A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis

Accurate and computationally efficient means of classifying surface myoelectric signals has been the subject of considerable research effort in recent years. The aim of this paper is to classify myoelectric signals using new fuzzy clustering neural network (NN) architectures to control multifunction...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 50; no. 11; pp. 1255 - 1261
Main Authors Karlik, B., Osman Tokhi, M., Alci, M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2003
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
DOI10.1109/TBME.2003.818469

Cover

Loading…
Abstract Accurate and computationally efficient means of classifying surface myoelectric signals has been the subject of considerable research effort in recent years. The aim of this paper is to classify myoelectric signals using new fuzzy clustering neural network (NN) architectures to control multifunction prostheses. This paper presents a comparative study of the classification accuracy of myoelectric signals using multilayered perceptron NN using back-propagation, conic section function NN, and new fuzzy clustering NNs (FCNNs). The myoelectric signals considered are used in classifying six upper-limb movements: elbow flexion, elbow extension, wrist pronation and wrist supination, grasp, and resting. The results suggest that FCNN can generalize better than other NN algorithms and help the user learn better and faster. This method has the potential of being very efficient in real-time applications.
AbstractList Accurate and computationally efficient means of classifying surface myoelectric signals has been the subject of considerable research effort in recent years. The aim of this paper is to classify myoelectric signals using new fuzzy clustering neural network (NN) architectures to control multifunction prostheses. This paper presents a comparative study of the classification accuracy of myoelectric signals using multilayered perceptron NN using back-propagation, conic section function NN, and new fuzzy clustering NNs (FCNNs). The myoelectric signals considered are used in classifying six upper-limb movements: elbow flexion, elbow extension, wrist pronation and wrist supination, grasp, and resting. The results suggest that FCNN can generalize better than other NN algorithms and help the user learn better and faster. This method has the potential of being very efficient in real-time applications.
Accurate and computationally efficient means of classifying surface myoelectric signals has been the subject of considerable research effort in recent years. The aim of this paper is to classify myoelectric signals using new fuzzy clustering neural network (NN) architectures to control multifunction prostheses. This paper presents a comparative study of the classification accuracy of myoelectric signals using multilayered perceptron NN using back-propagation, conic section function NN, and new fuzzy clustering NNs (FCNNs). The myoelectric signals considered are used in classifying six upper-limb movements: elbow flexion, elbow extension, wrist pronation and wrist supination, grasp, and resting. The results suggest that FCNN can generalize better than other NN algorithms and help the user learn better and faster. This method has the potential of being very efficient in real-time applications.Accurate and computationally efficient means of classifying surface myoelectric signals has been the subject of considerable research effort in recent years. The aim of this paper is to classify myoelectric signals using new fuzzy clustering neural network (NN) architectures to control multifunction prostheses. This paper presents a comparative study of the classification accuracy of myoelectric signals using multilayered perceptron NN using back-propagation, conic section function NN, and new fuzzy clustering NNs (FCNNs). The myoelectric signals considered are used in classifying six upper-limb movements: elbow flexion, elbow extension, wrist pronation and wrist supination, grasp, and resting. The results suggest that FCNN can generalize better than other NN algorithms and help the user learn better and faster. This method has the potential of being very efficient in real-time applications.
Author Karlik, B.
Osman Tokhi, M.
Alci, M.
Author_xml – sequence: 1
  givenname: B.
  surname: Karlik
  fullname: Karlik, B.
  organization: Dept. of Comput. Eng., Bahrain Univ., Isa Town, Bahrain
– sequence: 2
  givenname: M.
  surname: Osman Tokhi
  fullname: Osman Tokhi, M.
  email: o.tokhi@sheffield.ac.uk
– sequence: 3
  givenname: M.
  surname: Alci
  fullname: Alci, M.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15209002$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/14619995$$D View this record in MEDLINE/PubMed
BookMark eNqF0s1rFTEQAPAgFftavQuCLIJ62mcmH7vJsZb6ARUv1euSzSY2Nbv7mg-k_evNsk8e9FBPQ-A3M0xmTtDRNE8GoZeAtwBYfrj6-O1iSzCmWwGCNfIJ2gDnoiacwhHaYAyilkSyY3QS4015sqKeoWNgDUgp-Qb9PKtsvr-_q7TPMZngpl_VZHJQvoT0Zw6_KxX0tUtGpxxMZedQjdknZ_Okk5unKu92JtTejX21C3NM1ya6-Bw9tcpH82IfT9GPTxdX51_qy--fv56fXdaaY0j1oCUHJomwALxlgooBZK-F6JW1hNAG97zHg1J903PWKD1AL4RSLW8obvlAT9H7tW5pfZtNTN3oojbeq8nMOXZCUAylPhT57lHZAuWct-1_IRFEkhW-eQBv5hymMm5pyyhnQBf0eo9yP5qh2wU3qnDX_dtAAW_3QEWtvA1q0i4eHCdYYkyKw6vT5ZNjMPZAcLccQ7ccQ7ccQ7ceQ0lpHqRol9SytBSU848lvloTnTHm0IeUeRpB_wJ0s8BP
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_engstruct_2012_04_013
crossref_primary_10_1016_j_bspc_2012_08_005
crossref_primary_10_1109_RBME_2019_2950897
crossref_primary_10_1109_MEMB_2005_1463396
crossref_primary_10_1007_s13246_015_0399_5
crossref_primary_10_1541_ieejias_132_411
crossref_primary_10_3390_s19204596
crossref_primary_10_1016_j_bspc_2019_101669
crossref_primary_10_1541_ieejias_130_1272
crossref_primary_10_1177_09544119221074770
crossref_primary_10_1152_jn_00188_2017
crossref_primary_10_1109_TIE_2010_2053334
crossref_primary_10_1007_s00422_014_0635_1
crossref_primary_10_1016_S0208_5216_13_70054_8
crossref_primary_10_1109_THMS_2014_2358634
crossref_primary_10_1109_TNSRE_2019_2905658
crossref_primary_10_1080_10798587_2015_1008735
crossref_primary_10_5302_J_ICROS_2006_12_9_935
crossref_primary_10_1155_2007_38405
crossref_primary_10_3390_polym14122309
crossref_primary_10_1016_j_cmpb_2015_10_017
crossref_primary_10_1541_ieejeiss_131_1409
crossref_primary_10_3844_jcssp_2011_1407_1415
crossref_primary_10_1186_1475_925X_9_41
crossref_primary_10_1016_j_compbiomed_2009_02_001
crossref_primary_10_1080_10286600802506726
crossref_primary_10_1109_TBME_2006_883628
crossref_primary_10_1016_j_bspc_2021_103048
crossref_primary_10_1080_15567030600829055
crossref_primary_10_1093_bioinformatics_bti036
crossref_primary_10_1111_j_1468_0394_2008_00496_x
crossref_primary_10_1142_S0219519416500767
crossref_primary_10_1002_ecj_11465
crossref_primary_10_4015_S1016237209001258
crossref_primary_10_1109_TNSRE_2007_908376
crossref_primary_10_1080_02522667_2014_961782
crossref_primary_10_1586_17434440_4_1_43
crossref_primary_10_1016_j_eswa_2010_07_118
crossref_primary_10_1097_JPO_0b013e31822fcd1a
crossref_primary_10_1088_1741_2560_11_5_056027
crossref_primary_10_7763_IJIEE_2014_V4_433
crossref_primary_10_1109_TEVC_2012_2185845
crossref_primary_10_1080_01691864_2015_1079502
crossref_primary_10_1109_TBME_2008_923917
crossref_primary_10_3390_s150102181
crossref_primary_10_1016_j_compbiomed_2005_01_006
crossref_primary_10_1186_1475_925X_10_79
crossref_primary_10_3389_fncom_2016_00132
crossref_primary_10_1016_j_bspc_2007_07_009
crossref_primary_10_1109_TNSRE_2005_847357
crossref_primary_10_1016_j_eswa_2011_06_046
crossref_primary_10_1097_00008526_200604000_00002
crossref_primary_10_1007_s00521_017_3286_z
crossref_primary_10_1016_j_brainres_2024_149335
crossref_primary_10_1186_1475_925X_13_8
crossref_primary_10_1016_j_engappai_2014_11_002
crossref_primary_10_3233_JIFS_179549
crossref_primary_10_3390_app9245343
crossref_primary_10_1016_j_eswa_2006_05_014
crossref_primary_10_1109_TBME_2007_894829
crossref_primary_10_1016_j_bspc_2015_02_009
crossref_primary_10_17341_gazimmfd_1025221
crossref_primary_10_3390_s20113144
crossref_primary_10_7717_peerj_2315
crossref_primary_10_1016_j_bspc_2019_101791
crossref_primary_10_1152_jn_00936_2006
crossref_primary_10_1088_1741_2560_11_5_051001
crossref_primary_10_1080_17483100601138959
crossref_primary_10_1088_1742_6596_1246_1_012030
crossref_primary_10_3390_electronics8111244
crossref_primary_10_1109_ACCESS_2019_2930005
crossref_primary_10_1016_j_compbiomed_2008_12_008
crossref_primary_10_1016_j_eswa_2008_08_028
crossref_primary_10_3390_s22062236
crossref_primary_10_1002_ecj_11369
crossref_primary_10_12989_sem_2007_27_2_117
crossref_primary_10_1016_j_ijhcs_2020_102432
crossref_primary_10_1109_TMECH_2007_897262
crossref_primary_10_1007_s13534_023_00281_z
crossref_primary_10_4236_ica_2013_41012
crossref_primary_10_1186_1743_0003_10_50
crossref_primary_10_1080_03772063_2017_1381047
crossref_primary_10_1371_journal_pone_0262810
crossref_primary_10_9717_kmms_2016_19_1_068
crossref_primary_10_1002_hfm_20701
crossref_primary_10_1371_journal_pone_0206049
crossref_primary_10_3390_electronics10233013
Cites_doi 10.1109/nafips.1996.534748
10.1080/01969729408902340
10.1109/10.204774
10.1109/TBME.1983.325162
10.1109/IJCNN.1991.170562
10.1109/10.335841
10.1109/TSMC.1975.5408479
10.1016/s1350-4533(99)00066-1
10.1109/10.52324
10.1080/01969729508927496
10.1007/978-1-4757-0450-1
10.1109/MELCON.1994.381098
10.1109/10.362912
10.1109/IJCNN.1993.714172
10.1016/1350-4533(94)90024-8
10.1109/iembs.1995.575379
10.1109/ICNN.1994.374728
10.1007/978-1-4471-1599-1_141
10.1007/BF02510518
10.1109/10.914793
10.1109/ICSMC.1989.71472
10.1016/0141-5425(85)90004-4
ContentType Journal Article
Copyright 2004 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003
Copyright_xml – notice: 2004 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003
DBID RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2003.818469
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic
Engineering Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1261
ExternalDocumentID 2429885421
14619995
15209002
10_1109_TBME_2003_818469
1237368
Genre orig-research
Validation Studies
Comparative Study
Evaluation Studies
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c501t-dc9514928f11574838d19bc88baff22360b5b0daab6b546acd1b88aa7563075d3
IEDL.DBID RIE
ISSN 0018-9294
IngestDate Thu Jul 10 17:16:51 EDT 2025
Fri Jul 11 09:14:21 EDT 2025
Fri Jul 11 13:33:04 EDT 2025
Mon Jun 30 09:05:57 EDT 2025
Wed Feb 19 01:51:16 EST 2025
Mon Jul 21 09:13:04 EDT 2025
Thu Apr 24 23:05:02 EDT 2025
Sun Jul 06 05:04:05 EDT 2025
Wed Aug 27 02:53:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords upper-limb prosthesis
Fuzzy clustering
myoelectric signal
neural network
Biomedical engineering
pattern recognition
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-dc9514928f11574838d19bc88baff22360b5b0daab6b546acd1b88aa7563075d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PMID 14619995
PQID 884354137
PQPubID 85474
PageCount 7
ParticipantIDs ieee_primary_1237368
proquest_miscellaneous_28292577
pascalfrancis_primary_15209002
proquest_journals_884354137
proquest_miscellaneous_71355577
pubmed_primary_14619995
proquest_miscellaneous_883019281
crossref_citationtrail_10_1109_TBME_2003_818469
crossref_primary_10_1109_TBME_2003_818469
PublicationCentury 2000
PublicationDate 2003-11-01
PublicationDateYYYYMMDD 2003-11-01
PublicationDate_xml – month: 11
  year: 2003
  text: 2003-11-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2003
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref31
ref30
ref11
ref10
Hudgins (ref32)
Karlik (ref24) 1999; 7
ref2
ref17
ref16
ref19
ref18
Webster (ref25) 1997
Yildirim (ref29) 1997
ref23
Haykin (ref27) 1994
ref20
ref22
Karlik (ref21)
ref28
ref7
ref9
ref4
ref3
ref6
Seker (ref8) 1995
ref5
(ref26) 1996
Chaiyaratana (ref1)
Yeh (ref12) 1993; 5
References_xml – ident: ref31
  doi: 10.1109/nafips.1996.534748
– ident: ref28
  doi: 10.1080/01969729408902340
– ident: ref5
  doi: 10.1109/10.204774
– start-page: 151
  volume-title: Proc. ECDVRAT
  ident: ref1
  article-title: Myoelectric signals pattern recognition for functional operation of upper-limb prosthesis
– ident: ref13
  doi: 10.1109/TBME.1983.325162
– volume-title: IEEE ICNN’97
  year: 1997
  ident: ref29
  article-title: Improved back propagation training algorithm using conic section functions
– ident: ref3
  doi: 10.1109/IJCNN.1991.170562
– ident: ref16
  doi: 10.1109/10.335841
– volume: 5
  start-page: 340
  issue: 3
  year: 1993
  ident: ref12
  article-title: Development of neural networks controller for below-elbow prosthesis using single-chip microcontroller
  publication-title: Biomed. Eng. Appl. Bas. Commun.
– ident: ref20
  doi: 10.1109/TSMC.1975.5408479
– ident: ref22
  doi: 10.1016/s1350-4533(99)00066-1
– volume-title: Classification of EMG signals using fuzzy classifiers
  year: 1995
  ident: ref8
– volume: 7
  start-page: 45
  issue: 1–3
  year: 1999
  ident: ref24
  article-title: Differentiating type of muscle movement via AR modeling and neural networks classification of the EMG
  publication-title: ELEKTRIK (Turkish J. Elect. Eng. Comput.)
– start-page: 164
  volume-title: Proc. ISEK’96
  ident: ref21
  article-title: An improved study for multifunctional myoelectric control
– ident: ref2
  doi: 10.1109/10.52324
– ident: ref19
  doi: 10.1080/01969729508927496
– volume-title: Medical Instrumentation: Application and Design
  year: 1997
  ident: ref25
– ident: ref30
  doi: 10.1007/978-1-4757-0450-1
– volume-title: A Discussion on Surface Electromyography: Detection and Recording Delsys Inc
  year: 1996
  ident: ref26
– volume-title: 23rd Canadian Medical and Biological Engineering Society Conf.
  ident: ref32
  article-title: A microprocessor-based multifunction myoelectric control system
– ident: ref4
  doi: 10.1109/MELCON.1994.381098
– ident: ref11
  doi: 10.1109/10.362912
– ident: ref9
  doi: 10.1109/IJCNN.1993.714172
– ident: ref17
  doi: 10.1016/1350-4533(94)90024-8
– ident: ref6
  doi: 10.1109/iembs.1995.575379
– ident: ref7
  doi: 10.1109/ICNN.1994.374728
– ident: ref14
  doi: 10.1007/978-1-4471-1599-1_141
– ident: ref18
  doi: 10.1007/BF02510518
– ident: ref23
  doi: 10.1109/10.914793
– ident: ref10
  doi: 10.1109/ICSMC.1989.71472
– ident: ref15
  doi: 10.1016/0141-5425(85)90004-4
– volume-title: Neural Networks: A Comprehensive Foundation
  year: 1994
  ident: ref27
SSID ssj0014846
Score 2.1634812
Snippet Accurate and computationally efficient means of classifying surface myoelectric signals has been the subject of considerable research effort in recent years....
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1255
SubjectTerms Algorithms
Biological and medical sciences
Computer architecture
Elbow
Electromyography - methods
Equipment Failure Analysis
Fuzzy control
Fuzzy Logic
Fuzzy neural networks
Humans
Joint Prosthesis
Medical sciences
Movement - physiology
Multilayer perceptrons
Muscle Contraction - physiology
Muscle, Skeletal - physiology
Muscle, Skeletal - physiopathology
Muscles
Neural networks
Neural Networks (Computer)
Neural prosthesis
Pattern recognition
Pattern Recognition, Automated
Prosthesis Design
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Technology. Biomaterials. Equipments. Material. Instrumentation
Upper Extremity - physiology
Upper Extremity - physiopathology
Wrist
Title A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis
URI https://ieeexplore.ieee.org/document/1237368
https://www.ncbi.nlm.nih.gov/pubmed/14619995
https://www.proquest.com/docview/884354137
https://www.proquest.com/docview/28292577
https://www.proquest.com/docview/71355577
https://www.proquest.com/docview/883019281
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bh6o99AF9pBTwoZdKza6T2IlzpBUIIW1PUHGLbMdREdvsimwO3V_fGTu7C1VB3CJ5Ejke2_PZM_MNwGdnVa1dY2Jh6bYqNTw23GRxrhyvLdeF8lx6kx_52aU4v5JXW_B1nQvjnPPBZ25Ej96XX89sT1dlY9xliyxX27CNB7eQq7X2GAgVknJ4ggs4LcXKJcnL8cW3yYln_hyhdcLjIBGFipzy7-U9a-TLq1BwpO5wfJpQ2OJh5Okt0OkrmKz6HgJPbkb9wozs8h9ax6f-3Gt4OUBRdhzmzhvYcu0uvLhDULgLzyaD630Pfh6zpl8u_zA77YlcAdsZkWHiF9oQSs7uOiUYgmHmoxXJcpL2WT-fu9t4ev3bsDnlmvxy3XX3Fi5PTy6-n8VDUYbYSp4s4toiJhNlqhqi6REqU3VSGquU0U2DWCPnRhpea21yI0WubZ0YpbQuiIiskHX2DnbaWes-ANMN14mRTrpcC5kK3SAWM7lDUOdsWiQRjFfKqezAWE6FM6aVP7nwsiLNUiHNrAqajeDL-o15YOt4RHaPlLCRC-MfweE9_W_aKWAI7UcE-6sJUQ3rvauUQtiJeKCI4GjdiguVvC-6dbO-q8hljfvjIxJULVF6CfaAhFIZQXKFQ_M-TMVN94YZ_fH_v7UPz0MYIl0efYKdxW3vDhBOLcyhX0d_AUXYGz0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NIcF44MfGIAw2P_CCRFqnsRPncaBNBZY9dWhvke04YqKk1dI80L-euzhtN8Qm3iL5Ejk-2_fZd_cdwHtnValdZUJh6bZqZHhouInDRDleWq5T1XHp5efJ-EJ8vZSXW_BxnQvjnOuCz9yAHjtffjmzLV2VDXGXTeNEPYCHaPdl5LO11j4DoXxaDo9wCY8ysXJK8mw4-ZSfdNyfA7RPeCAkqlCRUAa-vGWPugIrFB6pGxyhype2uBt7djbo9Bnkq9770JOfg3ZhBnb5F7Hj__7ec3jag1F27GfPC9hy9S48uUFRuAuP8t75vgffj1nVLpe_mZ22RK-A7YzoMPELtQ8mZzfdEgzhMOviFcl2kv5ZO5-763B69cuwOWWb_HDNVfMSLk5PJp_HYV-WIbSSR4uwtIjKRDZSFRH1CBWrMsqMVcroqkK0kXAjDS-1NomRItG2jIxSWqdERZbKMt6H7XpWu9fAdMV1ZKSTLtFCjoSuEI2ZxKF6nR2lUQDDlXIK23OWU-mMadGdXXhWkGaplGZceM0G8GH9xtzzddwju0dK2Mj58Q_g8Jb-N-0UMoQWJICD1YQo-hXfFEoh8EREkAZwtG7FpUr-F127WdsU5LTGHfIeCaqXKDsJdoeEUjGBcoVD88pPxU33-hn95t-_dQSPx5P8rDj7cv7tAHZ8UCJdJb2F7cV1694huFqYw25N_QEnSx6G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fuzzy+clustering+neural+network+architecture+for+multifunction+upper-limb+prosthesis&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Karlik%2C+B&rft.au=Osman+Tokhi%2C+M&rft.au=Alci%2C+M&rft.date=2003-11-01&rft.issn=0018-9294&rft.volume=50&rft.issue=11&rft.spage=1255&rft.epage=1261&rft_id=info:doi/10.1109%2FTBME.2003.818469&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon