Binary tree of SVM: a new fast multiclass training and classification algorithm
We present a new architecture named Binary Tree of support vector machine (SVM), or BTS, in order to achieve high classification efficiency for multiclass problems. BTS and its enhanced version, c-BTS, decrease the number of binary classifiers to the greatest extent without increasing the complexity...
Saved in:
Published in | IEEE transactions on neural networks Vol. 17; no. 3; pp. 696 - 704 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.05.2006
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a new architecture named Binary Tree of support vector machine (SVM), or BTS, in order to achieve high classification efficiency for multiclass problems. BTS and its enhanced version, c-BTS, decrease the number of binary classifiers to the greatest extent without increasing the complexity of the original problem. In the training phase, BTS has N-1 binary classifiers in the best situation (N is the number of classes), while it has log 4/3 ((N+3)/4) binary tests on average when making a decision. At the same time the upper bound of convergence complexity is determined. The experiments in this paper indicate that maintaining comparable accuracy, BTS is much faster to be trained than other methods. Especially in classification, due to its Log complexity, it is much faster than directed acyclic graph SVM (DAGSVM) and ECOC in problems that have big class number |
---|---|
AbstractList | We present a new architecture named Binary Tree of support vector machine (SVM), or BTS, in order to achieve high classification efficiency for multiclass problems. BTS and its enhanced version, c-BTS, decrease the number of binary classifiers to the greatest extent without increasing the complexity of the original problem. In the training phase, BTS has N - 1 binary classifiers in the best situation (N is the number of classes), while it has log4/3 ((N + 3)/4) binary tests on average when making a decision. At the same time the upper bound of convergence complexity is determined. The experiments in this paper indicate that maintaining comparable accuracy, BTS is much faster to be trained than other methods. Especially in classification, due to its Log complexity, it is much faster than directed acyclic graph SVM (DAGSVM) and ECOC in problems that have big class number.We present a new architecture named Binary Tree of support vector machine (SVM), or BTS, in order to achieve high classification efficiency for multiclass problems. BTS and its enhanced version, c-BTS, decrease the number of binary classifiers to the greatest extent without increasing the complexity of the original problem. In the training phase, BTS has N - 1 binary classifiers in the best situation (N is the number of classes), while it has log4/3 ((N + 3)/4) binary tests on average when making a decision. At the same time the upper bound of convergence complexity is determined. The experiments in this paper indicate that maintaining comparable accuracy, BTS is much faster to be trained than other methods. Especially in classification, due to its Log complexity, it is much faster than directed acyclic graph SVM (DAGSVM) and ECOC in problems that have big class number. We present a new architecture named Binary Tree of support vector machine (SVM), or BTS, in order to achieve high classification efficiency for multiclass problems. BTS and its enhanced version, c-BTS, decrease the number of binary classifiers to the greatest extent without increasing the complexity of the original problem. In the training phase, BTS has N - 1 binary classifiers in the best situation (N is the number of classes), while it has log4/3 ((N + 3)/4) binary tests on average when making a decision. At the same time the upper bound of convergence complexity is determined. The experiments in this paper indicate that maintaining comparable accuracy, BTS is much faster to be trained than other methods. Especially in classification, due to its Log complexity, it is much faster than directed acyclic graph SVM (DAGSVM) and ECOC in problems that have big class number. We present a new architecture named Binary Tree of support vector machine (SVM), or BTS, in order to achieve high classification efficiency for multiclass problems. BTS and its enhanced version, c-BTS, decrease the number of binary classifiers to the greatest extent without increasing the complexity of the original problem. In the training phase, BTS has N-1 binary classifiers in the best situation (N is the number of classes), while it has log/sub 4/3/((N 3)/4) binary tests on average when making a decision. At the same time the upper bound of convergence complexity is determined. The experiments in this paper indicate that maintaining comparable accuracy, BTS is much faster to be trained than other methods. Especially in classification, due to its Log complexity, it is much faster than directed acyclic graph SVM (DAGSVM) and ECOC in problems that have big class number. We present a new architecture named Binary Tree of support vector machine (SVM), or BTS, in order to achieve high classification efficiency for multiclass problems. BTS and its enhanced version, c-BTS, decrease the number of binary classifiers to the greatest extent without increasing the complexity of the original problem. In the training phase, BTS has N-1 binary classifiers in the best situation (N is the number of classes), while it has log 4/3 ((N+3)/4) binary tests on average when making a decision. At the same time the upper bound of convergence complexity is determined. The experiments in this paper indicate that maintaining comparable accuracy, BTS is much faster to be trained than other methods. Especially in classification, due to its Log complexity, it is much faster than directed acyclic graph SVM (DAGSVM) and ECOC in problems that have big class number |
Author | Jinbai Liu Fei, B. |
Author_xml | – sequence: 1 givenname: B. surname: Fei fullname: Fei, B. organization: Dept. of Math., Tongji Univ., Shanghai – sequence: 2 surname: Jinbai Liu fullname: Jinbai Liu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17769585$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16722173$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS3Uqp-cOSAhX6CnbMd2HNu9lQraSv04ULhaXmdcjBKnjbOq-t_j7S5QVQLkw1jW78143tslG2lISMgbBjPGwBzeXF3NOEAz04qLWrwiO8zUrAIwYqPcoZaV4Vxtk92cfwCwWkKzRbZZozhnSuyQ648xufGRTiMiHQL98u3yiDqa8IEGlyfaL7op-s7lXBAXU0y31KWWPj3FEL2b4pCo626HMU7f-32yGVyX8fW67pGvnz_dnJxVF9en5yfHF5WXwKYKlUIVfK2M5k5iC6H1iAYEemjLQlzMjQjl1Hpu5pLzUHABrvG1MKCD2CMHq75343C_wDzZPmaPXecSDotstWmY0hxYIT_8k2w0gJIg_wtyZYxWShXw3RpczHts7d0Y--Kh_eVqAd6vAZe968Loko_5D6dUY6ReTpQrzo9DziMG6-P0ZOjS684ysMuUbUnZLlO2q5SL7vCF7nfrvyrerhQREZ99mBswXPwEmX6wAQ |
CODEN | ITNNEP |
CitedBy_id | crossref_primary_10_1007_s13748_021_00243_5 crossref_primary_10_1631_jzus_C1000022 crossref_primary_10_1016_j_eswa_2014_04_010 crossref_primary_10_1109_ACCESS_2020_2964433 crossref_primary_10_1080_1206212X_2020_1779978 crossref_primary_10_1109_ACCESS_2019_2957516 crossref_primary_10_1007_s11063_013_9278_9 crossref_primary_10_1016_j_neucom_2012_12_048 crossref_primary_10_1016_j_ins_2012_10_011 crossref_primary_10_1080_0952813X_2014_977829 crossref_primary_10_3390_sym9040048 crossref_primary_10_1016_j_patcog_2016_04_008 crossref_primary_10_2478_amcs_2018_0054 crossref_primary_10_1016_j_patcog_2010_06_010 crossref_primary_10_1016_j_asoc_2017_12_035 crossref_primary_10_1016_j_neubiorev_2017_01_002 crossref_primary_10_1002_navi_301 crossref_primary_10_1016_j_fishres_2011_07_010 crossref_primary_10_1016_j_patcog_2016_02_018 crossref_primary_10_1109_TGRS_2008_2010491 crossref_primary_10_1111_j_1468_0394_2010_00572_x crossref_primary_10_1177_09544119221113722 crossref_primary_10_1016_j_ecss_2025_109128 crossref_primary_10_1049_iet_cds_2017_0216 crossref_primary_10_1109_TGRS_2011_2159726 crossref_primary_10_1016_j_ins_2021_01_059 crossref_primary_10_1007_s10115_022_01755_9 crossref_primary_10_1016_j_eswa_2017_06_040 crossref_primary_10_1016_j_patcog_2011_01_017 crossref_primary_10_4028_www_scientific_net_AMR_538_541_427 crossref_primary_10_1117_1_3553800 crossref_primary_10_1016_j_eswa_2011_04_237 crossref_primary_10_1007_s13042_020_01270_9 crossref_primary_10_1109_ACCESS_2018_2854567 crossref_primary_10_1016_j_ins_2016_06_016 crossref_primary_10_1016_j_future_2013_06_021 crossref_primary_10_1080_19479832_2015_1086825 crossref_primary_10_1016_j_ymssp_2015_06_006 crossref_primary_10_1109_TIE_2012_2206336 crossref_primary_10_1109_LGRS_2008_916834 crossref_primary_10_1007_s11063_010_9160_y crossref_primary_10_1155_2017_6849360 crossref_primary_10_1016_j_eswa_2011_02_094 crossref_primary_10_1016_j_neucom_2019_10_051 crossref_primary_10_1016_j_patcog_2023_109479 crossref_primary_10_1109_TNNLS_2012_2198240 crossref_primary_10_4018_IJECME_2019010102 crossref_primary_10_3390_cryst11040324 crossref_primary_10_1007_s00521_012_1303_9 crossref_primary_10_3390_s24010123 crossref_primary_10_3390_math12243935 crossref_primary_10_1007_s10115_017_1126_1 crossref_primary_10_1016_j_patcog_2018_05_015 crossref_primary_10_1016_j_patcog_2014_07_023 crossref_primary_10_1016_j_knosys_2015_05_015 crossref_primary_10_1016_j_inffus_2016_11_004 crossref_primary_10_1007_s10915_021_01752_0 crossref_primary_10_1016_j_optcom_2019_03_058 crossref_primary_10_1109_TCAD_2021_3097298 crossref_primary_10_1016_j_aeue_2011_01_013 crossref_primary_10_1016_j_eswa_2011_04_181 crossref_primary_10_1007_s42243_020_00501_1 crossref_primary_10_1007_s13042_022_01592_w crossref_primary_10_1093_comjnl_bxaa125 crossref_primary_10_9717_kmms_2013_16_7_795 crossref_primary_10_1109_TNN_2007_903157 crossref_primary_10_1111_exsy_12494 crossref_primary_10_1080_01431161_2010_547882 crossref_primary_10_3390_s151229802 crossref_primary_10_3389_fnins_2018_00525 crossref_primary_10_1007_s10994_019_05786_2 crossref_primary_10_1109_ACCESS_2023_3337378 crossref_primary_10_1007_s13042_021_01303_x crossref_primary_10_1021_ci5000467 crossref_primary_10_23919_cje_2022_00_156 crossref_primary_10_1016_j_neucom_2015_07_078 crossref_primary_10_3390_sym12020319 crossref_primary_10_1007_s00170_009_2313_3 crossref_primary_10_1109_TETCI_2017_2772918 crossref_primary_10_1109_TNN_2007_891632 crossref_primary_10_1109_TBCAS_2015_2497304 crossref_primary_10_1016_j_jpowsour_2019_05_028 crossref_primary_10_1016_j_neucom_2011_01_019 crossref_primary_10_1093_bioinformatics_btn316 crossref_primary_10_1088_1742_6596_1487_1_012007 crossref_primary_10_1007_s10044_014_0374_x crossref_primary_10_1016_j_neuroimage_2021_118851 crossref_primary_10_1186_1471_2105_11_69 crossref_primary_10_1016_j_patcog_2007_11_012 crossref_primary_10_1109_TGRS_2010_2076287 crossref_primary_10_1016_j_neucom_2016_03_020 crossref_primary_10_1016_j_patrec_2010_02_015 crossref_primary_10_1155_2013_487179 crossref_primary_10_3390_s18093108 crossref_primary_10_3390_w10101303 crossref_primary_10_1016_j_neucom_2011_04_033 crossref_primary_10_1016_j_eswa_2015_06_037 crossref_primary_10_1016_j_patcog_2015_06_001 crossref_primary_10_1007_s10489_018_1218_y crossref_primary_10_1109_TNNLS_2017_2766164 crossref_primary_10_1016_j_neucom_2014_07_038 crossref_primary_10_1109_TCBB_2010_42 crossref_primary_10_1007_s13762_022_04727_2 crossref_primary_10_1016_j_neucom_2009_03_013 crossref_primary_10_1016_j_eswa_2015_01_022 |
Cites_doi | 10.1214/aos/1028144844 10.1613/jair.105 10.1109/TNN.2005.844857 10.1109/ICASSP.2002.5745430 10.1109/72.991427 10.1023/A:1009715923555 10.7551/mitpress/1130.003.0016 10.1109/TNN.2004.836201 10.1023/A:1012431217818 10.1109/TNN.2003.820841 10.7551/mitpress/1130.003.0009 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS |
Copyright_xml | – notice: 2006 INIST-CNRS |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 7SP F28 FR3 |
DOI | 10.1109/TNN.2006.872343 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | MEDLINE - Academic MEDLINE Computer and Information Systems Abstracts Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Computer Science Applied Sciences |
EISSN | 1941-0093 |
EndPage | 704 |
ExternalDocumentID | 16722173 17769585 10_1109_TNN_2006_872343 1629092 |
Genre | orig-research Evaluation Studies Journal Article |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS S10 TAE TN5 VH1 AAYOK AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM PKN Z5M 7SC 8FD JQ2 L7M L~C L~D 7X8 7SP F28 FR3 |
ID | FETCH-LOGICAL-c501t-e77e7fc47982a5ed0fdcee903ec0d20023b93f3f348b9b522fe7f30a6c43908f3 |
IEDL.DBID | RIE |
ISSN | 1045-9227 |
IngestDate | Fri Jul 11 10:51:45 EDT 2025 Fri Jul 11 04:52:29 EDT 2025 Thu Jul 10 19:07:20 EDT 2025 Wed Feb 19 01:52:28 EST 2025 Mon Jul 21 09:17:00 EDT 2025 Tue Jul 01 05:08:41 EDT 2025 Thu Apr 24 22:57:30 EDT 2025 Tue Aug 26 16:36:05 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | probabilistic output Binary tree multiclass classification support vector machine (SVM) Classification Vector support machine Neural network Binary tree of support vector machine (BTS) Acyclic graph Multiclass Directed graph c-BTS |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-e77e7fc47982a5ed0fdcee903ec0d20023b93f3f348b9b522fe7f30a6c43908f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-1 ObjectType-Feature-3 |
PMID | 16722173 |
PQID | 27998777 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1109_TNN_2006_872343 proquest_miscellaneous_896178201 pubmed_primary_16722173 pascalfrancis_primary_17769585 crossref_primary_10_1109_TNN_2006_872343 proquest_miscellaneous_68007505 proquest_miscellaneous_27998777 ieee_primary_1629092 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-05-01 |
PublicationDateYYYYMMDD | 2006-05-01 |
PublicationDate_xml | – month: 05 year: 2006 text: 2006-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | IEEE transactions on neural networks |
PublicationTitleAbbrev | TNN |
PublicationTitleAlternate | IEEE Trans Neural Netw |
PublicationYear | 2006 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | Cheong (ref11) 2004; 2 Platt (ref4) 2000; 12 ref14 ref20 ref22 Brodatz (ref16) 1966 ref21 Weston (ref10) ref2 Platt (ref12) 1999 ref17 ref19 ref18 ref7 Blake (ref15) 1998 ref3 ref6 ref5 Crammer (ref8) 2001; 2 Chang (ref13) 2001 Vapnik (ref1) 1998 Crammer (ref9) 2000 |
References_xml | – volume-title: Proc. ESANN99 ident: ref10 article-title: Multi-class support vector machines – ident: ref7 doi: 10.1214/aos/1028144844 – ident: ref14 article-title: Statlog Data Set – ident: ref18 doi: 10.1613/jair.105 – ident: ref22 doi: 10.1109/TNN.2005.844857 – volume: 12 start-page: 547 year: 2000 ident: ref4 article-title: Large margin DAGSVM’s for multiclass classification publication-title: Advances in Neural Information Processing System – volume: 2 issue: 3 year: 2004 ident: ref11 article-title: Support vector machines with binary tree architecture for multi-class classification publication-title: Neural Info. Process.—Lett. Rev. – ident: ref17 doi: 10.1109/ICASSP.2002.5745430 – volume-title: Advances in Large Margin Classifiers year: 1999 ident: ref12 article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods – volume-title: Textures: A Photographic Album for Artists and Designers year: 1966 ident: ref16 – ident: ref5 doi: 10.1109/72.991427 – ident: ref2 doi: 10.1023/A:1009715923555 – ident: ref3 doi: 10.7551/mitpress/1130.003.0016 – ident: ref20 doi: 10.1109/TNN.2004.836201 – ident: ref21 doi: 10.1023/A:1012431217818 – start-page: 35 volume-title: Comput. Learn. Theory year: 2000 ident: ref9 article-title: On the learnability and design of output codes for multiclass problems – ident: ref19 doi: 10.1109/TNN.2003.820841 – volume-title: Statistical Learning Theory year: 1998 ident: ref1 – volume-title: LibSVM: A Library for Support Vector Machine year: 2001 ident: ref13 – volume: 2 start-page: 265 year: 2001 ident: ref8 article-title: On the algorithmic implementation of multiclass kernel-based vector machines publication-title: J. Mach. Learn. Res. – volume-title: UCI Repository of Machine Learning Databases year: 1998 ident: ref15 – ident: ref6 doi: 10.7551/mitpress/1130.003.0009 |
SSID | ssj0014506 |
Score | 2.3046622 |
Snippet | We present a new architecture named Binary Tree of support vector machine (SVM), or BTS, in order to achieve high classification efficiency for multiclass... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 696 |
SubjectTerms | Algorithms Applied sciences Artificial Intelligence Binary tree of support vector machine (BTS) Binary trees c-BTS Classification Classification algorithms Classification tree analysis Classifiers Cluster Analysis Complexity Computer science; control theory; systems Connectionism. Neural networks Convergence Error correction codes Exact sciences and technology Image Interpretation, Computer-Assisted - methods Information Storage and Retrieval - methods multiclass classification Neural networks Pattern Recognition, Automated - methods probabilistic output support vector machine (SVM) Support vector machine classification Support vector machines Testing Training Tree graphs Trees Upper bound |
Title | Binary tree of SVM: a new fast multiclass training and classification algorithm |
URI | https://ieeexplore.ieee.org/document/1629092 https://www.ncbi.nlm.nih.gov/pubmed/16722173 https://www.proquest.com/docview/27998777 https://www.proquest.com/docview/68007505 https://www.proquest.com/docview/896178201 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuBAyy7Q8Cg-VIgD2XrjOI65FdSqqrTLgRb1Fjl-QEWboG72AL--YzvZtoiVqpWiVTKJnMwk_j7PC2BPaKMpN2WaG4kbxsu0llqlwmpVK410zPkE59m8OD7LT875-QZ8XOXCWGtD8Jmd-L_Bl29avfRLZfvTIpNU4gf3ERK3mKu18hjkPPTRRHbBU5lloi_jM6Vy_3Q-j16HUmQsD51zCpEhFmf3JqPQXcXHRqoFPh4X-1qsB55hAjragtkw9Bh38muy7OqJ_vtPVceH3ts2PO2RKDmIpvMMNmwzgvFBgyz86g95T0JsaFh0H8HW0PyB9N-CETy5U8lwDF8_h7xe4n3cpHXk2_fZJ6IIYnbi1KIjIW5Re6ROhqYURDWGhF0-WikYCFGXP9rri-7n1XM4Ozo8_XKc9r0aUs3ptEutEFY4nQtZZopbQ53B6VdSZjU1PhCE1ZI5_OVlLWsEfQ7FGVWFRkRES8dewGbTNnYHCK8VN4xx6zKZ5xopAJeMGSsNsitEcwlMBqVVui9k7od-WQVCQ2WFCvftNYsqKjyBD6sTfscaHutFx141t2JRKwns3rOK2-NCFBIZVwLvBjOp8P30ThfV2Ha5qDKBhFYIsV6iKANuw2uQNRKl9ImcCNUSeBlN8M4AoyW_-v_AX8PjuGbkIzTfwGZ3vbRvEUV19W54fW4Ah8QXFw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAcWtgFGh6tDwhxIFtvHMcxt4KoFuguB7aot8jxAxBtgrrZA_x6xnZ22yJWQpGiKJlETmac-cbzAngutNGUmzLNjcQd42VaS61SYbWqlUZzzPkE5-msmJzmH8742Ra8WufCWGtD8Jkd-cPgyzetXvqlssNxkUkq8Yd7C_U-H8dsrbXPIOehkybaFzyVWSb6Qj5jKg_ns1n0O5QiY3nonVOIDNE4u6GOQn8VHx2pFviBXOxssRl6BhV0vAvT1eBj5MmP0bKrR_r3X3Ud__ft7sFOj0XJURSe-7BlmwEMjxq0wy9-kRckRIeGZfcB7K7aP5D-bzCAu9dqGQ7h05uQ2Uu8l5u0jnz-Mn1NFEHUTpxadCRELmqP1cmqLQVRjSHhlI9XCiJC1PnX9vJ79-3iAZwev5u_naR9t4ZUczruUiuEFU7nQpaZ4tZQZ1ABS8qspsaHgrBaModbXtayRtjnkJxRVWjERLR07CFsN21j94DwWnHDGLcuk3mu0QjgkjFjpUH7CvFcAqMV0yrdlzL3Qz-vgklDZYUM9w02iyoyPIGX6xt-xioem0mHnjVXZJErCezfkIqr60IUEm2uBA5WYlLhDPVuF9XYdrmoMoEmrRBiM0VRBuSGzyAbKErpUzkRrCXwKIrgtQFGSX7874EfwO3JfHpSnbyffXwCd-IKko_XfArb3eXSPkNM1dX7YSr9ATRYGmA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binary+tree+of+SVM%3A+a+new+fast+multiclass+training+and+classification+algorithm&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Fei%2C+Ben&rft.au=Liu%2C+Jinbai&rft.date=2006-05-01&rft.issn=1045-9227&rft.volume=17&rft.issue=3&rft.spage=696&rft_id=info:doi/10.1109%2FTNN.2006.872343&rft_id=info%3Apmid%2F16722173&rft.externalDocID=16722173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon |