Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP
Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionellapneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rabl specific with a ca...
Saved in:
Published in | Cell research Vol. 23; no. 6; pp. 775 - 787 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionellapneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rabl specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313.618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rabl-GDP-AIF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rabl binding, which induces Rabl Gin70 side-chain flipping towards GDP-AIF3 through a strong ionic interaction. This conformationally rearranged Gin70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens. |
---|---|
AbstractList | Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionellapneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rabl specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313.618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rabl-GDP-AIF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rabl binding, which induces Rabl Gin70 side-chain flipping towards GDP-AIF3 through a strong ionic interaction. This conformationally rearranged Gin70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens. Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila . We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB 313-618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF 3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF 3 through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis -glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens. Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB sub(313-618) alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF sub(3) support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF sub(3) through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens. Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313-618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF3 through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens. Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313-618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF3 through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens.Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313-618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF3 through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens. |
Author | Qin Yu Liyan Hu Qing Yao Yongqun Zhu Na Dong Da-Cheng Wang Feng Shao |
AuthorAffiliation | National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beij'ing 100101, China Na- tional Institute of Biological Sciences, ~7 Science Park Rd, Zhongguancun Life Science Park, Beijing 102206, China Life Sci- ences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China Graduate University of Chinese Academy of Sciences, Beijing 100049, China |
Author_xml | – sequence: 1 givenname: Qin surname: Yu fullname: Yu, Qin organization: National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, National Institute of Biological Sciences, Graduate University of Chinese Academy of Sciences – sequence: 2 givenname: Liyan surname: Hu fullname: Hu, Liyan organization: National Institute of Biological Sciences – sequence: 3 givenname: Qing surname: Yao fullname: Yao, Qing organization: National Institute of Biological Sciences – sequence: 4 givenname: Yongqun surname: Zhu fullname: Zhu, Yongqun organization: Life Sciences Institute, Zhejiang University – sequence: 5 givenname: Na surname: Dong fullname: Dong, Na email: dongna@nibs.ac.cn organization: National Institute of Biological Sciences – sequence: 6 givenname: Da-Cheng surname: Wang fullname: Wang, Da-Cheng email: dcwang@ibp.ac.cn organization: National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences – sequence: 7 givenname: Feng surname: Shao fullname: Shao, Feng email: shaofeng@nibs.ac.cn organization: National Institute of Biological Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23588383$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URB-w4QcgIzYIlMHPONkglQoK0kggHmvLcZwZlySe2k6r-fe90UyrUnXBypb9neNzfe8xOhjD6BB6ScmCEl59sHHBCOULKZ6gI6pEVaiKVwewJ4QWpCTsEB2ndEEIk0LSZ-iQcVkBwo_Q-leOk81TND02o-m3ySUcOrx0Kw-v9L2B7eYTju7KzQge3TU-P_2Bu9C3OK9NxtZk0GVvTd9v8eAHbxN2018TtwFO8U-TQPAcPe1Mn9yL_XqC_nz5_Pvsa7H8fv7t7HRZWEloLlyrjCFlZ2tGBXGSyYY0zLasFoYKWzruuGop5G-o4KUxTcUoM4JyYq3pWn6CPu58N1MzuNa6MUNtehP9AIF0MF7_ezP6tV6FK81LJXhNweDt3iCGy8mlrAef7PwTowtT0pTXdU2FFOo_0FIoolRdA_rmAXoRpggfPlNSyVJAwUC9uh_-LvVtvwAgO8DGkFJ0nbY-mwytglp8rynR80hoG_U8EloKkLx7ILl1fRR-v4MTQOPKxXsxH6Nf763XYVxdguDOW5RUlKoU_AbkYNAr |
CitedBy_id | crossref_primary_10_1002_bip_22833 crossref_primary_10_1002_pro_4282 crossref_primary_10_1038_nmicrobiol_2016_236 crossref_primary_10_1515_hsz_2016_0287 crossref_primary_10_1016_j_chom_2014_09_015 crossref_primary_10_1128_IAI_02763_14 crossref_primary_10_1128_EC_00231_14 crossref_primary_10_1371_journal_pone_0198632 crossref_primary_10_1139_cjm_2015_0166 crossref_primary_10_18632_oncotarget_24073 crossref_primary_10_1016_j_jbc_2021_101340 crossref_primary_10_1111_febs_14314 crossref_primary_10_1016_j_chom_2013_08_010 crossref_primary_10_1099_mic_0_001187 crossref_primary_10_1128_IAI_00153_19 crossref_primary_10_1128_mBio_02420_18 crossref_primary_10_1111_febs_15794 crossref_primary_10_1074_jbc_M113_470625 crossref_primary_10_1128_mbio_00759_23 crossref_primary_10_1186_s12867_019_0122_2 crossref_primary_10_1038_nmicrobiol_2017_13 |
Cites_doi | 10.1126/science.273.5271.115 10.1073/pnas.1114023109 10.1073/pnas.0907725106 10.1107/S0907444909052925 10.1107/S0108767390002379 10.1126/science.277.5324.333 10.1016/j.devcel.2006.05.013 10.1107/S0907444904019158 10.1073/pnas.0914231107 10.1016/j.cell.2012.06.050 10.1016/j.ceb.2010.04.007 10.1038/372276a0 10.1016/j.molcel.2009.11.014 10.1038/nrmicro1967 10.1126/science.1192276 10.1038/ncb1463 10.1152/physrev.00059.2009 10.1099/ijs.0.02455-0 10.1146/annurev-cellbio-100109-104034 10.1107/S0907444996012255 10.1038/embor.2012.211 10.1038/nrm2728 10.1038/nrm1500 10.1038/4156 10.1111/j.1462-5822.2011.01710.x 10.1126/science.1207193 10.1038/nature06336 10.1038/nature04847 10.1126/science.1149121 10.1107/S0021889807021206 10.1107/S0907444910051218 10.1126/science.8073283 10.1038/emboj.2009.347 10.1107/S0907444906022116 |
ContentType | Journal Article |
Copyright | The Author(s) 2013 Copyright Nature Publishing Group Jun 2013 Copyright © 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences |
Copyright_xml | – notice: The Author(s) 2013 – notice: Copyright Nature Publishing Group Jun 2013 – notice: Copyright © 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences |
DBID | 2RA 92L CQIGP W94 WU4 ~WA C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7QL C1K 5PM |
DOI | 10.1038/cr.2013.54 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库-自然科学-生物科学 中文科技期刊数据库- 镜像站点 Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management |
DatabaseTitleList | Bacteriology Abstracts (Microbiology B) MEDLINE MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP Mechanism of Rab1 inactivation by Legionella LepB |
EISSN | 1748-7838 |
EndPage | 787 |
ExternalDocumentID | PMC3674391 2985885161 23588383 10_1038_cr_2013_54 46146764 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -01 -0A -Q- -SA -S~ 0R~ 29B 2B. 2C. 2RA 2WC 36B 39C 3V. 4.4 406 53G 5GY 5VR 5XA 5XB 5XL 6J9 70F 7X7 88E 8FE 8FH 8FI 8FJ 92E 92I 92L 92M 92Q 93N 9D9 9DA AADWK AANZL AATNV AAWBL AAYFA AAYJO AAZLF ABAWZ ABGIJ ABJNI ABUWG ACAOD ACBMV ACBRV ACBYP ACGFO ACGFS ACIGE ACIWK ACKTT ACPRK ACRQY ACTTH ACVWB ACZOJ ADBBV ADFRT ADHDB ADMDM ADQMX ADYYL AEDAW AEFTE AEJRE AENEX AESKC AEVLU AEXYK AFKRA AFNRJ AFRAH AFSHS AFUIB AGEZK AGGBP AGHAI AHMBA AHSBF AILAN AJCLW AJDOV AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMRJV AMYLF AOIJS AXYYD BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C1A CAG CAJEA CAJUS CCEZO CCPQU CCVFK CHBEP COF CQIGP CS3 CW9 DIK DNIVK DPUIP DU5 E3Z EBLON EBS EE. EIOEI EJD EMB EMOBN F5P FA0 FDQFY FERAY FIZPM FSGXE FYUFA GX1 HCIFZ HMCUK HYE HZ~ IWAJR JSO JUIAU JZLTJ KQ8 LK8 M1P M7P NAO NQJWS NXXTH NYICJ O9- OK1 P2P PQQKQ PROAC PSQYO Q-- Q-0 R-A RNS RNT RNTTT RPM RT1 S.. SNX SNYQT SOHCF SRMVM SV3 SWTZT T8Q TAOOD TBHMF TCJ TDRGL TGP TR2 U1F U1G U5A U5K UKHRP W94 WFFXF WU4 XSB ~88 ~WA AACDK AAHBH AASML AAXDM AAYZH ABAKF ABZZP ACMJI AEFQL AEMSY AEUYN AFBBN AGQEE AIGIU ALIPV C6C FIGPU LGEZI LOTEE NADUK ROL SOJ AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 7QL C1K 5PM |
ID | FETCH-LOGICAL-c501t-ed7aa06fc92140e525b0b2cd294a14c6e3e37d1358b1436aab8212a4130ccafd3 |
IEDL.DBID | C6C |
ISSN | 1001-0602 1748-7838 |
IngestDate | Thu Aug 21 18:26:44 EDT 2025 Fri Jul 11 05:34:01 EDT 2025 Fri Jul 11 16:13:39 EDT 2025 Fri Jul 25 09:02:09 EDT 2025 Thu Apr 03 06:57:18 EDT 2025 Tue Jul 01 03:41:31 EDT 2025 Thu Apr 24 22:53:54 EDT 2025 Fri Feb 21 02:38:10 EST 2025 Wed Feb 14 10:43:49 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | TBC GAP type IV secretion system GTPase-activating protein (GAP) Rab GTPases membrane trafficking |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/3.0 This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-ed7aa06fc92140e525b0b2cd294a14c6e3e37d1358b1436aab8212a4130ccafd3 |
Notes | Legionella; Rab GTPases; GTPase-activating protein (GAP); type IV secretion system; TBC GAP; membranetrafficking Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionellapneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rabl specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313.618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rabl-GDP-AIF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rabl binding, which induces Rabl Gin70 side-chain flipping towards GDP-AIF3 through a strong ionic interaction. This conformationally rearranged Gin70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens. 31-1568/Q ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 These three authors contributed equally to this work. |
OpenAccessLink | https://www.nature.com/articles/cr.2013.54 |
PMID | 23588383 |
PQID | 1357564921 |
PQPubID | 536307 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3674391 proquest_miscellaneous_1399914547 proquest_miscellaneous_1364707799 proquest_journals_1357564921 pubmed_primary_23588383 crossref_citationtrail_10_1038_cr_2013_54 crossref_primary_10_1038_cr_2013_54 springer_journals_10_1038_cr_2013_54 chongqing_primary_46146764 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-01 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Cell research |
PublicationTitleAbbrev | Cell Res |
PublicationTitleAlternate | Cell Research |
PublicationYear | 2013 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Mihai Gazdag, Streller, Haneburger (CR27) 2013; 14 Emsley, Cowtan (CR33) 2004; 60 Scheffzek, Ahmadian, Kabsch (CR26) 1997; 277 Stenmark (CR2) 2009; 10 Isberg, O'Connor, Heidtman (CR6) 2009; 7 Machner, Isberg (CR11) 2007; 318 Dong, Zhu, Lu, Hu, Zheng, Shao (CR19) 2012; 150 Cowtan (CR32) 2006; 62 Hutagalung, Novick (CR1) 2011; 91 Suh, Lee, Lee (CR13) 2010; 29 Ingmundson, Delprato, Lambright, Roy (CR18) 2007; 450 Cowtan (CR30) 1994; 31 La Scola, Birtles, Greub, Harrison, Ratcliff, Raoult (CR23) 2004; 54 Barr, Lambright (CR4) 2010; 22 Mittal, Ahmadian, Goody, Wittinghofer (CR24) 1996; 273 Otwinowski, Minor (CR28) 1997; 276 Ge, Shao (CR8) 2011; 13 Schoebel, Oesterlin, Blankenfeldt, Goody, Itzen (CR12) 2009; 36 Tan, Arnold, Luo (CR17) 2011; 108 Pahler, Smith, Hendrickson (CR29) 1990; 46(Pt 7) Nottingham, Pfeffer (CR5) 2009; 106 McCoy, Grosse-Kunstleve, Adams, Winn, Storoni, Read (CR35) 2007; 40 Machner, Isberg (CR9) 2006; 11 Adams, Afonine, Bunkoczi (CR31) 2010; 66 Murata, Delprato, Ingmundson, Toomre, Lambright, Roy (CR10) 2006; 8 Zhu, Hu, Zhou, Yao, Liu, Shao (CR14) 2010; 107 Pan, Eathiraj, Munson, Lambright (CR20) 2006; 442 Neunuebel, Chen, Gaspar, Backlund, Yergey, Machner (CR16) 2011; 333 Muller, Peters, Blumer, Blankenfeldt, Goody, Itzen (CR15) 2010; 329 Bunkoczi, Read (CR34) 2011; 67 Nassar, Hoffman, Manor, Clardy, Cerione (CR25) 1998; 5 Pfeffer, Aivazian (CR3) 2004; 5 Hubber, Roy (CR7) 2010; 26 Sondek, Lambright, Noel, Hamm, Sigler (CR22) 1994; 372 Coleman, Berghuis, Lee, Linder, Gilman, Sprang (CR21) 1994; 265 Murshudov, Vagin, Dodson (CR36) 1997; 53 N Nassar (BFcr201354_CR25) 1998; 5 P Emsley (BFcr201354_CR33) 2004; 60 RR Isberg (BFcr201354_CR6) 2009; 7 T Murata (BFcr201354_CR10) 2006; 8 G Bunkoczi (BFcr201354_CR34) 2011; 67 J Ge (BFcr201354_CR8) 2011; 13 B La Scola (BFcr201354_CR23) 2004; 54 PD Adams (BFcr201354_CR31) 2010; 66 HY Suh (BFcr201354_CR13) 2010; 29 S Pfeffer (BFcr201354_CR3) 2004; 5 N Dong (BFcr201354_CR19) 2012; 150 E Mihai Gazdag (BFcr201354_CR27) 2013; 14 K Cowtan (BFcr201354_CR32) 2006; 62 MR Neunuebel (BFcr201354_CR16) 2011; 333 K Scheffzek (BFcr201354_CR26) 1997; 277 MP Machner (BFcr201354_CR9) 2006; 11 S Schoebel (BFcr201354_CR12) 2009; 36 R Mittal (BFcr201354_CR24) 1996; 273 AH Hutagalung (BFcr201354_CR1) 2011; 91 J Sondek (BFcr201354_CR22) 1994; 372 K Cowtan (BFcr201354_CR30) 1994; 31 X Pan (BFcr201354_CR20) 2006; 442 A Pahler (BFcr201354_CR29) 1990; 46(Pt 7) Z Otwinowski (BFcr201354_CR28) 1997; 276 H Stenmark (BFcr201354_CR2) 2009; 10 F Barr (BFcr201354_CR4) 2010; 22 MP Machner (BFcr201354_CR11) 2007; 318 A Hubber (BFcr201354_CR7) 2010; 26 Y Zhu (BFcr201354_CR14) 2010; 107 Y Tan (BFcr201354_CR17) 2011; 108 DE Coleman (BFcr201354_CR21) 1994; 265 RM Nottingham (BFcr201354_CR5) 2009; 106 MP Muller (BFcr201354_CR15) 2010; 329 A Ingmundson (BFcr201354_CR18) 2007; 450 GN Murshudov (BFcr201354_CR36) 1997; 53 AJ McCoy (BFcr201354_CR35) 2007; 40 |
References_xml | – volume: 273 start-page: 115 year: 1996 end-page: 117 ident: CR24 article-title: Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoroaluminate, and GTPase-activating proteins publication-title: Science doi: 10.1126/science.273.5271.115 – volume: 108 start-page: 21212 year: 2011 end-page: 21217 ident: CR17 article-title: regulates the small GTPase Rab1 activity by reversible phosphorylcholination publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1114023109 – volume: 106 start-page: 14185 year: 2009 end-page: 14186 ident: CR5 article-title: Defining the boundaries: Rab GEFs and GAPs publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0907725106 – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: CR31 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444909052925 – volume: 46(Pt 7) start-page: 537 year: 1990 end-page: 540 ident: CR29 article-title: A probability representation for phase information from multiwavelength anomalous dispersion publication-title: Acta Crystallogr A doi: 10.1107/S0108767390002379 – volume: 277 start-page: 333 year: 1997 end-page: 338 ident: CR26 article-title: The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants publication-title: Science doi: 10.1126/science.277.5324.333 – volume: 11 start-page: 47 year: 2006 end-page: 56 ident: CR9 article-title: Targeting of host Rab GTPase function by the intravacuolar pathogen publication-title: Dev Cell doi: 10.1016/j.devcel.2006.05.013 – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: CR33 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444904019158 – volume: 107 start-page: 4699 year: 2010 end-page: 4704 ident: CR14 article-title: Structural mechanism of host Rab1 activation by the bifunctional type IV effector SidM/DrrA publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0914231107 – volume: 150 start-page: 1029 year: 2012 end-page: 1041 ident: CR19 article-title: Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses publication-title: Cell doi: 10.1016/j.cell.2012.06.050 – volume: 276 start-page: 307 year: 1997 end-page: 326 ident: CR28 article-title: Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology publication-title: Academic Press – volume: 22 start-page: 461 year: 2010 end-page: 470 ident: CR4 article-title: Rab GEFs and GAPs publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2010.04.007 – volume: 372 start-page: 276 year: 1994 end-page: 279 ident: CR22 article-title: GTPase mechanism of Gproteins from the 1.7-A crystal structure of transducin alpha-GDP-AIF-4 publication-title: Nature doi: 10.1038/372276a0 – volume: 36 start-page: 1060 year: 2009 end-page: 1072 ident: CR12 article-title: RabGDI displacement by DrrA from is a consequence of its guanine nucleotide exchange activity publication-title: Mol Cell doi: 10.1016/j.molcel.2009.11.014 – volume: 7 start-page: 13 year: 2009 end-page: 24 ident: CR6 article-title: The replication vacuole: making a cosy niche inside host cells publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1967 – volume: 31 start-page: 34 year: 1994 end-page: 38 ident: CR30 article-title: An automated procedure for phase improvement by density modification publication-title: Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography – volume: 329 start-page: 946 year: 2010 end-page: 949 ident: CR15 article-title: The effector protein DrrA AMPylates the membrane traffic regulator Rab1b publication-title: Science doi: 10.1126/science.1192276 – volume: 8 start-page: 971 year: 2006 end-page: 977 ident: CR10 article-title: The effector protein DrrA is a Rab1 guanine nucleotide-exchange factor publication-title: Nat Cell Biol doi: 10.1038/ncb1463 – volume: 91 start-page: 119 year: 2011 end-page: 149 ident: CR1 article-title: Role of Rab GTPases in membrane traffic and cell physiology publication-title: Physiol Rev doi: 10.1152/physrev.00059.2009 – volume: 54 start-page: 699 year: 2004 end-page: 703 ident: CR23 article-title: , a strictly intracellular amoebal pathogen publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.02455-0 – volume: 26 start-page: 261 year: 2010 end-page: 283 ident: CR7 article-title: Modulation of host cell function by type IV effectors publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-100109-104034 – volume: 53 start-page: 240 year: 1997 end-page: 255 ident: CR36 article-title: Refinement of macromolecular structures by the maximum-likelihood method publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444996012255 – volume: 14 start-page: 199 year: 2013 end-page: 205 ident: CR27 article-title: Mechanism of Rab1b deactivation by the GAP LepB publication-title: EMBO Rep doi: 10.1038/embor.2012.211 – volume: 10 start-page: 513 year: 2009 end-page: 525 ident: CR2 article-title: Rab GTPases as coordinators of vesicle traffic publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2728 – volume: 5 start-page: 886 year: 2004 end-page: 896 ident: CR3 article-title: Targeting Rab GTPases to distinct membrane compartments publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1500 – volume: 5 start-page: 1047 year: 1998 end-page: 1052 ident: CR25 article-title: Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP publication-title: Nat Struct Biol doi: 10.1038/4156 – volume: 13 start-page: 1870 year: 2011 end-page: 1880 ident: CR8 article-title: Manipulation of host vesicular trafficking and innate immune defense by Dot/Icm effectors publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2011.01710.x – volume: 333 start-page: 453 year: 2011 end-page: 456 ident: CR16 article-title: De-AMPylation of the small GTPase Rab1 by the pathogen publication-title: Science doi: 10.1126/science.1207193 – volume: 450 start-page: 365 year: 2007 end-page: 369 ident: CR18 article-title: proteins that regulate Rab1 membrane cycling publication-title: Nature doi: 10.1038/nature06336 – volume: 442 start-page: 303 year: 2006 end-page: 306 ident: CR20 article-title: TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism publication-title: Nature doi: 10.1038/nature04847 – volume: 318 start-page: 974 year: 2007 end-page: 977 ident: CR11 article-title: A bifunctional bacterial protein links GDI displacement to Rab1 activation publication-title: Science doi: 10.1126/science.1149121 – volume: 40 start-page: 658 year: 2007 end-page: 674 ident: CR35 article-title: Phaser crystallographic software publication-title: J Appl Crystallogr doi: 10.1107/S0021889807021206 – volume: 67 start-page: 303 year: 2011 end-page: 312 ident: CR34 article-title: Improvement of molecular-replacement models with Sculptor publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444910051218 – volume: 265 start-page: 1405 year: 1994 end-page: 1412 ident: CR21 article-title: Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis publication-title: Science doi: 10.1126/science.8073283 – volume: 29 start-page: 496 year: 2010 end-page: 504 ident: CR13 article-title: Structural insights into the dual nucleotide exchange and GDI displacement activity of SidM/DrrA publication-title: EMBO J doi: 10.1038/emboj.2009.347 – volume: 62 start-page: 1002 year: 2006 end-page: 1011 ident: CR32 article-title: The Buccaneer software for automated model building. 1. Tracing protein chains publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444906022116 – volume: 11 start-page: 47 year: 2006 ident: BFcr201354_CR9 publication-title: Dev Cell doi: 10.1016/j.devcel.2006.05.013 – volume: 36 start-page: 1060 year: 2009 ident: BFcr201354_CR12 publication-title: Mol Cell doi: 10.1016/j.molcel.2009.11.014 – volume: 60 start-page: 2126 year: 2004 ident: BFcr201354_CR33 publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444904019158 – volume: 14 start-page: 199 year: 2013 ident: BFcr201354_CR27 publication-title: EMBO Rep doi: 10.1038/embor.2012.211 – volume: 7 start-page: 13 year: 2009 ident: BFcr201354_CR6 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1967 – volume: 29 start-page: 496 year: 2010 ident: BFcr201354_CR13 publication-title: EMBO J doi: 10.1038/emboj.2009.347 – volume: 10 start-page: 513 year: 2009 ident: BFcr201354_CR2 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2728 – volume: 277 start-page: 333 year: 1997 ident: BFcr201354_CR26 publication-title: Science doi: 10.1126/science.277.5324.333 – volume: 276 start-page: 307 year: 1997 ident: BFcr201354_CR28 publication-title: Academic Press – volume: 66 start-page: 213 year: 2010 ident: BFcr201354_CR31 publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444909052925 – volume: 108 start-page: 21212 year: 2011 ident: BFcr201354_CR17 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1114023109 – volume: 450 start-page: 365 year: 2007 ident: BFcr201354_CR18 publication-title: Nature doi: 10.1038/nature06336 – volume: 372 start-page: 276 year: 1994 ident: BFcr201354_CR22 publication-title: Nature doi: 10.1038/372276a0 – volume: 265 start-page: 1405 year: 1994 ident: BFcr201354_CR21 publication-title: Science doi: 10.1126/science.8073283 – volume: 53 start-page: 240 year: 1997 ident: BFcr201354_CR36 publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444996012255 – volume: 107 start-page: 4699 year: 2010 ident: BFcr201354_CR14 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0914231107 – volume: 150 start-page: 1029 year: 2012 ident: BFcr201354_CR19 publication-title: Cell doi: 10.1016/j.cell.2012.06.050 – volume: 40 start-page: 658 year: 2007 ident: BFcr201354_CR35 publication-title: J Appl Crystallogr doi: 10.1107/S0021889807021206 – volume: 106 start-page: 14185 year: 2009 ident: BFcr201354_CR5 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0907725106 – volume: 329 start-page: 946 year: 2010 ident: BFcr201354_CR15 publication-title: Science doi: 10.1126/science.1192276 – volume: 67 start-page: 303 year: 2011 ident: BFcr201354_CR34 publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444910051218 – volume: 318 start-page: 974 year: 2007 ident: BFcr201354_CR11 publication-title: Science doi: 10.1126/science.1149121 – volume: 54 start-page: 699 year: 2004 ident: BFcr201354_CR23 publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.02455-0 – volume: 333 start-page: 453 year: 2011 ident: BFcr201354_CR16 publication-title: Science doi: 10.1126/science.1207193 – volume: 273 start-page: 115 year: 1996 ident: BFcr201354_CR24 publication-title: Science doi: 10.1126/science.273.5271.115 – volume: 91 start-page: 119 year: 2011 ident: BFcr201354_CR1 publication-title: Physiol Rev doi: 10.1152/physrev.00059.2009 – volume: 22 start-page: 461 year: 2010 ident: BFcr201354_CR4 publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2010.04.007 – volume: 62 start-page: 1002 year: 2006 ident: BFcr201354_CR32 publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444906022116 – volume: 31 start-page: 34 year: 1994 ident: BFcr201354_CR30 publication-title: Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography – volume: 5 start-page: 886 year: 2004 ident: BFcr201354_CR3 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1500 – volume: 13 start-page: 1870 year: 2011 ident: BFcr201354_CR8 publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2011.01710.x – volume: 46(Pt 7) start-page: 537 year: 1990 ident: BFcr201354_CR29 publication-title: Acta Crystallogr A doi: 10.1107/S0108767390002379 – volume: 26 start-page: 261 year: 2010 ident: BFcr201354_CR7 publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-100109-104034 – volume: 8 start-page: 971 year: 2006 ident: BFcr201354_CR10 publication-title: Nat Cell Biol doi: 10.1038/ncb1463 – volume: 442 start-page: 303 year: 2006 ident: BFcr201354_CR20 publication-title: Nature doi: 10.1038/nature04847 – volume: 5 start-page: 1047 year: 1998 ident: BFcr201354_CR25 publication-title: Nat Struct Biol doi: 10.1038/4156 |
SSID | ssj0025451 |
Score | 2.1908073 |
Snippet | Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein... |
SourceID | pubmedcentral proquest pubmed crossref springer chongqing |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 775 |
SubjectTerms | 631/45/173 631/535 631/80/313 631/80/313/2011 Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacterial Proteins - ultrastructure Biomedical and Life Sciences Catalytic Domain Cell Biology Crystallography, X-Ray Escherichia coli Proteins - metabolism GAP GTPase GTPase-Activating Proteins - metabolism Legionella pneumophila Legionella pneumophila - metabolism Life Sciences Mutation Original original-article Pathogens Protein Folding Protein Structure, Tertiary rab1 GTP-Binding Proteins - metabolism Residues 催化活性 军团菌 模仿 真核 结构分析 谷氨酰胺 |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEFlVdJKciIXjiExrHj2CfUIkqFACGg0t4i23G6q26TbbM97L9nxnmUZVFvUTyJ_JjxfLbH3xCyr0Wlq9Rksc7BmkTGwKQ4szFAU2Yz5UCx8e7wt-_y5FR8mWSTfsOt7cMqhzkxTNRl43CP_IBxABZS6JR9WFzGmDUKT1f7FBp3yT2kLsOQrnxys-ACdBAWXCFsSGIkT0dPytWBQy5Qxt9jGoAHMNHUZ5fgKtad0wbi3Ayc_Of0NDil423yqEeT9LAb_sfkjq-fkPtdfsnVUzL9FdhhkVmDmsA-4lvaVPSrxyhkjHuCx8URRRonFKGAsennwx-0auYlXU7NkobtnVXY8J6v6MXsYuZa6q_PzdWqgbf0p2nhg2fk9PjT748ncZ9aIXZZwpaxL3NjElk56E-R-CzNbGJTV6ZaGCac9NzzvIQ-VxYAlTTGKvBxBj0eDHlV8udkq4aKviBUGZkZWJ8rZYXAe72i8qW1Oi0rzQx3Edkd-7dYdBQahZA4Q0sRkXdDhxeuJyXH3BjzIhyOc1W4qwIHqshA9u0oO_znf1J7w7gVvTm2xY3yROTNWAyGhKcjpvbNNcpIkSd5rvVtMoinkQMtIjudKoxVwTvHCtb7EcnXlGQUQCLv9ZJ6Ng2E3hxvgmio2_6gTn9VfaOFu7e38CV5mHYpO-KE7ZEtUDT_CoDT0r4O1vEH37wXJw priority: 102 providerName: ProQuest |
Title | Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP |
URI | http://lib.cqvip.com/qk/85240X/201306/46146764.html https://link.springer.com/article/10.1038/cr.2013.54 https://www.ncbi.nlm.nih.gov/pubmed/23588383 https://www.proquest.com/docview/1357564921 https://www.proquest.com/docview/1364707799 https://www.proquest.com/docview/1399914547 https://pubmed.ncbi.nlm.nih.gov/PMC3674391 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoKyQuqLzTlpURvXAIbOJXfGxXLRWCqipU2ltkO053xTYpzfaw_54Z56EuixC3KBlHY3vGM2PPfCbkUPNSl6kRsVagTVwkoFIssTG4pokVmQPBxtrhb-fy7Ip_mYppB5PTdGmVLaRlWKb77LBPDrE7E_ZR8C2yg5DtKM0TORmCK_AEQnAVUoQkZu20UKQse9AWARRmdXX9C8zCuiHa8C43kyT_OCkNBuh0lzztPEd61PL6jDzy1XPyuL1LcvWCzL4HJFhE0aAmII34htYl_eox4xhznODx9pgiZBOSUPCn6eejC1rWi4IuZ2ZJw1bOKmxuL1b0Zn4zdw319z_N3aqGt_TSNNDgJbk6PfkxOYu7axRiJ8bJMvaFMmYsS6dTiKa8SIUd29QVqeYm4U565pkqEiYyC86TNMZmYM8MWjeY3rJgr8h2BYy-ITQzUhiIxbPMco41vLz0hbU6LUqdGOYisjeMb37bwmXkXOJqLHlEPvQDnrsOgBzvwVjk4SCcZbm7y3GicgG07wfa_j9_ozro5y3vVK_JoSNKSA6djci74TMoDZ6EmMrX90gjuRorpfW_aNB3RryziLxuRWFgBeuLM4jtI6LWhGQgQNDu9S_VfBbAuxlWfWjg7bAXpwesb_Rw7__I9smTtL2mIx4nB2QbBM6_BWdpaUdkS03ViOwcn5xfXI6CzvwGMtYUTg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1QuiDcpBYwoBw6hSew8fECoLS1bul1VpZV6M7bjsCu2ybbZCu2f4jcyk1dZFvXWWxRPHD9mxmN75htCNgTPRBao0BUxSBMPfRAp5msXTFNfh4kBxsbY4cNB1DvlX8_CsyXyu42FQbfKVidWijotDJ6Rb_oMDIuIi8D_NLlwMWsU3q62KTRqtjiws1-wZSs_7n-G-X0XBHu7Jzs9t8kq4JrQ86euTWOlvCgzUBX3bBiE2tOBSQPBlc9NZJllcQq_SzTYEpFSOgH1rlDZQ2-zlEG9d8gKFHmgCFa2dwdHx90WD-yRaotXOSpF6DtUA6KyZNMg-qjPPmDigVVQbfmPC1ic5pfDBRt30VXzn_vaahnce0DuN_Yr3aoZ7iFZsvkjcrfOaDl7TIbfKjxaxPKgqsI7sSUtMtq36PeMnlbwONmmCByFJBSsevpl64hmxTil06Ga0upAaVYdsY9n9Hx0PjIltVc_1eWsgLf0WJXwwRNyeivD_pQs59DQ54QmKgqV1UGSaM4xkphnNtVaBGkmfMWMQ9a68ZWTGrRD8gjXhIg75H074NI0MOiYjWMsq-t4lkhzKXGiZAi0bzvatp7_Ua238yYbBVDKa3Z1yJuuGEQX72NUbosrpIl47MWxEDfRoAWPqGsOeVazQtcUjHJOWMIcEs8xSUeA0OHzJfloWEGIM4w9EdC2jZad_mr6Qg_Xbu7ha7LaOznsy_7-4OAFuRfUCUNcz18ny8B09iWYbVP9qpEVSr7ftnj-AQzXVX4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEZQL4llSChhRDhzCxrHzOiBUKEtLS1UBlfYWbMdhV2yTbbMVyl_j1zHjPMqyqLfeonji-DEzHtsz3xCylYg8yX0ZuEkE0iQCBiLFmXLBNGUqiDUwNsYOfz4Md4_Fp1EwWiG_u1gYdKvsdKJV1Fmp8Yx8wDgYFqFIfDbIW7eIo53h29mpixmk8Ka1S6fRsMi-qX_B9q16s7cDc_3S94cfvr3fddsMA64OPDZ3TRZJ6YW5hmqFZwI_UJ7ydeYnQjKhQ8MNjzL4dazArgilVDGoeomKH3qeZxzqvUauRzxgKGPR6GKzB5aJ3exZl6UQvYgaaFQeDzTikDL-GlMQrIGSK36cwjK1uDAuWbvLTpv_3NzaBXF4h9xuLVm63bDeXbJiinvkRpPbsr5Pxl8tMi2ielBpkU9MRcucHhj0gEafK3icvaMIIYUkFOx7-nH7iOblNKPzsZxTe7RU28P2aU1PJicTXVFz_lOe1SW8pV9kBR88IMdXMugPyWoBDX1EaCzDQBrlx7ESAmOKRW4ypRI_yxMmuXbIRj--6ayB70hFiKtDKBzyqhvwVLeA6JiXY5rai3kep_osxYlKA6B90dN29fyParObt7RVBVV6wbgOed4XgxDjzYwsTHmONKGIvChKksto0JZH_DWHrDes0DcF451jHnOHRAtM0hMgiPhiSTEZWzBxjlEoCbRtq2Onv5q-1MONy3v4jNwEoUwP9g73H5NbfpM5xPXYJlkFnjNPwH6bq6dWUCj5ftWS-QcXrFhO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+analyses+of+Legionella+LepB+reveal+a+new+GAP+fold+that+catalytically+mimics+eukaryotic+RasGAP&rft.jtitle=Cell+research&rft.au=Yu%2C+Qin&rft.au=Hu%2C+Liyan&rft.au=Yao%2C+Qing&rft.au=Zhu%2C+Yongqun&rft.date=2013-06-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1001-0602&rft.eissn=1748-7838&rft.volume=23&rft.issue=6&rft.spage=775&rft.epage=787&rft_id=info:doi/10.1038%2Fcr.2013.54&rft.externalDocID=10_1038_cr_2013_54 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85240X%2F85240X.jpg |