Binary tree of SVM: a new fast multiclass training and classification algorithm

We present a new architecture named Binary Tree of support vector machine (SVM), or BTS, in order to achieve high classification efficiency for multiclass problems. BTS and its enhanced version, c-BTS, decrease the number of binary classifiers to the greatest extent without increasing the complexity...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural networks Vol. 17; no. 3; pp. 696 - 704
Main Authors Fei, B., Jinbai Liu
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.05.2006
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a new architecture named Binary Tree of support vector machine (SVM), or BTS, in order to achieve high classification efficiency for multiclass problems. BTS and its enhanced version, c-BTS, decrease the number of binary classifiers to the greatest extent without increasing the complexity of the original problem. In the training phase, BTS has N-1 binary classifiers in the best situation (N is the number of classes), while it has log 4/3 ((N+3)/4) binary tests on average when making a decision. At the same time the upper bound of convergence complexity is determined. The experiments in this paper indicate that maintaining comparable accuracy, BTS is much faster to be trained than other methods. Especially in classification, due to its Log complexity, it is much faster than directed acyclic graph SVM (DAGSVM) and ECOC in problems that have big class number
AbstractList We present a new architecture named Binary Tree of support vector machine (SVM), or BTS, in order to achieve high classification efficiency for multiclass problems. BTS and its enhanced version, c-BTS, decrease the number of binary classifiers to the greatest extent without increasing the complexity of the original problem. In the training phase, BTS has N - 1 binary classifiers in the best situation (N is the number of classes), while it has log4/3 ((N + 3)/4) binary tests on average when making a decision. At the same time the upper bound of convergence complexity is determined. The experiments in this paper indicate that maintaining comparable accuracy, BTS is much faster to be trained than other methods. Especially in classification, due to its Log complexity, it is much faster than directed acyclic graph SVM (DAGSVM) and ECOC in problems that have big class number.We present a new architecture named Binary Tree of support vector machine (SVM), or BTS, in order to achieve high classification efficiency for multiclass problems. BTS and its enhanced version, c-BTS, decrease the number of binary classifiers to the greatest extent without increasing the complexity of the original problem. In the training phase, BTS has N - 1 binary classifiers in the best situation (N is the number of classes), while it has log4/3 ((N + 3)/4) binary tests on average when making a decision. At the same time the upper bound of convergence complexity is determined. The experiments in this paper indicate that maintaining comparable accuracy, BTS is much faster to be trained than other methods. Especially in classification, due to its Log complexity, it is much faster than directed acyclic graph SVM (DAGSVM) and ECOC in problems that have big class number.
We present a new architecture named Binary Tree of support vector machine (SVM), or BTS, in order to achieve high classification efficiency for multiclass problems. BTS and its enhanced version, c-BTS, decrease the number of binary classifiers to the greatest extent without increasing the complexity of the original problem. In the training phase, BTS has N - 1 binary classifiers in the best situation (N is the number of classes), while it has log4/3 ((N + 3)/4) binary tests on average when making a decision. At the same time the upper bound of convergence complexity is determined. The experiments in this paper indicate that maintaining comparable accuracy, BTS is much faster to be trained than other methods. Especially in classification, due to its Log complexity, it is much faster than directed acyclic graph SVM (DAGSVM) and ECOC in problems that have big class number.
We present a new architecture named Binary Tree of support vector machine (SVM), or BTS, in order to achieve high classification efficiency for multiclass problems. BTS and its enhanced version, c-BTS, decrease the number of binary classifiers to the greatest extent without increasing the complexity of the original problem. In the training phase, BTS has N-1 binary classifiers in the best situation (N is the number of classes), while it has log/sub 4/3/((N 3)/4) binary tests on average when making a decision. At the same time the upper bound of convergence complexity is determined. The experiments in this paper indicate that maintaining comparable accuracy, BTS is much faster to be trained than other methods. Especially in classification, due to its Log complexity, it is much faster than directed acyclic graph SVM (DAGSVM) and ECOC in problems that have big class number.
We present a new architecture named Binary Tree of support vector machine (SVM), or BTS, in order to achieve high classification efficiency for multiclass problems. BTS and its enhanced version, c-BTS, decrease the number of binary classifiers to the greatest extent without increasing the complexity of the original problem. In the training phase, BTS has N-1 binary classifiers in the best situation (N is the number of classes), while it has log 4/3 ((N+3)/4) binary tests on average when making a decision. At the same time the upper bound of convergence complexity is determined. The experiments in this paper indicate that maintaining comparable accuracy, BTS is much faster to be trained than other methods. Especially in classification, due to its Log complexity, it is much faster than directed acyclic graph SVM (DAGSVM) and ECOC in problems that have big class number
Author Jinbai Liu
Fei, B.
Author_xml – sequence: 1
  givenname: B.
  surname: Fei
  fullname: Fei, B.
  organization: Dept. of Math., Tongji Univ., Shanghai
– sequence: 2
  surname: Jinbai Liu
  fullname: Jinbai Liu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17769585$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16722173$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS3Uqp-cOSAhX6CnbMd2HNu9lQraSv04ULhaXmdcjBKnjbOq-t_j7S5QVQLkw1jW78143tslG2lISMgbBjPGwBzeXF3NOEAz04qLWrwiO8zUrAIwYqPcoZaV4Vxtk92cfwCwWkKzRbZZozhnSuyQ648xufGRTiMiHQL98u3yiDqa8IEGlyfaL7op-s7lXBAXU0y31KWWPj3FEL2b4pCo626HMU7f-32yGVyX8fW67pGvnz_dnJxVF9en5yfHF5WXwKYKlUIVfK2M5k5iC6H1iAYEemjLQlzMjQjl1Hpu5pLzUHABrvG1MKCD2CMHq75343C_wDzZPmaPXecSDotstWmY0hxYIT_8k2w0gJIg_wtyZYxWShXw3RpczHts7d0Y--Kh_eVqAd6vAZe968Loko_5D6dUY6ReTpQrzo9DziMG6-P0ZOjS684ysMuUbUnZLlO2q5SL7vCF7nfrvyrerhQREZ99mBswXPwEmX6wAQ
CODEN ITNNEP
CitedBy_id crossref_primary_10_1007_s13748_021_00243_5
crossref_primary_10_1631_jzus_C1000022
crossref_primary_10_1016_j_eswa_2014_04_010
crossref_primary_10_1109_ACCESS_2020_2964433
crossref_primary_10_1080_1206212X_2020_1779978
crossref_primary_10_1109_ACCESS_2019_2957516
crossref_primary_10_1007_s11063_013_9278_9
crossref_primary_10_1016_j_neucom_2012_12_048
crossref_primary_10_1016_j_ins_2012_10_011
crossref_primary_10_1080_0952813X_2014_977829
crossref_primary_10_3390_sym9040048
crossref_primary_10_1016_j_patcog_2016_04_008
crossref_primary_10_2478_amcs_2018_0054
crossref_primary_10_1016_j_patcog_2010_06_010
crossref_primary_10_1016_j_asoc_2017_12_035
crossref_primary_10_1016_j_neubiorev_2017_01_002
crossref_primary_10_1002_navi_301
crossref_primary_10_1016_j_fishres_2011_07_010
crossref_primary_10_1016_j_patcog_2016_02_018
crossref_primary_10_1109_TGRS_2008_2010491
crossref_primary_10_1111_j_1468_0394_2010_00572_x
crossref_primary_10_1177_09544119221113722
crossref_primary_10_1016_j_ecss_2025_109128
crossref_primary_10_1049_iet_cds_2017_0216
crossref_primary_10_1109_TGRS_2011_2159726
crossref_primary_10_1016_j_ins_2021_01_059
crossref_primary_10_1007_s10115_022_01755_9
crossref_primary_10_1016_j_eswa_2017_06_040
crossref_primary_10_1016_j_patcog_2011_01_017
crossref_primary_10_4028_www_scientific_net_AMR_538_541_427
crossref_primary_10_1117_1_3553800
crossref_primary_10_1016_j_eswa_2011_04_237
crossref_primary_10_1007_s13042_020_01270_9
crossref_primary_10_1109_ACCESS_2018_2854567
crossref_primary_10_1016_j_ins_2016_06_016
crossref_primary_10_1016_j_future_2013_06_021
crossref_primary_10_1080_19479832_2015_1086825
crossref_primary_10_1016_j_ymssp_2015_06_006
crossref_primary_10_1109_TIE_2012_2206336
crossref_primary_10_1109_LGRS_2008_916834
crossref_primary_10_1007_s11063_010_9160_y
crossref_primary_10_1155_2017_6849360
crossref_primary_10_1016_j_eswa_2011_02_094
crossref_primary_10_1016_j_neucom_2019_10_051
crossref_primary_10_1016_j_patcog_2023_109479
crossref_primary_10_1109_TNNLS_2012_2198240
crossref_primary_10_4018_IJECME_2019010102
crossref_primary_10_3390_cryst11040324
crossref_primary_10_1007_s00521_012_1303_9
crossref_primary_10_3390_s24010123
crossref_primary_10_3390_math12243935
crossref_primary_10_1007_s10115_017_1126_1
crossref_primary_10_1016_j_patcog_2018_05_015
crossref_primary_10_1016_j_patcog_2014_07_023
crossref_primary_10_1016_j_knosys_2015_05_015
crossref_primary_10_1016_j_inffus_2016_11_004
crossref_primary_10_1007_s10915_021_01752_0
crossref_primary_10_1016_j_optcom_2019_03_058
crossref_primary_10_1109_TCAD_2021_3097298
crossref_primary_10_1016_j_aeue_2011_01_013
crossref_primary_10_1016_j_eswa_2011_04_181
crossref_primary_10_1007_s42243_020_00501_1
crossref_primary_10_1007_s13042_022_01592_w
crossref_primary_10_1093_comjnl_bxaa125
crossref_primary_10_9717_kmms_2013_16_7_795
crossref_primary_10_1109_TNN_2007_903157
crossref_primary_10_1111_exsy_12494
crossref_primary_10_1080_01431161_2010_547882
crossref_primary_10_3390_s151229802
crossref_primary_10_3389_fnins_2018_00525
crossref_primary_10_1007_s10994_019_05786_2
crossref_primary_10_1109_ACCESS_2023_3337378
crossref_primary_10_1007_s13042_021_01303_x
crossref_primary_10_1021_ci5000467
crossref_primary_10_23919_cje_2022_00_156
crossref_primary_10_1016_j_neucom_2015_07_078
crossref_primary_10_3390_sym12020319
crossref_primary_10_1007_s00170_009_2313_3
crossref_primary_10_1109_TETCI_2017_2772918
crossref_primary_10_1109_TNN_2007_891632
crossref_primary_10_1109_TBCAS_2015_2497304
crossref_primary_10_1016_j_jpowsour_2019_05_028
crossref_primary_10_1016_j_neucom_2011_01_019
crossref_primary_10_1093_bioinformatics_btn316
crossref_primary_10_1088_1742_6596_1487_1_012007
crossref_primary_10_1007_s10044_014_0374_x
crossref_primary_10_1016_j_neuroimage_2021_118851
crossref_primary_10_1186_1471_2105_11_69
crossref_primary_10_1016_j_patcog_2007_11_012
crossref_primary_10_1109_TGRS_2010_2076287
crossref_primary_10_1016_j_neucom_2016_03_020
crossref_primary_10_1016_j_patrec_2010_02_015
crossref_primary_10_1155_2013_487179
crossref_primary_10_3390_s18093108
crossref_primary_10_3390_w10101303
crossref_primary_10_1016_j_neucom_2011_04_033
crossref_primary_10_1016_j_eswa_2015_06_037
crossref_primary_10_1016_j_patcog_2015_06_001
crossref_primary_10_1007_s10489_018_1218_y
crossref_primary_10_1109_TNNLS_2017_2766164
crossref_primary_10_1016_j_neucom_2014_07_038
crossref_primary_10_1109_TCBB_2010_42
crossref_primary_10_1007_s13762_022_04727_2
crossref_primary_10_1016_j_neucom_2009_03_013
crossref_primary_10_1016_j_eswa_2015_01_022
Cites_doi 10.1214/aos/1028144844
10.1613/jair.105
10.1109/TNN.2005.844857
10.1109/ICASSP.2002.5745430
10.1109/72.991427
10.1023/A:1009715923555
10.7551/mitpress/1130.003.0016
10.1109/TNN.2004.836201
10.1023/A:1012431217818
10.1109/TNN.2003.820841
10.7551/mitpress/1130.003.0009
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright_xml – notice: 2006 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7SP
F28
FR3
DOI 10.1109/TNN.2006.872343
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE - Academic
MEDLINE
Computer and Information Systems Abstracts

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
Applied Sciences
EISSN 1941-0093
EndPage 704
ExternalDocumentID 16722173
17769585
10_1109_TNN_2006_872343
1629092
Genre orig-research
Evaluation Studies
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7SP
F28
FR3
ID FETCH-LOGICAL-c501t-e77e7fc47982a5ed0fdcee903ec0d20023b93f3f348b9b522fe7f30a6c43908f3
IEDL.DBID RIE
ISSN 1045-9227
IngestDate Fri Jul 11 10:51:45 EDT 2025
Fri Jul 11 04:52:29 EDT 2025
Thu Jul 10 19:07:20 EDT 2025
Wed Feb 19 01:52:28 EST 2025
Mon Jul 21 09:17:00 EDT 2025
Tue Jul 01 05:08:41 EDT 2025
Thu Apr 24 22:57:30 EDT 2025
Tue Aug 26 16:36:05 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords probabilistic output
Binary tree
multiclass classification
support vector machine (SVM)
Classification
Vector support machine
Neural network
Binary tree of support vector machine (BTS)
Acyclic graph
Multiclass
Directed graph
c-BTS
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-e77e7fc47982a5ed0fdcee903ec0d20023b93f3f348b9b522fe7f30a6c43908f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
PMID 16722173
PQID 27998777
PQPubID 23500
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_TNN_2006_872343
proquest_miscellaneous_896178201
pubmed_primary_16722173
pascalfrancis_primary_17769585
crossref_primary_10_1109_TNN_2006_872343
proquest_miscellaneous_68007505
proquest_miscellaneous_27998777
ieee_primary_1629092
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-05-01
PublicationDateYYYYMMDD 2006-05-01
PublicationDate_xml – month: 05
  year: 2006
  text: 2006-05-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 2006
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References Cheong (ref11) 2004; 2
Platt (ref4) 2000; 12
ref14
ref20
ref22
Brodatz (ref16) 1966
ref21
Weston (ref10)
ref2
Platt (ref12) 1999
ref17
ref19
ref18
ref7
Blake (ref15) 1998
ref3
ref6
ref5
Crammer (ref8) 2001; 2
Chang (ref13) 2001
Vapnik (ref1) 1998
Crammer (ref9) 2000
References_xml – volume-title: Proc. ESANN99
  ident: ref10
  article-title: Multi-class support vector machines
– ident: ref7
  doi: 10.1214/aos/1028144844
– ident: ref14
  article-title: Statlog Data Set
– ident: ref18
  doi: 10.1613/jair.105
– ident: ref22
  doi: 10.1109/TNN.2005.844857
– volume: 12
  start-page: 547
  year: 2000
  ident: ref4
  article-title: Large margin DAGSVM’s for multiclass classification
  publication-title: Advances in Neural Information Processing System
– volume: 2
  issue: 3
  year: 2004
  ident: ref11
  article-title: Support vector machines with binary tree architecture for multi-class classification
  publication-title: Neural Info. Process.—Lett. Rev.
– ident: ref17
  doi: 10.1109/ICASSP.2002.5745430
– volume-title: Advances in Large Margin Classifiers
  year: 1999
  ident: ref12
  article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
– volume-title: Textures: A Photographic Album for Artists and Designers
  year: 1966
  ident: ref16
– ident: ref5
  doi: 10.1109/72.991427
– ident: ref2
  doi: 10.1023/A:1009715923555
– ident: ref3
  doi: 10.7551/mitpress/1130.003.0016
– ident: ref20
  doi: 10.1109/TNN.2004.836201
– ident: ref21
  doi: 10.1023/A:1012431217818
– start-page: 35
  volume-title: Comput. Learn. Theory
  year: 2000
  ident: ref9
  article-title: On the learnability and design of output codes for multiclass problems
– ident: ref19
  doi: 10.1109/TNN.2003.820841
– volume-title: Statistical Learning Theory
  year: 1998
  ident: ref1
– volume-title: LibSVM: A Library for Support Vector Machine
  year: 2001
  ident: ref13
– volume: 2
  start-page: 265
  year: 2001
  ident: ref8
  article-title: On the algorithmic implementation of multiclass kernel-based vector machines
  publication-title: J. Mach. Learn. Res.
– volume-title: UCI Repository of Machine Learning Databases
  year: 1998
  ident: ref15
– ident: ref6
  doi: 10.7551/mitpress/1130.003.0009
SSID ssj0014506
Score 2.3046622
Snippet We present a new architecture named Binary Tree of support vector machine (SVM), or BTS, in order to achieve high classification efficiency for multiclass...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 696
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Binary tree of support vector machine (BTS)
Binary trees
c-BTS
Classification
Classification algorithms
Classification tree analysis
Classifiers
Cluster Analysis
Complexity
Computer science; control theory; systems
Connectionism. Neural networks
Convergence
Error correction codes
Exact sciences and technology
Image Interpretation, Computer-Assisted - methods
Information Storage and Retrieval - methods
multiclass classification
Neural networks
Pattern Recognition, Automated - methods
probabilistic output
support vector machine (SVM)
Support vector machine classification
Support vector machines
Testing
Training
Tree graphs
Trees
Upper bound
Title Binary tree of SVM: a new fast multiclass training and classification algorithm
URI https://ieeexplore.ieee.org/document/1629092
https://www.ncbi.nlm.nih.gov/pubmed/16722173
https://www.proquest.com/docview/27998777
https://www.proquest.com/docview/68007505
https://www.proquest.com/docview/896178201
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuBAyy7Q8Cg-VIgD2XrjOI65FdSqqrTLgRb1Fjl-QEWboG72AL--YzvZtoiVqpWiVTKJnMwk_j7PC2BPaKMpN2WaG4kbxsu0llqlwmpVK410zPkE59m8OD7LT875-QZ8XOXCWGtD8Jmd-L_Bl29avfRLZfvTIpNU4gf3ERK3mKu18hjkPPTRRHbBU5lloi_jM6Vy_3Q-j16HUmQsD51zCpEhFmf3JqPQXcXHRqoFPh4X-1qsB55hAjragtkw9Bh38muy7OqJ_vtPVceH3ts2PO2RKDmIpvMMNmwzgvFBgyz86g95T0JsaFh0H8HW0PyB9N-CETy5U8lwDF8_h7xe4n3cpHXk2_fZJ6IIYnbi1KIjIW5Re6ROhqYURDWGhF0-WikYCFGXP9rri-7n1XM4Ozo8_XKc9r0aUs3ptEutEFY4nQtZZopbQ53B6VdSZjU1PhCE1ZI5_OVlLWsEfQ7FGVWFRkRES8dewGbTNnYHCK8VN4xx6zKZ5xopAJeMGSsNsitEcwlMBqVVui9k7od-WQVCQ2WFCvftNYsqKjyBD6sTfscaHutFx141t2JRKwns3rOK2-NCFBIZVwLvBjOp8P30ThfV2Ha5qDKBhFYIsV6iKANuw2uQNRKl9ImcCNUSeBlN8M4AoyW_-v_AX8PjuGbkIzTfwGZ3vbRvEUV19W54fW4Ah8QXFw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAcWtgFGh6tDwhxIFtvHMcxt4KoFuguB7aot8jxAxBtgrrZA_x6xnZ22yJWQpGiKJlETmac-cbzAngutNGUmzLNjcQd42VaS61SYbWqlUZzzPkE5-msmJzmH8742Ra8WufCWGtD8Jkd-cPgyzetXvqlssNxkUkq8Yd7C_U-H8dsrbXPIOehkybaFzyVWSb6Qj5jKg_ns1n0O5QiY3nonVOIDNE4u6GOQn8VHx2pFviBXOxssRl6BhV0vAvT1eBj5MmP0bKrR_r3X3Ud__ft7sFOj0XJURSe-7BlmwEMjxq0wy9-kRckRIeGZfcB7K7aP5D-bzCAu9dqGQ7h05uQ2Uu8l5u0jnz-Mn1NFEHUTpxadCRELmqP1cmqLQVRjSHhlI9XCiJC1PnX9vJ79-3iAZwev5u_naR9t4ZUczruUiuEFU7nQpaZ4tZQZ1ABS8qspsaHgrBaModbXtayRtjnkJxRVWjERLR07CFsN21j94DwWnHDGLcuk3mu0QjgkjFjpUH7CvFcAqMV0yrdlzL3Qz-vgklDZYUM9w02iyoyPIGX6xt-xioem0mHnjVXZJErCezfkIqr60IUEm2uBA5WYlLhDPVuF9XYdrmoMoEmrRBiM0VRBuSGzyAbKErpUzkRrCXwKIrgtQFGSX7874EfwO3JfHpSnbyffXwCd-IKko_XfArb3eXSPkNM1dX7YSr9ATRYGmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binary+tree+of+SVM%3A+a+new+fast+multiclass+training+and+classification+algorithm&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Fei%2C+Ben&rft.au=Liu%2C+Jinbai&rft.date=2006-05-01&rft.issn=1045-9227&rft.volume=17&rft.issue=3&rft.spage=696&rft_id=info:doi/10.1109%2FTNN.2006.872343&rft_id=info%3Apmid%2F16722173&rft.externalDocID=16722173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon