A non-linear least squares enhanced POD-4DVar algorithm for data assimilation

This paper presents a novel non-linear least squares enhanced proper orthogonal decomposition (POD)-based 4DVar algorithm (referred as NLS-4DVar) for the non-linear ensemble-based 4DVar. In the algorithm, the Gauss-Newton iterative method is employed to handle the non-quadratic non-linearity of the...

Full description

Saved in:
Bibliographic Details
Published inTellus. Series A, Dynamic meteorology and oceanography Vol. 67; no. 1; pp. 25340 - 12
Main Authors Tian, Xiangjun, Feng, Xiaobing
Format Journal Article
LanguageEnglish
Published Stockholm Taylor & Francis 01.01.2015
Ubiquity Press
Stockholm University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a novel non-linear least squares enhanced proper orthogonal decomposition (POD)-based 4DVar algorithm (referred as NLS-4DVar) for the non-linear ensemble-based 4DVar. In the algorithm, the Gauss-Newton iterative method is employed to handle the non-quadratic non-linearity of the 4DVar cost function while the overall structure of the algorithm still resembles the original POD-4DVar algorithm. It is proved that the original POD-4DVar algorithm is a special case of the proposed NLS-4DVar algorithm under the assumption of the linear relationship between the model perturbations (MPs) and the simulated observation perturbations (OPs). Under the assumption it is also shown that the solution of POD-4DVar algorithm coincides with the solution of the proposed NLS-4DVar algorithm. On the contrary, if the linear relationship assumption is dropped, the solution of the POD-4DVar algorithm is only the first iteration of the proposed NLS-4DVar algorithm. As a result, our analysis provides an explanation for the degraded and inaccurate performance of the POD-4DVar algorithm when the underlying forecast model or (and) the observation operator is strongly non-linear. The potential merits and advantages of the proposed NLS-4DVar are demonstrated by a group of Observing System Simulation Experiments with Advanced Research WRF (ARW) using accumulated rainfall-observations.
AbstractList This paper presents a novel non-linear least squares enhanced proper orthogonal decomposition (POD)-based 4DVar algorithm (referred as NLS-4DVar) for the non-linear ensemble-based 4DVar. In the algorithm, the Gauss-Newton iterative method is employed to handle the non-quadratic non-linearity of the 4DVar cost function while the overall structure of the algorithm still resembles the original POD-4DVar algorithm. It is proved that the original POD-4DVar algorithm is a special case of the proposed NLS-4DVar algorithm under the assumption of the linear relationship between the model perturbations (MPs) and the simulated observation perturbations (OPs). Under the assumption it is also shown that the solution of POD-4DVar algorithm coincides with the solution of the proposed NLS-4DVar algorithm. On the contrary, if the linear relationship assumption is dropped, the solution of the POD-4DVar algorithm is only the first iteration of the proposed NLS-4DVar algorithm. As a result, our analysis provides an explanation for the degraded and inaccurate performance of the POD-4DVar algorithm when the underlying forecast model or (and) the observation operator is strongly non-linear. The potential merits and advantages of the proposed NLS-4DVar are demonstrated by a group of Observing System Simulation Experiments with Advanced Research WRF (ARW) using accumulated rainfall-observations.
Author Feng, Xiaobing
Tian, Xiangjun
Author_xml – sequence: 1
  givenname: Xiangjun
  surname: Tian
  fullname: Tian, Xiangjun
  email: tianxj@mail.iap.ac.cn
  organization: ICCES Institute of Atmospheric Physics, Chinese Academy of Sciences
– sequence: 2
  givenname: Xiaobing
  surname: Feng
  fullname: Feng, Xiaobing
  organization: Department of Mathematics The University of Tennessee
BookMark eNqNkU1rFTEUhgepYFv9Ae4G3LiZa75nAm5K60ehUhfqNpzJnLS5ZCZtkqn035veW0QKiquEk-d9Iec5ag6WuGDTvKZkwwVh7wqGsGbY3Kl-w2QdPWsOqSKkI0NPDv64v2iOct4SQqhW_LD5ctLWpi74BSG1ASGXNt-ukDC3uFzDYnFqv16edeLsRwUgXMXky_XcupjaCQq0kLOffYDi4_Kyee4gZHz1eB433z9--Hb6ubu4_HR-enLRWUlo6dwEA1NcMGS6d2KkzE2iH5WWMI4MR6csnzhYigwVOFffR5QopBUwiInw4-Z83ztF2Jqb5GdI9yaCN7tBTFcGUvE2oHFKae4oH9BpISenFfRMKMeAU8e4ql1v9103Kd6umIuZfbZ1nbBgXLOhqu-16Dkl_4GqgQktB1nRN0_QbVzTUpfyQFEu5KCHStE9ZVPMOaH7_RdKzINX8-jVVK9m57Vm-icZ68tu-yWBD_9Mvt8n_VLtzfAzpjCZAvchJpeqap8N_3v8F5bxwPM
CitedBy_id crossref_primary_10_1016_j_jmaa_2023_127271
crossref_primary_10_1007_s00376_020_9252_1
crossref_primary_10_1016_j_aosl_2023_100441
crossref_primary_10_3390_atmos14050866
crossref_primary_10_1016_j_jmaa_2022_126169
crossref_primary_10_5194_essd_16_2857_2024
crossref_primary_10_1007_s00376_019_9001_5
crossref_primary_10_1007_s11430_022_1036_7
crossref_primary_10_1016_j_camwa_2023_04_033
crossref_primary_10_1002_mma_7275
crossref_primary_10_1007_s00376_020_9274_8
crossref_primary_10_1007_s00376_023_2334_0
crossref_primary_10_1093_nsr_nwae223
crossref_primary_10_1029_2020EA001307
crossref_primary_10_1175_WAF_D_17_0169_1
crossref_primary_10_1029_2019EA000735
crossref_primary_10_1029_2021EA001767
crossref_primary_10_1016_j_atmosenv_2021_118896
crossref_primary_10_1029_2022EA002254
crossref_primary_10_1002_qj_2946
crossref_primary_10_1007_s13131_022_1997_1
crossref_primary_10_1029_2017JD027529
crossref_primary_10_1080_02626667_2020_1761021
crossref_primary_10_1360_N072022_0123
crossref_primary_10_1016_j_apr_2021_03_003
crossref_primary_10_1016_j_jenvrad_2017_12_004
crossref_primary_10_1007_s11356_019_04246_7
crossref_primary_10_1016_j_jmaa_2020_124245
crossref_primary_10_1002_num_22619
crossref_primary_10_1007_s00376_019_8203_1
crossref_primary_10_1080_16742834_2019_1671767
crossref_primary_10_1007_s11430_015_0271_4
crossref_primary_10_1175_MWR_D_17_0050_1
crossref_primary_10_1016_j_camwa_2021_05_014
crossref_primary_10_5194_hess_26_6311_2022
crossref_primary_10_1029_2020MS002407
crossref_primary_10_3389_feart_2021_688542
Cites_doi 10.1111/j.1600-0870.2006.00148.x
10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
10.1175/MWR-D-12-00141.1
10.1029/2008JD011600
10.1175/2008MWR2445.1
10.1007/s00376-009-9122-3
10.1175/1520-0493(1996)124<2859:RATAOC>2.0.CO;2
10.2151/jmsj.80.99
10.1175/MWR-D-11-00023.1
10.1002/qj.49711347813
10.1002/qj.49712555417
10.1111/j.1600-0870.2007.00255.x
10.3402/tellusa.v38i2.11706
10.1175/1520-0469(1996)053<1123:GAFPPW>2.0.CO;2
10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
10.1029/94JC00572
10.1175/1520-0493(2004)132<2054:TDAODB>2.0.CO;2
10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
10.1029/2006JD007994
10.1175/1520-0493(2004)132<0929:IOMPWI>2.0.CO;2
10.1175/MWR3199.1
10.5194/acp-14-13281-2014
10.1016/S0895-7177(00)00240-5
10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2
10.3402/tellusa.v64i0.18375
10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
10.1029/2012JD017684
10.3402/tellusa.v56i5.14462
10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
10.1002/qj.49712051912
10.1111/j.1600-0870.2011.00529.x
10.1175/MWR3394.1
10.1007/s10236-004-0099-2
10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
10.1256/qj.02.132
10.1111/j.1600-0870.2009.00442.x
10.1175/MWR3021.1
10.3402/tellusa.v37i4.11675
10.1016/j.physd.2006.11.008
10.1175/2008MWR2312.1
10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
10.1090/qam/1939004
10.1029/2008JD010358
10.3402/tellusa.v65i0.18541
10.1256/qj.06.07
10.1002/qj.2054
10.1175/MWR2909.1
10.1029/2010JD014370
10.1007/s00376-009-0001-8
10.1175/2008MWR2444.1
10.1029/97JD00237
10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
10.1175/1520-0493(2000)128<1971:DAIAPE>2.0.CO;2
ContentType Journal Article
Copyright 2015 X. Tian and X. Feng 2015
Copyright Co-Action Publishing 2015
Copyright_xml – notice: 2015 X. Tian and X. Feng 2015
– notice: Copyright Co-Action Publishing 2015
DBID 0YH
AAYXX
CITATION
3V.
7TN
7XB
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
GNUQQ
GUQSH
H96
HCIFZ
L.G
M2O
MBDVC
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7TG
KL.
8FD
H8D
L7M
DOA
DOI 10.3402/tellusa.v67.25340
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
ProQuest Research Library
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest research library
Research Library (Corporate)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: (Open Access) Taylor & Francis
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Oceanography
EISSN 1600-0870
EndPage 12
ExternalDocumentID oai_doaj_org_article_f6693f138ef945df96a7246f2a31f236
3618000191
10_3402_tellusa_v67_25340
11817103
Genre Research Article
GroupedDBID -DZ
-~X
0YH
123
1OC
29Q
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
702
7PT
8-1
8CJ
8FE
8FH
8G5
8UM
8WT
ABCQN
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
AEUYN
AFEBI
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BCNDV
BENPR
BHPHI
BKSAR
BPHCQ
BY8
CAG
CCPQU
CS3
D1J
D1K
DCZOG
DWQXO
EAD
EAP
EBS
EDH
EJD
EMK
EPL
EST
ESX
FRJ
GNUQQ
GROUPED_DOAJ
GUQSH
H13
HCIFZ
HZI
I-F
IHE
IPNFZ
IX1
K48
K6-
KQ8
KWQ
LC2
LC3
LK5
LP6
LP7
M2O
M4Z
M7R
MK4
N9A
OK1
P2P
P4D
PCBAR
PIMPY
PQQKQ
PROAC
Q11
RIG
RNS
SUPJJ
TDBHL
TFW
TN5
TUS
W99
WQJ
XSW
~02
AAYXX
CITATION
PHGZM
PHGZT
3V.
7TN
7XB
8FK
F1W
H96
L.G
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7TG
KL.
8FD
H8D
L7M
PUEGO
ID FETCH-LOGICAL-c501t-fda826342e297f4b12fd47b695abb2ebf6c3d3ac1e2e6aff12fbe5e45c4a84d03
IEDL.DBID BENPR
ISSN 1600-0870
IngestDate Wed Aug 27 00:27:46 EDT 2025
Fri Jul 11 15:49:11 EDT 2025
Fri Jul 11 10:42:50 EDT 2025
Mon Jun 30 14:53:39 EDT 2025
Tue Jul 01 01:05:35 EDT 2025
Thu Apr 24 22:59:54 EDT 2025
Wed Dec 25 09:07:26 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-fda826342e297f4b12fd47b695abb2ebf6c3d3ac1e2e6aff12fbe5e45c4a84d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1661345898?pq-origsite=%requestingapplication%
PQID 1661345898
PQPubID 2030036
PageCount 12
ParticipantIDs proquest_miscellaneous_1677947310
informaworld_taylorfrancis_310_3402_tellusa_v67_25340
crossref_primary_10_3402_tellusa_v67_25340
doaj_primary_oai_doaj_org_article_f6693f138ef945df96a7246f2a31f236
proquest_miscellaneous_1668249585
proquest_journals_1661345898
crossref_citationtrail_10_3402_tellusa_v67_25340
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Stockholm
PublicationPlace_xml – name: Stockholm
PublicationTitle Tellus. Series A, Dynamic meteorology and oceanography
PublicationYear 2015
Publisher Taylor & Francis
Ubiquity Press
Stockholm University Press
Publisher_xml – name: Taylor & Francis
– name: Ubiquity Press
– name: Stockholm University Press
References CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
CIT0036
CIT0035
CIT0038
CIT0037
Skamarock W. C. (CIT0040)
CIT0039
CIT0041
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
Zhang B. (CIT0053) 2014
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0056
CIT0011
CIT0055
Dennis J. E. Jr. (CIT0012)
CIT0014
CIT0013
CIT0057
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0023
CIT0022
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0038
  doi: 10.1111/j.1600-0870.2006.00148.x
– ident: CIT0054
  doi: 10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
– ident: CIT0050
  doi: 10.1175/MWR-D-12-00141.1
– ident: CIT0044
  doi: 10.1029/2008JD011600
– ident: CIT0049
  doi: 10.1175/2008MWR2445.1
– ident: CIT0047
  doi: 10.1007/s00376-009-9122-3
– ident: CIT0057
  doi: 10.1175/1520-0493(1996)124<2859:RATAOC>2.0.CO;2
– ident: CIT0007
  doi: 10.2151/jmsj.80.99
– ident: CIT0056
  doi: 10.1175/MWR-D-11-00023.1
– ident: CIT0010
  doi: 10.1002/qj.49711347813
– ident: CIT0017
  doi: 10.1002/qj.49712555417
– volume-title: Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Classics in Applied Mathematics)
  ident: CIT0012
– ident: CIT0019
  doi: 10.1111/j.1600-0870.2007.00255.x
– ident: CIT0025
  doi: 10.3402/tellusa.v38i2.11706
– ident: CIT0052
  doi: 10.1175/1520-0469(1996)053<1123:GAFPPW>2.0.CO;2
– ident: CIT0027
  doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
– ident: CIT0014
  doi: 10.1029/94JC00572
– ident: CIT0036
  doi: 10.1175/1520-0493(2004)132<2054:TDAODB>2.0.CO;2
– ident: CIT0006
  doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
– ident: CIT0037
  doi: 10.1029/2006JD007994
– year: 2014
  ident: CIT0053
  publication-title: Tellus A
– ident: CIT0004
  doi: 10.1175/1520-0493(2004)132<0929:IOMPWI>2.0.CO;2
– ident: CIT0020
  doi: 10.1175/MWR3199.1
– ident: CIT0045
  doi: 10.5194/acp-14-13281-2014
– ident: CIT0030
  doi: 10.1016/S0895-7177(00)00240-5
– ident: CIT0039
  doi: 10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2
– ident: CIT0041
  doi: 10.3402/tellusa.v64i0.18375
– ident: CIT0021
  doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
– ident: CIT0035
  doi: 10.1029/2012JD017684
– ident: CIT0034
  doi: 10.3402/tellusa.v56i5.14462
– ident: CIT0051
  doi: 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
– ident: CIT0011
  doi: 10.1002/qj.49712051912
– ident: CIT0046
  doi: 10.1111/j.1600-0870.2011.00529.x
– ident: CIT0018
  doi: 10.1175/MWR3394.1
– ident: CIT0015
  doi: 10.1007/s10236-004-0099-2
– ident: CIT0013
  doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
– ident: CIT0029
  doi: 10.1256/qj.02.132
– ident: CIT0008
  doi: 10.1111/j.1600-0870.2009.00442.x
– ident: CIT0005
  doi: 10.1175/MWR3021.1
– ident: CIT0026
  doi: 10.3402/tellusa.v37i4.11675
– ident: CIT0023
  doi: 10.1016/j.physd.2006.11.008
– ident: CIT0028
  doi: 10.1175/2008MWR2312.1
– ident: CIT0016
  doi: 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
– ident: CIT0031
  doi: 10.1090/qam/1939004
– ident: CIT0042
  doi: 10.1029/2008JD010358
– ident: CIT0032
  doi: 10.3402/tellusa.v65i0.18541
– ident: CIT0002
  doi: 10.1256/qj.06.07
– ident: CIT0009
  doi: 10.1002/qj.2054
– ident: CIT0003
  doi: 10.1175/MWR2909.1
– ident: CIT0043
  doi: 10.1029/2010JD014370
– ident: CIT0055
  doi: 10.1007/s00376-009-0001-8
– volume-title: A Description of the Advanced Research WRF Version 3
  ident: CIT0040
– ident: CIT0048
  doi: 10.1175/2008MWR2444.1
– ident: CIT0033
  doi: 10.1029/97JD00237
– ident: CIT0001
  doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
– ident: CIT0022
  doi: 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
– ident: CIT0024
  doi: 10.1175/1520-0493(2000)128<1971:DAIAPE>2.0.CO;2
SSID ssj0001963
Score 2.2642646
Snippet This paper presents a novel non-linear least squares enhanced proper orthogonal decomposition (POD)-based 4DVar algorithm (referred as NLS-4DVar) for the...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25340
SubjectTerms 4DVar
Algorithms
Computer simulation
Data assimilation
Data collection
Experiments
Gauss-Newton method
Iterative methods
Least squares method
Mathematical models
Meteorology
Methods
non-linear ensemble
non-linear least squares
Nonlinearity
observing system simulation experiments
Oceanography
Perturbation methods
Rain
Remote sensing
Weather forecasting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELaqnnpBUEAslMpIiEMlt-vn2sfShyqk0B4o6s2yvTaNlCYl2fT3d-zdRBFI4cJx17Oydzz2fDNjzyD0OQSvtWwCAd2piGgdJc54T1IAdJxrcNQy33cefVdXt-LbnbzbKPWVz4T16YF7xp0kpQxPlOuYjJBtMso1TKjEHKeJ8ZJsG3Teypga9uAsV30Mk4OBdJIvZCwX7vhJNcdM8uzp2NBCJVn_H6lK_9qai765fIleDEARn_YDfIV24nQfVSPAuLN5cYXjL_hsMgbAWZ5eo9EpBlOeZNjo5niSa_Lgxe9lvl-E4_S-RPrxzfU5Eec_gcBNfs3m4-7-AcNwcD4oigFHjx_G_eG4N-j28uLH2RUZiiWQIGvakdQ6sBS4YJGZJglPWWpF45WRznsWfVKBt9wFGllULiVo91FGIYNwWrQ1f4t2YZTxHcLeaOlNw00bjOCB-pZTETXoulqlEE2F6hXzbBgyieeCFhMLFkXmtx34bYHftvC7QkfrTx77NBrbiL_mGVkT5gzY5QXIhR3kwv5LLiokN-fTdsUBkvpqJZZv6fxgNfF2WM4LSwHFcCG10RX6tG6GhZijK24aZ8tCo3Mhby230TSw_zXQ-_v_8Y8f0B7gN9l7hA7Qbjdfxo-AkTp_WJbDM_ioEls
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0IJy4YLKS4SWykiIA5JL_Ix9LC3VCmmBA0XlZNmO3a603aXZbL-fsZOuykN74Bh7LDsznpc9nkHoTQhea9kEArpTEdE6SpzxnqQA1nGuwVHL_N55-llNzsSnc3k-xuasxrDK7EOnIVFEkdWZuZ0vFUg4uDvv8_OK9cod3qjmkElouo8esLxTYTvXPyYbQZw313CR-e9hv6mikrH_j3ylf8nnonROd9Gj0VrERwN5H6N7cfEEVVMwdJddOQ_Hb_HxfAZWZ_l6iqZHGPx5kn_KdXieC_Pg1fU6PzLCcXFZrvvx1y8nRJx8BwA3v1h2s_7yCsNycI4WxWBMz65mQ4TcM3R2-vHb8YSMFRNIkDXtSWoduAtcsMhMk4SnLLWi8cpI5z2LPqnAW-4CjSwqlxL0-yijkEE4LdqaP0c7sMr4AmFvtPSm4aYNRvBAfcupiBoUXq1SiKZC9S3ybBjTieeqFnMLbkXGtx3xbQHftuC7Qu82Q34OuTS2AX_IFNkA5jTYpWHZXdiRq2xSyvBEuY7JCNkmo1zDhErMcZoYVxWSd-lp-3IKkoaSJZZvmXz_lvB25OmVpWDKcCG10RV6vekGbsxXLG4Rl-sCo3M1by23wTQgBBuY_eV_Lm8PPQS7TQ4nQftop-_W8RXYRr0_KBzwCxNLEa8
  priority: 102
  providerName: Taylor & Francis
Title A non-linear least squares enhanced POD-4DVar algorithm for data assimilation
URI https://www.tandfonline.com/doi/abs/10.3402/tellusa.v67.25340
https://www.proquest.com/docview/1661345898
https://www.proquest.com/docview/1668249585
https://www.proquest.com/docview/1677947310
https://doaj.org/article/f6693f138ef945df96a7246f2a31f236
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdr-7KXsU_mrg0ajD0M1NrWh6Wn0k_CIF0Z6-iehCRLbSBN2sTZ37-TrGRlgzzaOiP5JN397k66Q-iTc1ZK3jgCulMQ1pqKGGUtCQ7QcazBUfJ433l0KYbX7OsNv8kOt0U-VrmSiUlQtzMXfeSHFSgSyrhU8ujhkcSqUTG6mktobKEdEMESjK-dk_PLq-9rWRzXVx_LpGAoHcaLGcuFOfgtmoOa0-jxeKKNUtL-f1KW_ieik965eIleZMCIj_sZfoWe-elrVIwA687mySWOP-PTyRiAZ3p6g0bHGEx6EuGjmeNJrM2DF4_LeM8I--ldivjjq29nhJ39BAIzuYXf7O7uMQwHxwOjGPD0-H7cH5J7i64vzn-cDkkumkAcL6uOhNaAxUBZ7WvVBGarOrSssUJxY23tbRCOttS4ytdemBCg3XruGXfMSNaW9B3ahlH69whbJblVDVWtU4y6yra0Yl6CzitFcF4VqFwxT7ucUTwWtphosCwiv3XmtwZ-68TvAn1Zf_LQp9PYRHwSZ2RNGDNhpxez-a3OG0sHIRQNFZU-KMbboIRpaiZCbWgVaioKxJ_Op-6SIyT0VUs03dD53mridd7WC_13ERbo47oZNmSMspipny0TjYwFvSXfRNOAHGyg993N3XxAzwGh8d7ns4e2u_nS7wMK6uwAbZW_hoO84AfJl_AHmLANtQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXxFMEChgJOCClTfxKfECo7bba0u5SoRb1ZmzHblfaJu0-QPwpfiPjPJYKpL31mHgSW-PxzOfx40PorbUmz3lmY4idImaFTmMtjYm9BXQcODgSHs47D0dicMo-n_GzNfS7OwsTtlV2PrF21EVlQ458K4VAQhnPZf7p6joOrFFhdbWj0GjM4tD9-glTttnHgz707ztC9vdOdgdxyyoQW56k89gXGiA1ZcQRmXlmUuILlhkhuTaGOOOFpQXVNnXECe09lBvHHeOW6ZwVCYX_3kHrjMJUpofWd_ZGx1-Xvj_Yc7N2SmFithUOgixmevOHyDYJpyHDciP61SQB_1yR-l9IqOPc_gN0vwWoeLuxqIdozZWPUDQEbF1N6xQ8fo93J2MAuvXTYzTcxmVVxgGu6imeBC4gPLtehHNN2JUX9Q4DfPylH7P-NxDQk3NQ6_ziEkNzcNigigG_jy_Hzaa8J-j0VtT5FPWgle4Zwkbm3MiMysJKRm1qCpoyl0OMTYS3TkYo6ZSnbHuDeSDSmCiYyQR9q1bfCvStan1H6MPyk6vm-o5VwjuhR5aC4ebt-kU1PVftQFZeCEl9SnPnJeOFl0JnhAlPNE09oSJC_GZ_qnmdePENS4qiKyrf6DpetW5kpv4afYTeLIvBAYRVHV26alHL5IFAPOerZDLwuxnU_nx1Na_R3cHJ8EgdHYwOX6B7gA55k2_aQL35dOFeAgKbm1et2WP0_bZH2h_uJUrx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhMx0IIiIS6ovMRCASMhDkguu-vH2sfSEIVHSg8UlZPlZxspTcpm0-9n7N1GvJQDx7XHsnfG87LHMwi9cs5KyRtHQHcKwrypiFHWkujAOk41OEqe3jtPj8TkhH085adDbM5qCKtMPnTsE0VkWZ2Y-9LHxOAU3J236XnFemX2r0SzX3NouolucQl6HrZz-X2yEcRpc_UXmf8e9psqyhn7_8hX-pd8zkpnvIvuDtYiPujJew_dCIv7qJiCobts83k4fo0P5zOwOvPXAzQ9wODPk_RTpsXzVJgHr36s0yMjHBbn-bofH38ZETb6BgBmfrZsZ935BYbl4BQtisGYnl3M-gi5h-hk_P7r4YQMFROI42XVkegNuAuU1aFWTWS2qqNnjRWKG2vrYKNw1FPjqlAHYWKEfht4YNwxI5kv6SO0A6sMjxG2SnKrGqq8U4y6ynpasSBB4ZUiuqAKVF4jT7shnXiqajHX4FYkfOsB3xrwrTO-C_RmM-Syz6WxDfhdosgGMKXBzg3L9kwPXKWjEIrGisoQFeM-KmGamolYG1rFmooC8V_pqbt8ChL7kiWabpl875rweuDpla7AlKEMNpos0MtNN3BjumIxi7BcZxiZqnlLvg2mASHYwOxP_nN5L9Dt49FYf_5w9OkpugMmHO8PhfbQTteuwzMwkzr7PDPDTzmsFFU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+non-linear+least+squares+enhanced+POD-4DVar+algorithm+for+data+assimilation&rft.jtitle=Tellus.+Series+A%2C+Dynamic+meteorology+and+oceanography&rft.au=Tian%2C+Xiangjun&rft.au=Feng%2C+Xiaobing&rft.date=2015-01-01&rft.pub=Ubiquity+Press&rft.eissn=1600-0870&rft.volume=67&rft_id=info:doi/10.3402%2Ftellusa.v67.25340&rft.externalDocID=3618000191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1600-0870&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1600-0870&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1600-0870&client=summon