– ident: e_1_2_6_13_1
  doi: 10.1016/S0197-0186(96)00055-1
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1365-2869.1994.tb00123.x
– ident: e_1_2_6_39_1
  doi: 10.1126/science.8303279
– ident: e_1_2_6_10_1
  doi: 10.1097/00001756-199809140-00016
– ident: e_1_2_6_18_1
  doi: 10.1002/(SICI)1096-9861(19970630)383:2<163::AID-CNE4>3.0.CO;2-Z
– ident: e_1_2_6_32_1
  doi: 10.1016/0006-8993(92)90522-B
– ident: e_1_2_6_49_1
  doi: 10.1161/01.RES.47.4.568
– ident: e_1_2_6_24_1
  doi: 10.1016/S0079-6123(08)62381-X
– ident: e_1_2_6_34_1
  doi: 10.1016/0091-3057(73)90065-8
– ident: e_1_2_6_35_1
  doi: 10.1126/science.276.5316.1265
– ident: e_1_2_6_36_1
  doi: 10.1016/S0306-4522(00)00220-7
– ident: e_1_2_6_2_1
  doi: 10.1016/S0169-328X(99)00219-3
– ident: e_1_2_6_40_1
  doi: 10.1111/j.1471-4159.1972.tb01358.x
– volume: 31
  start-page: 1818
  year: 1990
  ident: e_1_2_6_17_1
  article-title: Myocardial accumulation of iodinated beta‐methyl‐branched fatty acid analogue, iodine‐125‐15‐(p‐iodophenyl)‐3‐(R,S) methylpentadecanoic acid (BMIPP), in relation to ATP concentration
  publication-title: J. Nucl. Med.
  contributor:
    fullname: Fujibayashi Y.
– ident: e_1_2_6_30_1
  doi: 10.1007/978-1-4899-0056-2_18
– volume-title: Casarett and Doull's Toxicology: the Basic Science of Poisons
  year: 1996
  ident: e_1_2_6_11_1
  contributor:
    fullname: Casarett L.J.
– ident: e_1_2_6_14_1
  doi: 10.1146/annurev.neuro.24.1.31
– ident: e_1_2_6_5_1
  doi: 10.1016/S0306-4522(01)00111-7
– ident: e_1_2_6_29_1
  doi: 10.1016/0197-0186(93)90095-M
– ident: e_1_2_6_4_1
  doi: 10.1097/00001756-200106130-00013
– ident: e_1_2_6_12_1
  doi: 10.1046/j.1365-2869.1999.00008.x
– ident: e_1_2_6_45_1
  doi: 10.1046/j.1365-2869.2000.00230.x
– ident: e_1_2_6_48_1
  doi: 10.1038/267067a0
SSID ssj0008645
Score 2.0702157
Snippet Sleep saves energy, but can brain energy depletion induce sleep? We used 2,4‐dinitrophenol (DNP), a molecule which prevents the synthesis of ATP, to induce...
Sleep saves energy, but can brain energy depletion induce sleep? We used 2,4-dinitrophenol (DNP), a molecule which prevents the synthesis of ATP, to induce...
Abstract Sleep saves energy, but can brain energy depletion induce sleep? We used 2,4‐dinitrophenol (DNP), a molecule which prevents the synthesis of ATP, to...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 863
SubjectTerms 2,4-Dinitrophenol - pharmacology
adenosine
Adenosine - metabolism
Analysis of Variance
Animals
basal forebrain
Chromatography, High Pressure Liquid - methods
Circadian Rhythm - physiology
Dose-Response Relationship, Drug
Electroencephalography - methods
Energy Metabolism - drug effects
Energy Metabolism - physiology
Enzyme Inhibitors - pharmacology
Lactic Acid - metabolism
local energy depletion
Male
Microdialysis - methods
non-REM sleep
Potassium Cyanide - pharmacology
Prosencephalon - drug effects
Prosencephalon - metabolism
Pyruvic Acid - metabolism
Rats
Sleep - drug effects
Sleep - physiology
sleep deprivation
Sleep Deprivation - metabolism
Sleep Stages - drug effects
Sleep Stages - physiology
Uncoupling Agents - pharmacology
Title Local energy depletion in the basal forebrain increases sleep
URI https://api.istex.fr/ark:/67375/WNG-FWN9S4KQ-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1460-9568.2003.02532.x
https://www.ncbi.nlm.nih.gov/pubmed/12603276
https://search.proquest.com/docview/1808650806
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KcmgvTZtHs2kSVCi5eZFlWZYPPWwe25CWhea5NyGtZAjbepfsLqT99Z2R1wkpOZTSm5GQbT3nk_TNNwAfc1_q3BY-sQXPExmcTLSXAXcpwnGPSyKmENtioE6v5NkwHy75T-QL0-hDPBy40cyI6zVNcOuaKCQ8qtvGSc4TcneLsp5dtN6Z6BKeTLOC2F3H549KUlrFeMWkrpboVA2XpJ72gvO5Fz2xVKvU6PfPwdCnqDaapf4ajNsKNWyUcXcxd93Rrz-0Hv9Pjd_A6yV6Zb1muL2FF6Feh41ejTv3Hz_ZAYt80nhQvw4vj9pYchvw6SuZTBaioyHzYUqS35Oa3dYMAShDU4q5CJ_pFvuWkgnLzsKMzb6HMN2Eq_7J5dFpsgzckIxy8g5QWmejMlQ82FRVmcsKXEQRGniXa0sh2wUfyUp5ry2isVJW0gnhvC_zkAaOK94WrNSTOmwDs5asrBDWVqVUqXaS5H4cV6VIM-tUB9K2k8y00ecw8V5dqmZfww21F0XbzExsL3PfgYPYmw8F7N2Y-G1Fbm4Gn03_ZlBeyC_fzHUHPrTdbbDB6CrF1mGymJlU44hCbMvxB9414-Dx87hFzESBOSr25l__lzk5G9DTzr8WfA-vItcwksp3YWV-twh7iJnmbh9We4fHh_39OCt-Ax_2BmA
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQHOil5dHHlkKNhLhl6ziO4xx6QMB2C0skWih7s-y1IyFodsXuSrS_nhknAYE4VKi3yJaT-DEz33hehOykLlepyVxkMpZGwlsRKSc8aCncMgcsEVrQ26KQ_XNxNEyHTTkgjIWp80PcX7ghZQR-jQSOF9JfGrNkS-Uswni3kNezC-I74V0AlEtA_QmWMzj48ZBLSslQsRjzq0UqlsPGrac1cT73pkeyagmX_fY5IPoY1wbB1HtDrtsp1f4oV935zHZHf59ke_xPc14hrxsAS_fqE7dKFny1Rtb3KlDef_-huzS4lIa7-jWyvN-Wk1snXwcoNakPsYbU-Qlm_R5X9LKigEEpSFPoBQSNhuxLbEY4O_VTOr32fvKWnPcOz_b7UVO7IRqlGCAglUpGuS-ZN7EsE5tkwEcBHTibKoNV2zkbiVI6pwwAslyUwnJunctTH3sGTO8dWazGlf9AqDEoaDk3psyFjJUVmPHHMpnzODFWdkjc7pKe1Ck6dDCtC1mrNkzjemHBzUSH9dK3HbIbtvN-gLm5Qhe3LNUXxTfduyjyn-L4VP_qkO12vzUsGFpTTOXH86mOFRwpgLcMfuB9fRAePg9aYsIz6JFhO__5v_ThUYFPH1868DNZ7p-dDPTge3G8QV4F18PgY_6JLM5u5n4TINTMbgXSuANVWAkI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hVgIuPFooy9NIqLcsjuM4zoFD1XYpbRXxKt2bZa8dqVrIrrq7UuHXM-MkrYp6QIhbZMtJ7PF4Pns-zwC8yX2pc1v4xBY8T2RwMtFeBtylCMc9LolYQmyLSh2cyMNxPu74T3QXpo0PcXngRpoR12tS8Lmv33ZeyV7JeULX3WJYzyFa70wMEU-uS5Vxonftfb4KJaVVTFhM4dUSnapxx-rpPZw3vemaqVqnUb-4CYdeh7XRLo3uw7TvUUtHmQ5XSzec_Poj2OP_6fIDuNfBV7bTzreHcCs0G7C50-DW_cdPts0ioTSe1G_And0-mdwmvDsmm8lCvGnIfJhTzO9Zw84ahgiUoS3FWsTP5MY-o2ICs4uwYIvvIcwfwclo_-vuQdJlbkgmOV0PUFpnkzLUPNhU1ZnLClxFERt4l2tLOdsFn8haea8twrFS1tIJ4bwv85AGjkveY1hrZk14AsxaMrNCWFuXUqXaSYr347gqRZpZpwaQ9kIy8zZAh4mOdanajQ03NF6UbjMzcbzMxQC2ozQvG9jzKRHcitycVu_N6LQqv8ijT-bbAF734jY4YORLsU2YrRYm1TijENxy_IGtdh5cfR73iJkosEZFaf71f5n9w4qenv5rw1dw--PeyBx_qI6ewd3IO4wE8-ewtjxfhReIn5buZVSM3xwaB7c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+energy+depletion+in+the+basal+forebrain+increases+sleep&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Kalinchuk%2C+Anna+V.&rft.au=Urrila%2C+Anna-Sofia&rft.au=Alanko%2C+Lauri&rft.au=Heiskanen%2C+Silja&rft.date=2003-02-01&rft.pub=Blackwell+Science%2C+Ltd&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=17&rft.issue=4&rft.spage=863&rft.epage=869&rft_id=info:doi/10.1046%2Fj.1460-9568.2003.02532.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_FWN9S4KQ_V
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon