A non-linear least squares enhanced POD-4DVar algorithm for data assimilation
This paper presents a novel non-linear least squares enhanced proper orthogonal decomposition (POD)-based 4DVar algorithm (referred as NLS-4DVar) for the non-linear ensemble-based 4DVar. In the algorithm, the Gauss-Newton iterative method is employed to handle the non-quadratic non-linearity of the...
Saved in:
Published in | Tellus. Series A, Dynamic meteorology and oceanography Vol. 67; no. 1; pp. 25340 - 12 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Stockholm
Taylor & Francis
01.01.2015
Ubiquity Press Stockholm University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a novel non-linear least squares enhanced proper orthogonal decomposition (POD)-based 4DVar algorithm (referred as NLS-4DVar) for the non-linear ensemble-based 4DVar. In the algorithm, the Gauss-Newton iterative method is employed to handle the non-quadratic non-linearity of the 4DVar cost function while the overall structure of the algorithm still resembles the original POD-4DVar algorithm. It is proved that the original POD-4DVar algorithm is a special case of the proposed NLS-4DVar algorithm under the assumption of the linear relationship between the model perturbations (MPs) and the simulated observation perturbations (OPs). Under the assumption it is also shown that the solution of POD-4DVar algorithm coincides with the solution of the proposed NLS-4DVar algorithm. On the contrary, if the linear relationship assumption is dropped, the solution of the POD-4DVar algorithm is only the first iteration of the proposed NLS-4DVar algorithm. As a result, our analysis provides an explanation for the degraded and inaccurate performance of the POD-4DVar algorithm when the underlying forecast model or (and) the observation operator is strongly non-linear. The potential merits and advantages of the proposed NLS-4DVar are demonstrated by a group of Observing System Simulation Experiments with Advanced Research WRF (ARW) using accumulated rainfall-observations. |
---|---|
AbstractList | This paper presents a novel non-linear least squares enhanced proper orthogonal decomposition (POD)-based 4DVar algorithm (referred as NLS-4DVar) for the non-linear ensemble-based 4DVar. In the algorithm, the Gauss-Newton iterative method is employed to handle the non-quadratic non-linearity of the 4DVar cost function while the overall structure of the algorithm still resembles the original POD-4DVar algorithm. It is proved that the original POD-4DVar algorithm is a special case of the proposed NLS-4DVar algorithm under the assumption of the linear relationship between the model perturbations (MPs) and the simulated observation perturbations (OPs). Under the assumption it is also shown that the solution of POD-4DVar algorithm coincides with the solution of the proposed NLS-4DVar algorithm. On the contrary, if the linear relationship assumption is dropped, the solution of the POD-4DVar algorithm is only the first iteration of the proposed NLS-4DVar algorithm. As a result, our analysis provides an explanation for the degraded and inaccurate performance of the POD-4DVar algorithm when the underlying forecast model or (and) the observation operator is strongly non-linear. The potential merits and advantages of the proposed NLS-4DVar are demonstrated by a group of Observing System Simulation Experiments with Advanced Research WRF (ARW) using accumulated rainfall-observations. |
Author | Feng, Xiaobing Tian, Xiangjun |
Author_xml | – sequence: 1 givenname: Xiangjun surname: Tian fullname: Tian, Xiangjun email: tianxj@mail.iap.ac.cn organization: ICCES Institute of Atmospheric Physics, Chinese Academy of Sciences – sequence: 2 givenname: Xiaobing surname: Feng fullname: Feng, Xiaobing organization: Department of Mathematics The University of Tennessee |
BookMark | eNqNkU1rFTEUhgepYFv9Ae4G3LiZa75nAm5K60ehUhfqNpzJnLS5ZCZtkqn035veW0QKiquEk-d9Iec5ag6WuGDTvKZkwwVh7wqGsGbY3Kl-w2QdPWsOqSKkI0NPDv64v2iOct4SQqhW_LD5ctLWpi74BSG1ASGXNt-ukDC3uFzDYnFqv16edeLsRwUgXMXky_XcupjaCQq0kLOffYDi4_Kyee4gZHz1eB433z9--Hb6ubu4_HR-enLRWUlo6dwEA1NcMGS6d2KkzE2iH5WWMI4MR6csnzhYigwVOFffR5QopBUwiInw4-Z83ztF2Jqb5GdI9yaCN7tBTFcGUvE2oHFKae4oH9BpISenFfRMKMeAU8e4ql1v9103Kd6umIuZfbZ1nbBgXLOhqu-16Dkl_4GqgQktB1nRN0_QbVzTUpfyQFEu5KCHStE9ZVPMOaH7_RdKzINX8-jVVK9m57Vm-icZ68tu-yWBD_9Mvt8n_VLtzfAzpjCZAvchJpeqap8N_3v8F5bxwPM |
CitedBy_id | crossref_primary_10_1016_j_jmaa_2023_127271 crossref_primary_10_1007_s00376_020_9252_1 crossref_primary_10_1016_j_aosl_2023_100441 crossref_primary_10_3390_atmos14050866 crossref_primary_10_1016_j_jmaa_2022_126169 crossref_primary_10_5194_essd_16_2857_2024 crossref_primary_10_1007_s00376_019_9001_5 crossref_primary_10_1007_s11430_022_1036_7 crossref_primary_10_1016_j_camwa_2023_04_033 crossref_primary_10_1002_mma_7275 crossref_primary_10_1007_s00376_020_9274_8 crossref_primary_10_1007_s00376_023_2334_0 crossref_primary_10_1093_nsr_nwae223 crossref_primary_10_1029_2020EA001307 crossref_primary_10_1175_WAF_D_17_0169_1 crossref_primary_10_1029_2019EA000735 crossref_primary_10_1029_2021EA001767 crossref_primary_10_1016_j_atmosenv_2021_118896 crossref_primary_10_1029_2022EA002254 crossref_primary_10_1002_qj_2946 crossref_primary_10_1007_s13131_022_1997_1 crossref_primary_10_1029_2017JD027529 crossref_primary_10_1080_02626667_2020_1761021 crossref_primary_10_1360_N072022_0123 crossref_primary_10_1016_j_apr_2021_03_003 crossref_primary_10_1016_j_jenvrad_2017_12_004 crossref_primary_10_1007_s11356_019_04246_7 crossref_primary_10_1016_j_jmaa_2020_124245 crossref_primary_10_1002_num_22619 crossref_primary_10_1007_s00376_019_8203_1 crossref_primary_10_1080_16742834_2019_1671767 crossref_primary_10_1007_s11430_015_0271_4 crossref_primary_10_1175_MWR_D_17_0050_1 crossref_primary_10_1016_j_camwa_2021_05_014 crossref_primary_10_5194_hess_26_6311_2022 crossref_primary_10_1029_2020MS002407 crossref_primary_10_3389_feart_2021_688542 |
Cites_doi | 10.1111/j.1600-0870.2006.00148.x 10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2 10.1175/MWR-D-12-00141.1 10.1029/2008JD011600 10.1175/2008MWR2445.1 10.1007/s00376-009-9122-3 10.1175/1520-0493(1996)124<2859:RATAOC>2.0.CO;2 10.2151/jmsj.80.99 10.1175/MWR-D-11-00023.1 10.1002/qj.49711347813 10.1002/qj.49712555417 10.1111/j.1600-0870.2007.00255.x 10.3402/tellusa.v38i2.11706 10.1175/1520-0469(1996)053<1123:GAFPPW>2.0.CO;2 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2 10.1029/94JC00572 10.1175/1520-0493(2004)132<2054:TDAODB>2.0.CO;2 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 10.1029/2006JD007994 10.1175/1520-0493(2004)132<0929:IOMPWI>2.0.CO;2 10.1175/MWR3199.1 10.5194/acp-14-13281-2014 10.1016/S0895-7177(00)00240-5 10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2 10.3402/tellusa.v64i0.18375 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2 10.1029/2012JD017684 10.3402/tellusa.v56i5.14462 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2 10.1002/qj.49712051912 10.1111/j.1600-0870.2011.00529.x 10.1175/MWR3394.1 10.1007/s10236-004-0099-2 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2 10.1256/qj.02.132 10.1111/j.1600-0870.2009.00442.x 10.1175/MWR3021.1 10.3402/tellusa.v37i4.11675 10.1016/j.physd.2006.11.008 10.1175/2008MWR2312.1 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2 10.1090/qam/1939004 10.1029/2008JD010358 10.3402/tellusa.v65i0.18541 10.1256/qj.06.07 10.1002/qj.2054 10.1175/MWR2909.1 10.1029/2010JD014370 10.1007/s00376-009-0001-8 10.1175/2008MWR2444.1 10.1029/97JD00237 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2 10.1175/1520-0493(2000)128<1971:DAIAPE>2.0.CO;2 |
ContentType | Journal Article |
Copyright | 2015 X. Tian and X. Feng 2015 Copyright Co-Action Publishing 2015 |
Copyright_xml | – notice: 2015 X. Tian and X. Feng 2015 – notice: Copyright Co-Action Publishing 2015 |
DBID | 0YH AAYXX CITATION 3V. 7TN 7XB 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO F1W GNUQQ GUQSH H96 HCIFZ L.G M2O MBDVC PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U 7TG KL. 8FD H8D L7M DOA |
DOI | 10.3402/tellusa.v67.25340 |
DatabaseName | Taylor & Francis Open Access CrossRef ProQuest Central (Corporate) Oceanic Abstracts ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student ProQuest Research Library Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest research library Research Library (Corporate) Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest Central Basic ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: (Open Access) Taylor & Francis url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Oceanography |
EISSN | 1600-0870 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_f6693f138ef945df96a7246f2a31f236 3618000191 10_3402_tellusa_v67_25340 11817103 |
Genre | Research Article |
GroupedDBID | -DZ -~X 0YH 123 1OC 29Q 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 702 7PT 8-1 8CJ 8FE 8FH 8G5 8UM 8WT ABCQN ABDBF ABUWG ACGFS ACUHS ADBBV AEUYN AFEBI AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BCNDV BENPR BHPHI BKSAR BPHCQ BY8 CAG CCPQU CS3 D1J D1K DCZOG DWQXO EAD EAP EBS EDH EJD EMK EPL EST ESX FRJ GNUQQ GROUPED_DOAJ GUQSH H13 HCIFZ HZI I-F IHE IPNFZ IX1 K48 K6- KQ8 KWQ LC2 LC3 LK5 LP6 LP7 M2O M4Z M7R MK4 N9A OK1 P2P P4D PCBAR PIMPY PQQKQ PROAC Q11 RIG RNS SUPJJ TDBHL TFW TN5 TUS W99 WQJ XSW ~02 AAYXX CITATION PHGZM PHGZT 3V. 7TN 7XB 8FK F1W H96 L.G MBDVC PKEHL PQEST PQUKI Q9U 7TG KL. 8FD H8D L7M PUEGO |
ID | FETCH-LOGICAL-c501t-fda826342e297f4b12fd47b695abb2ebf6c3d3ac1e2e6aff12fbe5e45c4a84d03 |
IEDL.DBID | BENPR |
ISSN | 1600-0870 |
IngestDate | Wed Aug 27 00:27:46 EDT 2025 Fri Jul 11 15:49:11 EDT 2025 Fri Jul 11 10:42:50 EDT 2025 Mon Jun 30 14:53:39 EDT 2025 Tue Jul 01 01:05:35 EDT 2025 Thu Apr 24 22:59:54 EDT 2025 Wed Dec 25 09:07:26 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-fda826342e297f4b12fd47b695abb2ebf6c3d3ac1e2e6aff12fbe5e45c4a84d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1661345898?pq-origsite=%requestingapplication% |
PQID | 1661345898 |
PQPubID | 2030036 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1677947310 informaworld_taylorfrancis_310_3402_tellusa_v67_25340 crossref_primary_10_3402_tellusa_v67_25340 doaj_primary_oai_doaj_org_article_f6693f138ef945df96a7246f2a31f236 proquest_miscellaneous_1668249585 proquest_journals_1661345898 crossref_citationtrail_10_3402_tellusa_v67_25340 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Stockholm |
PublicationPlace_xml | – name: Stockholm |
PublicationTitle | Tellus. Series A, Dynamic meteorology and oceanography |
PublicationYear | 2015 |
Publisher | Taylor & Francis Ubiquity Press Stockholm University Press |
Publisher_xml | – name: Taylor & Francis – name: Ubiquity Press – name: Stockholm University Press |
References | CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 CIT0036 CIT0035 CIT0038 CIT0037 Skamarock W. C. (CIT0040) CIT0039 CIT0041 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 Zhang B. (CIT0053) 2014 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0056 CIT0011 CIT0055 Dennis J. E. Jr. (CIT0012) CIT0014 CIT0013 CIT0057 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0023 CIT0022 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0038 doi: 10.1111/j.1600-0870.2006.00148.x – ident: CIT0054 doi: 10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2 – ident: CIT0050 doi: 10.1175/MWR-D-12-00141.1 – ident: CIT0044 doi: 10.1029/2008JD011600 – ident: CIT0049 doi: 10.1175/2008MWR2445.1 – ident: CIT0047 doi: 10.1007/s00376-009-9122-3 – ident: CIT0057 doi: 10.1175/1520-0493(1996)124<2859:RATAOC>2.0.CO;2 – ident: CIT0007 doi: 10.2151/jmsj.80.99 – ident: CIT0056 doi: 10.1175/MWR-D-11-00023.1 – ident: CIT0010 doi: 10.1002/qj.49711347813 – ident: CIT0017 doi: 10.1002/qj.49712555417 – volume-title: Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Classics in Applied Mathematics) ident: CIT0012 – ident: CIT0019 doi: 10.1111/j.1600-0870.2007.00255.x – ident: CIT0025 doi: 10.3402/tellusa.v38i2.11706 – ident: CIT0052 doi: 10.1175/1520-0469(1996)053<1123:GAFPPW>2.0.CO;2 – ident: CIT0027 doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2 – ident: CIT0014 doi: 10.1029/94JC00572 – ident: CIT0036 doi: 10.1175/1520-0493(2004)132<2054:TDAODB>2.0.CO;2 – ident: CIT0006 doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 – ident: CIT0037 doi: 10.1029/2006JD007994 – year: 2014 ident: CIT0053 publication-title: Tellus A – ident: CIT0004 doi: 10.1175/1520-0493(2004)132<0929:IOMPWI>2.0.CO;2 – ident: CIT0020 doi: 10.1175/MWR3199.1 – ident: CIT0045 doi: 10.5194/acp-14-13281-2014 – ident: CIT0030 doi: 10.1016/S0895-7177(00)00240-5 – ident: CIT0039 doi: 10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2 – ident: CIT0041 doi: 10.3402/tellusa.v64i0.18375 – ident: CIT0021 doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2 – ident: CIT0035 doi: 10.1029/2012JD017684 – ident: CIT0034 doi: 10.3402/tellusa.v56i5.14462 – ident: CIT0051 doi: 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2 – ident: CIT0011 doi: 10.1002/qj.49712051912 – ident: CIT0046 doi: 10.1111/j.1600-0870.2011.00529.x – ident: CIT0018 doi: 10.1175/MWR3394.1 – ident: CIT0015 doi: 10.1007/s10236-004-0099-2 – ident: CIT0013 doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2 – ident: CIT0029 doi: 10.1256/qj.02.132 – ident: CIT0008 doi: 10.1111/j.1600-0870.2009.00442.x – ident: CIT0005 doi: 10.1175/MWR3021.1 – ident: CIT0026 doi: 10.3402/tellusa.v37i4.11675 – ident: CIT0023 doi: 10.1016/j.physd.2006.11.008 – ident: CIT0028 doi: 10.1175/2008MWR2312.1 – ident: CIT0016 doi: 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2 – ident: CIT0031 doi: 10.1090/qam/1939004 – ident: CIT0042 doi: 10.1029/2008JD010358 – ident: CIT0032 doi: 10.3402/tellusa.v65i0.18541 – ident: CIT0002 doi: 10.1256/qj.06.07 – ident: CIT0009 doi: 10.1002/qj.2054 – ident: CIT0003 doi: 10.1175/MWR2909.1 – ident: CIT0043 doi: 10.1029/2010JD014370 – ident: CIT0055 doi: 10.1007/s00376-009-0001-8 – volume-title: A Description of the Advanced Research WRF Version 3 ident: CIT0040 – ident: CIT0048 doi: 10.1175/2008MWR2444.1 – ident: CIT0033 doi: 10.1029/97JD00237 – ident: CIT0001 doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 – ident: CIT0022 doi: 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2 – ident: CIT0024 doi: 10.1175/1520-0493(2000)128<1971:DAIAPE>2.0.CO;2 |
SSID | ssj0001963 |
Score | 2.2642646 |
Snippet | This paper presents a novel non-linear least squares enhanced proper orthogonal decomposition (POD)-based 4DVar algorithm (referred as NLS-4DVar) for the... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 25340 |
SubjectTerms | 4DVar Algorithms Computer simulation Data assimilation Data collection Experiments Gauss-Newton method Iterative methods Least squares method Mathematical models Meteorology Methods non-linear ensemble non-linear least squares Nonlinearity observing system simulation experiments Oceanography Perturbation methods Rain Remote sensing Weather forecasting |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELaqnnpBUEAslMpIiEMlt-vn2sfShyqk0B4o6s2yvTaNlCYl2fT3d-zdRBFI4cJx17Oydzz2fDNjzyD0OQSvtWwCAd2piGgdJc54T1IAdJxrcNQy33cefVdXt-LbnbzbKPWVz4T16YF7xp0kpQxPlOuYjJBtMso1TKjEHKeJ8ZJsG3Teypga9uAsV30Mk4OBdJIvZCwX7vhJNcdM8uzp2NBCJVn_H6lK_9qai765fIleDEARn_YDfIV24nQfVSPAuLN5cYXjL_hsMgbAWZ5eo9EpBlOeZNjo5niSa_Lgxe9lvl-E4_S-RPrxzfU5Eec_gcBNfs3m4-7-AcNwcD4oigFHjx_G_eG4N-j28uLH2RUZiiWQIGvakdQ6sBS4YJGZJglPWWpF45WRznsWfVKBt9wFGllULiVo91FGIYNwWrQ1f4t2YZTxHcLeaOlNw00bjOCB-pZTETXoulqlEE2F6hXzbBgyieeCFhMLFkXmtx34bYHftvC7QkfrTx77NBrbiL_mGVkT5gzY5QXIhR3kwv5LLiokN-fTdsUBkvpqJZZv6fxgNfF2WM4LSwHFcCG10RX6tG6GhZijK24aZ8tCo3Mhby230TSw_zXQ-_v_8Y8f0B7gN9l7hA7Qbjdfxo-AkTp_WJbDM_ioEls priority: 102 providerName: Directory of Open Access Journals – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0IJy4YLKS4SWykiIA5JL_Ix9LC3VCmmBA0XlZNmO3a603aXZbL-fsZOuykN74Bh7LDsznpc9nkHoTQhea9kEArpTEdE6SpzxnqQA1nGuwVHL_N55-llNzsSnc3k-xuasxrDK7EOnIVFEkdWZuZ0vFUg4uDvv8_OK9cod3qjmkElouo8esLxTYTvXPyYbQZw313CR-e9hv6mikrH_j3ylf8nnonROd9Gj0VrERwN5H6N7cfEEVVMwdJddOQ_Hb_HxfAZWZ_l6iqZHGPx5kn_KdXieC_Pg1fU6PzLCcXFZrvvx1y8nRJx8BwA3v1h2s_7yCsNycI4WxWBMz65mQ4TcM3R2-vHb8YSMFRNIkDXtSWoduAtcsMhMk4SnLLWi8cpI5z2LPqnAW-4CjSwqlxL0-yijkEE4LdqaP0c7sMr4AmFvtPSm4aYNRvBAfcupiBoUXq1SiKZC9S3ybBjTieeqFnMLbkXGtx3xbQHftuC7Qu82Q34OuTS2AX_IFNkA5jTYpWHZXdiRq2xSyvBEuY7JCNkmo1zDhErMcZoYVxWSd-lp-3IKkoaSJZZvmXz_lvB25OmVpWDKcCG10RV6vekGbsxXLG4Rl-sCo3M1by23wTQgBBuY_eV_Lm8PPQS7TQ4nQftop-_W8RXYRr0_KBzwCxNLEa8 priority: 102 providerName: Taylor & Francis |
Title | A non-linear least squares enhanced POD-4DVar algorithm for data assimilation |
URI | https://www.tandfonline.com/doi/abs/10.3402/tellusa.v67.25340 https://www.proquest.com/docview/1661345898 https://www.proquest.com/docview/1668249585 https://www.proquest.com/docview/1677947310 https://doaj.org/article/f6693f138ef945df96a7246f2a31f236 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdr-7KXsU_mrg0ajD0M1NrWh6Wn0k_CIF0Z6-iehCRLbSBN2sTZ37-TrGRlgzzaOiP5JN397k66Q-iTc1ZK3jgCulMQ1pqKGGUtCQ7QcazBUfJ433l0KYbX7OsNv8kOt0U-VrmSiUlQtzMXfeSHFSgSyrhU8ujhkcSqUTG6mktobKEdEMESjK-dk_PLq-9rWRzXVx_LpGAoHcaLGcuFOfgtmoOa0-jxeKKNUtL-f1KW_ieik965eIleZMCIj_sZfoWe-elrVIwA687mySWOP-PTyRiAZ3p6g0bHGEx6EuGjmeNJrM2DF4_LeM8I--ldivjjq29nhJ39BAIzuYXf7O7uMQwHxwOjGPD0-H7cH5J7i64vzn-cDkkumkAcL6uOhNaAxUBZ7WvVBGarOrSssUJxY23tbRCOttS4ytdemBCg3XruGXfMSNaW9B3ahlH69whbJblVDVWtU4y6yra0Yl6CzitFcF4VqFwxT7ucUTwWtphosCwiv3XmtwZ-68TvAn1Zf_LQp9PYRHwSZ2RNGDNhpxez-a3OG0sHIRQNFZU-KMbboIRpaiZCbWgVaioKxJ_Op-6SIyT0VUs03dD53mridd7WC_13ERbo47oZNmSMspipny0TjYwFvSXfRNOAHGyg993N3XxAzwGh8d7ns4e2u_nS7wMK6uwAbZW_hoO84AfJl_AHmLANtQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXxFMEChgJOCClTfxKfECo7bba0u5SoRb1ZmzHblfaJu0-QPwpfiPjPJYKpL31mHgSW-PxzOfx40PorbUmz3lmY4idImaFTmMtjYm9BXQcODgSHs47D0dicMo-n_GzNfS7OwsTtlV2PrF21EVlQ458K4VAQhnPZf7p6joOrFFhdbWj0GjM4tD9-glTttnHgz707ztC9vdOdgdxyyoQW56k89gXGiA1ZcQRmXlmUuILlhkhuTaGOOOFpQXVNnXECe09lBvHHeOW6ZwVCYX_3kHrjMJUpofWd_ZGx1-Xvj_Yc7N2SmFithUOgixmevOHyDYJpyHDciP61SQB_1yR-l9IqOPc_gN0vwWoeLuxqIdozZWPUDQEbF1N6xQ8fo93J2MAuvXTYzTcxmVVxgGu6imeBC4gPLtehHNN2JUX9Q4DfPylH7P-NxDQk3NQ6_ziEkNzcNigigG_jy_Hzaa8J-j0VtT5FPWgle4Zwkbm3MiMysJKRm1qCpoyl0OMTYS3TkYo6ZSnbHuDeSDSmCiYyQR9q1bfCvStan1H6MPyk6vm-o5VwjuhR5aC4ebt-kU1PVftQFZeCEl9SnPnJeOFl0JnhAlPNE09oSJC_GZ_qnmdePENS4qiKyrf6DpetW5kpv4afYTeLIvBAYRVHV26alHL5IFAPOerZDLwuxnU_nx1Na_R3cHJ8EgdHYwOX6B7gA55k2_aQL35dOFeAgKbm1et2WP0_bZH2h_uJUrx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhMx0IIiIS6ovMRCASMhDkguu-vH2sfSEIVHSg8UlZPlZxspTcpm0-9n7N1GvJQDx7XHsnfG87LHMwi9cs5KyRtHQHcKwrypiFHWkujAOk41OEqe3jtPj8TkhH085adDbM5qCKtMPnTsE0VkWZ2Y-9LHxOAU3J236XnFemX2r0SzX3NouolucQl6HrZz-X2yEcRpc_UXmf8e9psqyhn7_8hX-pd8zkpnvIvuDtYiPujJew_dCIv7qJiCobts83k4fo0P5zOwOvPXAzQ9wODPk_RTpsXzVJgHr36s0yMjHBbn-bofH38ZETb6BgBmfrZsZ935BYbl4BQtisGYnl3M-gi5h-hk_P7r4YQMFROI42XVkegNuAuU1aFWTWS2qqNnjRWKG2vrYKNw1FPjqlAHYWKEfht4YNwxI5kv6SO0A6sMjxG2SnKrGqq8U4y6ynpasSBB4ZUiuqAKVF4jT7shnXiqajHX4FYkfOsB3xrwrTO-C_RmM-Syz6WxDfhdosgGMKXBzg3L9kwPXKWjEIrGisoQFeM-KmGamolYG1rFmooC8V_pqbt8ChL7kiWabpl875rweuDpla7AlKEMNpos0MtNN3BjumIxi7BcZxiZqnlLvg2mASHYwOxP_nN5L9Dt49FYf_5w9OkpugMmHO8PhfbQTteuwzMwkzr7PDPDTzmsFFU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+non-linear+least+squares+enhanced+POD-4DVar+algorithm+for+data+assimilation&rft.jtitle=Tellus.+Series+A%2C+Dynamic+meteorology+and+oceanography&rft.au=Tian%2C+Xiangjun&rft.au=Feng%2C+Xiaobing&rft.date=2015-01-01&rft.pub=Ubiquity+Press&rft.eissn=1600-0870&rft.volume=67&rft_id=info:doi/10.3402%2Ftellusa.v67.25340&rft.externalDocID=3618000191 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1600-0870&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1600-0870&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1600-0870&client=summon |