A supervised method to assist the diagnosis and monitor progression of Alzheimer's disease using data from an fMRI experiment
► We propose a supervised method to assist the diagnosis, and monitor the progression of Alzheimer's disease. ► It is fully automated, and independent from the type of the fMRI experiment and the type of the task. ► It is based on features extracted from an fMRI experiment. ► It fuses features...
Saved in:
Published in | Artificial intelligence in medicine Vol. 53; no. 1; pp. 35 - 45 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0933-3657 1873-2860 1873-2860 |
DOI | 10.1016/j.artmed.2011.05.005 |
Cover
Loading…
Abstract | ► We propose a supervised method to assist the diagnosis, and monitor the progression of Alzheimer's disease. ► It is fully automated, and independent from the type of the fMRI experiment and the type of the task. ► It is based on features extracted from an fMRI experiment. ► It fuses features from different categories.
The aim of this work is to provide a supervised method to assist the diagnosis and monitor the progression of the Alzheimer's disease (AD) using information which can be extracted from a functional magnetic resonance imaging (fMRI) experiment.
The proposed method consists of five stages: (a) preprocessing of fMRI data, (b) modeling of the fMRI voxel time series using a generalized linear model, (c) feature extraction from the fMRI experiment, (d) feature selection, and (e) classification using the random forests algorithm. In the last stage we employ features that were extracted from the fMRI and other features such as demographics, behavioral and volumetric measures. The aim of the classification is twofold: first to diagnose AD and second to classify AD as very mild and mild.
The method is evaluated using data from 41 subjects. The stage of AD is established using the Washington University Alzheimer's Disease Research Center recruitment and assessment procedures. The method classifies a patient as healthy or demented with 84% sensitivity and 92.3% specificity, and the stages of AD with 81% and 87% accuracy for the three class and the four class problem, respectively.
The method is advantageous since it is fully automated and for the first time the diagnosis and staging of the disease are addressed using fMRI. |
---|---|
AbstractList | The aim of this work is to provide a supervised method to assist the diagnosis and monitor the progression of the Alzheimer's disease (AD) using information which can be extracted from a functional magnetic resonance imaging (fMRI) experiment. The proposed method consists of five stages: (a) preprocessing of fMRI data, (b) modeling of the fMRI voxel time series using a generalized linear model, (c) feature extraction from the fMRI experiment, (d) feature selection, and (e) classification using the random forests algorithm. In the last stage we employ features that were extracted from the fMRI and other features such as demographics, behavioral and volumetric measures. The aim of the classification is twofold: first to diagnose AD and second to classify AD as very mild and mild. The method is evaluated using data from 41 subjects. The stage of AD is established using the Washington University Alzheimer's Disease Research Center recruitment and assessment procedures. The method classifies a patient as healthy or demented with 84% sensitivity and 92.3% specificity, and the stages of AD with 81% and 87% accuracy for the three class and the four class problem, respectively. The method is advantageous since it is fully automated and for the first time the diagnosis and staging of the disease are addressed using fMRI. The aim of this work is to provide a supervised method to assist the diagnosis and monitor the progression of the Alzheimer's disease (AD) using information which can be extracted from a functional magnetic resonance imaging (fMRI) experiment.OBJECTIVEThe aim of this work is to provide a supervised method to assist the diagnosis and monitor the progression of the Alzheimer's disease (AD) using information which can be extracted from a functional magnetic resonance imaging (fMRI) experiment.The proposed method consists of five stages: (a) preprocessing of fMRI data, (b) modeling of the fMRI voxel time series using a generalized linear model, (c) feature extraction from the fMRI experiment, (d) feature selection, and (e) classification using the random forests algorithm. In the last stage we employ features that were extracted from the fMRI and other features such as demographics, behavioral and volumetric measures. The aim of the classification is twofold: first to diagnose AD and second to classify AD as very mild and mild.METHODS AND MATERIALSThe proposed method consists of five stages: (a) preprocessing of fMRI data, (b) modeling of the fMRI voxel time series using a generalized linear model, (c) feature extraction from the fMRI experiment, (d) feature selection, and (e) classification using the random forests algorithm. In the last stage we employ features that were extracted from the fMRI and other features such as demographics, behavioral and volumetric measures. The aim of the classification is twofold: first to diagnose AD and second to classify AD as very mild and mild.The method is evaluated using data from 41 subjects. The stage of AD is established using the Washington University Alzheimer's Disease Research Center recruitment and assessment procedures. The method classifies a patient as healthy or demented with 84% sensitivity and 92.3% specificity, and the stages of AD with 81% and 87% accuracy for the three class and the four class problem, respectively.RESULTSThe method is evaluated using data from 41 subjects. The stage of AD is established using the Washington University Alzheimer's Disease Research Center recruitment and assessment procedures. The method classifies a patient as healthy or demented with 84% sensitivity and 92.3% specificity, and the stages of AD with 81% and 87% accuracy for the three class and the four class problem, respectively.The method is advantageous since it is fully automated and for the first time the diagnosis and staging of the disease are addressed using fMRI.CONCLUSIONSThe method is advantageous since it is fully automated and for the first time the diagnosis and staging of the disease are addressed using fMRI. Highlights ► We propose a supervised method to assist the diagnosis, and monitor the progression of Alzheimer's disease. ► It is fully automated, and independent from the type of the fMRI experiment and the type of the task. ► It is based on features extracted from an fMRI experiment. ► It fuses features from different categories. ► We propose a supervised method to assist the diagnosis, and monitor the progression of Alzheimer's disease. ► It is fully automated, and independent from the type of the fMRI experiment and the type of the task. ► It is based on features extracted from an fMRI experiment. ► It fuses features from different categories. The aim of this work is to provide a supervised method to assist the diagnosis and monitor the progression of the Alzheimer's disease (AD) using information which can be extracted from a functional magnetic resonance imaging (fMRI) experiment. The proposed method consists of five stages: (a) preprocessing of fMRI data, (b) modeling of the fMRI voxel time series using a generalized linear model, (c) feature extraction from the fMRI experiment, (d) feature selection, and (e) classification using the random forests algorithm. In the last stage we employ features that were extracted from the fMRI and other features such as demographics, behavioral and volumetric measures. The aim of the classification is twofold: first to diagnose AD and second to classify AD as very mild and mild. The method is evaluated using data from 41 subjects. The stage of AD is established using the Washington University Alzheimer's Disease Research Center recruitment and assessment procedures. The method classifies a patient as healthy or demented with 84% sensitivity and 92.3% specificity, and the stages of AD with 81% and 87% accuracy for the three class and the four class problem, respectively. The method is advantageous since it is fully automated and for the first time the diagnosis and staging of the disease are addressed using fMRI. The aim of this work is to provide a supervised method to assist the diagnosis and monitor the progression of the Alzheimer's disease (AD) using information which can be extracted from a functional magnetic resonance imaging (fMRI) experiment. The proposed method consists of five stages: (a) preprocessing of fMRI data, (b) modeling of the fMRI voxel time series using a generalized linear model, (c) feature extraction from the fMRI experiment, (d) feature selection, and (e) classification using the random forests algorithm. In the last stage we employ features that were extracted from the fMRI and other features such as demographics, behavioral and volumetric measures. The aim of the classification is twofold: first to diagnose AD and second to classify AD as very mild and mild. The method is evaluated using data from 41 subjects. The stage of AD is established using the Washington University Alzheimer's Disease Research Center recruitment and assessment procedures. The method classifies a patient as healthy or demented with 84% sensitivity and 92.3% specificity, and the stages of AD with 81% and 87% accuracy for the three class and the four class problem, respectively. The method is advantageous since it is fully automated and for the first time the diagnosis and staging of the disease are addressed using fMRI. |
Author | Tripoliti, Evanthia E. Fotiadis, Dimitrios I. Argyropoulou, Maria |
Author_xml | – sequence: 1 givenname: Evanthia E. surname: Tripoliti fullname: Tripoliti, Evanthia E. email: evi@cs.uoi.gr organization: Department of Computer Science, University of Ioannina, GR 451 10 Ioannina, Greece – sequence: 2 givenname: Dimitrios I. surname: Fotiadis fullname: Fotiadis, Dimitrios I. organization: Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 451 10 Ioannina, Greece – sequence: 3 givenname: Maria surname: Argyropoulou fullname: Argyropoulou, Maria organization: Department of Radiology, Medical School, University of Ioannina, GR 451 10 Ioannina, Greece |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21703828$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl9rFDEUxYNU7Lb6DUTy1qdZbyZ_JisiLEXbQkXQvofszJ3drDPJmmSKFfzuZtnqgyCLTyHwO-cm59wzcuKDR0JeMpgzYOr1dm5jHrGb18DYHOQcQD4hM6YbXtVawQmZwYLziivZnJKzlLYA0AimnpHTmjXAda1n5OeSpmmH8d4l7OiIeRM6mgO1KbmUad4g7Zxd-1Cu1PqCBO9yiHQXwzpioYKnoafL4ccG3YjxIhVBQpuQTsn5Ne1strSPYSxy2n_8fEPxexlYWJ-fk6e9HRK-eDzPyd2H93eX19Xtp6uby-Vt1UpguULWL_TKyqZHIYHXK2CyXrGOKyG0bTkIjc0CeGMVdBJgxRuheiUY06qRgp-Ti4NtefS3CVM2o0stDoP1GKZkFgyUFCCOk1ozAC61LuSrR3JalRbMrvzIxgfzO9oCiAPQxpBSxP4PwsDsGzRbc2jQ7Bs0IE1psMje_CVrXba5xJyjdcMx8buDGEuY9w6jSa1D32LnIrbZdMH9r0E7OO9aO3zFB0zbMEVfijLMpNqA-bLfsP2CsRILKGDF4O2_DY7P_wU3vOHE |
CitedBy_id | crossref_primary_10_1049_htl_2017_0005 crossref_primary_10_1007_s11831_021_09674_8 crossref_primary_10_1016_j_artmed_2023_102510 crossref_primary_10_3389_fpsyt_2024_1395563 crossref_primary_10_3389_fnins_2020_00259 crossref_primary_10_1016_j_chb_2021_106929 crossref_primary_10_1016_j_artmed_2016_06_003 crossref_primary_10_1016_j_jbi_2009_10_004 crossref_primary_10_1002_mrm_25853 crossref_primary_10_1080_03772063_2023_2205857 crossref_primary_10_1007_s12031_011_9665_5 crossref_primary_10_3390_bioengineering11111076 crossref_primary_10_1016_j_neuroscience_2015_08_013 crossref_primary_10_12677_CSA_2021_113078 crossref_primary_10_1007_s41870_024_02326_7 crossref_primary_10_3390_electronics12041031 crossref_primary_10_1016_j_patcog_2017_07_018 crossref_primary_10_1259_bjr_20211253 crossref_primary_10_1007_s11633_019_1171_1 crossref_primary_10_3174_ajnr_A3713 crossref_primary_10_1111_jmi_12640 crossref_primary_10_1016_j_compbiomed_2014_04_010 crossref_primary_10_1109_JBHI_2013_2285378 crossref_primary_10_1007_s12559_012_9169_9 crossref_primary_10_57197_JDR_2024_0042 crossref_primary_10_1007_s00500_012_0961_y crossref_primary_10_1109_JBHI_2024_3415000 |
Cites_doi | 10.1007/s004150050300 10.2174/1568026024607544 10.1073/pnas.2235925100 10.1162/089892900564046 10.1038/35094500 10.1056/NEJM200008173430701 10.1109/TMI.2005.854305 10.1002/ana.10157 10.1037/0894-4105.17.4.658 10.1093/brain/awl089 10.1001/archneurol.2008.596 10.1148/radiol.2262011600 10.1002/hbm.20490 10.1212/01.WNL.0000055847.17752.E6 10.1016/S1053-8119(02)00026-5 10.1006/nimg.2000.0630 10.1196/annals.1440.011 10.1006/nimg.1997.0299 10.1155/2008/167078 10.1148/radiol.2451061847 10.1006/nimg.1999.0444 10.1016/j.neulet.2005.05.028 10.1212/01.wnl.0000256697.20968.d7 10.1136/jnnp.74.1.44 10.1523/JNEUROSCI.2177-05.2005 10.1109/42.563664 10.1006/nimg.1997.0290 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G 10.1073/pnas.0308627101 10.31887/DCNS.2009.11.2/pscheltens 10.1007/s12021-007-0007-2 10.1023/A:1010933404324 10.1259/bjr/33117326 10.1002/ana.20009 10.1016/S0002-9343(97)00262-3 10.1016/j.mri.2006.03.008 10.1002/ana.21345 10.1016/j.neuroimage.2006.11.040 10.1148/radiol.2251011301 10.1097/00019052-200008000-00005 10.1006/nimg.2000.0568 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. Elsevier B.V. Copyright © 2011 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: Elsevier B.V. – notice: Copyright © 2011 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
DOI | 10.1016/j.artmed.2011.05.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
EISSN | 1873-2860 |
EndPage | 45 |
ExternalDocumentID | 21703828 10_1016_j_artmed_2011_05_005 S0933365711000601 1_s2_0_S0933365711000601 |
Genre | Evaluation Studies Journal Article |
GroupedDBID | --- --K --M .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77K 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABIVO ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HEA HMK HMO HVGLF HZ~ IHE J1W KOM LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WH7 WUQ Z5R ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
ID | FETCH-LOGICAL-c501t-e1f98ba57fe45032b0152b1d36448ac3048e79037a60d500b3746f6411867543 |
IEDL.DBID | .~1 |
ISSN | 0933-3657 1873-2860 |
IngestDate | Tue Aug 05 10:02:33 EDT 2025 Mon Jul 21 11:23:23 EDT 2025 Thu Apr 03 07:07:46 EDT 2025 Tue Jul 01 00:24:32 EDT 2025 Thu Apr 24 22:57:17 EDT 2025 Fri Feb 23 02:25:16 EST 2024 Sun Feb 23 10:19:33 EST 2025 Tue Aug 26 17:11:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Functional magnetic resonance imaging Generalized linear model Alzheimer's disease Random forests |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-e1f98ba57fe45032b0152b1d36448ac3048e79037a60d500b3746f6411867543 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 21703828 |
PQID | 881003588 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_910654044 proquest_miscellaneous_881003588 pubmed_primary_21703828 crossref_primary_10_1016_j_artmed_2011_05_005 crossref_citationtrail_10_1016_j_artmed_2011_05_005 elsevier_sciencedirect_doi_10_1016_j_artmed_2011_05_005 elsevier_clinicalkeyesjournals_1_s2_0_S0933365711000601 elsevier_clinicalkey_doi_10_1016_j_artmed_2011_05_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Artificial intelligence in medicine |
PublicationTitleAlternate | Artif Intell Med |
PublicationYear | 2011 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chételat, Desgranges, de la Sayette, Viader, Eustache, Baron (bib0065) 2003; 60 Jezzard, Matthews, Smith (bib0205) 2001 Zar (bib0260) 1998 Scheltens (bib0025) 1999; 246 Thulborn, Martin, Voyvodic (bib0095) 2000; 21 Hao, Li, Li, Zhang, Wang, Yang (bib0005) 2005; 385 Scheltens, Korf (bib0030) 2000; 14 Chen, Herskovits (bib0110) 2007; 35 Chen, Herskovits (bib0170) 2007; 5 Ashburner, Friston (bib0195) 1999; 7 Li, Li, Wu, Zhang, Franczak, Antuono (bib0145) 2002; 255 Breiman (bib0235) 2001; 45 Kononeko (bib0250) 1994 Sperling, Bates, Chua, Cocchiarella, Rentz, Rosen (bib0135) 2003; 74 Robnik-Sikonja (bib0245) 2004 Shams, Hossein-Zadeh, Soltanian-Zadeh (bib0115) 2006; 24 O’Brien (bib0040) 2007; 80 Alzheimer's Disease International. Available online at Grossman, Koenig, DeVita, Glosser, Moore, Gee (bib0125) 2003; 17 Greicius, Seeley, Miller, Glover, Parthasarathy, Beckmann (bib0180) 2005 Yu, Liu (bib0230) 2003 Collignon, Maes, Delaere, Vandermeulen, Suetens, Marchal (bib0190) 1995 Friston, Mechelli, Turner, Price (bib0225) 2000; 12 Peiffer, Maldjian, Laurienti (bib0140) 2008 Buckner, Andrews-Hanna, Schacter (bib0080) 2008; 1124 Petrella, Wang, Krishnan, Slavin, Prince, Tran (bib0160) 2007; 245 Buckner, Snyder, Shannon, LaRossa, Sachs, Fotenos (bib0045) 2005; 24 Carr, Goate, Phil, Morris (bib0015) 1997; 103 Klunk, Engler, Nordberg, Wang, Blomqvist, Holt (bib0050) 2004; 55 Petrella, Coleman, Doraiswamy (bib0020) 2003; 226 Burggren, Bookheimer (bib0085) 2002; 2 Gronn, Bittner, Schmitz, Wunderlich, Riepe (bib0120) 2002; 51 Burge, Lane, Link, Qiu, Clark (bib0165) 2009; 30 Greicius, Srivastava, Reiss, Menon (bib0150) 2004; 101 Maes, Collignon, Vandermeulen, Matchal, Suetens (bib0185) 1997; 16 Ashburner, Friston (bib0220) 1997; 6 [accessed 20.05.11]. Scheltens (bib0035) 2009; 11 Ashburner, Neelin, Collins, Evans, Friston (bib0200) 1997; 6 Lustig, Snyder, Bhakta, O’Brien, McAvoy, Raichle (bib0130) 2003; 100 Devanand, Pradhaban, Liu, Khandji, De Santi, Segal (bib0055) 2007; 68 Kononeko (bib0255) 1995 Bookheimer, Strojwas, Cohen (bib0090) 2000; 343 Buckner, Snyder, Sanders, Raichle, Morris (bib0155) 2000; 12 Tan, Steinbach, Kumar (bib0240) 2006 Miezin, Maccotta, Ollinger, Petersen, Buckner (bib0175) 2000; 11 Gusnard, Raichle (bib0075) 2001; 2 Chetelat, Baron (bib0215) 2003; 18 D’Esposito, Zarahn, Aguirre, Rypma (bib0210) 1999; 10 Tapiola, Alafuzoff, Herukka, Parkkinen, Hartikainen, Soininen (bib0060) 2009; 66 Kadir, Andreasen, Almkvist, Wall, Forsberg, Engler (bib0070) 2008; 63 Bassett, Yousem, Cristinzio, Kusevic, Yassa, Caffo (bib0100) 2006; 129 Chen, Herskovits (bib0105) 2005; 24 Buckner (10.1016/j.artmed.2011.05.005_bib0045) 2005; 24 Li (10.1016/j.artmed.2011.05.005_bib0145) 2002; 255 Robnik-Sikonja (10.1016/j.artmed.2011.05.005_bib0245) 2004 Ashburner (10.1016/j.artmed.2011.05.005_bib0200) 1997; 6 Scheltens (10.1016/j.artmed.2011.05.005_bib0030) 2000; 14 Jezzard (10.1016/j.artmed.2011.05.005_bib0205) 2001 Burge (10.1016/j.artmed.2011.05.005_bib0165) 2009; 30 Klunk (10.1016/j.artmed.2011.05.005_bib0050) 2004; 55 O’Brien (10.1016/j.artmed.2011.05.005_bib0040) 2007; 80 Chen (10.1016/j.artmed.2011.05.005_bib0170) 2007; 5 Ashburner (10.1016/j.artmed.2011.05.005_bib0195) 1999; 7 Bassett (10.1016/j.artmed.2011.05.005_bib0100) 2006; 129 Kononeko (10.1016/j.artmed.2011.05.005_bib0250) 1994 Zar (10.1016/j.artmed.2011.05.005_bib0260) 1998 Petrella (10.1016/j.artmed.2011.05.005_bib0160) 2007; 245 D’Esposito (10.1016/j.artmed.2011.05.005_bib0210) 1999; 10 Scheltens (10.1016/j.artmed.2011.05.005_bib0035) 2009; 11 Grossman (10.1016/j.artmed.2011.05.005_bib0125) 2003; 17 Gusnard (10.1016/j.artmed.2011.05.005_bib0075) 2001; 2 Yu (10.1016/j.artmed.2011.05.005_bib0230) 2003 Greicius (10.1016/j.artmed.2011.05.005_bib0150) 2004; 101 Chen (10.1016/j.artmed.2011.05.005_bib0110) 2007; 35 Friston (10.1016/j.artmed.2011.05.005_bib0225) 2000; 12 Scheltens (10.1016/j.artmed.2011.05.005_bib0025) 1999; 246 Tan (10.1016/j.artmed.2011.05.005_bib0240) 2006 Shams (10.1016/j.artmed.2011.05.005_bib0115) 2006; 24 Burggren (10.1016/j.artmed.2011.05.005_bib0085) 2002; 2 Lustig (10.1016/j.artmed.2011.05.005_bib0130) 2003; 100 Peiffer (10.1016/j.artmed.2011.05.005_bib0140) 2008 Carr (10.1016/j.artmed.2011.05.005_bib0015) 1997; 103 Ashburner (10.1016/j.artmed.2011.05.005_bib0220) 1997; 6 Kononeko (10.1016/j.artmed.2011.05.005_bib0255) 1995 Thulborn (10.1016/j.artmed.2011.05.005_bib0095) 2000; 21 Buckner (10.1016/j.artmed.2011.05.005_bib0155) 2000; 12 Greicius (10.1016/j.artmed.2011.05.005_bib0180) 2005 Devanand (10.1016/j.artmed.2011.05.005_bib0055) 2007; 68 Collignon (10.1016/j.artmed.2011.05.005_bib0190) 1995 Hao (10.1016/j.artmed.2011.05.005_bib0005) 2005; 385 Petrella (10.1016/j.artmed.2011.05.005_bib0020) 2003; 226 Bookheimer (10.1016/j.artmed.2011.05.005_bib0090) 2000; 343 Buckner (10.1016/j.artmed.2011.05.005_bib0080) 2008; 1124 Sperling (10.1016/j.artmed.2011.05.005_bib0135) 2003; 74 Chen (10.1016/j.artmed.2011.05.005_bib0105) 2005; 24 10.1016/j.artmed.2011.05.005_bib0010 Maes (10.1016/j.artmed.2011.05.005_bib0185) 1997; 16 Kadir (10.1016/j.artmed.2011.05.005_bib0070) 2008; 63 Chetelat (10.1016/j.artmed.2011.05.005_bib0215) 2003; 18 Miezin (10.1016/j.artmed.2011.05.005_bib0175) 2000; 11 Breiman (10.1016/j.artmed.2011.05.005_bib0235) 2001; 45 Tapiola (10.1016/j.artmed.2011.05.005_bib0060) 2009; 66 Chételat (10.1016/j.artmed.2011.05.005_bib0065) 2003; 60 Gronn (10.1016/j.artmed.2011.05.005_bib0120) 2002; 51 |
References_xml | – volume: 343 start-page: 450 year: 2000 end-page: 456 ident: bib0090 article-title: Patterns of brain activation in people at risk of Alzheimer's disease publication-title: N Engl J Med – volume: 6 start-page: 209 year: 1997 end-page: 217 ident: bib0220 article-title: Multimodal image corregistration and partitioning—a unified framework publication-title: Neuroimage – volume: 10 start-page: 6 year: 1999 end-page: 14 ident: bib0210 article-title: The effect of normal aging on the coupling of neural activity to the BOLD hemodynamic response publication-title: Neuroimage – volume: 55 start-page: 306 year: 2004 end-page: 319 ident: bib0050 article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburg Compound-B publication-title: Ann Neurol – year: 2001 ident: bib0205 article-title: Functional MRI: an introduction to methods – year: 1998 ident: bib0260 article-title: Biostatistical analysis – volume: 51 start-page: 491 year: 2002 end-page: 498 ident: bib0120 article-title: Subjective memory complaints: objective neural markers in patients with Alzheimer's disease and major depressive disorder publication-title: Ann Neurol – start-page: 359 year: 2004 end-page: 369 ident: bib0245 article-title: Improving random forests publication-title: Proceedings of the European conference on machine learning – start-page: 263 year: 1995 end-page: 274 ident: bib0190 article-title: Automated multi-modality image registration based on information theory publication-title: Proceedings of the 14th international conference on information processing in medical imaging – year: 2008 ident: bib0140 article-title: Resurrecting Brinley plots for a novel use: meta-analysis of functional brain imaging data in older adults publication-title: Int J Biomed Imaging – volume: 24 start-page: 775 year: 2006 end-page: 784 ident: bib0115 article-title: Multisubject activation detection in fMRI by testing correlation of data with a signal subspace publication-title: Magn Reson Imaging – year: 2005 ident: bib0180 article-title: Resting-state fMRI distinguishes Alzheimer's disease from healthy aging and frontotemporal dementia publication-title: Alzheimer's association international conference on prevention of dementia: early diagnosis and intervention – volume: 24 start-page: 1237 year: 2005 end-page: 1247 ident: bib0105 article-title: Graphical-model-based morphometric analysis publication-title: IEEE Trans Med Imaging – volume: 12 start-page: 466 year: 2000 end-page: 477 ident: bib0225 article-title: Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics publication-title: Neuroimage – reference: Alzheimer's Disease International. Available online at: – volume: 74 start-page: 44 year: 2003 end-page: 50 ident: bib0135 article-title: FMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease publication-title: J Neurol Neurosurg Psychiatry – volume: 16 start-page: 187 year: 1997 end-page: 198 ident: bib0185 article-title: Multimodality image registration by maximization of mutual information publication-title: IEEE Trans Med Imaging – volume: 103 start-page: 3S year: 1997 end-page: 10S ident: bib0015 article-title: Current concepts in the pathogenesis of Alzheimer's disease publication-title: Am J Med – volume: 255 start-page: 253 year: 2002 end-page: 259 ident: bib0145 article-title: Alzheimer disease: evaluation of a functional MR imaging index as a marker publication-title: Radiology – volume: 226 start-page: 315 year: 2003 end-page: 336 ident: bib0020 article-title: Neuroimaging and early diagnosis of Alzheimer disease: a look to the future publication-title: Radiology – volume: 246 start-page: 16 year: 1999 end-page: 20 ident: bib0025 article-title: Early diagnosis of dementia: neuroimaging publication-title: J Neurol – volume: 60 start-page: 1374 year: 2003 end-page: 1377 ident: bib0065 article-title: Mild cognitive impairment—can FDG-PET predict who is to rapidly convert to Alzheimer's disease? publication-title: Neurology – volume: 2 start-page: 385 year: 2002 end-page: 393 ident: bib0085 article-title: Structural and functional neuroimaging in Alzheimer's disease: an update publication-title: Curr Top Med Chem – volume: 35 start-page: 635 year: 2007 end-page: 647 ident: bib0110 article-title: Graphical-model-based multivariate analysis of functional magnetic resonance data publication-title: Neurimage – volume: 21 start-page: 524 year: 2000 end-page: 531 ident: bib0095 article-title: Functional MR imaging using a visually guided saccade paradigm for comparing activation patterns in patients with probable Alzheimer's disease and in cognitively able elderly volunteers publication-title: AJNR Am J Neuroradiol – volume: 100 start-page: 14504 year: 2003 end-page: 14509 ident: bib0130 article-title: Functional deactivations: change with age and dementia of the Alzheimer type publication-title: PNAS – volume: 24 start-page: 7709 year: 2005 end-page: 7717 ident: bib0045 article-title: Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity amyloid, and memory publication-title: J Neurosci – volume: 66 start-page: 382 year: 2009 end-page: 389 ident: bib0060 article-title: Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain publication-title: Arch Neurol – volume: 7 start-page: 254 year: 1999 end-page: 266 ident: bib0195 article-title: Nonlinear spatial normalization using basis functions publication-title: Human Brain Map – start-page: 171 year: 1994 end-page: 182 ident: bib0250 article-title: Estimating attributes: analysis and extensions of RELIEF publication-title: Proceedings of the European conference on machine learning – volume: 14 start-page: 391 year: 2000 end-page: 396 ident: bib0030 article-title: Contribution of neuroimaging in the diagnosis of Alzheimer's disease and other dementias publication-title: Curr Opin Neurol – start-page: 856 year: 2003 end-page: 863 ident: bib0230 article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution publication-title: Proceedings of the twentieth international conference on machine learning – volume: 11 start-page: 735 year: 2000 end-page: 759 ident: bib0175 article-title: Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing publication-title: Neuroimage – volume: 245 start-page: 224 year: 2007 end-page: 235 ident: bib0160 article-title: Cortical deactivation in mild cognitive impairment: high-field strength functional MR imaging publication-title: Radiology – start-page: 1034 year: 1995 end-page: 1040 ident: bib0255 article-title: On biases in estimating multi-valued attributes publication-title: Proceedings of international joint conference on artificial intelligence – volume: 385 start-page: 18 year: 2005 end-page: 23 ident: bib0005 article-title: Visual attention deficits in Alzheimer's disease: an fMRI study publication-title: Neurosci Lett – volume: 101 start-page: 4637 year: 2004 end-page: 4642 ident: bib0150 article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI publication-title: PNAS – volume: 12 start-page: 24 year: 2000 end-page: 34 ident: bib0155 article-title: Functional brain imaging of young nondemented, and demented older adults publication-title: J Cognit Neurosci – volume: 1124 start-page: 1 year: 2008 end-page: 38 ident: bib0080 article-title: The brain's default network: anatomy, function, and relevance to disease publication-title: Ann N Y Acad Sci – volume: 6 start-page: 344 year: 1997 end-page: 352 ident: bib0200 article-title: Incorporating prior knowledge into image registration publication-title: Neuroimage – volume: 129 start-page: 1229 year: 2006 end-page: 1239 ident: bib0100 article-title: Familial risk for Alzheimer's disease alters fMRI activation patterns publication-title: Brain – volume: 5 start-page: 178 year: 2007 end-page: 188 ident: bib0170 article-title: Clinical diagnosis based on Bayesian classification of functional magnetic resonance data publication-title: Neuroinformatics – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0235 article-title: Random forests publication-title: Mach Learn – volume: 17 start-page: 658 year: 2003 end-page: 674 ident: bib0125 article-title: Neural basis for verb processing in Alzheimer's disease: an fMRI study publication-title: Neuropsychology – volume: 30 start-page: 122 year: 2009 end-page: 137 ident: bib0165 article-title: Discrete dynamic Bayesian network analysis of fMRI data publication-title: Human Brain Map – volume: 18 start-page: 525 year: 2003 end-page: 541 ident: bib0215 article-title: Early diagnosis of Alzheimer's disease: contribution of structural neuroimaging publication-title: Neuroimage – volume: 80 start-page: S71 year: 2007 end-page: S77 ident: bib0040 article-title: Role of imaging techniques in the diagnosis of dementia publication-title: Br J Radiol – volume: 68 start-page: 828 year: 2007 end-page: 836 ident: bib0055 article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment publication-title: Neurology – volume: 11 start-page: 191 year: 2009 end-page: 199 ident: bib0035 article-title: Imaging in Alzheimer's disease publication-title: Dialogues Clin Neurosci – reference: [accessed 20.05.11]. – year: 2006 ident: bib0240 article-title: Introduction to data mining – volume: 2 start-page: 685 year: 2001 end-page: 694 ident: bib0075 article-title: Searching for a baseline: functional imaging and the resting human brain publication-title: Nat Rev Neurosci – volume: 63 start-page: 621 year: 2008 end-page: 631 ident: bib0070 article-title: Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer's disease publication-title: Ann Neurol – volume: 246 start-page: 16 year: 1999 ident: 10.1016/j.artmed.2011.05.005_bib0025 article-title: Early diagnosis of dementia: neuroimaging publication-title: J Neurol doi: 10.1007/s004150050300 – volume: 2 start-page: 385 year: 2002 ident: 10.1016/j.artmed.2011.05.005_bib0085 article-title: Structural and functional neuroimaging in Alzheimer's disease: an update publication-title: Curr Top Med Chem doi: 10.2174/1568026024607544 – volume: 100 start-page: 14504 year: 2003 ident: 10.1016/j.artmed.2011.05.005_bib0130 article-title: Functional deactivations: change with age and dementia of the Alzheimer type publication-title: PNAS doi: 10.1073/pnas.2235925100 – volume: 12 start-page: 24 year: 2000 ident: 10.1016/j.artmed.2011.05.005_bib0155 article-title: Functional brain imaging of young nondemented, and demented older adults publication-title: J Cognit Neurosci doi: 10.1162/089892900564046 – volume: 2 start-page: 685 year: 2001 ident: 10.1016/j.artmed.2011.05.005_bib0075 article-title: Searching for a baseline: functional imaging and the resting human brain publication-title: Nat Rev Neurosci doi: 10.1038/35094500 – volume: 343 start-page: 450 year: 2000 ident: 10.1016/j.artmed.2011.05.005_bib0090 article-title: Patterns of brain activation in people at risk of Alzheimer's disease publication-title: N Engl J Med doi: 10.1056/NEJM200008173430701 – volume: 24 start-page: 1237 year: 2005 ident: 10.1016/j.artmed.2011.05.005_bib0105 article-title: Graphical-model-based morphometric analysis publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2005.854305 – volume: 51 start-page: 491 year: 2002 ident: 10.1016/j.artmed.2011.05.005_bib0120 article-title: Subjective memory complaints: objective neural markers in patients with Alzheimer's disease and major depressive disorder publication-title: Ann Neurol doi: 10.1002/ana.10157 – volume: 17 start-page: 658 year: 2003 ident: 10.1016/j.artmed.2011.05.005_bib0125 article-title: Neural basis for verb processing in Alzheimer's disease: an fMRI study publication-title: Neuropsychology doi: 10.1037/0894-4105.17.4.658 – volume: 129 start-page: 1229 year: 2006 ident: 10.1016/j.artmed.2011.05.005_bib0100 article-title: Familial risk for Alzheimer's disease alters fMRI activation patterns publication-title: Brain doi: 10.1093/brain/awl089 – volume: 21 start-page: 524 year: 2000 ident: 10.1016/j.artmed.2011.05.005_bib0095 article-title: Functional MR imaging using a visually guided saccade paradigm for comparing activation patterns in patients with probable Alzheimer's disease and in cognitively able elderly volunteers publication-title: AJNR Am J Neuroradiol – ident: 10.1016/j.artmed.2011.05.005_bib0010 – volume: 66 start-page: 382 year: 2009 ident: 10.1016/j.artmed.2011.05.005_bib0060 article-title: Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain publication-title: Arch Neurol doi: 10.1001/archneurol.2008.596 – volume: 226 start-page: 315 year: 2003 ident: 10.1016/j.artmed.2011.05.005_bib0020 article-title: Neuroimaging and early diagnosis of Alzheimer disease: a look to the future publication-title: Radiology doi: 10.1148/radiol.2262011600 – volume: 30 start-page: 122 year: 2009 ident: 10.1016/j.artmed.2011.05.005_bib0165 article-title: Discrete dynamic Bayesian network analysis of fMRI data publication-title: Human Brain Map doi: 10.1002/hbm.20490 – volume: 60 start-page: 1374 year: 2003 ident: 10.1016/j.artmed.2011.05.005_bib0065 article-title: Mild cognitive impairment—can FDG-PET predict who is to rapidly convert to Alzheimer's disease? publication-title: Neurology doi: 10.1212/01.WNL.0000055847.17752.E6 – volume: 18 start-page: 525 year: 2003 ident: 10.1016/j.artmed.2011.05.005_bib0215 article-title: Early diagnosis of Alzheimer's disease: contribution of structural neuroimaging publication-title: Neuroimage doi: 10.1016/S1053-8119(02)00026-5 – volume: 12 start-page: 466 year: 2000 ident: 10.1016/j.artmed.2011.05.005_bib0225 article-title: Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics publication-title: Neuroimage doi: 10.1006/nimg.2000.0630 – volume: 1124 start-page: 1 year: 2008 ident: 10.1016/j.artmed.2011.05.005_bib0080 article-title: The brain's default network: anatomy, function, and relevance to disease publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1440.011 – volume: 6 start-page: 344 year: 1997 ident: 10.1016/j.artmed.2011.05.005_bib0200 article-title: Incorporating prior knowledge into image registration publication-title: Neuroimage doi: 10.1006/nimg.1997.0299 – year: 2008 ident: 10.1016/j.artmed.2011.05.005_bib0140 article-title: Resurrecting Brinley plots for a novel use: meta-analysis of functional brain imaging data in older adults publication-title: Int J Biomed Imaging doi: 10.1155/2008/167078 – volume: 245 start-page: 224 issue: 1 year: 2007 ident: 10.1016/j.artmed.2011.05.005_bib0160 article-title: Cortical deactivation in mild cognitive impairment: high-field strength functional MR imaging publication-title: Radiology doi: 10.1148/radiol.2451061847 – volume: 10 start-page: 6 year: 1999 ident: 10.1016/j.artmed.2011.05.005_bib0210 article-title: The effect of normal aging on the coupling of neural activity to the BOLD hemodynamic response publication-title: Neuroimage doi: 10.1006/nimg.1999.0444 – volume: 385 start-page: 18 year: 2005 ident: 10.1016/j.artmed.2011.05.005_bib0005 article-title: Visual attention deficits in Alzheimer's disease: an fMRI study publication-title: Neurosci Lett doi: 10.1016/j.neulet.2005.05.028 – volume: 68 start-page: 828 year: 2007 ident: 10.1016/j.artmed.2011.05.005_bib0055 article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment publication-title: Neurology doi: 10.1212/01.wnl.0000256697.20968.d7 – volume: 74 start-page: 44 year: 2003 ident: 10.1016/j.artmed.2011.05.005_bib0135 article-title: FMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.74.1.44 – volume: 24 start-page: 7709 year: 2005 ident: 10.1016/j.artmed.2011.05.005_bib0045 article-title: Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity amyloid, and memory publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2177-05.2005 – year: 2006 ident: 10.1016/j.artmed.2011.05.005_bib0240 – start-page: 856 year: 2003 ident: 10.1016/j.artmed.2011.05.005_bib0230 article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution – year: 2001 ident: 10.1016/j.artmed.2011.05.005_bib0205 – volume: 16 start-page: 187 year: 1997 ident: 10.1016/j.artmed.2011.05.005_bib0185 article-title: Multimodality image registration by maximization of mutual information publication-title: IEEE Trans Med Imaging doi: 10.1109/42.563664 – year: 1998 ident: 10.1016/j.artmed.2011.05.005_bib0260 – volume: 6 start-page: 209 year: 1997 ident: 10.1016/j.artmed.2011.05.005_bib0220 article-title: Multimodal image corregistration and partitioning—a unified framework publication-title: Neuroimage doi: 10.1006/nimg.1997.0290 – start-page: 359 year: 2004 ident: 10.1016/j.artmed.2011.05.005_bib0245 article-title: Improving random forests – volume: 7 start-page: 254 year: 1999 ident: 10.1016/j.artmed.2011.05.005_bib0195 article-title: Nonlinear spatial normalization using basis functions publication-title: Human Brain Map doi: 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G – volume: 101 start-page: 4637 year: 2004 ident: 10.1016/j.artmed.2011.05.005_bib0150 article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI publication-title: PNAS doi: 10.1073/pnas.0308627101 – volume: 11 start-page: 191 year: 2009 ident: 10.1016/j.artmed.2011.05.005_bib0035 article-title: Imaging in Alzheimer's disease publication-title: Dialogues Clin Neurosci doi: 10.31887/DCNS.2009.11.2/pscheltens – start-page: 1034 year: 1995 ident: 10.1016/j.artmed.2011.05.005_bib0255 article-title: On biases in estimating multi-valued attributes – volume: 5 start-page: 178 year: 2007 ident: 10.1016/j.artmed.2011.05.005_bib0170 article-title: Clinical diagnosis based on Bayesian classification of functional magnetic resonance data publication-title: Neuroinformatics doi: 10.1007/s12021-007-0007-2 – start-page: 263 year: 1995 ident: 10.1016/j.artmed.2011.05.005_bib0190 article-title: Automated multi-modality image registration based on information theory – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.artmed.2011.05.005_bib0235 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 80 start-page: S71 year: 2007 ident: 10.1016/j.artmed.2011.05.005_bib0040 article-title: Role of imaging techniques in the diagnosis of dementia publication-title: Br J Radiol doi: 10.1259/bjr/33117326 – volume: 55 start-page: 306 year: 2004 ident: 10.1016/j.artmed.2011.05.005_bib0050 article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburg Compound-B publication-title: Ann Neurol doi: 10.1002/ana.20009 – volume: 103 start-page: 3S issue: Suppl. 3A year: 1997 ident: 10.1016/j.artmed.2011.05.005_bib0015 article-title: Current concepts in the pathogenesis of Alzheimer's disease publication-title: Am J Med doi: 10.1016/S0002-9343(97)00262-3 – volume: 24 start-page: 775 year: 2006 ident: 10.1016/j.artmed.2011.05.005_bib0115 article-title: Multisubject activation detection in fMRI by testing correlation of data with a signal subspace publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2006.03.008 – start-page: 171 year: 1994 ident: 10.1016/j.artmed.2011.05.005_bib0250 article-title: Estimating attributes: analysis and extensions of RELIEF – volume: 63 start-page: 621 year: 2008 ident: 10.1016/j.artmed.2011.05.005_bib0070 article-title: Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer's disease publication-title: Ann Neurol doi: 10.1002/ana.21345 – volume: 35 start-page: 635 year: 2007 ident: 10.1016/j.artmed.2011.05.005_bib0110 article-title: Graphical-model-based multivariate analysis of functional magnetic resonance data publication-title: Neurimage doi: 10.1016/j.neuroimage.2006.11.040 – year: 2005 ident: 10.1016/j.artmed.2011.05.005_bib0180 article-title: Resting-state fMRI distinguishes Alzheimer's disease from healthy aging and frontotemporal dementia – volume: 255 start-page: 253 year: 2002 ident: 10.1016/j.artmed.2011.05.005_bib0145 article-title: Alzheimer disease: evaluation of a functional MR imaging index as a marker publication-title: Radiology doi: 10.1148/radiol.2251011301 – volume: 14 start-page: 391 year: 2000 ident: 10.1016/j.artmed.2011.05.005_bib0030 article-title: Contribution of neuroimaging in the diagnosis of Alzheimer's disease and other dementias publication-title: Curr Opin Neurol doi: 10.1097/00019052-200008000-00005 – volume: 11 start-page: 735 year: 2000 ident: 10.1016/j.artmed.2011.05.005_bib0175 article-title: Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing publication-title: Neuroimage doi: 10.1006/nimg.2000.0568 |
SSID | ssj0007416 |
Score | 2.0988307 |
Snippet | ► We propose a supervised method to assist the diagnosis, and monitor the progression of Alzheimer's disease. ► It is fully automated, and independent from the... Highlights ► We propose a supervised method to assist the diagnosis, and monitor the progression of Alzheimer's disease. ► It is fully automated, and... The aim of this work is to provide a supervised method to assist the diagnosis and monitor the progression of the Alzheimer's disease (AD) using information... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 35 |
SubjectTerms | Adolescent Aged Aged, 80 and over Algorithms Alzheimer Disease - diagnosis Alzheimer Disease - pathology Alzheimer's disease Disease Progression Female Functional magnetic resonance imaging Generalized linear model Humans Image Interpretation, Computer-Assisted - methods Image Processing, Computer-Assisted - methods Internal Medicine Magnetic Resonance Imaging - methods Male Other Random forests Young Adult |
Title | A supervised method to assist the diagnosis and monitor progression of Alzheimer's disease using data from an fMRI experiment |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0933365711000601 https://www.clinicalkey.es/playcontent/1-s2.0-S0933365711000601 https://dx.doi.org/10.1016/j.artmed.2011.05.005 https://www.ncbi.nlm.nih.gov/pubmed/21703828 https://www.proquest.com/docview/881003588 https://www.proquest.com/docview/910654044 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiEuPMprC1RzQOIU1l7bcXpcVVTbou0BitSbFTsObFWyq83uBan97Z2JnRZEV0VcI09ieV7fxPNg7D16PKPzimdBqJCpWtVZIXyR-SKMCO_n2lGB8_Qkn3xTx2f6bIsd9LUwlFaZbH-06Z21Tk-G6TSHi9ls-JVicZlrQ03PqKsIVbArQ1L-8eo2zYMQR9dvT8qMVvflc12OF74PfU5q5Ek_V_Qm97QJfnZu6PApe5zwI4zjFp-xrdDssCf9bAZIqrrDHk7TpflzdjmGdr0gm9CGCuLIaFjNAWEz8hgQAUIVE-5mLZQNLun0fAld7lbs2wHzGsYXv36E2c-w_NBCutcBSpv_DpRmClSoguRQT78cwe3ggBfs9PDT6cEkS1MXMq-5WCHT6v3CldrUQWkuRw4Bw8iJSlIkV3qJKh_MPpemzHmlOXfSqLzOlaDWeFrJl2y7mTfhNYPgah-EdmhGSiUCdw7hgMd4yWlfGeMHTPZnbX3qSE6DMS5sn3p2biOHLHHIcm2RQwOW3VAtYkeOe9brno22rzZF-2jRZdxDZ-6iC21S8tYK244st38J4u-Uf8jyP3wTejmzqOZ0d1M2Yb5ubVEIuvQtis1LEPjliL-VGrBXUURvzgfjTi4xtt797529YY_i33TKrnvLtlfLdXiHcGzl9jp922MPxkefJyfXICAzoQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tXQn2wmN5bHnOAYlTVKe24-yxWrFq2W0PUKS9WXHiQNGSVk17QeK_M5M4BQTVIq6VJ408nplv4plvAF5TxDM6KUTkY-UjVaoySuM8jfLUDxnvJ9pxg_N0low_qndX-uoAzrpeGC6rDL6_9emNtw6_DMJuDlaLxeAD5-Iy0YZJz5hV5BYcMjuV7sHhaHIxnu0cMoOOhnJPyogFug66psyLHklhJ3B58vcVvS9C7UOgTSQ6vw93A4TEUfuWD-DAV8dwrxvPgMFaj-H2NNybP4TvI6y3K3YLtS-wnRqNmyUSciY1I4FALNqau0WNWUVLGlNfY1O-1VJ34LLE0fW3z37x1a_f1BiudpAr5z8hV5oi96qQOJbT9xP8OTvgEczP387PxlEYvBDlWsQb0lt5mrpMm9IrLeTQEWYYuriQnMxluSSr9-ZUSJMlotBCOGlUUiYqZnY8reRj6FXLyp8AelfmPtaOPEmmYi-cI0SQU8rkdF4Yk_dBdntt80BKzrMxrm1XffbFthqyrCErtCUN9SHaSa1aUo4b1utOjbZrOCUXaSlq3CBn_ibn62DntY1tPbTC_nEWf5X87Tj_w39id84sWTpf32SVX25rm6Yx3_um6f4lhP0SguBK9eFJe0R3-0Opp5CUXj_97zd7BXfG8-mlvZzMLp7BUftxnYvtnkNvs976F4TONu5lsL4fjmM2Ug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+supervised+method+to+assist+the+diagnosis+and+monitor+progression+of+Alzheimer%27s+disease+using+data+from+an+fMRI+experiment&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Tripoliti%2C+Evanthia+E&rft.au=Fotiadis%2C+Dimitrios+I&rft.au=Argyropoulou%2C+Maria&rft.date=2011-09-01&rft.issn=0933-3657&rft.volume=53&rft.issue=1&rft.spage=35&rft.epage=45&rft_id=info:doi/10.1016%2Fj.artmed.2011.05.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09333657%2FS0933365711X00076%2Fcov150h.gif |