A supervised method to assist the diagnosis and monitor progression of Alzheimer's disease using data from an fMRI experiment

► We propose a supervised method to assist the diagnosis, and monitor the progression of Alzheimer's disease. ► It is fully automated, and independent from the type of the fMRI experiment and the type of the task. ► It is based on features extracted from an fMRI experiment. ► It fuses features...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence in medicine Vol. 53; no. 1; pp. 35 - 45
Main Authors Tripoliti, Evanthia E., Fotiadis, Dimitrios I., Argyropoulou, Maria
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2011
Subjects
Online AccessGet full text
ISSN0933-3657
1873-2860
1873-2860
DOI10.1016/j.artmed.2011.05.005

Cover

Loading…
Abstract ► We propose a supervised method to assist the diagnosis, and monitor the progression of Alzheimer's disease. ► It is fully automated, and independent from the type of the fMRI experiment and the type of the task. ► It is based on features extracted from an fMRI experiment. ► It fuses features from different categories. The aim of this work is to provide a supervised method to assist the diagnosis and monitor the progression of the Alzheimer's disease (AD) using information which can be extracted from a functional magnetic resonance imaging (fMRI) experiment. The proposed method consists of five stages: (a) preprocessing of fMRI data, (b) modeling of the fMRI voxel time series using a generalized linear model, (c) feature extraction from the fMRI experiment, (d) feature selection, and (e) classification using the random forests algorithm. In the last stage we employ features that were extracted from the fMRI and other features such as demographics, behavioral and volumetric measures. The aim of the classification is twofold: first to diagnose AD and second to classify AD as very mild and mild. The method is evaluated using data from 41 subjects. The stage of AD is established using the Washington University Alzheimer's Disease Research Center recruitment and assessment procedures. The method classifies a patient as healthy or demented with 84% sensitivity and 92.3% specificity, and the stages of AD with 81% and 87% accuracy for the three class and the four class problem, respectively. The method is advantageous since it is fully automated and for the first time the diagnosis and staging of the disease are addressed using fMRI.
AbstractList The aim of this work is to provide a supervised method to assist the diagnosis and monitor the progression of the Alzheimer's disease (AD) using information which can be extracted from a functional magnetic resonance imaging (fMRI) experiment. The proposed method consists of five stages: (a) preprocessing of fMRI data, (b) modeling of the fMRI voxel time series using a generalized linear model, (c) feature extraction from the fMRI experiment, (d) feature selection, and (e) classification using the random forests algorithm. In the last stage we employ features that were extracted from the fMRI and other features such as demographics, behavioral and volumetric measures. The aim of the classification is twofold: first to diagnose AD and second to classify AD as very mild and mild. The method is evaluated using data from 41 subjects. The stage of AD is established using the Washington University Alzheimer's Disease Research Center recruitment and assessment procedures. The method classifies a patient as healthy or demented with 84% sensitivity and 92.3% specificity, and the stages of AD with 81% and 87% accuracy for the three class and the four class problem, respectively. The method is advantageous since it is fully automated and for the first time the diagnosis and staging of the disease are addressed using fMRI.
The aim of this work is to provide a supervised method to assist the diagnosis and monitor the progression of the Alzheimer's disease (AD) using information which can be extracted from a functional magnetic resonance imaging (fMRI) experiment.OBJECTIVEThe aim of this work is to provide a supervised method to assist the diagnosis and monitor the progression of the Alzheimer's disease (AD) using information which can be extracted from a functional magnetic resonance imaging (fMRI) experiment.The proposed method consists of five stages: (a) preprocessing of fMRI data, (b) modeling of the fMRI voxel time series using a generalized linear model, (c) feature extraction from the fMRI experiment, (d) feature selection, and (e) classification using the random forests algorithm. In the last stage we employ features that were extracted from the fMRI and other features such as demographics, behavioral and volumetric measures. The aim of the classification is twofold: first to diagnose AD and second to classify AD as very mild and mild.METHODS AND MATERIALSThe proposed method consists of five stages: (a) preprocessing of fMRI data, (b) modeling of the fMRI voxel time series using a generalized linear model, (c) feature extraction from the fMRI experiment, (d) feature selection, and (e) classification using the random forests algorithm. In the last stage we employ features that were extracted from the fMRI and other features such as demographics, behavioral and volumetric measures. The aim of the classification is twofold: first to diagnose AD and second to classify AD as very mild and mild.The method is evaluated using data from 41 subjects. The stage of AD is established using the Washington University Alzheimer's Disease Research Center recruitment and assessment procedures. The method classifies a patient as healthy or demented with 84% sensitivity and 92.3% specificity, and the stages of AD with 81% and 87% accuracy for the three class and the four class problem, respectively.RESULTSThe method is evaluated using data from 41 subjects. The stage of AD is established using the Washington University Alzheimer's Disease Research Center recruitment and assessment procedures. The method classifies a patient as healthy or demented with 84% sensitivity and 92.3% specificity, and the stages of AD with 81% and 87% accuracy for the three class and the four class problem, respectively.The method is advantageous since it is fully automated and for the first time the diagnosis and staging of the disease are addressed using fMRI.CONCLUSIONSThe method is advantageous since it is fully automated and for the first time the diagnosis and staging of the disease are addressed using fMRI.
Highlights ► We propose a supervised method to assist the diagnosis, and monitor the progression of Alzheimer's disease. ► It is fully automated, and independent from the type of the fMRI experiment and the type of the task. ► It is based on features extracted from an fMRI experiment. ► It fuses features from different categories.
► We propose a supervised method to assist the diagnosis, and monitor the progression of Alzheimer's disease. ► It is fully automated, and independent from the type of the fMRI experiment and the type of the task. ► It is based on features extracted from an fMRI experiment. ► It fuses features from different categories. The aim of this work is to provide a supervised method to assist the diagnosis and monitor the progression of the Alzheimer's disease (AD) using information which can be extracted from a functional magnetic resonance imaging (fMRI) experiment. The proposed method consists of five stages: (a) preprocessing of fMRI data, (b) modeling of the fMRI voxel time series using a generalized linear model, (c) feature extraction from the fMRI experiment, (d) feature selection, and (e) classification using the random forests algorithm. In the last stage we employ features that were extracted from the fMRI and other features such as demographics, behavioral and volumetric measures. The aim of the classification is twofold: first to diagnose AD and second to classify AD as very mild and mild. The method is evaluated using data from 41 subjects. The stage of AD is established using the Washington University Alzheimer's Disease Research Center recruitment and assessment procedures. The method classifies a patient as healthy or demented with 84% sensitivity and 92.3% specificity, and the stages of AD with 81% and 87% accuracy for the three class and the four class problem, respectively. The method is advantageous since it is fully automated and for the first time the diagnosis and staging of the disease are addressed using fMRI.
The aim of this work is to provide a supervised method to assist the diagnosis and monitor the progression of the Alzheimer's disease (AD) using information which can be extracted from a functional magnetic resonance imaging (fMRI) experiment. The proposed method consists of five stages: (a) preprocessing of fMRI data, (b) modeling of the fMRI voxel time series using a generalized linear model, (c) feature extraction from the fMRI experiment, (d) feature selection, and (e) classification using the random forests algorithm. In the last stage we employ features that were extracted from the fMRI and other features such as demographics, behavioral and volumetric measures. The aim of the classification is twofold: first to diagnose AD and second to classify AD as very mild and mild. The method is evaluated using data from 41 subjects. The stage of AD is established using the Washington University Alzheimer's Disease Research Center recruitment and assessment procedures. The method classifies a patient as healthy or demented with 84% sensitivity and 92.3% specificity, and the stages of AD with 81% and 87% accuracy for the three class and the four class problem, respectively. The method is advantageous since it is fully automated and for the first time the diagnosis and staging of the disease are addressed using fMRI.
Author Tripoliti, Evanthia E.
Fotiadis, Dimitrios I.
Argyropoulou, Maria
Author_xml – sequence: 1
  givenname: Evanthia E.
  surname: Tripoliti
  fullname: Tripoliti, Evanthia E.
  email: evi@cs.uoi.gr
  organization: Department of Computer Science, University of Ioannina, GR 451 10 Ioannina, Greece
– sequence: 2
  givenname: Dimitrios I.
  surname: Fotiadis
  fullname: Fotiadis, Dimitrios I.
  organization: Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 451 10 Ioannina, Greece
– sequence: 3
  givenname: Maria
  surname: Argyropoulou
  fullname: Argyropoulou, Maria
  organization: Department of Radiology, Medical School, University of Ioannina, GR 451 10 Ioannina, Greece
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21703828$$D View this record in MEDLINE/PubMed
BookMark eNqVkl9rFDEUxYNU7Lb6DUTy1qdZbyZ_JisiLEXbQkXQvofszJ3drDPJmmSKFfzuZtnqgyCLTyHwO-cm59wzcuKDR0JeMpgzYOr1dm5jHrGb18DYHOQcQD4hM6YbXtVawQmZwYLziivZnJKzlLYA0AimnpHTmjXAda1n5OeSpmmH8d4l7OiIeRM6mgO1KbmUad4g7Zxd-1Cu1PqCBO9yiHQXwzpioYKnoafL4ccG3YjxIhVBQpuQTsn5Ne1strSPYSxy2n_8fEPxexlYWJ-fk6e9HRK-eDzPyd2H93eX19Xtp6uby-Vt1UpguULWL_TKyqZHIYHXK2CyXrGOKyG0bTkIjc0CeGMVdBJgxRuheiUY06qRgp-Ti4NtefS3CVM2o0stDoP1GKZkFgyUFCCOk1ozAC61LuSrR3JalRbMrvzIxgfzO9oCiAPQxpBSxP4PwsDsGzRbc2jQ7Bs0IE1psMje_CVrXba5xJyjdcMx8buDGEuY9w6jSa1D32LnIrbZdMH9r0E7OO9aO3zFB0zbMEVfijLMpNqA-bLfsP2CsRILKGDF4O2_DY7P_wU3vOHE
CitedBy_id crossref_primary_10_1049_htl_2017_0005
crossref_primary_10_1007_s11831_021_09674_8
crossref_primary_10_1016_j_artmed_2023_102510
crossref_primary_10_3389_fpsyt_2024_1395563
crossref_primary_10_3389_fnins_2020_00259
crossref_primary_10_1016_j_chb_2021_106929
crossref_primary_10_1016_j_artmed_2016_06_003
crossref_primary_10_1016_j_jbi_2009_10_004
crossref_primary_10_1002_mrm_25853
crossref_primary_10_1080_03772063_2023_2205857
crossref_primary_10_1007_s12031_011_9665_5
crossref_primary_10_3390_bioengineering11111076
crossref_primary_10_1016_j_neuroscience_2015_08_013
crossref_primary_10_12677_CSA_2021_113078
crossref_primary_10_1007_s41870_024_02326_7
crossref_primary_10_3390_electronics12041031
crossref_primary_10_1016_j_patcog_2017_07_018
crossref_primary_10_1259_bjr_20211253
crossref_primary_10_1007_s11633_019_1171_1
crossref_primary_10_3174_ajnr_A3713
crossref_primary_10_1111_jmi_12640
crossref_primary_10_1016_j_compbiomed_2014_04_010
crossref_primary_10_1109_JBHI_2013_2285378
crossref_primary_10_1007_s12559_012_9169_9
crossref_primary_10_57197_JDR_2024_0042
crossref_primary_10_1007_s00500_012_0961_y
crossref_primary_10_1109_JBHI_2024_3415000
Cites_doi 10.1007/s004150050300
10.2174/1568026024607544
10.1073/pnas.2235925100
10.1162/089892900564046
10.1038/35094500
10.1056/NEJM200008173430701
10.1109/TMI.2005.854305
10.1002/ana.10157
10.1037/0894-4105.17.4.658
10.1093/brain/awl089
10.1001/archneurol.2008.596
10.1148/radiol.2262011600
10.1002/hbm.20490
10.1212/01.WNL.0000055847.17752.E6
10.1016/S1053-8119(02)00026-5
10.1006/nimg.2000.0630
10.1196/annals.1440.011
10.1006/nimg.1997.0299
10.1155/2008/167078
10.1148/radiol.2451061847
10.1006/nimg.1999.0444
10.1016/j.neulet.2005.05.028
10.1212/01.wnl.0000256697.20968.d7
10.1136/jnnp.74.1.44
10.1523/JNEUROSCI.2177-05.2005
10.1109/42.563664
10.1006/nimg.1997.0290
10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
10.1073/pnas.0308627101
10.31887/DCNS.2009.11.2/pscheltens
10.1007/s12021-007-0007-2
10.1023/A:1010933404324
10.1259/bjr/33117326
10.1002/ana.20009
10.1016/S0002-9343(97)00262-3
10.1016/j.mri.2006.03.008
10.1002/ana.21345
10.1016/j.neuroimage.2006.11.040
10.1148/radiol.2251011301
10.1097/00019052-200008000-00005
10.1006/nimg.2000.0568
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Elsevier B.V.
Copyright © 2011 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: Elsevier B.V.
– notice: Copyright © 2011 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
DOI 10.1016/j.artmed.2011.05.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1873-2860
EndPage 45
ExternalDocumentID 21703828
10_1016_j_artmed_2011_05_005
S0933365711000601
1_s2_0_S0933365711000601
Genre Evaluation Studies
Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77K
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c501t-e1f98ba57fe45032b0152b1d36448ac3048e79037a60d500b3746f6411867543
IEDL.DBID .~1
ISSN 0933-3657
1873-2860
IngestDate Tue Aug 05 10:02:33 EDT 2025
Mon Jul 21 11:23:23 EDT 2025
Thu Apr 03 07:07:46 EDT 2025
Tue Jul 01 00:24:32 EDT 2025
Thu Apr 24 22:57:17 EDT 2025
Fri Feb 23 02:25:16 EST 2024
Sun Feb 23 10:19:33 EST 2025
Tue Aug 26 17:11:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Functional magnetic resonance imaging
Generalized linear model
Alzheimer's disease
Random forests
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-e1f98ba57fe45032b0152b1d36448ac3048e79037a60d500b3746f6411867543
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 21703828
PQID 881003588
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_910654044
proquest_miscellaneous_881003588
pubmed_primary_21703828
crossref_primary_10_1016_j_artmed_2011_05_005
crossref_citationtrail_10_1016_j_artmed_2011_05_005
elsevier_sciencedirect_doi_10_1016_j_artmed_2011_05_005
elsevier_clinicalkeyesjournals_1_s2_0_S0933365711000601
elsevier_clinicalkey_doi_10_1016_j_artmed_2011_05_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Artificial intelligence in medicine
PublicationTitleAlternate Artif Intell Med
PublicationYear 2011
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chételat, Desgranges, de la Sayette, Viader, Eustache, Baron (bib0065) 2003; 60
Jezzard, Matthews, Smith (bib0205) 2001
Zar (bib0260) 1998
Scheltens (bib0025) 1999; 246
Thulborn, Martin, Voyvodic (bib0095) 2000; 21
Hao, Li, Li, Zhang, Wang, Yang (bib0005) 2005; 385
Scheltens, Korf (bib0030) 2000; 14
Chen, Herskovits (bib0110) 2007; 35
Chen, Herskovits (bib0170) 2007; 5
Ashburner, Friston (bib0195) 1999; 7
Li, Li, Wu, Zhang, Franczak, Antuono (bib0145) 2002; 255
Breiman (bib0235) 2001; 45
Kononeko (bib0250) 1994
Sperling, Bates, Chua, Cocchiarella, Rentz, Rosen (bib0135) 2003; 74
Robnik-Sikonja (bib0245) 2004
Shams, Hossein-Zadeh, Soltanian-Zadeh (bib0115) 2006; 24
O’Brien (bib0040) 2007; 80
Alzheimer's Disease International. Available online at
Grossman, Koenig, DeVita, Glosser, Moore, Gee (bib0125) 2003; 17
Greicius, Seeley, Miller, Glover, Parthasarathy, Beckmann (bib0180) 2005
Yu, Liu (bib0230) 2003
Collignon, Maes, Delaere, Vandermeulen, Suetens, Marchal (bib0190) 1995
Friston, Mechelli, Turner, Price (bib0225) 2000; 12
Peiffer, Maldjian, Laurienti (bib0140) 2008
Buckner, Andrews-Hanna, Schacter (bib0080) 2008; 1124
Petrella, Wang, Krishnan, Slavin, Prince, Tran (bib0160) 2007; 245
Buckner, Snyder, Shannon, LaRossa, Sachs, Fotenos (bib0045) 2005; 24
Carr, Goate, Phil, Morris (bib0015) 1997; 103
Klunk, Engler, Nordberg, Wang, Blomqvist, Holt (bib0050) 2004; 55
Petrella, Coleman, Doraiswamy (bib0020) 2003; 226
Burggren, Bookheimer (bib0085) 2002; 2
Gronn, Bittner, Schmitz, Wunderlich, Riepe (bib0120) 2002; 51
Burge, Lane, Link, Qiu, Clark (bib0165) 2009; 30
Greicius, Srivastava, Reiss, Menon (bib0150) 2004; 101
Maes, Collignon, Vandermeulen, Matchal, Suetens (bib0185) 1997; 16
Ashburner, Friston (bib0220) 1997; 6
[accessed 20.05.11].
Scheltens (bib0035) 2009; 11
Ashburner, Neelin, Collins, Evans, Friston (bib0200) 1997; 6
Lustig, Snyder, Bhakta, O’Brien, McAvoy, Raichle (bib0130) 2003; 100
Devanand, Pradhaban, Liu, Khandji, De Santi, Segal (bib0055) 2007; 68
Kononeko (bib0255) 1995
Bookheimer, Strojwas, Cohen (bib0090) 2000; 343
Buckner, Snyder, Sanders, Raichle, Morris (bib0155) 2000; 12
Tan, Steinbach, Kumar (bib0240) 2006
Miezin, Maccotta, Ollinger, Petersen, Buckner (bib0175) 2000; 11
Gusnard, Raichle (bib0075) 2001; 2
Chetelat, Baron (bib0215) 2003; 18
D’Esposito, Zarahn, Aguirre, Rypma (bib0210) 1999; 10
Tapiola, Alafuzoff, Herukka, Parkkinen, Hartikainen, Soininen (bib0060) 2009; 66
Kadir, Andreasen, Almkvist, Wall, Forsberg, Engler (bib0070) 2008; 63
Bassett, Yousem, Cristinzio, Kusevic, Yassa, Caffo (bib0100) 2006; 129
Chen, Herskovits (bib0105) 2005; 24
Buckner (10.1016/j.artmed.2011.05.005_bib0045) 2005; 24
Li (10.1016/j.artmed.2011.05.005_bib0145) 2002; 255
Robnik-Sikonja (10.1016/j.artmed.2011.05.005_bib0245) 2004
Ashburner (10.1016/j.artmed.2011.05.005_bib0200) 1997; 6
Scheltens (10.1016/j.artmed.2011.05.005_bib0030) 2000; 14
Jezzard (10.1016/j.artmed.2011.05.005_bib0205) 2001
Burge (10.1016/j.artmed.2011.05.005_bib0165) 2009; 30
Klunk (10.1016/j.artmed.2011.05.005_bib0050) 2004; 55
O’Brien (10.1016/j.artmed.2011.05.005_bib0040) 2007; 80
Chen (10.1016/j.artmed.2011.05.005_bib0170) 2007; 5
Ashburner (10.1016/j.artmed.2011.05.005_bib0195) 1999; 7
Bassett (10.1016/j.artmed.2011.05.005_bib0100) 2006; 129
Kononeko (10.1016/j.artmed.2011.05.005_bib0250) 1994
Zar (10.1016/j.artmed.2011.05.005_bib0260) 1998
Petrella (10.1016/j.artmed.2011.05.005_bib0160) 2007; 245
D’Esposito (10.1016/j.artmed.2011.05.005_bib0210) 1999; 10
Scheltens (10.1016/j.artmed.2011.05.005_bib0035) 2009; 11
Grossman (10.1016/j.artmed.2011.05.005_bib0125) 2003; 17
Gusnard (10.1016/j.artmed.2011.05.005_bib0075) 2001; 2
Yu (10.1016/j.artmed.2011.05.005_bib0230) 2003
Greicius (10.1016/j.artmed.2011.05.005_bib0150) 2004; 101
Chen (10.1016/j.artmed.2011.05.005_bib0110) 2007; 35
Friston (10.1016/j.artmed.2011.05.005_bib0225) 2000; 12
Scheltens (10.1016/j.artmed.2011.05.005_bib0025) 1999; 246
Tan (10.1016/j.artmed.2011.05.005_bib0240) 2006
Shams (10.1016/j.artmed.2011.05.005_bib0115) 2006; 24
Burggren (10.1016/j.artmed.2011.05.005_bib0085) 2002; 2
Lustig (10.1016/j.artmed.2011.05.005_bib0130) 2003; 100
Peiffer (10.1016/j.artmed.2011.05.005_bib0140) 2008
Carr (10.1016/j.artmed.2011.05.005_bib0015) 1997; 103
Ashburner (10.1016/j.artmed.2011.05.005_bib0220) 1997; 6
Kononeko (10.1016/j.artmed.2011.05.005_bib0255) 1995
Thulborn (10.1016/j.artmed.2011.05.005_bib0095) 2000; 21
Buckner (10.1016/j.artmed.2011.05.005_bib0155) 2000; 12
Greicius (10.1016/j.artmed.2011.05.005_bib0180) 2005
Devanand (10.1016/j.artmed.2011.05.005_bib0055) 2007; 68
Collignon (10.1016/j.artmed.2011.05.005_bib0190) 1995
Hao (10.1016/j.artmed.2011.05.005_bib0005) 2005; 385
Petrella (10.1016/j.artmed.2011.05.005_bib0020) 2003; 226
Bookheimer (10.1016/j.artmed.2011.05.005_bib0090) 2000; 343
Buckner (10.1016/j.artmed.2011.05.005_bib0080) 2008; 1124
Sperling (10.1016/j.artmed.2011.05.005_bib0135) 2003; 74
Chen (10.1016/j.artmed.2011.05.005_bib0105) 2005; 24
10.1016/j.artmed.2011.05.005_bib0010
Maes (10.1016/j.artmed.2011.05.005_bib0185) 1997; 16
Kadir (10.1016/j.artmed.2011.05.005_bib0070) 2008; 63
Chetelat (10.1016/j.artmed.2011.05.005_bib0215) 2003; 18
Miezin (10.1016/j.artmed.2011.05.005_bib0175) 2000; 11
Breiman (10.1016/j.artmed.2011.05.005_bib0235) 2001; 45
Tapiola (10.1016/j.artmed.2011.05.005_bib0060) 2009; 66
Chételat (10.1016/j.artmed.2011.05.005_bib0065) 2003; 60
Gronn (10.1016/j.artmed.2011.05.005_bib0120) 2002; 51
References_xml – volume: 343
  start-page: 450
  year: 2000
  end-page: 456
  ident: bib0090
  article-title: Patterns of brain activation in people at risk of Alzheimer's disease
  publication-title: N Engl J Med
– volume: 6
  start-page: 209
  year: 1997
  end-page: 217
  ident: bib0220
  article-title: Multimodal image corregistration and partitioning—a unified framework
  publication-title: Neuroimage
– volume: 10
  start-page: 6
  year: 1999
  end-page: 14
  ident: bib0210
  article-title: The effect of normal aging on the coupling of neural activity to the BOLD hemodynamic response
  publication-title: Neuroimage
– volume: 55
  start-page: 306
  year: 2004
  end-page: 319
  ident: bib0050
  article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburg Compound-B
  publication-title: Ann Neurol
– year: 2001
  ident: bib0205
  article-title: Functional MRI: an introduction to methods
– year: 1998
  ident: bib0260
  article-title: Biostatistical analysis
– volume: 51
  start-page: 491
  year: 2002
  end-page: 498
  ident: bib0120
  article-title: Subjective memory complaints: objective neural markers in patients with Alzheimer's disease and major depressive disorder
  publication-title: Ann Neurol
– start-page: 359
  year: 2004
  end-page: 369
  ident: bib0245
  article-title: Improving random forests
  publication-title: Proceedings of the European conference on machine learning
– start-page: 263
  year: 1995
  end-page: 274
  ident: bib0190
  article-title: Automated multi-modality image registration based on information theory
  publication-title: Proceedings of the 14th international conference on information processing in medical imaging
– year: 2008
  ident: bib0140
  article-title: Resurrecting Brinley plots for a novel use: meta-analysis of functional brain imaging data in older adults
  publication-title: Int J Biomed Imaging
– volume: 24
  start-page: 775
  year: 2006
  end-page: 784
  ident: bib0115
  article-title: Multisubject activation detection in fMRI by testing correlation of data with a signal subspace
  publication-title: Magn Reson Imaging
– year: 2005
  ident: bib0180
  article-title: Resting-state fMRI distinguishes Alzheimer's disease from healthy aging and frontotemporal dementia
  publication-title: Alzheimer's association international conference on prevention of dementia: early diagnosis and intervention
– volume: 24
  start-page: 1237
  year: 2005
  end-page: 1247
  ident: bib0105
  article-title: Graphical-model-based morphometric analysis
  publication-title: IEEE Trans Med Imaging
– volume: 12
  start-page: 466
  year: 2000
  end-page: 477
  ident: bib0225
  article-title: Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics
  publication-title: Neuroimage
– reference: Alzheimer's Disease International. Available online at:
– volume: 74
  start-page: 44
  year: 2003
  end-page: 50
  ident: bib0135
  article-title: FMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 16
  start-page: 187
  year: 1997
  end-page: 198
  ident: bib0185
  article-title: Multimodality image registration by maximization of mutual information
  publication-title: IEEE Trans Med Imaging
– volume: 103
  start-page: 3S
  year: 1997
  end-page: 10S
  ident: bib0015
  article-title: Current concepts in the pathogenesis of Alzheimer's disease
  publication-title: Am J Med
– volume: 255
  start-page: 253
  year: 2002
  end-page: 259
  ident: bib0145
  article-title: Alzheimer disease: evaluation of a functional MR imaging index as a marker
  publication-title: Radiology
– volume: 226
  start-page: 315
  year: 2003
  end-page: 336
  ident: bib0020
  article-title: Neuroimaging and early diagnosis of Alzheimer disease: a look to the future
  publication-title: Radiology
– volume: 246
  start-page: 16
  year: 1999
  end-page: 20
  ident: bib0025
  article-title: Early diagnosis of dementia: neuroimaging
  publication-title: J Neurol
– volume: 60
  start-page: 1374
  year: 2003
  end-page: 1377
  ident: bib0065
  article-title: Mild cognitive impairment—can FDG-PET predict who is to rapidly convert to Alzheimer's disease?
  publication-title: Neurology
– volume: 2
  start-page: 385
  year: 2002
  end-page: 393
  ident: bib0085
  article-title: Structural and functional neuroimaging in Alzheimer's disease: an update
  publication-title: Curr Top Med Chem
– volume: 35
  start-page: 635
  year: 2007
  end-page: 647
  ident: bib0110
  article-title: Graphical-model-based multivariate analysis of functional magnetic resonance data
  publication-title: Neurimage
– volume: 21
  start-page: 524
  year: 2000
  end-page: 531
  ident: bib0095
  article-title: Functional MR imaging using a visually guided saccade paradigm for comparing activation patterns in patients with probable Alzheimer's disease and in cognitively able elderly volunteers
  publication-title: AJNR Am J Neuroradiol
– volume: 100
  start-page: 14504
  year: 2003
  end-page: 14509
  ident: bib0130
  article-title: Functional deactivations: change with age and dementia of the Alzheimer type
  publication-title: PNAS
– volume: 24
  start-page: 7709
  year: 2005
  end-page: 7717
  ident: bib0045
  article-title: Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity amyloid, and memory
  publication-title: J Neurosci
– volume: 66
  start-page: 382
  year: 2009
  end-page: 389
  ident: bib0060
  article-title: Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain
  publication-title: Arch Neurol
– volume: 7
  start-page: 254
  year: 1999
  end-page: 266
  ident: bib0195
  article-title: Nonlinear spatial normalization using basis functions
  publication-title: Human Brain Map
– start-page: 171
  year: 1994
  end-page: 182
  ident: bib0250
  article-title: Estimating attributes: analysis and extensions of RELIEF
  publication-title: Proceedings of the European conference on machine learning
– volume: 14
  start-page: 391
  year: 2000
  end-page: 396
  ident: bib0030
  article-title: Contribution of neuroimaging in the diagnosis of Alzheimer's disease and other dementias
  publication-title: Curr Opin Neurol
– start-page: 856
  year: 2003
  end-page: 863
  ident: bib0230
  article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution
  publication-title: Proceedings of the twentieth international conference on machine learning
– volume: 11
  start-page: 735
  year: 2000
  end-page: 759
  ident: bib0175
  article-title: Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing
  publication-title: Neuroimage
– volume: 245
  start-page: 224
  year: 2007
  end-page: 235
  ident: bib0160
  article-title: Cortical deactivation in mild cognitive impairment: high-field strength functional MR imaging
  publication-title: Radiology
– start-page: 1034
  year: 1995
  end-page: 1040
  ident: bib0255
  article-title: On biases in estimating multi-valued attributes
  publication-title: Proceedings of international joint conference on artificial intelligence
– volume: 385
  start-page: 18
  year: 2005
  end-page: 23
  ident: bib0005
  article-title: Visual attention deficits in Alzheimer's disease: an fMRI study
  publication-title: Neurosci Lett
– volume: 101
  start-page: 4637
  year: 2004
  end-page: 4642
  ident: bib0150
  article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI
  publication-title: PNAS
– volume: 12
  start-page: 24
  year: 2000
  end-page: 34
  ident: bib0155
  article-title: Functional brain imaging of young nondemented, and demented older adults
  publication-title: J Cognit Neurosci
– volume: 1124
  start-page: 1
  year: 2008
  end-page: 38
  ident: bib0080
  article-title: The brain's default network: anatomy, function, and relevance to disease
  publication-title: Ann N Y Acad Sci
– volume: 6
  start-page: 344
  year: 1997
  end-page: 352
  ident: bib0200
  article-title: Incorporating prior knowledge into image registration
  publication-title: Neuroimage
– volume: 129
  start-page: 1229
  year: 2006
  end-page: 1239
  ident: bib0100
  article-title: Familial risk for Alzheimer's disease alters fMRI activation patterns
  publication-title: Brain
– volume: 5
  start-page: 178
  year: 2007
  end-page: 188
  ident: bib0170
  article-title: Clinical diagnosis based on Bayesian classification of functional magnetic resonance data
  publication-title: Neuroinformatics
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0235
  article-title: Random forests
  publication-title: Mach Learn
– volume: 17
  start-page: 658
  year: 2003
  end-page: 674
  ident: bib0125
  article-title: Neural basis for verb processing in Alzheimer's disease: an fMRI study
  publication-title: Neuropsychology
– volume: 30
  start-page: 122
  year: 2009
  end-page: 137
  ident: bib0165
  article-title: Discrete dynamic Bayesian network analysis of fMRI data
  publication-title: Human Brain Map
– volume: 18
  start-page: 525
  year: 2003
  end-page: 541
  ident: bib0215
  article-title: Early diagnosis of Alzheimer's disease: contribution of structural neuroimaging
  publication-title: Neuroimage
– volume: 80
  start-page: S71
  year: 2007
  end-page: S77
  ident: bib0040
  article-title: Role of imaging techniques in the diagnosis of dementia
  publication-title: Br J Radiol
– volume: 68
  start-page: 828
  year: 2007
  end-page: 836
  ident: bib0055
  article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment
  publication-title: Neurology
– volume: 11
  start-page: 191
  year: 2009
  end-page: 199
  ident: bib0035
  article-title: Imaging in Alzheimer's disease
  publication-title: Dialogues Clin Neurosci
– reference: [accessed 20.05.11].
– year: 2006
  ident: bib0240
  article-title: Introduction to data mining
– volume: 2
  start-page: 685
  year: 2001
  end-page: 694
  ident: bib0075
  article-title: Searching for a baseline: functional imaging and the resting human brain
  publication-title: Nat Rev Neurosci
– volume: 63
  start-page: 621
  year: 2008
  end-page: 631
  ident: bib0070
  article-title: Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer's disease
  publication-title: Ann Neurol
– volume: 246
  start-page: 16
  year: 1999
  ident: 10.1016/j.artmed.2011.05.005_bib0025
  article-title: Early diagnosis of dementia: neuroimaging
  publication-title: J Neurol
  doi: 10.1007/s004150050300
– volume: 2
  start-page: 385
  year: 2002
  ident: 10.1016/j.artmed.2011.05.005_bib0085
  article-title: Structural and functional neuroimaging in Alzheimer's disease: an update
  publication-title: Curr Top Med Chem
  doi: 10.2174/1568026024607544
– volume: 100
  start-page: 14504
  year: 2003
  ident: 10.1016/j.artmed.2011.05.005_bib0130
  article-title: Functional deactivations: change with age and dementia of the Alzheimer type
  publication-title: PNAS
  doi: 10.1073/pnas.2235925100
– volume: 12
  start-page: 24
  year: 2000
  ident: 10.1016/j.artmed.2011.05.005_bib0155
  article-title: Functional brain imaging of young nondemented, and demented older adults
  publication-title: J Cognit Neurosci
  doi: 10.1162/089892900564046
– volume: 2
  start-page: 685
  year: 2001
  ident: 10.1016/j.artmed.2011.05.005_bib0075
  article-title: Searching for a baseline: functional imaging and the resting human brain
  publication-title: Nat Rev Neurosci
  doi: 10.1038/35094500
– volume: 343
  start-page: 450
  year: 2000
  ident: 10.1016/j.artmed.2011.05.005_bib0090
  article-title: Patterns of brain activation in people at risk of Alzheimer's disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJM200008173430701
– volume: 24
  start-page: 1237
  year: 2005
  ident: 10.1016/j.artmed.2011.05.005_bib0105
  article-title: Graphical-model-based morphometric analysis
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2005.854305
– volume: 51
  start-page: 491
  year: 2002
  ident: 10.1016/j.artmed.2011.05.005_bib0120
  article-title: Subjective memory complaints: objective neural markers in patients with Alzheimer's disease and major depressive disorder
  publication-title: Ann Neurol
  doi: 10.1002/ana.10157
– volume: 17
  start-page: 658
  year: 2003
  ident: 10.1016/j.artmed.2011.05.005_bib0125
  article-title: Neural basis for verb processing in Alzheimer's disease: an fMRI study
  publication-title: Neuropsychology
  doi: 10.1037/0894-4105.17.4.658
– volume: 129
  start-page: 1229
  year: 2006
  ident: 10.1016/j.artmed.2011.05.005_bib0100
  article-title: Familial risk for Alzheimer's disease alters fMRI activation patterns
  publication-title: Brain
  doi: 10.1093/brain/awl089
– volume: 21
  start-page: 524
  year: 2000
  ident: 10.1016/j.artmed.2011.05.005_bib0095
  article-title: Functional MR imaging using a visually guided saccade paradigm for comparing activation patterns in patients with probable Alzheimer's disease and in cognitively able elderly volunteers
  publication-title: AJNR Am J Neuroradiol
– ident: 10.1016/j.artmed.2011.05.005_bib0010
– volume: 66
  start-page: 382
  year: 2009
  ident: 10.1016/j.artmed.2011.05.005_bib0060
  article-title: Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain
  publication-title: Arch Neurol
  doi: 10.1001/archneurol.2008.596
– volume: 226
  start-page: 315
  year: 2003
  ident: 10.1016/j.artmed.2011.05.005_bib0020
  article-title: Neuroimaging and early diagnosis of Alzheimer disease: a look to the future
  publication-title: Radiology
  doi: 10.1148/radiol.2262011600
– volume: 30
  start-page: 122
  year: 2009
  ident: 10.1016/j.artmed.2011.05.005_bib0165
  article-title: Discrete dynamic Bayesian network analysis of fMRI data
  publication-title: Human Brain Map
  doi: 10.1002/hbm.20490
– volume: 60
  start-page: 1374
  year: 2003
  ident: 10.1016/j.artmed.2011.05.005_bib0065
  article-title: Mild cognitive impairment—can FDG-PET predict who is to rapidly convert to Alzheimer's disease?
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000055847.17752.E6
– volume: 18
  start-page: 525
  year: 2003
  ident: 10.1016/j.artmed.2011.05.005_bib0215
  article-title: Early diagnosis of Alzheimer's disease: contribution of structural neuroimaging
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(02)00026-5
– volume: 12
  start-page: 466
  year: 2000
  ident: 10.1016/j.artmed.2011.05.005_bib0225
  article-title: Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0630
– volume: 1124
  start-page: 1
  year: 2008
  ident: 10.1016/j.artmed.2011.05.005_bib0080
  article-title: The brain's default network: anatomy, function, and relevance to disease
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1440.011
– volume: 6
  start-page: 344
  year: 1997
  ident: 10.1016/j.artmed.2011.05.005_bib0200
  article-title: Incorporating prior knowledge into image registration
  publication-title: Neuroimage
  doi: 10.1006/nimg.1997.0299
– year: 2008
  ident: 10.1016/j.artmed.2011.05.005_bib0140
  article-title: Resurrecting Brinley plots for a novel use: meta-analysis of functional brain imaging data in older adults
  publication-title: Int J Biomed Imaging
  doi: 10.1155/2008/167078
– volume: 245
  start-page: 224
  issue: 1
  year: 2007
  ident: 10.1016/j.artmed.2011.05.005_bib0160
  article-title: Cortical deactivation in mild cognitive impairment: high-field strength functional MR imaging
  publication-title: Radiology
  doi: 10.1148/radiol.2451061847
– volume: 10
  start-page: 6
  year: 1999
  ident: 10.1016/j.artmed.2011.05.005_bib0210
  article-title: The effect of normal aging on the coupling of neural activity to the BOLD hemodynamic response
  publication-title: Neuroimage
  doi: 10.1006/nimg.1999.0444
– volume: 385
  start-page: 18
  year: 2005
  ident: 10.1016/j.artmed.2011.05.005_bib0005
  article-title: Visual attention deficits in Alzheimer's disease: an fMRI study
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2005.05.028
– volume: 68
  start-page: 828
  year: 2007
  ident: 10.1016/j.artmed.2011.05.005_bib0055
  article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000256697.20968.d7
– volume: 74
  start-page: 44
  year: 2003
  ident: 10.1016/j.artmed.2011.05.005_bib0135
  article-title: FMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.74.1.44
– volume: 24
  start-page: 7709
  year: 2005
  ident: 10.1016/j.artmed.2011.05.005_bib0045
  article-title: Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity amyloid, and memory
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2177-05.2005
– year: 2006
  ident: 10.1016/j.artmed.2011.05.005_bib0240
– start-page: 856
  year: 2003
  ident: 10.1016/j.artmed.2011.05.005_bib0230
  article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution
– year: 2001
  ident: 10.1016/j.artmed.2011.05.005_bib0205
– volume: 16
  start-page: 187
  year: 1997
  ident: 10.1016/j.artmed.2011.05.005_bib0185
  article-title: Multimodality image registration by maximization of mutual information
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.563664
– year: 1998
  ident: 10.1016/j.artmed.2011.05.005_bib0260
– volume: 6
  start-page: 209
  year: 1997
  ident: 10.1016/j.artmed.2011.05.005_bib0220
  article-title: Multimodal image corregistration and partitioning—a unified framework
  publication-title: Neuroimage
  doi: 10.1006/nimg.1997.0290
– start-page: 359
  year: 2004
  ident: 10.1016/j.artmed.2011.05.005_bib0245
  article-title: Improving random forests
– volume: 7
  start-page: 254
  year: 1999
  ident: 10.1016/j.artmed.2011.05.005_bib0195
  article-title: Nonlinear spatial normalization using basis functions
  publication-title: Human Brain Map
  doi: 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
– volume: 101
  start-page: 4637
  year: 2004
  ident: 10.1016/j.artmed.2011.05.005_bib0150
  article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI
  publication-title: PNAS
  doi: 10.1073/pnas.0308627101
– volume: 11
  start-page: 191
  year: 2009
  ident: 10.1016/j.artmed.2011.05.005_bib0035
  article-title: Imaging in Alzheimer's disease
  publication-title: Dialogues Clin Neurosci
  doi: 10.31887/DCNS.2009.11.2/pscheltens
– start-page: 1034
  year: 1995
  ident: 10.1016/j.artmed.2011.05.005_bib0255
  article-title: On biases in estimating multi-valued attributes
– volume: 5
  start-page: 178
  year: 2007
  ident: 10.1016/j.artmed.2011.05.005_bib0170
  article-title: Clinical diagnosis based on Bayesian classification of functional magnetic resonance data
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-007-0007-2
– start-page: 263
  year: 1995
  ident: 10.1016/j.artmed.2011.05.005_bib0190
  article-title: Automated multi-modality image registration based on information theory
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.artmed.2011.05.005_bib0235
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 80
  start-page: S71
  year: 2007
  ident: 10.1016/j.artmed.2011.05.005_bib0040
  article-title: Role of imaging techniques in the diagnosis of dementia
  publication-title: Br J Radiol
  doi: 10.1259/bjr/33117326
– volume: 55
  start-page: 306
  year: 2004
  ident: 10.1016/j.artmed.2011.05.005_bib0050
  article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburg Compound-B
  publication-title: Ann Neurol
  doi: 10.1002/ana.20009
– volume: 103
  start-page: 3S
  issue: Suppl. 3A
  year: 1997
  ident: 10.1016/j.artmed.2011.05.005_bib0015
  article-title: Current concepts in the pathogenesis of Alzheimer's disease
  publication-title: Am J Med
  doi: 10.1016/S0002-9343(97)00262-3
– volume: 24
  start-page: 775
  year: 2006
  ident: 10.1016/j.artmed.2011.05.005_bib0115
  article-title: Multisubject activation detection in fMRI by testing correlation of data with a signal subspace
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2006.03.008
– start-page: 171
  year: 1994
  ident: 10.1016/j.artmed.2011.05.005_bib0250
  article-title: Estimating attributes: analysis and extensions of RELIEF
– volume: 63
  start-page: 621
  year: 2008
  ident: 10.1016/j.artmed.2011.05.005_bib0070
  article-title: Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer's disease
  publication-title: Ann Neurol
  doi: 10.1002/ana.21345
– volume: 35
  start-page: 635
  year: 2007
  ident: 10.1016/j.artmed.2011.05.005_bib0110
  article-title: Graphical-model-based multivariate analysis of functional magnetic resonance data
  publication-title: Neurimage
  doi: 10.1016/j.neuroimage.2006.11.040
– year: 2005
  ident: 10.1016/j.artmed.2011.05.005_bib0180
  article-title: Resting-state fMRI distinguishes Alzheimer's disease from healthy aging and frontotemporal dementia
– volume: 255
  start-page: 253
  year: 2002
  ident: 10.1016/j.artmed.2011.05.005_bib0145
  article-title: Alzheimer disease: evaluation of a functional MR imaging index as a marker
  publication-title: Radiology
  doi: 10.1148/radiol.2251011301
– volume: 14
  start-page: 391
  year: 2000
  ident: 10.1016/j.artmed.2011.05.005_bib0030
  article-title: Contribution of neuroimaging in the diagnosis of Alzheimer's disease and other dementias
  publication-title: Curr Opin Neurol
  doi: 10.1097/00019052-200008000-00005
– volume: 11
  start-page: 735
  year: 2000
  ident: 10.1016/j.artmed.2011.05.005_bib0175
  article-title: Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0568
SSID ssj0007416
Score 2.0988307
Snippet ► We propose a supervised method to assist the diagnosis, and monitor the progression of Alzheimer's disease. ► It is fully automated, and independent from the...
Highlights ► We propose a supervised method to assist the diagnosis, and monitor the progression of Alzheimer's disease. ► It is fully automated, and...
The aim of this work is to provide a supervised method to assist the diagnosis and monitor the progression of the Alzheimer's disease (AD) using information...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 35
SubjectTerms Adolescent
Aged
Aged, 80 and over
Algorithms
Alzheimer Disease - diagnosis
Alzheimer Disease - pathology
Alzheimer's disease
Disease Progression
Female
Functional magnetic resonance imaging
Generalized linear model
Humans
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
Internal Medicine
Magnetic Resonance Imaging - methods
Male
Other
Random forests
Young Adult
Title A supervised method to assist the diagnosis and monitor progression of Alzheimer's disease using data from an fMRI experiment
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0933365711000601
https://www.clinicalkey.es/playcontent/1-s2.0-S0933365711000601
https://dx.doi.org/10.1016/j.artmed.2011.05.005
https://www.ncbi.nlm.nih.gov/pubmed/21703828
https://www.proquest.com/docview/881003588
https://www.proquest.com/docview/910654044
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiEuPMprC1RzQOIU1l7bcXpcVVTbou0BitSbFTsObFWyq83uBan97Z2JnRZEV0VcI09ieV7fxPNg7D16PKPzimdBqJCpWtVZIXyR-SKMCO_n2lGB8_Qkn3xTx2f6bIsd9LUwlFaZbH-06Z21Tk-G6TSHi9ls-JVicZlrQ03PqKsIVbArQ1L-8eo2zYMQR9dvT8qMVvflc12OF74PfU5q5Ek_V_Qm97QJfnZu6PApe5zwI4zjFp-xrdDssCf9bAZIqrrDHk7TpflzdjmGdr0gm9CGCuLIaFjNAWEz8hgQAUIVE-5mLZQNLun0fAld7lbs2wHzGsYXv36E2c-w_NBCutcBSpv_DpRmClSoguRQT78cwe3ggBfs9PDT6cEkS1MXMq-5WCHT6v3CldrUQWkuRw4Bw8iJSlIkV3qJKh_MPpemzHmlOXfSqLzOlaDWeFrJl2y7mTfhNYPgah-EdmhGSiUCdw7hgMd4yWlfGeMHTPZnbX3qSE6DMS5sn3p2biOHLHHIcm2RQwOW3VAtYkeOe9brno22rzZF-2jRZdxDZ-6iC21S8tYK244st38J4u-Uf8jyP3wTejmzqOZ0d1M2Yb5ubVEIuvQtis1LEPjliL-VGrBXUURvzgfjTi4xtt797529YY_i33TKrnvLtlfLdXiHcGzl9jp922MPxkefJyfXICAzoQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tXQn2wmN5bHnOAYlTVKe24-yxWrFq2W0PUKS9WXHiQNGSVk17QeK_M5M4BQTVIq6VJ408nplv4plvAF5TxDM6KUTkY-UjVaoySuM8jfLUDxnvJ9pxg_N0low_qndX-uoAzrpeGC6rDL6_9emNtw6_DMJuDlaLxeAD5-Iy0YZJz5hV5BYcMjuV7sHhaHIxnu0cMoOOhnJPyogFug66psyLHklhJ3B58vcVvS9C7UOgTSQ6vw93A4TEUfuWD-DAV8dwrxvPgMFaj-H2NNybP4TvI6y3K3YLtS-wnRqNmyUSciY1I4FALNqau0WNWUVLGlNfY1O-1VJ34LLE0fW3z37x1a_f1BiudpAr5z8hV5oi96qQOJbT9xP8OTvgEczP387PxlEYvBDlWsQb0lt5mrpMm9IrLeTQEWYYuriQnMxluSSr9-ZUSJMlotBCOGlUUiYqZnY8reRj6FXLyp8AelfmPtaOPEmmYi-cI0SQU8rkdF4Yk_dBdntt80BKzrMxrm1XffbFthqyrCErtCUN9SHaSa1aUo4b1utOjbZrOCUXaSlq3CBn_ibn62DntY1tPbTC_nEWf5X87Tj_w39id84sWTpf32SVX25rm6Yx3_um6f4lhP0SguBK9eFJe0R3-0Opp5CUXj_97zd7BXfG8-mlvZzMLp7BUftxnYvtnkNvs976F4TONu5lsL4fjmM2Ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+supervised+method+to+assist+the+diagnosis+and+monitor+progression+of+Alzheimer%27s+disease+using+data+from+an+fMRI+experiment&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Tripoliti%2C+Evanthia+E&rft.au=Fotiadis%2C+Dimitrios+I&rft.au=Argyropoulou%2C+Maria&rft.date=2011-09-01&rft.issn=0933-3657&rft.volume=53&rft.issue=1&rft.spage=35&rft.epage=45&rft_id=info:doi/10.1016%2Fj.artmed.2011.05.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09333657%2FS0933365711X00076%2Fcov150h.gif