A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis
Accurate and computationally efficient means of classifying surface myoelectric signals has been the subject of considerable research effort in recent years. The aim of this paper is to classify myoelectric signals using new fuzzy clustering neural network (NN) architectures to control multifunction...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 50; no. 11; pp. 1255 - 1261 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.11.2003
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 |
DOI | 10.1109/TBME.2003.818469 |
Cover
Loading…
Abstract | Accurate and computationally efficient means of classifying surface myoelectric signals has been the subject of considerable research effort in recent years. The aim of this paper is to classify myoelectric signals using new fuzzy clustering neural network (NN) architectures to control multifunction prostheses. This paper presents a comparative study of the classification accuracy of myoelectric signals using multilayered perceptron NN using back-propagation, conic section function NN, and new fuzzy clustering NNs (FCNNs). The myoelectric signals considered are used in classifying six upper-limb movements: elbow flexion, elbow extension, wrist pronation and wrist supination, grasp, and resting. The results suggest that FCNN can generalize better than other NN algorithms and help the user learn better and faster. This method has the potential of being very efficient in real-time applications. |
---|---|
AbstractList | Accurate and computationally efficient means of classifying surface myoelectric signals has been the subject of considerable research effort in recent years. The aim of this paper is to classify myoelectric signals using new fuzzy clustering neural network (NN) architectures to control multifunction prostheses. This paper presents a comparative study of the classification accuracy of myoelectric signals using multilayered perceptron NN using back-propagation, conic section function NN, and new fuzzy clustering NNs (FCNNs). The myoelectric signals considered are used in classifying six upper-limb movements: elbow flexion, elbow extension, wrist pronation and wrist supination, grasp, and resting. The results suggest that FCNN can generalize better than other NN algorithms and help the user learn better and faster. This method has the potential of being very efficient in real-time applications. Accurate and computationally efficient means of classifying surface myoelectric signals has been the subject of considerable research effort in recent years. The aim of this paper is to classify myoelectric signals using new fuzzy clustering neural network (NN) architectures to control multifunction prostheses. This paper presents a comparative study of the classification accuracy of myoelectric signals using multilayered perceptron NN using back-propagation, conic section function NN, and new fuzzy clustering NNs (FCNNs). The myoelectric signals considered are used in classifying six upper-limb movements: elbow flexion, elbow extension, wrist pronation and wrist supination, grasp, and resting. The results suggest that FCNN can generalize better than other NN algorithms and help the user learn better and faster. This method has the potential of being very efficient in real-time applications.Accurate and computationally efficient means of classifying surface myoelectric signals has been the subject of considerable research effort in recent years. The aim of this paper is to classify myoelectric signals using new fuzzy clustering neural network (NN) architectures to control multifunction prostheses. This paper presents a comparative study of the classification accuracy of myoelectric signals using multilayered perceptron NN using back-propagation, conic section function NN, and new fuzzy clustering NNs (FCNNs). The myoelectric signals considered are used in classifying six upper-limb movements: elbow flexion, elbow extension, wrist pronation and wrist supination, grasp, and resting. The results suggest that FCNN can generalize better than other NN algorithms and help the user learn better and faster. This method has the potential of being very efficient in real-time applications. |
Author | Karlik, B. Osman Tokhi, M. Alci, M. |
Author_xml | – sequence: 1 givenname: B. surname: Karlik fullname: Karlik, B. organization: Dept. of Comput. Eng., Bahrain Univ., Isa Town, Bahrain – sequence: 2 givenname: M. surname: Osman Tokhi fullname: Osman Tokhi, M. email: o.tokhi@sheffield.ac.uk – sequence: 3 givenname: M. surname: Alci fullname: Alci, M. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15209002$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/14619995$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0s1rFTEQAPAgFftavQuCLIJ62mcmH7vJsZb6ARUv1euSzSY2Nbv7mg-k_evNsk8e9FBPQ-A3M0xmTtDRNE8GoZeAtwBYfrj6-O1iSzCmWwGCNfIJ2gDnoiacwhHaYAyilkSyY3QS4015sqKeoWNgDUgp-Qb9PKtsvr-_q7TPMZngpl_VZHJQvoT0Zw6_KxX0tUtGpxxMZedQjdknZ_Okk5unKu92JtTejX21C3NM1ya6-Bw9tcpH82IfT9GPTxdX51_qy--fv56fXdaaY0j1oCUHJomwALxlgooBZK-F6JW1hNAG97zHg1J903PWKD1AL4RSLW8obvlAT9H7tW5pfZtNTN3oojbeq8nMOXZCUAylPhT57lHZAuWct-1_IRFEkhW-eQBv5hymMm5pyyhnQBf0eo9yP5qh2wU3qnDX_dtAAW_3QEWtvA1q0i4eHCdYYkyKw6vT5ZNjMPZAcLccQ7ccQ7ccQ7ceQ0lpHqRol9SytBSU848lvloTnTHm0IeUeRpB_wJ0s8BP |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1016_j_engstruct_2012_04_013 crossref_primary_10_1016_j_bspc_2012_08_005 crossref_primary_10_1109_RBME_2019_2950897 crossref_primary_10_1109_MEMB_2005_1463396 crossref_primary_10_1007_s13246_015_0399_5 crossref_primary_10_1541_ieejias_132_411 crossref_primary_10_3390_s19204596 crossref_primary_10_1016_j_bspc_2019_101669 crossref_primary_10_1541_ieejias_130_1272 crossref_primary_10_1177_09544119221074770 crossref_primary_10_1152_jn_00188_2017 crossref_primary_10_1109_TIE_2010_2053334 crossref_primary_10_1007_s00422_014_0635_1 crossref_primary_10_1016_S0208_5216_13_70054_8 crossref_primary_10_1109_THMS_2014_2358634 crossref_primary_10_1109_TNSRE_2019_2905658 crossref_primary_10_1080_10798587_2015_1008735 crossref_primary_10_5302_J_ICROS_2006_12_9_935 crossref_primary_10_1155_2007_38405 crossref_primary_10_3390_polym14122309 crossref_primary_10_1016_j_cmpb_2015_10_017 crossref_primary_10_1541_ieejeiss_131_1409 crossref_primary_10_3844_jcssp_2011_1407_1415 crossref_primary_10_1186_1475_925X_9_41 crossref_primary_10_1016_j_compbiomed_2009_02_001 crossref_primary_10_1080_10286600802506726 crossref_primary_10_1109_TBME_2006_883628 crossref_primary_10_1016_j_bspc_2021_103048 crossref_primary_10_1080_15567030600829055 crossref_primary_10_1093_bioinformatics_bti036 crossref_primary_10_1111_j_1468_0394_2008_00496_x crossref_primary_10_1142_S0219519416500767 crossref_primary_10_1002_ecj_11465 crossref_primary_10_4015_S1016237209001258 crossref_primary_10_1109_TNSRE_2007_908376 crossref_primary_10_1080_02522667_2014_961782 crossref_primary_10_1586_17434440_4_1_43 crossref_primary_10_1016_j_eswa_2010_07_118 crossref_primary_10_1097_JPO_0b013e31822fcd1a crossref_primary_10_1088_1741_2560_11_5_056027 crossref_primary_10_7763_IJIEE_2014_V4_433 crossref_primary_10_1109_TEVC_2012_2185845 crossref_primary_10_1080_01691864_2015_1079502 crossref_primary_10_1109_TBME_2008_923917 crossref_primary_10_3390_s150102181 crossref_primary_10_1016_j_compbiomed_2005_01_006 crossref_primary_10_1186_1475_925X_10_79 crossref_primary_10_3389_fncom_2016_00132 crossref_primary_10_1016_j_bspc_2007_07_009 crossref_primary_10_1109_TNSRE_2005_847357 crossref_primary_10_1016_j_eswa_2011_06_046 crossref_primary_10_1097_00008526_200604000_00002 crossref_primary_10_1007_s00521_017_3286_z crossref_primary_10_1016_j_brainres_2024_149335 crossref_primary_10_1186_1475_925X_13_8 crossref_primary_10_1016_j_engappai_2014_11_002 crossref_primary_10_3233_JIFS_179549 crossref_primary_10_3390_app9245343 crossref_primary_10_1016_j_eswa_2006_05_014 crossref_primary_10_1109_TBME_2007_894829 crossref_primary_10_1016_j_bspc_2015_02_009 crossref_primary_10_17341_gazimmfd_1025221 crossref_primary_10_3390_s20113144 crossref_primary_10_7717_peerj_2315 crossref_primary_10_1016_j_bspc_2019_101791 crossref_primary_10_1152_jn_00936_2006 crossref_primary_10_1088_1741_2560_11_5_051001 crossref_primary_10_1080_17483100601138959 crossref_primary_10_1088_1742_6596_1246_1_012030 crossref_primary_10_3390_electronics8111244 crossref_primary_10_1109_ACCESS_2019_2930005 crossref_primary_10_1016_j_compbiomed_2008_12_008 crossref_primary_10_1016_j_eswa_2008_08_028 crossref_primary_10_3390_s22062236 crossref_primary_10_1002_ecj_11369 crossref_primary_10_12989_sem_2007_27_2_117 crossref_primary_10_1016_j_ijhcs_2020_102432 crossref_primary_10_1109_TMECH_2007_897262 crossref_primary_10_1007_s13534_023_00281_z crossref_primary_10_4236_ica_2013_41012 crossref_primary_10_1186_1743_0003_10_50 crossref_primary_10_1080_03772063_2017_1381047 crossref_primary_10_1371_journal_pone_0262810 crossref_primary_10_9717_kmms_2016_19_1_068 crossref_primary_10_1002_hfm_20701 crossref_primary_10_1371_journal_pone_0206049 crossref_primary_10_3390_electronics10233013 |
Cites_doi | 10.1109/nafips.1996.534748 10.1080/01969729408902340 10.1109/10.204774 10.1109/TBME.1983.325162 10.1109/IJCNN.1991.170562 10.1109/10.335841 10.1109/TSMC.1975.5408479 10.1016/s1350-4533(99)00066-1 10.1109/10.52324 10.1080/01969729508927496 10.1007/978-1-4757-0450-1 10.1109/MELCON.1994.381098 10.1109/10.362912 10.1109/IJCNN.1993.714172 10.1016/1350-4533(94)90024-8 10.1109/iembs.1995.575379 10.1109/ICNN.1994.374728 10.1007/978-1-4471-1599-1_141 10.1007/BF02510518 10.1109/10.914793 10.1109/ICSMC.1989.71472 10.1016/0141-5425(85)90004-4 |
ContentType | Journal Article |
Copyright | 2004 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003 |
Copyright_xml | – notice: 2004 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003 |
DBID | RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2003.818469 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 1261 |
ExternalDocumentID | 2429885421 14619995 15209002 10_1109_TBME_2003_818469 1237368 |
Genre | orig-research Validation Studies Comparative Study Evaluation Studies Journal Article |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c501t-dc9514928f11574838d19bc88baff22360b5b0daab6b546acd1b88aa7563075d3 |
IEDL.DBID | RIE |
ISSN | 0018-9294 |
IngestDate | Thu Jul 10 17:16:51 EDT 2025 Fri Jul 11 09:14:21 EDT 2025 Fri Jul 11 13:33:04 EDT 2025 Mon Jun 30 09:05:57 EDT 2025 Wed Feb 19 01:51:16 EST 2025 Mon Jul 21 09:13:04 EDT 2025 Thu Apr 24 23:05:02 EDT 2025 Sun Jul 06 05:04:05 EDT 2025 Wed Aug 27 02:53:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | upper-limb prosthesis Fuzzy clustering myoelectric signal neural network Biomedical engineering pattern recognition |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-dc9514928f11574838d19bc88baff22360b5b0daab6b546acd1b88aa7563075d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
PMID | 14619995 |
PQID | 884354137 |
PQPubID | 85474 |
PageCount | 7 |
ParticipantIDs | ieee_primary_1237368 proquest_miscellaneous_28292577 pascalfrancis_primary_15209002 proquest_journals_884354137 proquest_miscellaneous_71355577 pubmed_primary_14619995 proquest_miscellaneous_883019281 crossref_citationtrail_10_1109_TBME_2003_818469 crossref_primary_10_1109_TBME_2003_818469 |
PublicationCentury | 2000 |
PublicationDate | 2003-11-01 |
PublicationDateYYYYMMDD | 2003-11-01 |
PublicationDate_xml | – month: 11 year: 2003 text: 2003-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2003 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref14 ref31 ref30 ref11 ref10 Hudgins (ref32) Karlik (ref24) 1999; 7 ref2 ref17 ref16 ref19 ref18 Webster (ref25) 1997 Yildirim (ref29) 1997 ref23 Haykin (ref27) 1994 ref20 ref22 Karlik (ref21) ref28 ref7 ref9 ref4 ref3 ref6 Seker (ref8) 1995 ref5 (ref26) 1996 Chaiyaratana (ref1) Yeh (ref12) 1993; 5 |
References_xml | – ident: ref31 doi: 10.1109/nafips.1996.534748 – ident: ref28 doi: 10.1080/01969729408902340 – ident: ref5 doi: 10.1109/10.204774 – start-page: 151 volume-title: Proc. ECDVRAT ident: ref1 article-title: Myoelectric signals pattern recognition for functional operation of upper-limb prosthesis – ident: ref13 doi: 10.1109/TBME.1983.325162 – volume-title: IEEE ICNN’97 year: 1997 ident: ref29 article-title: Improved back propagation training algorithm using conic section functions – ident: ref3 doi: 10.1109/IJCNN.1991.170562 – ident: ref16 doi: 10.1109/10.335841 – volume: 5 start-page: 340 issue: 3 year: 1993 ident: ref12 article-title: Development of neural networks controller for below-elbow prosthesis using single-chip microcontroller publication-title: Biomed. Eng. Appl. Bas. Commun. – ident: ref20 doi: 10.1109/TSMC.1975.5408479 – ident: ref22 doi: 10.1016/s1350-4533(99)00066-1 – volume-title: Classification of EMG signals using fuzzy classifiers year: 1995 ident: ref8 – volume: 7 start-page: 45 issue: 1–3 year: 1999 ident: ref24 article-title: Differentiating type of muscle movement via AR modeling and neural networks classification of the EMG publication-title: ELEKTRIK (Turkish J. Elect. Eng. Comput.) – start-page: 164 volume-title: Proc. ISEK’96 ident: ref21 article-title: An improved study for multifunctional myoelectric control – ident: ref2 doi: 10.1109/10.52324 – ident: ref19 doi: 10.1080/01969729508927496 – volume-title: Medical Instrumentation: Application and Design year: 1997 ident: ref25 – ident: ref30 doi: 10.1007/978-1-4757-0450-1 – volume-title: A Discussion on Surface Electromyography: Detection and Recording Delsys Inc year: 1996 ident: ref26 – volume-title: 23rd Canadian Medical and Biological Engineering Society Conf. ident: ref32 article-title: A microprocessor-based multifunction myoelectric control system – ident: ref4 doi: 10.1109/MELCON.1994.381098 – ident: ref11 doi: 10.1109/10.362912 – ident: ref9 doi: 10.1109/IJCNN.1993.714172 – ident: ref17 doi: 10.1016/1350-4533(94)90024-8 – ident: ref6 doi: 10.1109/iembs.1995.575379 – ident: ref7 doi: 10.1109/ICNN.1994.374728 – ident: ref14 doi: 10.1007/978-1-4471-1599-1_141 – ident: ref18 doi: 10.1007/BF02510518 – ident: ref23 doi: 10.1109/10.914793 – ident: ref10 doi: 10.1109/ICSMC.1989.71472 – ident: ref15 doi: 10.1016/0141-5425(85)90004-4 – volume-title: Neural Networks: A Comprehensive Foundation year: 1994 ident: ref27 |
SSID | ssj0014846 |
Score | 2.1634812 |
Snippet | Accurate and computationally efficient means of classifying surface myoelectric signals has been the subject of considerable research effort in recent years.... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1255 |
SubjectTerms | Algorithms Biological and medical sciences Computer architecture Elbow Electromyography - methods Equipment Failure Analysis Fuzzy control Fuzzy Logic Fuzzy neural networks Humans Joint Prosthesis Medical sciences Movement - physiology Multilayer perceptrons Muscle Contraction - physiology Muscle, Skeletal - physiology Muscle, Skeletal - physiopathology Muscles Neural networks Neural Networks (Computer) Neural prosthesis Pattern recognition Pattern Recognition, Automated Prosthesis Design Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Technology. Biomaterials. Equipments. Material. Instrumentation Upper Extremity - physiology Upper Extremity - physiopathology Wrist |
Title | A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis |
URI | https://ieeexplore.ieee.org/document/1237368 https://www.ncbi.nlm.nih.gov/pubmed/14619995 https://www.proquest.com/docview/884354137 https://www.proquest.com/docview/28292577 https://www.proquest.com/docview/71355577 https://www.proquest.com/docview/883019281 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bh6o99AF9pBTwoZdKza6T2IlzpBUIIW1PUHGLbMdREdvsimwO3V_fGTu7C1VB3CJ5Ejke2_PZM_MNwGdnVa1dY2Jh6bYqNTw23GRxrhyvLdeF8lx6kx_52aU4v5JXW_B1nQvjnPPBZ25Ej96XX89sT1dlY9xliyxX27CNB7eQq7X2GAgVknJ4ggs4LcXKJcnL8cW3yYln_hyhdcLjIBGFipzy7-U9a-TLq1BwpO5wfJpQ2OJh5Okt0OkrmKz6HgJPbkb9wozs8h9ax6f-3Gt4OUBRdhzmzhvYcu0uvLhDULgLzyaD630Pfh6zpl8u_zA77YlcAdsZkWHiF9oQSs7uOiUYgmHmoxXJcpL2WT-fu9t4ev3bsDnlmvxy3XX3Fi5PTy6-n8VDUYbYSp4s4toiJhNlqhqi6REqU3VSGquU0U2DWCPnRhpea21yI0WubZ0YpbQuiIiskHX2DnbaWes-ANMN14mRTrpcC5kK3SAWM7lDUOdsWiQRjFfKqezAWE6FM6aVP7nwsiLNUiHNrAqajeDL-o15YOt4RHaPlLCRC-MfweE9_W_aKWAI7UcE-6sJUQ3rvauUQtiJeKCI4GjdiguVvC-6dbO-q8hljfvjIxJULVF6CfaAhFIZQXKFQ_M-TMVN94YZ_fH_v7UPz0MYIl0efYKdxW3vDhBOLcyhX0d_AUXYGz0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NIcF44MfGIAw2P_CCRFqnsRPncaBNBZY9dWhvke04YqKk1dI80L-euzhtN8Qm3iL5Ejk-2_fZd_cdwHtnValdZUJh6bZqZHhouInDRDleWq5T1XHp5efJ-EJ8vZSXW_BxnQvjnOuCz9yAHjtffjmzLV2VDXGXTeNEPYCHaPdl5LO11j4DoXxaDo9wCY8ysXJK8mw4-ZSfdNyfA7RPeCAkqlCRUAa-vGWPugIrFB6pGxyhype2uBt7djbo9Bnkq9770JOfg3ZhBnb5F7Hj__7ec3jag1F27GfPC9hy9S48uUFRuAuP8t75vgffj1nVLpe_mZ22RK-A7YzoMPELtQ8mZzfdEgzhMOviFcl2kv5ZO5-763B69cuwOWWb_HDNVfMSLk5PJp_HYV-WIbSSR4uwtIjKRDZSFRH1CBWrMsqMVcroqkK0kXAjDS-1NomRItG2jIxSWqdERZbKMt6H7XpWu9fAdMV1ZKSTLtFCjoSuEI2ZxKF6nR2lUQDDlXIK23OWU-mMadGdXXhWkGaplGZceM0G8GH9xtzzddwju0dK2Mj58Q_g8Jb-N-0UMoQWJICD1YQo-hXfFEoh8EREkAZwtG7FpUr-F127WdsU5LTGHfIeCaqXKDsJdoeEUjGBcoVD88pPxU33-hn95t-_dQSPx5P8rDj7cv7tAHZ8UCJdJb2F7cV1694huFqYw25N_QEnSx6G |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fuzzy+clustering+neural+network+architecture+for+multifunction+upper-limb+prosthesis&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Karlik%2C+B&rft.au=Osman+Tokhi%2C+M&rft.au=Alci%2C+M&rft.date=2003-11-01&rft.issn=0018-9294&rft.volume=50&rft.issue=11&rft.spage=1255&rft.epage=1261&rft_id=info:doi/10.1109%2FTBME.2003.818469&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |