Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP

Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionellapneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rabl specific with a ca...

Full description

Saved in:
Bibliographic Details
Published inCell research Vol. 23; no. 6; pp. 775 - 787
Main Authors Yu, Qin, Hu, Liyan, Yao, Qing, Zhu, Yongqun, Dong, Na, Wang, Da-Cheng, Shao, Feng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2013
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionellapneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rabl specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313.618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rabl-GDP-AIF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rabl binding, which induces Rabl Gin70 side-chain flipping towards GDP-AIF3 through a strong ionic interaction. This conformationally rearranged Gin70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens.
AbstractList Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionellapneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rabl specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313.618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rabl-GDP-AIF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rabl binding, which induces Rabl Gin70 side-chain flipping towards GDP-AIF3 through a strong ionic interaction. This conformationally rearranged Gin70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens.
Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila . We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB 313-618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF 3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF 3 through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis -glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens.
Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB sub(313-618) alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF sub(3) support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF sub(3) through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens.
Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313-618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF3 through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens.
Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313-618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF3 through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens.Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313-618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF3 through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens.
Author Qin Yu Liyan Hu Qing Yao Yongqun Zhu Na Dong Da-Cheng Wang Feng Shao
AuthorAffiliation National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beij'ing 100101, China Na- tional Institute of Biological Sciences, ~7 Science Park Rd, Zhongguancun Life Science Park, Beijing 102206, China Life Sci- ences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Author_xml – sequence: 1
  givenname: Qin
  surname: Yu
  fullname: Yu, Qin
  organization: National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, National Institute of Biological Sciences, Graduate University of Chinese Academy of Sciences
– sequence: 2
  givenname: Liyan
  surname: Hu
  fullname: Hu, Liyan
  organization: National Institute of Biological Sciences
– sequence: 3
  givenname: Qing
  surname: Yao
  fullname: Yao, Qing
  organization: National Institute of Biological Sciences
– sequence: 4
  givenname: Yongqun
  surname: Zhu
  fullname: Zhu, Yongqun
  organization: Life Sciences Institute, Zhejiang University
– sequence: 5
  givenname: Na
  surname: Dong
  fullname: Dong, Na
  email: dongna@nibs.ac.cn
  organization: National Institute of Biological Sciences
– sequence: 6
  givenname: Da-Cheng
  surname: Wang
  fullname: Wang, Da-Cheng
  email: dcwang@ibp.ac.cn
  organization: National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences
– sequence: 7
  givenname: Feng
  surname: Shao
  fullname: Shao, Feng
  email: shaofeng@nibs.ac.cn
  organization: National Institute of Biological Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23588383$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URB-w4QcgIzYIlMHPONkglQoK0kggHmvLcZwZlySe2k6r-fe90UyrUnXBypb9neNzfe8xOhjD6BB6ScmCEl59sHHBCOULKZ6gI6pEVaiKVwewJ4QWpCTsEB2ndEEIk0LSZ-iQcVkBwo_Q-leOk81TND02o-m3ySUcOrx0Kw-v9L2B7eYTju7KzQge3TU-P_2Bu9C3OK9NxtZk0GVvTd9v8eAHbxN2018TtwFO8U-TQPAcPe1Mn9yL_XqC_nz5_Pvsa7H8fv7t7HRZWEloLlyrjCFlZ2tGBXGSyYY0zLasFoYKWzruuGop5G-o4KUxTcUoM4JyYq3pWn6CPu58N1MzuNa6MUNtehP9AIF0MF7_ezP6tV6FK81LJXhNweDt3iCGy8mlrAef7PwTowtT0pTXdU2FFOo_0FIoolRdA_rmAXoRpggfPlNSyVJAwUC9uh_-LvVtvwAgO8DGkFJ0nbY-mwytglp8rynR80hoG_U8EloKkLx7ILl1fRR-v4MTQOPKxXsxH6Nf763XYVxdguDOW5RUlKoU_AbkYNAr
CitedBy_id crossref_primary_10_1002_bip_22833
crossref_primary_10_1002_pro_4282
crossref_primary_10_1038_nmicrobiol_2016_236
crossref_primary_10_1515_hsz_2016_0287
crossref_primary_10_1016_j_chom_2014_09_015
crossref_primary_10_1128_IAI_02763_14
crossref_primary_10_1128_EC_00231_14
crossref_primary_10_1371_journal_pone_0198632
crossref_primary_10_1139_cjm_2015_0166
crossref_primary_10_18632_oncotarget_24073
crossref_primary_10_1016_j_jbc_2021_101340
crossref_primary_10_1111_febs_14314
crossref_primary_10_1016_j_chom_2013_08_010
crossref_primary_10_1099_mic_0_001187
crossref_primary_10_1128_IAI_00153_19
crossref_primary_10_1128_mBio_02420_18
crossref_primary_10_1111_febs_15794
crossref_primary_10_1074_jbc_M113_470625
crossref_primary_10_1128_mbio_00759_23
crossref_primary_10_1186_s12867_019_0122_2
crossref_primary_10_1038_nmicrobiol_2017_13
Cites_doi 10.1126/science.273.5271.115
10.1073/pnas.1114023109
10.1073/pnas.0907725106
10.1107/S0907444909052925
10.1107/S0108767390002379
10.1126/science.277.5324.333
10.1016/j.devcel.2006.05.013
10.1107/S0907444904019158
10.1073/pnas.0914231107
10.1016/j.cell.2012.06.050
10.1016/j.ceb.2010.04.007
10.1038/372276a0
10.1016/j.molcel.2009.11.014
10.1038/nrmicro1967
10.1126/science.1192276
10.1038/ncb1463
10.1152/physrev.00059.2009
10.1099/ijs.0.02455-0
10.1146/annurev-cellbio-100109-104034
10.1107/S0907444996012255
10.1038/embor.2012.211
10.1038/nrm2728
10.1038/nrm1500
10.1038/4156
10.1111/j.1462-5822.2011.01710.x
10.1126/science.1207193
10.1038/nature06336
10.1038/nature04847
10.1126/science.1149121
10.1107/S0021889807021206
10.1107/S0907444910051218
10.1126/science.8073283
10.1038/emboj.2009.347
10.1107/S0907444906022116
ContentType Journal Article
Copyright The Author(s) 2013
Copyright Nature Publishing Group Jun 2013
Copyright © 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
Copyright_xml – notice: The Author(s) 2013
– notice: Copyright Nature Publishing Group Jun 2013
– notice: Copyright © 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
DBID 2RA
92L
CQIGP
W94
WU4
~WA
C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7QL
C1K
5PM
DOI 10.1038/cr.2013.54
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
DatabaseTitleList

Bacteriology Abstracts (Microbiology B)
MEDLINE
MEDLINE - Academic
ProQuest Central Student

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP
Mechanism of Rab1 inactivation by Legionella LepB
EISSN 1748-7838
EndPage 787
ExternalDocumentID PMC3674391
2985885161
23588383
10_1038_cr_2013_54
46146764
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-01
-0A
-Q-
-SA
-S~
0R~
29B
2B.
2C.
2RA
2WC
36B
39C
3V.
4.4
406
53G
5GY
5VR
5XA
5XB
5XL
6J9
70F
7X7
88E
8FE
8FH
8FI
8FJ
92E
92I
92L
92M
92Q
93N
9D9
9DA
AADWK
AANZL
AATNV
AAWBL
AAYFA
AAYJO
AAZLF
ABAWZ
ABGIJ
ABJNI
ABUWG
ACAOD
ACBMV
ACBRV
ACBYP
ACGFO
ACGFS
ACIGE
ACIWK
ACKTT
ACPRK
ACRQY
ACTTH
ACVWB
ACZOJ
ADBBV
ADFRT
ADHDB
ADMDM
ADQMX
ADYYL
AEDAW
AEFTE
AEJRE
AENEX
AESKC
AEVLU
AEXYK
AFKRA
AFNRJ
AFRAH
AFSHS
AFUIB
AGEZK
AGGBP
AGHAI
AHMBA
AHSBF
AILAN
AJCLW
AJDOV
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMRJV
AMYLF
AOIJS
AXYYD
BAWUL
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
C1A
CAG
CAJEA
CAJUS
CCEZO
CCPQU
CCVFK
CHBEP
COF
CQIGP
CS3
CW9
DIK
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMOBN
F5P
FA0
FDQFY
FERAY
FIZPM
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HYE
HZ~
IWAJR
JSO
JUIAU
JZLTJ
KQ8
LK8
M1P
M7P
NAO
NQJWS
NXXTH
NYICJ
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
Q--
Q-0
R-A
RNS
RNT
RNTTT
RPM
RT1
S..
SNX
SNYQT
SOHCF
SRMVM
SV3
SWTZT
T8Q
TAOOD
TBHMF
TCJ
TDRGL
TGP
TR2
U1F
U1G
U5A
U5K
UKHRP
W94
WFFXF
WU4
XSB
~88
~WA
AACDK
AAHBH
AASML
AAXDM
AAYZH
ABAKF
ABZZP
ACMJI
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AIGIU
ALIPV
C6C
FIGPU
LGEZI
LOTEE
NADUK
ROL
SOJ
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
7QL
C1K
5PM
ID FETCH-LOGICAL-c501t-ed7aa06fc92140e525b0b2cd294a14c6e3e37d1358b1436aab8212a4130ccafd3
IEDL.DBID C6C
ISSN 1001-0602
1748-7838
IngestDate Thu Aug 21 18:26:44 EDT 2025
Fri Jul 11 05:34:01 EDT 2025
Fri Jul 11 16:13:39 EDT 2025
Fri Jul 25 09:02:09 EDT 2025
Thu Apr 03 06:57:18 EDT 2025
Tue Jul 01 03:41:31 EDT 2025
Thu Apr 24 22:53:54 EDT 2025
Fri Feb 21 02:38:10 EST 2025
Wed Feb 14 10:43:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords TBC GAP
type IV secretion system
GTPase-activating protein (GAP)
Rab GTPases
membrane trafficking
Language English
License https://creativecommons.org/licenses/by-nc-nd/3.0
This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-ed7aa06fc92140e525b0b2cd294a14c6e3e37d1358b1436aab8212a4130ccafd3
Notes Legionella; Rab GTPases; GTPase-activating protein (GAP); type IV secretion system; TBC GAP; membranetrafficking
Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionellapneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rabl specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313.618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rabl-GDP-AIF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rabl binding, which induces Rabl Gin70 side-chain flipping towards GDP-AIF3 through a strong ionic interaction. This conformationally rearranged Gin70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens.
31-1568/Q
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
These three authors contributed equally to this work.
OpenAccessLink https://www.nature.com/articles/cr.2013.54
PMID 23588383
PQID 1357564921
PQPubID 536307
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3674391
proquest_miscellaneous_1399914547
proquest_miscellaneous_1364707799
proquest_journals_1357564921
pubmed_primary_23588383
crossref_citationtrail_10_1038_cr_2013_54
crossref_primary_10_1038_cr_2013_54
springer_journals_10_1038_cr_2013_54
chongqing_primary_46146764
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Cell research
PublicationTitleAbbrev Cell Res
PublicationTitleAlternate Cell Research
PublicationYear 2013
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Mihai Gazdag, Streller, Haneburger (CR27) 2013; 14
Emsley, Cowtan (CR33) 2004; 60
Scheffzek, Ahmadian, Kabsch (CR26) 1997; 277
Stenmark (CR2) 2009; 10
Isberg, O'Connor, Heidtman (CR6) 2009; 7
Machner, Isberg (CR11) 2007; 318
Dong, Zhu, Lu, Hu, Zheng, Shao (CR19) 2012; 150
Cowtan (CR32) 2006; 62
Hutagalung, Novick (CR1) 2011; 91
Suh, Lee, Lee (CR13) 2010; 29
Ingmundson, Delprato, Lambright, Roy (CR18) 2007; 450
Cowtan (CR30) 1994; 31
La Scola, Birtles, Greub, Harrison, Ratcliff, Raoult (CR23) 2004; 54
Barr, Lambright (CR4) 2010; 22
Mittal, Ahmadian, Goody, Wittinghofer (CR24) 1996; 273
Otwinowski, Minor (CR28) 1997; 276
Ge, Shao (CR8) 2011; 13
Schoebel, Oesterlin, Blankenfeldt, Goody, Itzen (CR12) 2009; 36
Tan, Arnold, Luo (CR17) 2011; 108
Pahler, Smith, Hendrickson (CR29) 1990; 46(Pt 7)
Nottingham, Pfeffer (CR5) 2009; 106
McCoy, Grosse-Kunstleve, Adams, Winn, Storoni, Read (CR35) 2007; 40
Machner, Isberg (CR9) 2006; 11
Adams, Afonine, Bunkoczi (CR31) 2010; 66
Murata, Delprato, Ingmundson, Toomre, Lambright, Roy (CR10) 2006; 8
Zhu, Hu, Zhou, Yao, Liu, Shao (CR14) 2010; 107
Pan, Eathiraj, Munson, Lambright (CR20) 2006; 442
Neunuebel, Chen, Gaspar, Backlund, Yergey, Machner (CR16) 2011; 333
Muller, Peters, Blumer, Blankenfeldt, Goody, Itzen (CR15) 2010; 329
Bunkoczi, Read (CR34) 2011; 67
Nassar, Hoffman, Manor, Clardy, Cerione (CR25) 1998; 5
Pfeffer, Aivazian (CR3) 2004; 5
Hubber, Roy (CR7) 2010; 26
Sondek, Lambright, Noel, Hamm, Sigler (CR22) 1994; 372
Coleman, Berghuis, Lee, Linder, Gilman, Sprang (CR21) 1994; 265
Murshudov, Vagin, Dodson (CR36) 1997; 53
N Nassar (BFcr201354_CR25) 1998; 5
P Emsley (BFcr201354_CR33) 2004; 60
RR Isberg (BFcr201354_CR6) 2009; 7
T Murata (BFcr201354_CR10) 2006; 8
G Bunkoczi (BFcr201354_CR34) 2011; 67
J Ge (BFcr201354_CR8) 2011; 13
B La Scola (BFcr201354_CR23) 2004; 54
PD Adams (BFcr201354_CR31) 2010; 66
HY Suh (BFcr201354_CR13) 2010; 29
S Pfeffer (BFcr201354_CR3) 2004; 5
N Dong (BFcr201354_CR19) 2012; 150
E Mihai Gazdag (BFcr201354_CR27) 2013; 14
K Cowtan (BFcr201354_CR32) 2006; 62
MR Neunuebel (BFcr201354_CR16) 2011; 333
K Scheffzek (BFcr201354_CR26) 1997; 277
MP Machner (BFcr201354_CR9) 2006; 11
S Schoebel (BFcr201354_CR12) 2009; 36
R Mittal (BFcr201354_CR24) 1996; 273
AH Hutagalung (BFcr201354_CR1) 2011; 91
J Sondek (BFcr201354_CR22) 1994; 372
K Cowtan (BFcr201354_CR30) 1994; 31
X Pan (BFcr201354_CR20) 2006; 442
A Pahler (BFcr201354_CR29) 1990; 46(Pt 7)
Z Otwinowski (BFcr201354_CR28) 1997; 276
H Stenmark (BFcr201354_CR2) 2009; 10
F Barr (BFcr201354_CR4) 2010; 22
MP Machner (BFcr201354_CR11) 2007; 318
A Hubber (BFcr201354_CR7) 2010; 26
Y Zhu (BFcr201354_CR14) 2010; 107
Y Tan (BFcr201354_CR17) 2011; 108
DE Coleman (BFcr201354_CR21) 1994; 265
RM Nottingham (BFcr201354_CR5) 2009; 106
MP Muller (BFcr201354_CR15) 2010; 329
A Ingmundson (BFcr201354_CR18) 2007; 450
GN Murshudov (BFcr201354_CR36) 1997; 53
AJ McCoy (BFcr201354_CR35) 2007; 40
References_xml – volume: 273
  start-page: 115
  year: 1996
  end-page: 117
  ident: CR24
  article-title: Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoroaluminate, and GTPase-activating proteins
  publication-title: Science
  doi: 10.1126/science.273.5271.115
– volume: 108
  start-page: 21212
  year: 2011
  end-page: 21217
  ident: CR17
  article-title: regulates the small GTPase Rab1 activity by reversible phosphorylcholination
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1114023109
– volume: 106
  start-page: 14185
  year: 2009
  end-page: 14186
  ident: CR5
  article-title: Defining the boundaries: Rab GEFs and GAPs
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0907725106
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  ident: CR31
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444909052925
– volume: 46(Pt 7)
  start-page: 537
  year: 1990
  end-page: 540
  ident: CR29
  article-title: A probability representation for phase information from multiwavelength anomalous dispersion
  publication-title: Acta Crystallogr A
  doi: 10.1107/S0108767390002379
– volume: 277
  start-page: 333
  year: 1997
  end-page: 338
  ident: CR26
  article-title: The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants
  publication-title: Science
  doi: 10.1126/science.277.5324.333
– volume: 11
  start-page: 47
  year: 2006
  end-page: 56
  ident: CR9
  article-title: Targeting of host Rab GTPase function by the intravacuolar pathogen
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2006.05.013
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  ident: CR33
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444904019158
– volume: 107
  start-page: 4699
  year: 2010
  end-page: 4704
  ident: CR14
  article-title: Structural mechanism of host Rab1 activation by the bifunctional type IV effector SidM/DrrA
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0914231107
– volume: 150
  start-page: 1029
  year: 2012
  end-page: 1041
  ident: CR19
  article-title: Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.050
– volume: 276
  start-page: 307
  year: 1997
  end-page: 326
  ident: CR28
  article-title: Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology
  publication-title: Academic Press
– volume: 22
  start-page: 461
  year: 2010
  end-page: 470
  ident: CR4
  article-title: Rab GEFs and GAPs
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2010.04.007
– volume: 372
  start-page: 276
  year: 1994
  end-page: 279
  ident: CR22
  article-title: GTPase mechanism of Gproteins from the 1.7-A crystal structure of transducin alpha-GDP-AIF-4
  publication-title: Nature
  doi: 10.1038/372276a0
– volume: 36
  start-page: 1060
  year: 2009
  end-page: 1072
  ident: CR12
  article-title: RabGDI displacement by DrrA from is a consequence of its guanine nucleotide exchange activity
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.11.014
– volume: 7
  start-page: 13
  year: 2009
  end-page: 24
  ident: CR6
  article-title: The replication vacuole: making a cosy niche inside host cells
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1967
– volume: 31
  start-page: 34
  year: 1994
  end-page: 38
  ident: CR30
  article-title: An automated procedure for phase improvement by density modification
  publication-title: Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography
– volume: 329
  start-page: 946
  year: 2010
  end-page: 949
  ident: CR15
  article-title: The effector protein DrrA AMPylates the membrane traffic regulator Rab1b
  publication-title: Science
  doi: 10.1126/science.1192276
– volume: 8
  start-page: 971
  year: 2006
  end-page: 977
  ident: CR10
  article-title: The effector protein DrrA is a Rab1 guanine nucleotide-exchange factor
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1463
– volume: 91
  start-page: 119
  year: 2011
  end-page: 149
  ident: CR1
  article-title: Role of Rab GTPases in membrane traffic and cell physiology
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00059.2009
– volume: 54
  start-page: 699
  year: 2004
  end-page: 703
  ident: CR23
  article-title: , a strictly intracellular amoebal pathogen
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.02455-0
– volume: 26
  start-page: 261
  year: 2010
  end-page: 283
  ident: CR7
  article-title: Modulation of host cell function by type IV effectors
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev-cellbio-100109-104034
– volume: 53
  start-page: 240
  year: 1997
  end-page: 255
  ident: CR36
  article-title: Refinement of macromolecular structures by the maximum-likelihood method
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444996012255
– volume: 14
  start-page: 199
  year: 2013
  end-page: 205
  ident: CR27
  article-title: Mechanism of Rab1b deactivation by the GAP LepB
  publication-title: EMBO Rep
  doi: 10.1038/embor.2012.211
– volume: 10
  start-page: 513
  year: 2009
  end-page: 525
  ident: CR2
  article-title: Rab GTPases as coordinators of vesicle traffic
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2728
– volume: 5
  start-page: 886
  year: 2004
  end-page: 896
  ident: CR3
  article-title: Targeting Rab GTPases to distinct membrane compartments
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1500
– volume: 5
  start-page: 1047
  year: 1998
  end-page: 1052
  ident: CR25
  article-title: Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP
  publication-title: Nat Struct Biol
  doi: 10.1038/4156
– volume: 13
  start-page: 1870
  year: 2011
  end-page: 1880
  ident: CR8
  article-title: Manipulation of host vesicular trafficking and innate immune defense by Dot/Icm effectors
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2011.01710.x
– volume: 333
  start-page: 453
  year: 2011
  end-page: 456
  ident: CR16
  article-title: De-AMPylation of the small GTPase Rab1 by the pathogen
  publication-title: Science
  doi: 10.1126/science.1207193
– volume: 450
  start-page: 365
  year: 2007
  end-page: 369
  ident: CR18
  article-title: proteins that regulate Rab1 membrane cycling
  publication-title: Nature
  doi: 10.1038/nature06336
– volume: 442
  start-page: 303
  year: 2006
  end-page: 306
  ident: CR20
  article-title: TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism
  publication-title: Nature
  doi: 10.1038/nature04847
– volume: 318
  start-page: 974
  year: 2007
  end-page: 977
  ident: CR11
  article-title: A bifunctional bacterial protein links GDI displacement to Rab1 activation
  publication-title: Science
  doi: 10.1126/science.1149121
– volume: 40
  start-page: 658
  year: 2007
  end-page: 674
  ident: CR35
  article-title: Phaser crystallographic software
  publication-title: J Appl Crystallogr
  doi: 10.1107/S0021889807021206
– volume: 67
  start-page: 303
  year: 2011
  end-page: 312
  ident: CR34
  article-title: Improvement of molecular-replacement models with Sculptor
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444910051218
– volume: 265
  start-page: 1405
  year: 1994
  end-page: 1412
  ident: CR21
  article-title: Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis
  publication-title: Science
  doi: 10.1126/science.8073283
– volume: 29
  start-page: 496
  year: 2010
  end-page: 504
  ident: CR13
  article-title: Structural insights into the dual nucleotide exchange and GDI displacement activity of SidM/DrrA
  publication-title: EMBO J
  doi: 10.1038/emboj.2009.347
– volume: 62
  start-page: 1002
  year: 2006
  end-page: 1011
  ident: CR32
  article-title: The Buccaneer software for automated model building. 1. Tracing protein chains
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444906022116
– volume: 11
  start-page: 47
  year: 2006
  ident: BFcr201354_CR9
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2006.05.013
– volume: 36
  start-page: 1060
  year: 2009
  ident: BFcr201354_CR12
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.11.014
– volume: 60
  start-page: 2126
  year: 2004
  ident: BFcr201354_CR33
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444904019158
– volume: 14
  start-page: 199
  year: 2013
  ident: BFcr201354_CR27
  publication-title: EMBO Rep
  doi: 10.1038/embor.2012.211
– volume: 7
  start-page: 13
  year: 2009
  ident: BFcr201354_CR6
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1967
– volume: 29
  start-page: 496
  year: 2010
  ident: BFcr201354_CR13
  publication-title: EMBO J
  doi: 10.1038/emboj.2009.347
– volume: 10
  start-page: 513
  year: 2009
  ident: BFcr201354_CR2
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2728
– volume: 277
  start-page: 333
  year: 1997
  ident: BFcr201354_CR26
  publication-title: Science
  doi: 10.1126/science.277.5324.333
– volume: 276
  start-page: 307
  year: 1997
  ident: BFcr201354_CR28
  publication-title: Academic Press
– volume: 66
  start-page: 213
  year: 2010
  ident: BFcr201354_CR31
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444909052925
– volume: 108
  start-page: 21212
  year: 2011
  ident: BFcr201354_CR17
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1114023109
– volume: 450
  start-page: 365
  year: 2007
  ident: BFcr201354_CR18
  publication-title: Nature
  doi: 10.1038/nature06336
– volume: 372
  start-page: 276
  year: 1994
  ident: BFcr201354_CR22
  publication-title: Nature
  doi: 10.1038/372276a0
– volume: 265
  start-page: 1405
  year: 1994
  ident: BFcr201354_CR21
  publication-title: Science
  doi: 10.1126/science.8073283
– volume: 53
  start-page: 240
  year: 1997
  ident: BFcr201354_CR36
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444996012255
– volume: 107
  start-page: 4699
  year: 2010
  ident: BFcr201354_CR14
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0914231107
– volume: 150
  start-page: 1029
  year: 2012
  ident: BFcr201354_CR19
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.050
– volume: 40
  start-page: 658
  year: 2007
  ident: BFcr201354_CR35
  publication-title: J Appl Crystallogr
  doi: 10.1107/S0021889807021206
– volume: 106
  start-page: 14185
  year: 2009
  ident: BFcr201354_CR5
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0907725106
– volume: 329
  start-page: 946
  year: 2010
  ident: BFcr201354_CR15
  publication-title: Science
  doi: 10.1126/science.1192276
– volume: 67
  start-page: 303
  year: 2011
  ident: BFcr201354_CR34
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444910051218
– volume: 318
  start-page: 974
  year: 2007
  ident: BFcr201354_CR11
  publication-title: Science
  doi: 10.1126/science.1149121
– volume: 54
  start-page: 699
  year: 2004
  ident: BFcr201354_CR23
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.02455-0
– volume: 333
  start-page: 453
  year: 2011
  ident: BFcr201354_CR16
  publication-title: Science
  doi: 10.1126/science.1207193
– volume: 273
  start-page: 115
  year: 1996
  ident: BFcr201354_CR24
  publication-title: Science
  doi: 10.1126/science.273.5271.115
– volume: 91
  start-page: 119
  year: 2011
  ident: BFcr201354_CR1
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00059.2009
– volume: 22
  start-page: 461
  year: 2010
  ident: BFcr201354_CR4
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2010.04.007
– volume: 62
  start-page: 1002
  year: 2006
  ident: BFcr201354_CR32
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444906022116
– volume: 31
  start-page: 34
  year: 1994
  ident: BFcr201354_CR30
  publication-title: Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography
– volume: 5
  start-page: 886
  year: 2004
  ident: BFcr201354_CR3
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1500
– volume: 13
  start-page: 1870
  year: 2011
  ident: BFcr201354_CR8
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2011.01710.x
– volume: 46(Pt 7)
  start-page: 537
  year: 1990
  ident: BFcr201354_CR29
  publication-title: Acta Crystallogr A
  doi: 10.1107/S0108767390002379
– volume: 26
  start-page: 261
  year: 2010
  ident: BFcr201354_CR7
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev-cellbio-100109-104034
– volume: 8
  start-page: 971
  year: 2006
  ident: BFcr201354_CR10
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1463
– volume: 442
  start-page: 303
  year: 2006
  ident: BFcr201354_CR20
  publication-title: Nature
  doi: 10.1038/nature04847
– volume: 5
  start-page: 1047
  year: 1998
  ident: BFcr201354_CR25
  publication-title: Nat Struct Biol
  doi: 10.1038/4156
SSID ssj0025451
Score 2.1908073
Snippet Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
chongqing
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 775
SubjectTerms 631/45/173
631/535
631/80/313
631/80/313/2011
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacterial Proteins - ultrastructure
Biomedical and Life Sciences
Catalytic Domain
Cell Biology
Crystallography, X-Ray
Escherichia coli Proteins - metabolism
GAP
GTPase
GTPase-Activating Proteins - metabolism
Legionella pneumophila
Legionella pneumophila - metabolism
Life Sciences
Mutation
Original
original-article
Pathogens
Protein Folding
Protein Structure, Tertiary
rab1 GTP-Binding Proteins - metabolism
Residues
催化活性
军团菌
模仿
真核
结构分析
谷氨酰胺
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEFlVdJKciIXjiExrHj2CfUIkqFACGg0t4i23G6q26TbbM97L9nxnmUZVFvUTyJ_JjxfLbH3xCyr0Wlq9Rksc7BmkTGwKQ4szFAU2Yz5UCx8e7wt-_y5FR8mWSTfsOt7cMqhzkxTNRl43CP_IBxABZS6JR9WFzGmDUKT1f7FBp3yT2kLsOQrnxys-ACdBAWXCFsSGIkT0dPytWBQy5Qxt9jGoAHMNHUZ5fgKtad0wbi3Ayc_Of0NDil423yqEeT9LAb_sfkjq-fkPtdfsnVUzL9FdhhkVmDmsA-4lvaVPSrxyhkjHuCx8URRRonFKGAsennwx-0auYlXU7NkobtnVXY8J6v6MXsYuZa6q_PzdWqgbf0p2nhg2fk9PjT748ncZ9aIXZZwpaxL3NjElk56E-R-CzNbGJTV6ZaGCac9NzzvIQ-VxYAlTTGKvBxBj0eDHlV8udkq4aKviBUGZkZWJ8rZYXAe72i8qW1Oi0rzQx3Edkd-7dYdBQahZA4Q0sRkXdDhxeuJyXH3BjzIhyOc1W4qwIHqshA9u0oO_znf1J7w7gVvTm2xY3yROTNWAyGhKcjpvbNNcpIkSd5rvVtMoinkQMtIjudKoxVwTvHCtb7EcnXlGQUQCLv9ZJ6Ng2E3hxvgmio2_6gTn9VfaOFu7e38CV5mHYpO-KE7ZEtUDT_CoDT0r4O1vEH37wXJw
  priority: 102
  providerName: ProQuest
Title Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP
URI http://lib.cqvip.com/qk/85240X/201306/46146764.html
https://link.springer.com/article/10.1038/cr.2013.54
https://www.ncbi.nlm.nih.gov/pubmed/23588383
https://www.proquest.com/docview/1357564921
https://www.proquest.com/docview/1364707799
https://www.proquest.com/docview/1399914547
https://pubmed.ncbi.nlm.nih.gov/PMC3674391
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoKyQuqLzTlpURvXAIbOJXfGxXLRWCqipU2ltkO053xTYpzfaw_54Z56EuixC3KBlHY3vGM2PPfCbkUPNSl6kRsVagTVwkoFIssTG4pokVmQPBxtrhb-fy7Ip_mYppB5PTdGmVLaRlWKb77LBPDrE7E_ZR8C2yg5DtKM0TORmCK_AEQnAVUoQkZu20UKQse9AWARRmdXX9C8zCuiHa8C43kyT_OCkNBuh0lzztPEd61PL6jDzy1XPyuL1LcvWCzL4HJFhE0aAmII34htYl_eox4xhznODx9pgiZBOSUPCn6eejC1rWi4IuZ2ZJw1bOKmxuL1b0Zn4zdw319z_N3aqGt_TSNNDgJbk6PfkxOYu7axRiJ8bJMvaFMmYsS6dTiKa8SIUd29QVqeYm4U565pkqEiYyC86TNMZmYM8MWjeY3rJgr8h2BYy-ITQzUhiIxbPMco41vLz0hbU6LUqdGOYisjeMb37bwmXkXOJqLHlEPvQDnrsOgBzvwVjk4SCcZbm7y3GicgG07wfa_j9_ozro5y3vVK_JoSNKSA6djci74TMoDZ6EmMrX90gjuRorpfW_aNB3RryziLxuRWFgBeuLM4jtI6LWhGQgQNDu9S_VfBbAuxlWfWjg7bAXpwesb_Rw7__I9smTtL2mIx4nB2QbBM6_BWdpaUdkS03ViOwcn5xfXI6CzvwGMtYUTg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1QuiDcpBYwoBw6hSew8fECoLS1bul1VpZV6M7bjsCu2ybbZCu2f4jcyk1dZFvXWWxRPHD9mxmN75htCNgTPRBao0BUxSBMPfRAp5msXTFNfh4kBxsbY4cNB1DvlX8_CsyXyu42FQbfKVidWijotDJ6Rb_oMDIuIi8D_NLlwMWsU3q62KTRqtjiws1-wZSs_7n-G-X0XBHu7Jzs9t8kq4JrQ86euTWOlvCgzUBX3bBiE2tOBSQPBlc9NZJllcQq_SzTYEpFSOgH1rlDZQ2-zlEG9d8gKFHmgCFa2dwdHx90WD-yRaotXOSpF6DtUA6KyZNMg-qjPPmDigVVQbfmPC1ic5pfDBRt30VXzn_vaahnce0DuN_Yr3aoZ7iFZsvkjcrfOaDl7TIbfKjxaxPKgqsI7sSUtMtq36PeMnlbwONmmCByFJBSsevpl64hmxTil06Ga0upAaVYdsY9n9Hx0PjIltVc_1eWsgLf0WJXwwRNyeivD_pQs59DQ54QmKgqV1UGSaM4xkphnNtVaBGkmfMWMQ9a68ZWTGrRD8gjXhIg75H074NI0MOiYjWMsq-t4lkhzKXGiZAi0bzvatp7_Ua238yYbBVDKa3Z1yJuuGEQX72NUbosrpIl47MWxEDfRoAWPqGsOeVazQtcUjHJOWMIcEs8xSUeA0OHzJfloWEGIM4w9EdC2jZad_mr6Qg_Xbu7ha7LaOznsy_7-4OAFuRfUCUNcz18ny8B09iWYbVP9qpEVSr7ftnj-AQzXVX4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEZQL4llSChhRDhzCxrHzOiBUKEtLS1UBlfYWbMdhV2yTbbMVyl_j1zHjPMqyqLfeonji-DEzHtsz3xCylYg8yX0ZuEkE0iQCBiLFmXLBNGUqiDUwNsYOfz4Md4_Fp1EwWiG_u1gYdKvsdKJV1Fmp8Yx8wDgYFqFIfDbIW7eIo53h29mpixmk8Ka1S6fRsMi-qX_B9q16s7cDc_3S94cfvr3fddsMA64OPDZ3TRZJ6YW5hmqFZwI_UJ7ydeYnQjKhQ8MNjzL4dazArgilVDGoeomKH3qeZxzqvUauRzxgKGPR6GKzB5aJ3exZl6UQvYgaaFQeDzTikDL-GlMQrIGSK36cwjK1uDAuWbvLTpv_3NzaBXF4h9xuLVm63bDeXbJiinvkRpPbsr5Pxl8tMi2ielBpkU9MRcucHhj0gEafK3icvaMIIYUkFOx7-nH7iOblNKPzsZxTe7RU28P2aU1PJicTXVFz_lOe1SW8pV9kBR88IMdXMugPyWoBDX1EaCzDQBrlx7ESAmOKRW4ypRI_yxMmuXbIRj--6ayB70hFiKtDKBzyqhvwVLeA6JiXY5rai3kep_osxYlKA6B90dN29fyParObt7RVBVV6wbgOed4XgxDjzYwsTHmONKGIvChKksto0JZH_DWHrDes0DcF451jHnOHRAtM0hMgiPhiSTEZWzBxjlEoCbRtq2Onv5q-1MONy3v4jNwEoUwP9g73H5NbfpM5xPXYJlkFnjNPwH6bq6dWUCj5ftWS-QcXrFhO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+analyses+of+Legionella+LepB+reveal+a+new+GAP+fold+that+catalytically+mimics+eukaryotic+RasGAP&rft.jtitle=Cell+research&rft.au=Yu%2C+Qin&rft.au=Hu%2C+Liyan&rft.au=Yao%2C+Qing&rft.au=Zhu%2C+Yongqun&rft.date=2013-06-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1001-0602&rft.eissn=1748-7838&rft.volume=23&rft.issue=6&rft.spage=775&rft.epage=787&rft_id=info:doi/10.1038%2Fcr.2013.54&rft.externalDocID=10_1038_cr_2013_54
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85240X%2F85240X.jpg