Preparation, properties and challenges of the microneedles-based insulin delivery system
Microneedle technology relates to pharmacy, polymer chemistry and micromachining. Microneedle can effectively deliver insulin into systemic circulation across the skin. This process does not affect the activity of insulin. Compared to subcutaneous injection, microneedles cause less pain for their sp...
Saved in:
Published in | Journal of controlled release Vol. 288; pp. 173 - 188 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
28.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microneedle technology relates to pharmacy, polymer chemistry and micromachining. Microneedle can effectively deliver insulin into systemic circulation across the skin. This process does not affect the activity of insulin. Compared to subcutaneous injection, microneedles cause less pain for their special structure. This review thoroughly discusses the preparation technologies of the microneedles-based insulin delivery system including solid, hollow, dissolving, phase transition, glucose-responsive microneedle patches. In the meantime, the properties, challenges and clinical/commercial status of the microneedles-based insulin delivery system are also discussed in this review.
[Display omitted] |
---|---|
AbstractList | Microneedle technology relates to pharmacy, polymer chemistry and micromachining. Microneedle can effectively deliver insulin into systemic circulation across the skin. This process does not affect the activity of insulin. Compared to subcutaneous injection, microneedles cause less pain for their special structure. This review thoroughly discusses the preparation technologies of the microneedles-based insulin delivery system including solid, hollow, dissolving, phase transition, glucose-responsive microneedle patches. In the meantime, the properties, challenges and clinical/commercial status of the microneedles-based insulin delivery system are also discussed in this review. Microneedle technology relates to pharmacy, polymer chemistry and micromachining. Microneedle can effectively deliver insulin into systemic circulation across the skin. This process does not affect the activity of insulin. Compared to subcutaneous injection, microneedles cause less pain for their special structure. This review thoroughly discusses the preparation technologies of the microneedles-based insulin delivery system including solid, hollow, dissolving, phase transition, glucose-responsive microneedle patches. In the meantime, the properties, challenges and clinical/commercial status of the microneedles-based insulin delivery system are also discussed in this review. [Display omitted] Microneedle technology relates to pharmacy, polymer chemistry and micromachining. Microneedle can effectively deliver insulin into systemic circulation across the skin. This process does not affect the activity of insulin. Compared to subcutaneous injection, microneedles cause less pain for their special structure. This review thoroughly discusses the preparation technologies of the microneedles-based insulin delivery system including solid, hollow, dissolving, phase transition, glucose-responsive microneedle patches. In the meantime, the properties, challenges and clinical/commercial status of the microneedles-based insulin delivery system are also discussed in this review.Microneedle technology relates to pharmacy, polymer chemistry and micromachining. Microneedle can effectively deliver insulin into systemic circulation across the skin. This process does not affect the activity of insulin. Compared to subcutaneous injection, microneedles cause less pain for their special structure. This review thoroughly discusses the preparation technologies of the microneedles-based insulin delivery system including solid, hollow, dissolving, phase transition, glucose-responsive microneedle patches. In the meantime, the properties, challenges and clinical/commercial status of the microneedles-based insulin delivery system are also discussed in this review. |
Author | Khan, Rizwan Ullah Yu, Haojie Wang, Li Feng, Jingyi Khan, Amin Li, Chengjiang Haq, Fazal Chen, Xiang |
Author_xml | – sequence: 1 givenname: Xiang surname: Chen fullname: Chen, Xiang organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China – sequence: 2 givenname: Li orcidid: 0000-0001-9356-9930 surname: Wang fullname: Wang, Li email: opl_wl@dial.zju.edu.cn organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China – sequence: 3 givenname: Haojie surname: Yu fullname: Yu, Haojie organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China – sequence: 4 givenname: Chengjiang surname: Li fullname: Li, Chengjiang organization: The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310027, PR China – sequence: 5 givenname: Jingyi surname: Feng fullname: Feng, Jingyi organization: The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310027, PR China – sequence: 6 givenname: Fazal surname: Haq fullname: Haq, Fazal organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China – sequence: 7 givenname: Amin surname: Khan fullname: Khan, Amin organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China – sequence: 8 givenname: Rizwan Ullah orcidid: 0000-0003-1706-5495 surname: Khan fullname: Khan, Rizwan Ullah organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30189223$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtrGzEUhUVJqJ20P6FhlllkHL1mRkMXIYQ0LQSSRQvdCT3u1DIajSvJAf_7yLWbRTYJXLhc-M7hcs4JOgpTAIS-ELwgmLSXq8XKTCGCX1BMxAKX4fQDmhPRsZr3fXOE5oUTNWubfoZOUlphjBvGu49oxoqkp5TN0e_HCGsVVXZTuKjWcVpDzA5SpYKtzFJ5D-FPOaehykuoRmdi-QOsh1RrlcBWLqSNd6Gy4N0TxG2VtinD-AkdD8on-HzYp-jXt9ufN9_r-4e7HzfX97VpMMm1VUYoYs1gheGgG631wDjQXrTYkI5bIiwMjIJtle16LEBpLShhtAHba8NO0fnet_z-dwMpy9ElA96rANMmSUoa1lIuePcOFBPakR7Tgp4d0I0ewcp1dKOKW_k_uAI0e6DkkVKE4QUhWO4Kkit5KEjuCpK4DN8Zf32lMy7_Sz9H5fyb6qu9GkqiTw6iTMZBMGBdBJOlndwbDs_l9LGT |
CitedBy_id | crossref_primary_10_1016_j_jcis_2024_05_045 crossref_primary_10_1016_j_jconrel_2020_06_039 crossref_primary_10_1021_acsabm_4c00399 crossref_primary_10_1016_j_matpr_2023_05_239 crossref_primary_10_1039_D3BM00262D crossref_primary_10_1016_j_jconrel_2024_02_023 crossref_primary_10_1016_j_ijpharm_2025_125206 crossref_primary_10_1016_j_jconrel_2020_02_014 crossref_primary_10_1080_00914037_2022_2042290 crossref_primary_10_1002_app_49772 crossref_primary_10_1007_s10965_024_04007_2 crossref_primary_10_1016_j_jconrel_2025_01_069 crossref_primary_10_1016_j_ijpharm_2024_124220 crossref_primary_10_2174_1570159X20666221012142247 crossref_primary_10_1002_cnma_202100288 crossref_primary_10_1016_j_carbpol_2020_116314 crossref_primary_10_3390_v14050964 crossref_primary_10_1016_j_jddst_2025_106841 crossref_primary_10_1080_10717544_2023_2296350 crossref_primary_10_3389_fbioe_2024_1468423 crossref_primary_10_1016_j_apsb_2020_08_016 crossref_primary_10_3390_biomimetics8010050 crossref_primary_10_1016_j_actbio_2020_12_004 crossref_primary_10_1016_j_drudis_2022_103393 crossref_primary_10_3390_pharmaceutics15010277 crossref_primary_10_3390_pharmaceutics14061152 crossref_primary_10_1016_j_carbpol_2021_118168 crossref_primary_10_1016_j_eurpolymj_2021_110829 crossref_primary_10_1039_D1TB00880C crossref_primary_10_1002_anbr_202200126 crossref_primary_10_1016_j_msec_2019_05_002 crossref_primary_10_1016_j_jconrel_2024_03_001 crossref_primary_10_1007_s00170_021_06674_7 crossref_primary_10_1088_2057_1976_ad43f0 crossref_primary_10_1016_j_jconrel_2023_07_001 crossref_primary_10_1016_j_jddst_2024_105930 crossref_primary_10_1016_j_colsurfb_2022_112818 crossref_primary_10_1021_acsbiomaterials_1c01073 crossref_primary_10_1021_acsmaterialslett_3c00287 crossref_primary_10_1016_j_eurpolymj_2021_110348 crossref_primary_10_1016_j_ijbiomac_2024_131650 crossref_primary_10_1016_j_ijpharm_2019_118741 crossref_primary_10_1021_acs_iecr_1c01277 crossref_primary_10_2174_1567201818666210720145706 crossref_primary_10_1007_s00216_020_02971_4 crossref_primary_10_1016_j_ijpharm_2025_125474 crossref_primary_10_1016_j_jconrel_2022_10_059 crossref_primary_10_3389_fimmu_2021_660974 crossref_primary_10_1016_j_ajps_2021_07_002 crossref_primary_10_1016_j_colsurfb_2023_113636 crossref_primary_10_1016_j_medntd_2023_100253 crossref_primary_10_1021_acsbiomaterials_0c00273 crossref_primary_10_1002_adem_202100503 crossref_primary_10_22159_ajpcr_2022_v15i2_43572 crossref_primary_10_1016_j_jconrel_2023_11_029 crossref_primary_10_1016_j_jddst_2020_102007 crossref_primary_10_2174_1567201816666190201143457 crossref_primary_10_1002_adtp_201900036 crossref_primary_10_1016_j_ijpharm_2021_120749 crossref_primary_10_1016_j_ejps_2023_106518 crossref_primary_10_1016_j_mtbio_2022_100508 crossref_primary_10_1016_j_jconrel_2019_10_049 crossref_primary_10_1016_j_biopha_2024_117219 crossref_primary_10_1016_j_eurpolymj_2022_111217 crossref_primary_10_1016_j_ijbiomac_2024_130301 crossref_primary_10_1016_j_ijbiomac_2024_137064 crossref_primary_10_1016_j_jmapro_2020_02_024 crossref_primary_10_1002_cnm_3812 crossref_primary_10_1016_j_carbpol_2024_122885 crossref_primary_10_1007_s13346_021_01077_3 crossref_primary_10_1021_acsbiomaterials_9b00532 crossref_primary_10_1016_j_jconrel_2019_05_029 crossref_primary_10_3390_pharmaceutics11060256 crossref_primary_10_1016_j_ijpharm_2024_125072 crossref_primary_10_1093_jpp_rgad058 crossref_primary_10_1016_j_jddst_2021_102336 crossref_primary_10_1021_acsbiomaterials_3c00137 crossref_primary_10_1039_D0TB01822H crossref_primary_10_3389_fbioe_2020_00827 crossref_primary_10_1016_j_ijbiomac_2022_10_274 crossref_primary_10_1007_s13346_023_01297_9 crossref_primary_10_1007_s12274_020_3273_z crossref_primary_10_1007_s13346_023_01486_6 crossref_primary_10_1016_j_ijbiomac_2025_141963 crossref_primary_10_1021_acsami_3c16540 crossref_primary_10_1016_j_ejps_2021_106075 crossref_primary_10_3390_pharmaceutics13010100 crossref_primary_10_1016_j_jddst_2019_101216 crossref_primary_10_3390_ph15070877 crossref_primary_10_1016_j_jconrel_2019_10_022 crossref_primary_10_1021_acsbiomaterials_2c01123 crossref_primary_10_3390_pharmaceutics15051407 crossref_primary_10_1016_j_engreg_2022_09_002 crossref_primary_10_1007_s13346_021_00981_y crossref_primary_10_1016_j_cclet_2022_108103 crossref_primary_10_1002_admt_202202124 crossref_primary_10_1016_j_nantod_2021_101127 crossref_primary_10_1038_s41428_021_00525_8 crossref_primary_10_1007_s13346_024_01542_9 crossref_primary_10_1016_j_bios_2021_113384 crossref_primary_10_1016_j_apsb_2021_03_003 crossref_primary_10_1007_s13346_021_00909_6 crossref_primary_10_1016_j_actbio_2020_12_023 crossref_primary_10_1016_j_eurpolymj_2021_110651 crossref_primary_10_2174_2210681213666230516155253 crossref_primary_10_1016_j_nantod_2023_101853 crossref_primary_10_3390_gels8020074 crossref_primary_10_1016_j_vaccine_2023_02_040 crossref_primary_10_1016_j_cej_2021_131913 |
Cites_doi | 10.1080/17425247.2016.1232247 10.1021/acs.nanolett.6b03848 10.1016/j.ejpb.2013.10.007 10.1016/j.jddst.2018.03.021 10.1116/1.4960715 10.1109/JMEMS.2003.809959 10.1016/j.msec.2016.12.111 10.1002/jps.1120 10.1088/0960-1317/23/8/085011 10.1002/advs.201600124 10.1109/JMEMS.2012.2203790 10.1080/14737167.2018.1485100 10.1007/s10544-005-3024-7 10.1073/pnas.2331316100 10.1016/j.jconrel.2012.01.003 10.1073/pnas.1505405112 10.1089/dia.2013.0388 10.1016/j.msec.2014.12.010 10.1021/js980042+ 10.1007/s11095-011-0524-4 10.1089/dia.2010.0183 10.1016/j.sna.2003.11.008 10.1016/j.ijpharm.2012.06.047 10.1021/acs.molpharmaceut.5b00807 10.1007/s10544-018-0262-z 10.1016/j.addr.2003.10.023 10.1109/TBME.2006.889173 10.1088/0960-1317/20/6/064006 10.1039/C7TB02082A 10.2337/diabetes.52.11.2790 10.1016/S0169-409X(98)00073-8 10.1002/mame.201500016 10.1177/193229681200600403 10.1016/j.ijpharm.2010.03.041 10.1088/0960-1317/16/10/041 10.1016/j.msec.2016.10.063 10.1007/s10544-012-9717-9 10.1177/1932296815604438 10.1016/j.jconrel.2017.05.029 10.1007/s10439-015-1466-5 10.1038/ncomms4364 10.1088/0960-1317/22/1/015016 10.1002/adma.201506025 10.1089/dia.2008.0103 10.1038/s41467-017-01764-1 10.1080/10611860600785080 10.1038/414799a 10.1016/S0928-0987(01)00167-1 10.1109/TBME.2005.845240 10.1007/s10856-009-3923-x 10.3390/pharmaceutics7030090 10.1016/j.ijpharm.2005.10.016 10.1002/smll.201200441 10.1166/jbn.2017.2474 10.1016/j.nano.2011.05.017 10.1016/j.sna.2012.04.037 10.1021/acsnano.6b06892 10.1089/dia.2016.0156 10.1002/adma.200902418 10.1109/JMEMS.2003.809951 10.1088/0960-1317/20/2/025024 10.1039/C7TB02236K 10.1007/s11095-016-1885-5 10.1016/j.jconrel.2016.08.031 10.1002/jps.23921 10.1021/jp0608168 10.1016/j.jddst.2018.01.004 10.1021/ja00995a002 10.1023/A:1013607400040 10.1177/1932296814530060 10.1023/B:PHAM.0000029282.44140.2e 10.1016/j.jconrel.2017.11.048 10.1016/j.biopha.2017.07.019 10.1097/AJP.0b013e31816778f9 10.1016/j.ejpb.2017.04.018 10.1364/OE.18.017967 10.1016/j.msec.2017.12.006 10.1002/adfm.201500554 10.1039/c3cs60436e 10.1089/dia.2012.0096 10.1016/j.jconrel.2005.02.002 10.1016/j.jconrel.2017.02.011 10.1016/S0140-6736(17)30575-5 10.3390/s131216672 10.1089/15209150152607132 10.1007/s13346-015-0239-x 10.1177/193229680900300211 10.1109/JMEMS.2011.2174429 10.1016/j.biomaterials.2007.12.048 10.1021/acs.biomac.5b00185 10.1002/adma.200701205 10.1049/mnl.2012.0903 10.1016/j.sna.2010.06.011 10.1159/000093050 10.1038/nm.2182 10.1088/0960-1317/25/2/025013 10.1021/ja972053v 10.1016/j.ejps.2015.02.018 10.1080/15321799208018377 10.1016/j.ejpb.2016.03.009 10.1016/j.ejps.2006.05.011 10.1016/j.actbio.2015.06.021 10.1080/03639040902882280 10.1088/1742-6596/34/1/187 10.1088/0960-1317/16/3/001 10.1002/anie.201106252 10.1016/j.vaccine.2017.10.021 10.3109/10717541003667798 10.1088/0960-1317/14/11/005 10.1089/dia.2010.0184 10.1007/s13346-015-0238-y 10.1023/A:1009980412628 10.1016/j.addr.2012.04.003 10.1016/j.jconrel.2012.05.030 10.1128/CVI.00387-06 10.1089/dia.2010.0204 10.1021/ma9907587 10.1016/S0169-409X(02)00114-X 10.1097/DSS.0000000000000924 10.1109/JMEMS.2014.2307320 10.1016/j.addr.2018.03.011 10.1007/s11095-012-0946-7 10.1007/BF03353783 10.1109/JMEMS.2005.844843 10.1016/j.ijbiomac.2017.07.178 10.1039/C6RA26759A 10.1016/j.mser.2016.03.001 10.1016/j.jconrel.2009.05.031 10.1111/pedi.12031 10.1111/exd.12579 10.1016/j.msec.2011.06.010 10.1016/S0167-9317(00)00363-4 10.1016/j.ijpharm.2012.07.035 10.1016/j.addr.2018.01.015 10.1039/C6RA27476E 10.1002/adhm.201300312 10.1016/j.drudis.2017.10.013 10.1117/1.JBO.20.6.061102 10.1016/j.jconrel.2017.03.015 10.1007/s10544-009-9337-1 10.1039/C5RA04340A 10.1016/j.actbio.2013.06.029 10.1088/0960-1317/20/4/045011 10.1088/1742-6596/34/1/030 10.1016/j.ijbiomac.2017.12.027 10.1002/smll.201202075 10.3109/03639045.2011.576426 10.1016/j.msec.2017.05.143 10.1002/adfm.201200864 10.1002/jbm.a.35869 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jconrel.2018.08.042 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-4995 |
EndPage | 188 |
ExternalDocumentID | 30189223 10_1016_j_jconrel_2018_08_042 S0168365918305169 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMT IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSM SSP SSZ T5K TEORI ~G- .GJ 29K 3O- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SPT SSH WUQ NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c501t-dac8a1dcfd8c4eb5bbbf34e29860c174d18def32ed6ad7908eabb821325ed9bc3 |
IEDL.DBID | .~1 |
ISSN | 0168-3659 1873-4995 |
IngestDate | Fri Jul 11 08:24:03 EDT 2025 Fri Jul 11 02:07:40 EDT 2025 Wed Feb 19 02:35:06 EST 2025 Tue Jul 01 04:04:43 EDT 2025 Thu Apr 24 22:54:25 EDT 2025 Fri Feb 23 02:33:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microneedle fabrication Skin Phase transition microneedle Diabetes Hydrogel Insulin Glucose-responsive microneedle |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-dac8a1dcfd8c4eb5bbbf34e29860c174d18def32ed6ad7908eabb821325ed9bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9356-9930 0000-0003-1706-5495 |
PMID | 30189223 |
PQID | 2101271902 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2153624847 proquest_miscellaneous_2101271902 pubmed_primary_30189223 crossref_primary_10_1016_j_jconrel_2018_08_042 crossref_citationtrail_10_1016_j_jconrel_2018_08_042 elsevier_sciencedirect_doi_10_1016_j_jconrel_2018_08_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-28 |
PublicationDateYYYYMMDD | 2018-10-28 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of controlled release |
PublicationTitleAlternate | J Control Release |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Steinert, Acker, Krause, Oswald, Wetzig (bb0270) 2006; 110 Wang, Wester, Rajaraman, Paik, Kim, Allen (bb0465) 2009; 2009 Donnelly, Larraneta (bb0810) 2018; 23 Chen, Ling, Wang, Lin, Lai, Chen (bb0725) 2015; 16 Krauland, Guggi, Bernkop-Schnurch (bb0015) 2006; 307 Yu, Zhang, Ye, Disanto, Sun, Ranson, Ligler, Buse, Gu (bb0200) 2015; 112 Mangelsdorf, Otberg, Maibach, Sinkgraven, Sterry (bb0165) 2006; 19 Yung, Xu, Kang, Liu, Tam, Ko, Kwan, Lee (bb0490) 2012; 22 Ito, Kashiwara, Fukushima, Takada (bb0570) 2011; 37 Martanto, Davis, Holiday, Wang, Gill, Prausnitz (bb0070) 2004; 21 Jin, Han, Lee, Choi (bb0330) 2009; 11 Wheeler, Heels, Donaghue, Reith, Ambler (bb0040) 2014; 16 Jepps, Dancik, Anissimov, Roberts (bb0115) 2013; 65 Sullivan, Murthy, Prausnitz (bb0550) 2008; 20 Prausnitz (bb0055) 2004; 56 Hassan, Peppas (bb0650) 2000; 33 Park, Yoon, Choi, Prausnitz, Allen (bb0305) 2007; 54 Hultstrom, Roxhed, Nordquist (bb0135) 2014; 8 Matriano, Cormier, Johnson, Young, Buttery, Nyam, Daddona (bb0750) 2002; 19 23, Aug, 2018. Kochba, Levin, Raz, Cahn (bb0790) 2016; 18 Ita (bb0130) 2015; 7 Lau, Fei, Liu, Chen, Liu (bb0580) 2016; 265 Henry, McAllister, Allen, Prausnitz (bb0120) 1998; 87 Ita (bb0320) 2018; 44 Garland, Caffarel-Salvador, Migalska, Woolfson, Donnelly (bb0565) 2012; 159 Barry (bb0140) 2001; 14 Zhao, Coulman, Hanna, Wong, Dayan, Birchall (bb0215) 2017; 265 Kim, Lee (bb0420) 2007; Vol. 13 Yan, Raphael, Zhu, Wang, Chen, Tang, Deng, Sant, Zhu, Choy, Gale, Prow, Chen (bb0255) 2014; 3 Ito, Hirono, Fukushima, Sugioka, Takada (bb0585) 2012; 436 Xiang, Wang, Murugappan, Yen, Pastorin, Lee (bb0365) 2015; 25 Zhang, Wei (bb0345) 2011; 26 Xu, Jiang, Yu, Liu, Zhang, Zhou, Sun, Liu (bb0680) 2017; 5 Bhandari, Negi, Rieth, Solzbacher (bb0260) 2010; 162 Bogdanov, Peredkov (bb0295) 2000; 53 Demir, Metin, Satiroglu, Solmaz, Kayser, Maeder (bb0630) 2017; 117 Rouphael, Paine, Mosley, Henry, McAllister, Kalluri, Pewin, Frew, Yu, Thornburg, Kabbani, Lai, Vassilieva, Skountzou, Compans, Mulligan, Prausnitz, Grp (bb0805) 2017; 390 You, Chang, Ju, Pak (bb0535) 2011; 31 Ye, Yu, Wang, Nguyen, Walker, Buse, Gu (bb0675) 2016; 28 Gittard, Ovsianikov, Monteiro-Riviere, Lusk, Morel, Minghetti, Lenardi, Chichkov, Narayan (bb0315) 2009; 3 Raja, MacCorkle, Diwan, Abdurrob, Lu, Omenetto, Kaplan (bb0665) 2013; 9 Pettis, Ginsberg, Hirsch, Sutter, Keith, McVey, Harvey, Hompesch, Nosek, Kapitza, Heinemann (bb0800) 2011; 13 Lim, Vines, Park, Lee (bb0065) 2018; 110 Chandrasekaran, Brazzle, Frazier (bb0425) 2003; 12 Yin, Kuang, Wang, Zheng, Yadavalli, Lu (bb0660) 2017; 106 Held, Gaspar, Ruther, Hagner, Cismak, Heilmann, Paul (bb0285) 2010; 20 Brazzle, Papautsky, Frazier (bb0430) 2000; 2 Lee, Park, Prausnitz (bb0530) 2008; 29 Jurcicek, Zou, Zhang, Liu (bb0460) 2013; 8 Hong, Wu, Chen, Wu, Wei, Yuan (bb0620) 2014; 6 Jin, Zhu, Chen, Ashfaq, Guo (bb0780) 2018; 127 Liu, Jin, Quan, Kamiyama, Katsumi, Sakane, Yamamoto (bb0180) 2012; 161 Montheard, Chatzopoulos, Chappard (bb0645) 1992; C32 Gill, Denson, Burris, Prausnitz (bb0515) 2008; 24 Ito, Yamazaki, Sugioka, Takada (bb0540) 2010; 21 Flaten, Palac, Engesland, Filipović-Grčić, Vanić, Škalko-Basnet (bb0125) 2015; 75 Chen, Tian, Xu, Yung, Wang, Liu, Ni, Zhang, Zhou, Wang, Niu, Ma, Fu, Chen (bb0210) 2017; 8 Perennes, Marmiroli, Matteucci, Tormen, Vaccari, Di Fabrizio (bb0485) 2006; 16 Chen, Zhu, Zheng, Mou, Wan, Zhang, Shi, Zhao, Xu, Yang (bb0380) 2009; 139 Sensu, Sekiguchi, Kono (bb0340) 2006 S.J. Moon, C.Y. Jin, S.S. Lee, A novel method of microneedle array fabrication using inclined deep X-ray exposure, in: International Mems Conference 2006, 2006, pp. 180–186. Yu, Jiang, Liu, Li, Chen, Liu, Huang, Tong, Yao, Kong (bb0075) 2017; 71 Lee, Lee, Lee, Jung (bb0300) 2010; 22 Danso, Berkers, Mieremet, Hausil, Bouwstra (bb0105) 2015; 24 Lee, Wu, Tsai, Chen, Wu (bb0600) 2017; 7 Griffin, Elliott, Krauer, Davies, Skinner, Anderson, Forster (bb0235) 2017; 35 Yuzhakov (bb0765) 2010 Richter-Johnson, Kumar, Choonara, du Toit, Pillay (bb0815) 2018; 18 Miyano, Tobinaga, Kanno, Matsuzaki, Takeda, Wakui, Hanada (bb0090) 2005; 7 Thennadil, Rennert, Wenzel, Hazen, Ruchti, Block (bb0700) 2001; 3 Ito, Nakahigashi, Yoshimoto, Ueda, Hamasaki, Takada (bb0610) 2012; 14 Qiu, Qin, Zhang, Wu, Xu, Gao (bb0370) 2012; 437 Rini, McVey, Sutter, Keith, Kurth, Nosek, Kapitza, Rebrin, Hirsch, Pettis (bb0825) 2015; 5 Panda, Bissoyi, Pramanik, Biswas (bb0670) 2015; 48 Guo, Wang (bb0030) 2017; 14 Ita (bb0525) 2017; 93 Larraneta, McCrudden, Courtenay, Donnelly (bb0045) 2016; 33 Norman, Choi, Tong, Aiyar, Patel, Prausnitz, Allen (bb0405) 2013; 15 Zhang, Jiang, Yu, Liu, Xu (bb0575) 2018; 85 Yu, Jiang, Zhang, Liu, Xu, Zhou (bb0730) 2017; 5 Donnelly, Mooney, McCrudden, Vicente-Perez, Belaid, Gonzalez-Vazquez, McElnay, Woolfson (bb0085) 2014; 103 Ling, Chen (bb0185) 2013; 9 Li, Zhang, Chen, Wang, Guo (bb0175) 2017; 7 Brandts, Hunt (bb0710) 1967; 89 Mansoor, Liu, Haefeli, Stoeber (bb0400) 2013; 23 Chen, Ling, Kusuma (bb0605) 2015; 24 (bb0760) 23, Aug, 2018 Park, Allen, Prausnitz (bb0335) 2005; 104 Pettis, Hirsch, Kapitza, Nosek, Hovelmann, Kurth, Sutter, Harvey, Heinemann (bb0835) 2011; 13 Lu (bb0375) 2004; 19 Shikida, Hasada, Sato (bb0415) 2006; 16 Lee, Lin, Shu, Tsai, Chen, Tsai (bb0615) 2017; 105 McVey, Hirsch, Sutter, Kapitza, Dellweg, Clair, Rebrin, Judge, Pettis (bb0795) 2012; 6 Zhang, Brown, Siebenaler, Determan, Dohmeier, Hansen (bb0745) 2012; 29 Wang, Zhao, Wang, Li (bb0280) 2012; 21 Ito, Yoshimitsu, Shiroyama, Sugioka, Takada (bb0555) 2006; 14 Mo, Jiang, Di, Tai, Gu (bb0020) 2014; 43 Eltayib, Brady, Caffarel-Salvador, Gonzalez-Vazquez, Alkilani, McCarthy, McElnay, Donnelly (bb0655) 2016; 102 Deng, Chen, Zhao, Yan, Zhang, Choy, Hu, Sant, Gale, Tang (bb0250) 2016; 6 McCarley, Bunge (bb0150) 2001; 90 Mo, Jiang, Disanto, Tai, Gu (bb0690) 2014; 5 Ita (bb0060) 2018; 45 Bouwstra, Honeywell-Nguyen (bb0100) 2002; 54 Davis, Martanto, Allen, Prausnitz (bb0390) 2005; 52 Omatsu, Chujo, Miyamoto, Okida, Nakamura, Aoki, Morita (bb0230) 2010; 18 Pfutzner, Sachsenheimer, Grenningloh, Heschel, Walther-Johannesen, Gharabli, Klonoff (bb0035) 2015; 9 Gupta, Felner, Prausnitz (bb0820) 2009; 11 Hardy, Larraneta, Donnelly, McGoldrick, Migalska, McCrudden, Irwin, Donnelly, McCoy (bb0640) 2016; 13 Bhatnagar, Dave, Venuganti (bb0785) 2017; 260 Andrews, Jeong, Prausnitz (bb0110) 2013; 30 Tsuchiya, Jinnin, Yamamoto, Uetsuji, Nakamachi (bb0225) 2010; 34 Donnelly, Singh, Garland, Migalska, Majithiya, McCrudden, Kole, Mahmood, McCarthy, Woolfson (bb0385) 2012; 22 J. Ji, F.E.H. Tay, J. Miao, Microfabricated hollow microneedle array using ICP etcher, in: International Mems Conference 2006, 2006, pp. 1132–1136. McAllister, Wang, Davis, Park, Canatella, Allen, Prausnitz (bb0475) 2003; 100 Li, Ma, Huh, Lahiji, Lee, Jung (bb0160) 2017; 27 Wang, Huang, Guo, Xu, Yang, Zhang (bb0830) 2017; 28 Sullivan, Koutsonanos, Martin, Lee, Zarnitsyn, Choi, Murthy, Compans, Skountzou, Prausnitz (bb0560) 2010; 16 Larraneta, Lutton, Woolfson, Donnelly (bb0740) 2016; 104 Wang, Wang, Li (bb0355) 2016; 16 Chaudhri, Ceyssens, De Moor, Van Hoof, Puers (bb0470) 2010; 20 Lin, Ko, Chiou, Duann, Huang, Liang, Chiu, Jung (bb0275) 2008; 96 Khanna, Luongo, Strom, Bhansali (bb0435) 2010; 20 Justin, Roman, Chen, Tao, Geng, Grant, MacNeil, Sun, Chen (bb0025) 2015; 5 Yan, Liu, Shen, Yang (bb0410) 2012; Vol. 18 Matsumoto, Ishii, Nishida, Matsumoto, Kataoka, Miyahara (bb0705) 2012; 51 Yoon, Lee, Yoo, Lee (bb0240) 2013; 13 Mansoor, Hafeli, Stoeber (bb0480) 2012; 21 Boyne, Silver, Kaplan, Saudek (bb0695) 2003; 52 Gupta, Felner, Prausnitz (bb0080) 2011; 13 Hou, Cohen, Haimovic, Elbuluk (bb0735) 2017; 43 Rzhevskiy, Singh, Donnelly, Anissimov (bb0195) 2018; 270 Shikida, Ando, Ishihara, Ando, Sato, Asaumi (bb0265) 2004; 14 Yu, Jiang, Zhang, Liu, Xu, Zhou (bb0595) 2017; 80 Ito, Hagiwara, Saeki, Sugioka, Takada (bb0095) 2006; 29 Wallqvist, Covell, Thirumalai (bb0715) 1998; 120 O'Mahony, Pini, Blake, Webster, O'Brien, McCarthy (bb0350) 2012; 186 Stoeber, Liepmann (bb0450) 2005; 14 Hinchcliffe, Illum (bb0050) 1999; 35 Choi, Kim, Jang, Youn, Ryu (bb0325) 2012; 8 Zhang, A. Campbell, Karthikeyan (bb0495) 2018; 20 Hu, Yu, Qian, Lu, Kahkoska, Xie, Jing, Buse, Gu (bb0205) 2017; 11 Li, Li, Liu, Cui, Yu (bb0245) 2016; 44 Saravanakumar, Kim, Kim (bb0720) 2017; 4 Ma, Xia, Wang, Ren, Luo, Song, Chen, Chen, Jin (bb0220) 2016; 34 Donnelly, Singh, Woolfson (bb0145) 2010; 17 Ye, Yu, Wen, Kahkoska, Gu (bb0520) 2018; 127 Zhou, Liu, Wang, Zhang, Zhang (bb0190) 2010; 392 Qin, Gao, Wu, Zhang, Qiu, Li, Xu (bb0155) 2012; 8 Mukerjee, Collins, Isseroff, Smith (bb0455) 2004; 114 van der Maaden, Luttge, Vos, Bouwstra, Kersten, Ploemen (bb0290) 2015; 5 Ma, Wu (bb0510) 2017; 251 Hao, Li, Zhou, Yang, Qian (bb0360) 2017; 13 Griss, Stemme (bb0445) 2003; 12 Wang, Paik, Kim, Allen (bb0500) 2014; 23 Yu, Jiang, Liu, Li, Tong, Yao, Kong (bb0590) 2017; 73 Saltiel, Kahn (bb0010) 2001; 414 Kanr, Ita, Popova, Parikh, Bair (bb0170) 2014; 86 Donnelly, Morrow, Singh, Migalska, McCarron, O'Mahony, Woolfson (bb0545) 2009; 35 Yu, Qian, Zhang, Cui, Zhu, Shen, Ligler, Buse, Gu (bb0685) 2017; 17 Larraneta, Lutton, Brady, Vicente-Perez, Woolfson, Thakur, Donnelly (bb0635) 2015; 300 Yang, Wu, Liu, Fan, Welsh, Zhu, Jin (bb0625) 2015; 25 Yuen, Liu (bb0505) 2015; 20 Norman, Brown, Raviele, Prausnitz, Felner (bb0395) 2013; 14 Alarcon, Hartley, Harvey, Mikszta (bb0755) 2007; 14 Ita (10.1016/j.jconrel.2018.08.042_bb0060) 2018; 45 Wang (10.1016/j.jconrel.2018.08.042_bb0830) 2017; 28 Ma (10.1016/j.jconrel.2018.08.042_bb0220) 2016; 34 Choi (10.1016/j.jconrel.2018.08.042_bb0325) 2012; 8 Norman (10.1016/j.jconrel.2018.08.042_bb0395) 2013; 14 Ito (10.1016/j.jconrel.2018.08.042_bb0585) 2012; 436 Kanr (10.1016/j.jconrel.2018.08.042_bb0170) 2014; 86 Zhang (10.1016/j.jconrel.2018.08.042_bb0345) 2011; 26 Ma (10.1016/j.jconrel.2018.08.042_bb0510) 2017; 251 Gupta (10.1016/j.jconrel.2018.08.042_bb0080) 2011; 13 Steinert (10.1016/j.jconrel.2018.08.042_bb0270) 2006; 110 Ito (10.1016/j.jconrel.2018.08.042_bb0610) 2012; 14 Sullivan (10.1016/j.jconrel.2018.08.042_bb0550) 2008; 20 Garland (10.1016/j.jconrel.2018.08.042_bb0565) 2012; 159 10.1016/j.jconrel.2018.08.042_bb0775 Jepps (10.1016/j.jconrel.2018.08.042_bb0115) 2013; 65 Ito (10.1016/j.jconrel.2018.08.042_bb0555) 2006; 14 Chen (10.1016/j.jconrel.2018.08.042_bb0380) 2009; 139 Yuzhakov (10.1016/j.jconrel.2018.08.042_bb0765) 2010 Jin (10.1016/j.jconrel.2018.08.042_bb0780) 2018; 127 Ito (10.1016/j.jconrel.2018.08.042_bb0570) 2011; 37 Demir (10.1016/j.jconrel.2018.08.042_bb0630) 2017; 117 Ling (10.1016/j.jconrel.2018.08.042_bb0185) 2013; 9 Kochba (10.1016/j.jconrel.2018.08.042_bb0790) 2016; 18 Wang (10.1016/j.jconrel.2018.08.042_bb0355) 2016; 16 Chaudhri (10.1016/j.jconrel.2018.08.042_bb0470) 2010; 20 Alarcon (10.1016/j.jconrel.2018.08.042_bb0755) 2007; 14 Boyne (10.1016/j.jconrel.2018.08.042_bb0695) 2003; 52 Yu (10.1016/j.jconrel.2018.08.042_bb0595) 2017; 80 Hassan (10.1016/j.jconrel.2018.08.042_bb0650) 2000; 33 10.1016/j.jconrel.2018.08.042_bb0005 Lee (10.1016/j.jconrel.2018.08.042_bb0600) 2017; 7 Ita (10.1016/j.jconrel.2018.08.042_bb0130) 2015; 7 Li (10.1016/j.jconrel.2018.08.042_bb0245) 2016; 44 Ye (10.1016/j.jconrel.2018.08.042_bb0675) 2016; 28 Hinchcliffe (10.1016/j.jconrel.2018.08.042_bb0050) 1999; 35 Andrews (10.1016/j.jconrel.2018.08.042_bb0110) 2013; 30 Barry (10.1016/j.jconrel.2018.08.042_bb0140) 2001; 14 Xiang (10.1016/j.jconrel.2018.08.042_bb0365) 2015; 25 10.1016/j.jconrel.2018.08.042_bb0770 Justin (10.1016/j.jconrel.2018.08.042_bb0025) 2015; 5 Yu (10.1016/j.jconrel.2018.08.042_bb0730) 2017; 5 Pettis (10.1016/j.jconrel.2018.08.042_bb0835) 2011; 13 Ito (10.1016/j.jconrel.2018.08.042_bb0095) 2006; 29 Yin (10.1016/j.jconrel.2018.08.042_bb0660) 2017; 106 McVey (10.1016/j.jconrel.2018.08.042_bb0795) 2012; 6 Donnelly (10.1016/j.jconrel.2018.08.042_bb0385) 2012; 22 Martanto (10.1016/j.jconrel.2018.08.042_bb0070) 2004; 21 Hong (10.1016/j.jconrel.2018.08.042_bb0620) 2014; 6 Pfutzner (10.1016/j.jconrel.2018.08.042_bb0035) 2015; 9 Bhandari (10.1016/j.jconrel.2018.08.042_bb0260) 2010; 162 Yang (10.1016/j.jconrel.2018.08.042_bb0625) 2015; 25 Hultstrom (10.1016/j.jconrel.2018.08.042_bb0135) 2014; 8 Qiu (10.1016/j.jconrel.2018.08.042_bb0370) 2012; 437 Prausnitz (10.1016/j.jconrel.2018.08.042_bb0055) 2004; 56 Thennadil (10.1016/j.jconrel.2018.08.042_bb0700) 2001; 3 Lin (10.1016/j.jconrel.2018.08.042_bb0275) 2008; 96 Lee (10.1016/j.jconrel.2018.08.042_bb0300) 2010; 22 Qin (10.1016/j.jconrel.2018.08.042_bb0155) 2012; 8 Zhao (10.1016/j.jconrel.2018.08.042_bb0215) 2017; 265 Xu (10.1016/j.jconrel.2018.08.042_bb0680) 2017; 5 Larraneta (10.1016/j.jconrel.2018.08.042_bb0635) 2015; 300 Bouwstra (10.1016/j.jconrel.2018.08.042_bb0100) 2002; 54 Held (10.1016/j.jconrel.2018.08.042_bb0285) 2010; 20 Chen (10.1016/j.jconrel.2018.08.042_bb0210) 2017; 8 Perennes (10.1016/j.jconrel.2018.08.042_bb0485) 2006; 16 Rini (10.1016/j.jconrel.2018.08.042_bb0825) 2015; 5 Flaten (10.1016/j.jconrel.2018.08.042_bb0125) 2015; 75 Liu (10.1016/j.jconrel.2018.08.042_bb0180) 2012; 161 Zhang (10.1016/j.jconrel.2018.08.042_bb0575) 2018; 85 Griffin (10.1016/j.jconrel.2018.08.042_bb0235) 2017; 35 Wang (10.1016/j.jconrel.2018.08.042_bb0280) 2012; 21 Larraneta (10.1016/j.jconrel.2018.08.042_bb0740) 2016; 104 Saltiel (10.1016/j.jconrel.2018.08.042_bb0010) 2001; 414 Gill (10.1016/j.jconrel.2018.08.042_bb0515) 2008; 24 Donnelly (10.1016/j.jconrel.2018.08.042_bb0085) 2014; 103 Miyano (10.1016/j.jconrel.2018.08.042_bb0090) 2005; 7 Yu (10.1016/j.jconrel.2018.08.042_bb0075) 2017; 71 Raja (10.1016/j.jconrel.2018.08.042_bb0665) 2013; 9 Chen (10.1016/j.jconrel.2018.08.042_bb0725) 2015; 16 Larraneta (10.1016/j.jconrel.2018.08.042_bb0045) 2016; 33 Ita (10.1016/j.jconrel.2018.08.042_bb0525) 2017; 93 Chen (10.1016/j.jconrel.2018.08.042_bb0605) 2015; 24 Pettis (10.1016/j.jconrel.2018.08.042_bb0800) 2011; 13 Lim (10.1016/j.jconrel.2018.08.042_bb0065) 2018; 110 Hardy (10.1016/j.jconrel.2018.08.042_bb0640) 2016; 13 Yoon (10.1016/j.jconrel.2018.08.042_bb0240) 2013; 13 Mo (10.1016/j.jconrel.2018.08.042_bb0690) 2014; 5 Wheeler (10.1016/j.jconrel.2018.08.042_bb0040) 2014; 16 Yu (10.1016/j.jconrel.2018.08.042_bb0590) 2017; 73 Saravanakumar (10.1016/j.jconrel.2018.08.042_bb0720) 2017; 4 Gupta (10.1016/j.jconrel.2018.08.042_bb0820) 2009; 11 Yan (10.1016/j.jconrel.2018.08.042_bb0255) 2014; 3 Matsumoto (10.1016/j.jconrel.2018.08.042_bb0705) 2012; 51 Sensu (10.1016/j.jconrel.2018.08.042_bb0340) 2006 Lee (10.1016/j.jconrel.2018.08.042_bb0615) 2017; 105 Gittard (10.1016/j.jconrel.2018.08.042_bb0315) 2009; 3 Matriano (10.1016/j.jconrel.2018.08.042_bb0750) 2002; 19 Wang (10.1016/j.jconrel.2018.08.042_bb0465) 2009; 2009 Zhang (10.1016/j.jconrel.2018.08.042_bb0495) 2018; 20 Griss (10.1016/j.jconrel.2018.08.042_bb0445) 2003; 12 Hou (10.1016/j.jconrel.2018.08.042_bb0735) 2017; 43 Yan (10.1016/j.jconrel.2018.08.042_bb0410) 2012; Vol. 18 Rzhevskiy (10.1016/j.jconrel.2018.08.042_bb0195) 2018; 270 Lu (10.1016/j.jconrel.2018.08.042_bb0375) 2004; 19 Mangelsdorf (10.1016/j.jconrel.2018.08.042_bb0165) 2006; 19 Zhou (10.1016/j.jconrel.2018.08.042_bb0190) 2010; 392 Wang (10.1016/j.jconrel.2018.08.042_bb0500) 2014; 23 Omatsu (10.1016/j.jconrel.2018.08.042_bb0230) 2010; 18 Mansoor (10.1016/j.jconrel.2018.08.042_bb0400) 2013; 23 You (10.1016/j.jconrel.2018.08.042_bb0535) 2011; 31 Brazzle (10.1016/j.jconrel.2018.08.042_bb0430) 2000; 2 Mansoor (10.1016/j.jconrel.2018.08.042_bb0480) 2012; 21 Deng (10.1016/j.jconrel.2018.08.042_bb0250) 2016; 6 Bogdanov (10.1016/j.jconrel.2018.08.042_bb0295) 2000; 53 Zhang (10.1016/j.jconrel.2018.08.042_bb0745) 2012; 29 McCarley (10.1016/j.jconrel.2018.08.042_bb0150) 2001; 90 Lau (10.1016/j.jconrel.2018.08.042_bb0580) 2016; 265 Richter-Johnson (10.1016/j.jconrel.2018.08.042_bb0815) 2018; 18 Ito (10.1016/j.jconrel.2018.08.042_bb0540) 2010; 21 Chandrasekaran (10.1016/j.jconrel.2018.08.042_bb0425) 2003; 12 Donnelly (10.1016/j.jconrel.2018.08.042_bb0810) 2018; 23 van der Maaden (10.1016/j.jconrel.2018.08.042_bb0290) 2015; 5 Brandts (10.1016/j.jconrel.2018.08.042_bb0710) 1967; 89 Tsuchiya (10.1016/j.jconrel.2018.08.042_bb0225) 2010; 34 Ita (10.1016/j.jconrel.2018.08.042_bb0320) 2018; 44 Park (10.1016/j.jconrel.2018.08.042_bb0305) 2007; 54 Yuen (10.1016/j.jconrel.2018.08.042_bb0505) 2015; 20 Mo (10.1016/j.jconrel.2018.08.042_bb0020) 2014; 43 Mukerjee (10.1016/j.jconrel.2018.08.042_bb0455) 2004; 114 Guo (10.1016/j.jconrel.2018.08.042_bb0030) 2017; 14 Shikida (10.1016/j.jconrel.2018.08.042_bb0415) 2006; 16 Davis (10.1016/j.jconrel.2018.08.042_bb0390) 2005; 52 Wallqvist (10.1016/j.jconrel.2018.08.042_bb0715) 1998; 120 Hao (10.1016/j.jconrel.2018.08.042_bb0360) 2017; 13 Rouphael (10.1016/j.jconrel.2018.08.042_bb0805) 2017; 390 Stoeber (10.1016/j.jconrel.2018.08.042_bb0450) 2005; 14 Jurcicek (10.1016/j.jconrel.2018.08.042_bb0460) 2013; 8 Jin (10.1016/j.jconrel.2018.08.042_bb0330) 2009; 11 10.1016/j.jconrel.2018.08.042_bb0440 Shikida (10.1016/j.jconrel.2018.08.042_bb0265) 2004; 14 Krauland (10.1016/j.jconrel.2018.08.042_bb0015) 2006; 307 Ye (10.1016/j.jconrel.2018.08.042_bb0520) 2018; 127 Eltayib (10.1016/j.jconrel.2018.08.042_bb0655) 2016; 102 Donnelly (10.1016/j.jconrel.2018.08.042_bb0545) 2009; 35 Panda (10.1016/j.jconrel.2018.08.042_bb0670) 2015; 48 Henry (10.1016/j.jconrel.2018.08.042_bb0120) 1998; 87 Li (10.1016/j.jconrel.2018.08.042_bb0160) 2017; 27 Yu (10.1016/j.jconrel.2018.08.042_bb0200) 2015; 112 Danso (10.1016/j.jconrel.2018.08.042_bb0105) 2015; 24 Lee (10.1016/j.jconrel.2018.08.042_bb0530) 2008; 29 Yu (10.1016/j.jconrel.2018.08.042_bb0685) 2017; 17 O'Mahony (10.1016/j.jconrel.2018.08.042_bb0350) 2012; 186 Hu (10.1016/j.jconrel.2018.08.042_bb0205) 2017; 11 10.1016/j.jconrel.2018.08.042_bb0310 Khanna (10.1016/j.jconrel.2018.08.042_bb0435) 2010; 20 Norman (10.1016/j.jconrel.2018.08.042_bb0405) 2013; 15 Kim (10.1016/j.jconrel.2018.08.042_bb0420) 2007; Vol. 13 Donnelly (10.1016/j.jconrel.2018.08.042_bb0145) 2010; 17 Park (10.1016/j.jconrel.2018.08.042_bb0335) 2005; 104 Sullivan (10.1016/j.jconrel.2018.08.042_bb0560) 2010; 16 Yung (10.1016/j.jconrel.2018.08.042_bb0490) 2012; 22 Montheard (10.1016/j.jconrel.2018.08.042_bb0645) 1992; C32 McAllister (10.1016/j.jconrel.2018.08.042_bb0475) 2003; 100 Li (10.1016/j.jconrel.2018.08.042_bb0175) 2017; 7 Bhatnagar (10.1016/j.jconrel.2018.08.042_bb0785) 2017; 260 |
References_xml | – volume: 27 year: 2017 ident: bb0160 article-title: A novel ultrafine needle (UN) for innocuous and efficient subcutaneous insulin delivery publication-title: Adv. Funct. Mater. – volume: 161 start-page: 933 year: 2012 end-page: 941 ident: bb0180 article-title: The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin publication-title: J. Control. Release – volume: 30 start-page: 1099 year: 2013 end-page: 1109 ident: bb0110 article-title: Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum publication-title: Pharm. Res. – volume: 7 start-page: 90 year: 2015 end-page: 105 ident: bb0130 article-title: Transdermal delivery of drugs with microneedles-potential and challenges publication-title: Pharmaceutics – volume: 390 start-page: 649 year: 2017 end-page: 658 ident: bb0805 article-title: The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial publication-title: Lancet – volume: 65 start-page: 152 year: 2013 end-page: 168 ident: bb0115 article-title: Modeling the human skin barrier - Towards a better understanding of dermal absorption publication-title: Adv. Drug Deliv. Rev. – volume: 270 start-page: 184 year: 2018 end-page: 202 ident: bb0195 article-title: Microneedles as the technique of drug delivery enhancement in diverse organs and tissues publication-title: J. Control. Release – volume: 260 start-page: 164 year: 2017 end-page: 182 ident: bb0785 article-title: Microneedles in the clinic publication-title: J. Control. Release – volume: 8 start-page: 2483 year: 2012 end-page: 2488 ident: bb0325 article-title: Curved biodegradable microneedles for vascular drug delivery publication-title: Small – volume: 20 year: 2010 ident: bb0470 article-title: A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction publication-title: J. Micromech. Microeng. – volume: 24 start-page: 585 year: 2008 end-page: 594 ident: bb0515 article-title: Effect of microneedle design on pain in human volunteers publication-title: Clin. J. Pain – volume: 392 start-page: 127 year: 2010 end-page: 133 ident: bb0190 article-title: Transdermal delivery of insulin using microneedle rollers in vivo publication-title: Int. J. Pharm. – volume: 21 start-page: 835 year: 2010 end-page: 841 ident: bb0540 article-title: Self-dissolving micropile array tips for percutaneous administration of insulin publication-title: Journal of Materials Science-Materials In Medicine – volume: 104 start-page: 1 year: 2016 end-page: 32 ident: bb0740 article-title: Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development publication-title: Materials Science & Engineering R-Reports – volume: 414 start-page: 799 year: 2001 ident: bb0010 article-title: Insulin signalling and the regulation of glucose and lipid metabolism publication-title: Nature – volume: 16 start-page: 558 year: 2014 end-page: 562 ident: bb0040 article-title: Insulin pump-associated adverse events in children and adolescents-A prospective study publication-title: Diabetes Technol. Ther. – volume: 19 start-page: 406 year: 2004 end-page: 407 ident: bb0375 article-title: Study for the asepsis storage period of insulin in jection after seal removing publication-title: Journal of Nurses Training – volume: 45 start-page: 203 year: 2018 end-page: 212 ident: bb0060 article-title: Modulation of transdermal drug delivery with coated microneedles publication-title: Journal of Drug Delivery Science and Technology – volume: 75 start-page: 10 year: 2015 end-page: 24 ident: bb0125 article-title: In vitro skin models as a tool in optimization of drug formulation publication-title: Eur. J. Pharm. Sci. – volume: 14 start-page: 101 year: 2001 end-page: 114 ident: bb0140 article-title: Novel mechanisms and devices to enable successful transdermal drug delivery publication-title: Eur. J. Pharm. Sci. – volume: 21 start-page: 44 year: 2012 end-page: 52 ident: bb0480 article-title: Hollow out-of-plane polymer microneedles made by solvent casting for transdermal drug delivery publication-title: J. Microelectromech. Syst. – volume: 307 start-page: 270 year: 2006 end-page: 277 ident: bb0015 article-title: Thiolated chitosan microparticles: A vehicle for nasal peptide drug delivery publication-title: Int. J. Pharm. – volume: 34 year: 2016 ident: bb0220 article-title: Fabrication and characterization of a tungsten microneedle array based on deep reactive ion etching technology publication-title: J. Vac. Sci. Technol. B – year: 23, Aug, 2018 ident: bb0760 – volume: 17 start-page: 187 year: 2010 end-page: 207 ident: bb0145 article-title: Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety publication-title: Drug Delivery – volume: 16 start-page: 2230 year: 2006 end-page: 2239 ident: bb0415 article-title: Fabrication of a hollow needle structure by dicing, wet etching and metal deposition publication-title: J. Micromech. Microeng. – volume: 93 start-page: 1116 year: 2017 end-page: 1127 ident: bb0525 article-title: Dissolving microneedles for transdermal drug delivery: Advances and challenges publication-title: Biomed Pharmacother – volume: 5 start-page: 332 year: 2015 end-page: 345 ident: bb0825 article-title: Intradermal insulin infusion achieves faster insulin action than subcutaneous infusion for 3-day wear publication-title: Drug Delivery and Translational Research – volume: 7 start-page: 15408 year: 2017 end-page: 15415 ident: bb0175 article-title: A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin publication-title: RSC Adv. – volume: 12 start-page: 296 year: 2003 end-page: 301 ident: bb0445 article-title: Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer publication-title: J. Microelectromech. Syst. – volume: 56 start-page: 581 year: 2004 end-page: 587 ident: bb0055 article-title: Microneedles for transdermal drug delivery publication-title: Adv. Drug Deliv. Rev. – volume: 5 year: 2014 ident: bb0690 article-title: ATP-triggered anticancer drug delivery publication-title: Nat. Commun. – reference: , 23, Aug, 2018. – volume: 35 start-page: 199 year: 1999 end-page: 234 ident: bb0050 article-title: Intranasal insulin delivery and therapy publication-title: Adv. Drug Deliv. Rev. – volume: 159 start-page: 52 year: 2012 end-page: 59 ident: bb0565 article-title: Dissolving polymeric microneedle arrays for electrically assisted transdermal drug delivery publication-title: J. Control. Release – volume: 162 start-page: 130 year: 2010 end-page: 136 ident: bb0260 article-title: A wafer-scale etching technique for high aspect ratio implantable MEMS structures publication-title: Sensors and Actuators a-Physical – volume: 15 start-page: 203 year: 2013 end-page: 210 ident: bb0405 article-title: Hollow microneedles for intradermal injection fabricated by sacrificial micromolding and selective electrodeposition publication-title: Biomed. Microdevices – volume: C32 start-page: 1 year: 1992 end-page: 34 ident: bb0645 article-title: 2-Hydroxyethyl methacrylate (HEMA)-chemical-properties and applications in biomedical fields publication-title: J. Macromol. Sci.-Rev. Macromol. Chem. Phys. – volume: 6 year: 2016 ident: bb0250 article-title: Transdermal delivery of siRNA through microneedle array publication-title: Sci. Rep. – volume: 12 start-page: 281 year: 2003 end-page: 288 ident: bb0425 article-title: Surface micromachined metallic microneedles publication-title: J. Microelectromech. Syst. – volume: 18 start-page: 359 year: 2018 end-page: 369 ident: bb0815 article-title: Therapeutic applications and pharmacoeconomics of microneedle technology publication-title: Expert Review of Pharmacoeconomics & Outcomes Research – volume: 33 start-page: 2472 year: 2000 end-page: 2479 ident: bb0650 article-title: Structure and morphology of freeze/thawed PVA hydrogels publication-title: Macromolecules – volume: 20 year: 2010 ident: bb0435 article-title: Sharpening of hollow silicon microneedles to reduce skin penetration force publication-title: J. Micromech. Microeng. – volume: 8 start-page: 453 year: 2014 end-page: 457 ident: bb0135 article-title: Intradermal insulin delivery: a promising future for diabetes management publication-title: Journal of Diabetes Science and Technology – volume: Vol. 13 start-page: 231 year: 2007 end-page: 235 ident: bb0420 article-title: High aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnector, Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems – volume: 48 start-page: 521 year: 2015 end-page: 532 ident: bb0670 article-title: Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties publication-title: Materials Science & Engineering C-Materials for Biological Applications – volume: 13 start-page: 16672 year: 2013 end-page: 16681 ident: bb0240 article-title: Fabrication of a microneedle/CNT hierarchical micro/nano surface electrochemical sensor and its in-vitro glucose sensing characterization publication-title: Sensors – volume: 16 year: 2010 ident: bb0560 article-title: Dissolving polymer microneedle patches for influenza vaccination publication-title: Nat. Med. – volume: 104 start-page: 51 year: 2005 end-page: 66 ident: bb0335 article-title: Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery publication-title: J. Control. Release – volume: 35 ( start-page: 6676 year: 2017 end-page: 6684 ident: bb0235 article-title: Safety, acceptability and tolerability of uncoated and excipient-coated high density silicon micro-projection array patches in human subjects publication-title: Vaccine – volume: 117 start-page: 182 year: 2017 end-page: 194 ident: bb0630 article-title: Poly (methyl vinyl ether-co-maleic acid)-pectin based hydrogel-forming systems: Gel, film, and microneedles publication-title: Eur. J. Pharm. Biopharm. – volume: 19 start-page: 159 year: 2006 end-page: 167 ident: bb0165 article-title: Ethnic variation in vellus hair follicle size and distribution publication-title: Skin Pharmacol. Physiol. – volume: 80 start-page: 187 year: 2017 end-page: 196 ident: bb0595 article-title: Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin publication-title: Materials Science & Engineering C-Materials for Biological Applications – volume: 20 year: 2015 ident: bb0505 article-title: Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: a skin-mimicking phantom study publication-title: J. Biomed. Opt. – volume: 33 start-page: 1055 year: 2016 end-page: 1073 ident: bb0045 article-title: Microneedles: A new frontier in nanomedicine delivery publication-title: Pharm. Res. – volume: 21 start-page: 947 year: 2004 end-page: 952 ident: bb0070 article-title: Transdermal delivery of insulin using microneedles in vivo publication-title: Pharm. Res. – volume: 24 start-page: 106 year: 2015 end-page: 116 ident: bb0605 article-title: Poly-gamma-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin publication-title: Acta Biomater. – volume: 22 start-page: 4879 year: 2012 end-page: 4890 ident: bb0385 article-title: Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery publication-title: Adv. Funct. Mater. – volume: 11 start-page: 613 year: 2017 end-page: 620 ident: bb0205 article-title: H publication-title: ACS Nano – volume: 5 start-page: 397 year: 2015 end-page: 406 ident: bb0290 article-title: Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays publication-title: Drug Delivery and Translational Research – volume: 20 start-page: 933 year: 2008 ident: bb0550 article-title: Minimally invasive protein delivery with rapidly dissolving polymer microneedles publication-title: Adv. Mater. – volume: 14 start-page: 255 year: 2006 end-page: 261 ident: bb0555 article-title: Self-dissolving microneedles for the percutaneous absorption of EPO in mice publication-title: J. Drug Target. – volume: 28 start-page: 5506 year: 2017 end-page: 5510 ident: bb0830 article-title: Effect of minimally invasive insulin therapy on primary and secondary outcomes in gestational diabetic women publication-title: Biomedical Research-India – volume: 265 start-page: 113 year: 2016 end-page: 119 ident: bb0580 article-title: Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery publication-title: Journal of controlled release : official journal of the Controlled Release Society – volume: 14 start-page: 891 year: 2012 end-page: 899 ident: bb0610 article-title: Transdermal insulin application system with dissolving microneedles publication-title: Diabetes Technol. Ther. – volume: 114 start-page: 267 year: 2004 end-page: 275 ident: bb0455 article-title: Microneedle array for transdermal biological fluid extraction and in situ analysis publication-title: Sensors and Actuators a-Physical – volume: 11 start-page: 329 year: 2009 end-page: 337 ident: bb0820 article-title: Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles publication-title: Diabetes Technol. Ther. – volume: 28 start-page: 3115 year: 2016 end-page: 3121 ident: bb0675 article-title: Microneedles integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery publication-title: Adv. Mater. – volume: 21 start-page: 1084 year: 2012 end-page: 1089 ident: bb0280 article-title: A flexible microneedle electrode array with solid silicon needles publication-title: J. Microelectromech. Syst. – volume: 8 start-page: 78 year: 2013 end-page: 81 ident: bb0460 article-title: Design and fabrication of hollow out-of-plane silicon microneedles publication-title: Micro & Nano Letters – volume: 106 start-page: 48 year: 2017 end-page: 56 ident: bb0660 article-title: Swellable silk fibroin microneedles for transdermal drug delivery publication-title: Int. J. Biol. Macromol. – volume: 300 start-page: 586 year: 2015 end-page: 595 ident: bb0635 article-title: Microwave-assisted preparation of hydrogel-forming microneedle arrays for transdermal drug delivery applications publication-title: Macromol. Mater. Eng. – volume: 52 start-page: 2790 year: 2003 end-page: 2794 ident: bb0695 article-title: Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor publication-title: Diabetes – volume: 9 start-page: 1292 year: 2015 end-page: 1298 ident: bb0035 article-title: Using insulin infusion sets in CSII for longer than the recommended usage time leads to a high risk for adverse events: Results from a prospective randomized crossover study publication-title: Journal of Diabetes Science and Technology – volume: 436 start-page: 387 year: 2012 end-page: 393 ident: bb0585 article-title: Two-layered dissolving microneedles formulated with intermediate-acting insulin publication-title: Int. J. Pharm. – volume: 22 start-page: 483 year: 2010 ident: bb0300 article-title: Drawing lithography: Three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle publication-title: Adv. Mater. – volume: 14 start-page: 1462 year: 2004 end-page: 1467 ident: bb0265 article-title: Non-photolithographic pattern transfer for fabricating pen-shaped microneedle structures publication-title: J. Micromech. Microeng. – volume: 4 year: 2017 ident: bb0720 article-title: Reactive-oxygen-species-responsive drug delivery systems: Promises and challenges publication-title: Advanced Science – volume: 13 start-page: 451 year: 2011 end-page: 456 ident: bb0080 article-title: Rapid pharmacokinetics of intradermal insulin administered using microneedles in type 1 diabetes subjects publication-title: Diabetes Technol. Ther. – volume: 16 start-page: 1598 year: 2015 end-page: 1607 ident: bb0725 article-title: Near-infrared light-responsive composite microneedles for on-demand transdermal drug delivery publication-title: Biomacromolecules – volume: 13 start-page: 443 year: 2011 end-page: 450 ident: bb0835 article-title: Microneedle-based intradermal versus subcutaneous administration of regular human insulin or insulin lispro: Pharmacokinetics and postprandial glycemic excursions in patients with type 1 diabetes publication-title: Diabetes Technol. Ther. – volume: 25 start-page: 4633 year: 2015 end-page: 4641 ident: bb0625 article-title: Phase-transition microneedle patches for efficient and accurate transdermal delivery of insulin publication-title: Adv. Funct. Mater. – volume: 26 start-page: 31 year: 2011 end-page: 35 ident: bb0345 article-title: UV cationic photo-initiator and the development trend publication-title: China Coatings – volume: 14 start-page: 727 year: 2017 end-page: 734 ident: bb0030 article-title: Challenges and recent advances in the subcutaneous delivery of insulin publication-title: Expert Opinion on Drug Delivery – volume: 44 start-page: 1566 year: 2016 end-page: 1575 ident: bb0245 article-title: Microneedle electrode array for electrical impedance myography to characterize neurogenic myopathy publication-title: Ann. Biomed. Eng. – volume: 7 start-page: 5067 year: 2017 end-page: 5075 ident: bb0600 article-title: Fabrication of two-layer dissolving polyvinylpyrrolidone microneedles with different molecular weights for in vivo insulin transdermal delivery publication-title: RSC Adv. – volume: 19 start-page: 63 year: 2002 end-page: 70 ident: bb0750 article-title: Macroflux (R) microprojection array patch technology: A new and efficient approach for intracutaneous immunization publication-title: Pharm. Res. – volume: 7 start-page: 185 year: 2005 end-page: 188 ident: bb0090 article-title: Sugar micro needles as transdermic drug delivery system publication-title: Biomed. Microdevices – reference: J. Ji, F.E.H. Tay, J. Miao, Microfabricated hollow microneedle array using ICP etcher, in: International Mems Conference 2006, 2006, pp. 1132–1136. – volume: 14 start-page: 459 year: 2013 end-page: 465 ident: bb0395 article-title: Faster pharmacokinetics and increased patient acceptance of intradermal insulin delivery using a single hollow microneedle in children and adolescents with type 1 diabetes publication-title: Pediatr. Diabetes – volume: 18 start-page: 17967 year: 2010 end-page: 17973 ident: bb0230 article-title: Metal microneedle fabrication using twisted light with spin publication-title: Opt. Express – volume: 127 start-page: 106 year: 2018 end-page: 118 ident: bb0520 article-title: Polymeric microneedles for transdermal protein delivery publication-title: Adv. Drug Deliv. Rev. – volume: 73 start-page: 425 year: 2017 end-page: 428 ident: bb0590 article-title: Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite publication-title: Materials Science & Engineering C-Materials for Biological Applications – volume: 265 start-page: 2 year: 2017 end-page: 13 ident: bb0215 article-title: Formulation of hydrophobic peptides for skin delivery via coated microneedles publication-title: J. Control. Release – volume: 11 start-page: 1195 year: 2009 end-page: 1203 ident: bb0330 article-title: Mass producible and biocompatible microneedle patch and functional verification of its usefulness for transdermal drug delivery publication-title: Biomed. Microdevices – volume: 17 start-page: 733 year: 2017 end-page: 739 ident: bb0685 article-title: Hypoxia and H publication-title: Nano Lett. – volume: 8 start-page: 221 year: 2012 end-page: 227 ident: bb0155 article-title: Simultaneous basal-bolus delivery of fast-acting insulin and its significance in diabetes management publication-title: Nanomedicine-Nanotechnology Biology and Medicine – volume: 3 start-page: 555 year: 2014 end-page: 564 ident: bb0255 article-title: Nanocomposite-strengthened dissolving microneedles for improved transdermal delivery to human skin publication-title: Advanced Healthcare Materials – volume: 127 start-page: 119 year: 2018 end-page: 137 ident: bb0780 article-title: Insulin delivery systems combined with microneedle technology publication-title: Adv. Drug Deliv. Rev. – volume: 53 start-page: 493 year: 2000 end-page: 496 ident: bb0295 article-title: Use of SU-8 photoresist for very high aspect ratio x-ray lithography publication-title: Microelectron. Eng. – volume: 43 start-page: 321 year: 2017 end-page: 339 ident: bb0735 article-title: Microneedling: A comprehensive review publication-title: Dermatol. Surg. – volume: 43 start-page: 3595 year: 2014 end-page: 3629 ident: bb0020 article-title: Emerging micro-and nanotechnology based synthetic approaches for insulin delivery publication-title: Chem. Soc. Rev. – volume: 87 start-page: 922 year: 1998 end-page: 925 ident: bb0120 article-title: Microfabricated microneedles: A novel approach to transdermal drug delivery publication-title: J. Pharm. Sci. – volume: 100 start-page: 13755 year: 2003 end-page: 13760 ident: bb0475 article-title: Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 23 start-page: 1026 year: 2018 end-page: 1033 ident: bb0810 article-title: Microarray patches: potentially useful delivery systems for long-acting nanosuspensions publication-title: Drug Discov. Today – volume: 18 start-page: 525 year: 2016 end-page: 531 ident: bb0790 article-title: Improved insulin pharmacokinetics using a novel microneedle device for intradermal delivery in patients with type 2 diabetes publication-title: Diabetes Technol. Ther. – volume: 89 start-page: 4826 year: 1967 ident: bb0710 article-title: Thermodynamics of protein denaturation .3. Denaturation of ribonuclease in water and in aqueous urea and aqueous ethanol mixtures publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 8952 year: 2013 end-page: 8961 ident: bb0185 article-title: Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats publication-title: Acta Biomater. – volume: 34 start-page: 461 year: 2010 end-page: 466 ident: bb0225 article-title: Design and development of a biocompatible painless microneedle by the ion sputtering deposition method publication-title: Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology – year: 2010 ident: bb0765 article-title: Microneedle array, patch, and applicator for transdermal drug delivery, in – volume: 120 start-page: 427 year: 1998 end-page: 428 ident: bb0715 article-title: Hydrophobic interactions in aqueous urea solutions with implications for the mechanism of protein denaturation publication-title: J. Am. Chem. Soc. – volume: 96 start-page: 1167 year: 2008 end-page: 1183 ident: bb0275 article-title: Noninvasive neural prostheses using mobile and wireless EEG publication-title: Proceedings of the Leee – volume: 23 start-page: 991 year: 2014 end-page: 998 ident: bb0500 article-title: Hypodermic-needle-like hollow polymer microneedle array: Fabrication and characterization publication-title: J. Microelectromech. Syst. – start-page: U1425 year: 2006 end-page: U1436 ident: bb0340 article-title: Study of cross-linking reactions in negative-type thick-film resists publication-title: Advances in Resist Technology and Processing Xxiii, Pts 1 And 2 – volume: 54 start-page: 903 year: 2007 end-page: 913 ident: bb0305 article-title: Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery publication-title: Leee Transactions on Biomedical Engineering – volume: 16 start-page: 473 year: 2006 end-page: 479 ident: bb0485 article-title: Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol publication-title: J. Micromech. Microeng. – volume: 14 start-page: 472 year: 2005 end-page: 479 ident: bb0450 article-title: Arrays of hollow out-of-plane microneedles for drug delivery publication-title: J. Microelectromech. Syst. – volume: 52 start-page: 909 year: 2005 end-page: 915 ident: bb0390 article-title: Hollow metal microneedles for insulin delivery to diabetic rats publication-title: IEEE Trans. Biomed. Eng. – volume: 139 start-page: 63 year: 2009 end-page: 72 ident: bb0380 article-title: Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin publication-title: J. Control. Release – volume: 251 start-page: 11 year: 2017 end-page: 23 ident: bb0510 article-title: Microneedle, bio-microneedle and bio-inspired microneedle: A review publication-title: J. Control. Release – volume: 105 start-page: 84 year: 2017 end-page: 93 ident: bb0615 article-title: Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice publication-title: J. Biomed. Mater. Res. A – volume: 110 start-page: 30 year: 2018 end-page: 38 ident: bb0065 article-title: Microneedles: A versatile strategy for transdermal delivery of biological molecules publication-title: Int. J. Biol. Macromol. – volume: 24 start-page: 48 year: 2015 end-page: 54 ident: bb0105 article-title: An ex vivo human skin model for studying skin barrier repair publication-title: Exp. Dermatol. – volume: 8 year: 2017 ident: bb0210 article-title: Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy publication-title: Nat. Commun. – volume: 29 start-page: 2113 year: 2008 end-page: 2124 ident: bb0530 article-title: Dissolving microneedles for transdermal drug delivery publication-title: Biomaterials – volume: 20 year: 2010 ident: bb0285 article-title: Design of experiment characterization of microneedle fabrication processes based on dry silicon etching publication-title: J. Micromech. Microeng. – volume: 20 year: 2018 ident: bb0495 article-title: Finite element analysis of hollow out-of-plane HfO publication-title: Biomed. Microdevices – volume: 5 start-page: 8200 year: 2017 end-page: 8208 ident: bb0680 article-title: H publication-title: J. Mater. Chem. B – volume: 29 start-page: 170 year: 2012 end-page: 177 ident: bb0745 article-title: Development of lidocaine-coated microneedle product for rapid, safe, and prolonged local analgesic action publication-title: Pharm. Res. – volume: 5 start-page: 51934 year: 2015 end-page: 51946 ident: bb0025 article-title: Biodegradable and conductive chitosan-graphene quantum dot nanocomposite microneedles for delivery of both small and large molecular weight therapeutics publication-title: RSC Adv. – volume: 6 start-page: 743 year: 2012 end-page: 754 ident: bb0795 article-title: Pharmacokinetics and postprandial glycemic excursions following insulin lispro delivered by intradermal microneedle or subcutaneous infusion publication-title: Journal of Diabetes Science and Technology – volume: 5 start-page: 9507 year: 2017 end-page: 9513 ident: bb0730 article-title: Near-infrared light triggered and separable microneedles for transdermal delivery of metformin in diabetic rats publication-title: J. Mater. Chem. B – volume: 437 start-page: 51 year: 2012 end-page: 56 ident: bb0370 article-title: Novel lyophilized hydrogel patches for convenient and effective administration of microneedle-mediated insulin delivery publication-title: Int. J. Pharm. – volume: 102 start-page: 123 year: 2016 end-page: 131 ident: bb0655 article-title: Hydrogel-forming microneedle arrays: Potential for use in minimally-invasive lithium monitoring publication-title: Eur. J. Pharm. Biopharm. – volume: 22 year: 2012 ident: bb0490 article-title: Sharp tipped plastic hollow microneedle array by microinjection moulding publication-title: J. Micromech. Microeng. – volume: 14 start-page: 375 year: 2007 end-page: 381 ident: bb0755 article-title: Preclinical evaluation of microneedle technology for intradermal delivery of influenza vaccines publication-title: Clin. Vaccine Immunol. – volume: 186 start-page: 130 year: 2012 end-page: 136 ident: bb0350 article-title: Microneedle-based electrodes with integrated through-silicon via for biopotential recording publication-title: Sensors and Actuators a-Physical – volume: 51 start-page: 2124 year: 2012 end-page: 2128 ident: bb0705 article-title: A synthetic approach toward a self-regulated insulin delivery system publication-title: Angewandte Chemie-International Edition – volume: 2009 start-page: 7026 year: 2009 end-page: 7029 ident: bb0465 article-title: Hollow polymer microneedle array fabricated by photolithography process combined with micromolding technique publication-title: Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference – volume: 13 start-page: 1581 year: 2017 end-page: 1597 ident: bb0360 article-title: Microneedles-based transdermal drug delivery systems: A review publication-title: J. Biomed. Nanotechnol. – volume: 3 start-page: 304 year: 2009 end-page: 311 ident: bb0315 article-title: Fabrication of polymer microneedles using a two-photon polymerization and micromolding process publication-title: Journal of Diabetes Science and Technology – volume: 110 start-page: 11377 year: 2006 end-page: 11382 ident: bb0270 article-title: Reactive species generated during wet chemical etching of silicon in HF/HNO publication-title: J. Phys. Chem. B – volume: 16 year: 2016 ident: bb0355 article-title: An improved manufacturing approach for discrete silicon microneedle arrays with tunable height-pitch ratio publication-title: Sensors – volume: 90 start-page: 1699 year: 2001 end-page: 1719 ident: bb0150 article-title: Pharmacokinetic models of dermal absorption publication-title: J. Pharm. Sci. – volume: 71 start-page: 725 year: 2017 end-page: 734 ident: bb0075 article-title: Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin publication-title: Materials Science & Engineering C-Materials for Biological Applications – volume: Vol. 18 start-page: 37 year: 2012 end-page: 42 ident: bb0410 article-title: Hollow metallic microneedles fabricated by combining bulk silicon micromachining and UV-LIGA technology, Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems – volume: 37 start-page: 1387 year: 2011 end-page: 1393 ident: bb0570 article-title: Two-layered dissolving microneedles for percutaneous delivery of sumatriptan in rats publication-title: Drug Dev. Ind. Pharm. – volume: 6 start-page: 191 year: 2014 end-page: 199 ident: bb0620 article-title: Hydrogel microneedle arrays for transdermal drug delivery publication-title: Nano-Micro Letters – volume: 54 start-page: S41 year: 2002 end-page: S55 ident: bb0100 article-title: Skin structure and mode of action of vesicles publication-title: Adv. Drug Deliv. Rev. – volume: 29 start-page: 82 year: 2006 end-page: 88 ident: bb0095 article-title: Feasibility of microneedles for percutaneous absorption of insulin publication-title: Eur. J. Pharm. Sci. – volume: 31 start-page: 1632 year: 2011 end-page: 1636 ident: bb0535 article-title: Rapidly dissolving fibroin microneedles for transdermal drug delivery publication-title: Materials Science & Engineering C-Materials for Biological Applications – volume: 13 start-page: 435 year: 2011 end-page: 442 ident: bb0800 article-title: Intradermal microneedle delivery of insulin lispro achieves faster insulin absorption and insulin action than subcutaneous injection publication-title: Diabetes Technol. Ther. – volume: 2 start-page: 197 year: 2000 end-page: 205 ident: bb0430 article-title: Hollow metallic micromachined needle arrays publication-title: Biomed. Microdevices – volume: 85 start-page: 18 year: 2018 end-page: 26 ident: bb0575 article-title: Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats publication-title: Materials Science & Engineering C-Materials for Biological Applications – volume: 9 start-page: 3704 year: 2013 end-page: 3713 ident: bb0665 article-title: Transdermal delivery devices: Fabrication, mechanics and drug release from silk publication-title: Small – volume: 23 year: 2013 ident: bb0400 article-title: Arrays of hollow out-of-plane microneedles made by metal electrodeposition onto solvent cast conductive polymer structures publication-title: J. Micromech. Microeng. – volume: 3 start-page: 357 year: 2001 end-page: 365 ident: bb0700 article-title: Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels publication-title: Diabetes Technol. Ther. – volume: 25 year: 2015 ident: bb0365 article-title: Dense vertical SU-8 microneedles drawn from a heated mold with precisely controlled volume publication-title: J. Micromech. Microeng. – volume: 13 start-page: 907 year: 2016 end-page: 914 ident: bb0640 article-title: Hydrogel-Forming Microneedle Arrays Made from Light-Responsive Materials for On-Demand Transdermal Drug Delivery publication-title: Mol. Pharm. – volume: 103 start-page: 1478 year: 2014 end-page: 1486 ident: bb0085 article-title: Hydrogel-forming microneedles increase in volume during swelling in skin, but skin barrier function recovery is unaffected publication-title: J. Pharm. Sci. – volume: 112 start-page: 8260 year: 2015 end-page: 8265 ident: bb0200 article-title: Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 44 start-page: 314 year: 2018 end-page: 322 ident: bb0320 article-title: Ceramic microneedles and hollow microneedles for transdermal drug delivery: Two decades of research publication-title: Journal of Drug Delivery Science and Technology – volume: 35 start-page: 1242 year: 2009 end-page: 1254 ident: bb0545 article-title: Processing difficulties and instability of carbohydrate microneedle arrays publication-title: Drug Dev. Ind. Pharm. – volume: 86 start-page: 284 year: 2014 end-page: 291 ident: bb0170 article-title: Microneedle-assisted delivery of verapamil hydrochloride and amlodipine besylate publication-title: Eur. J. Pharm. Biopharm. – reference: S.J. Moon, C.Y. Jin, S.S. Lee, A novel method of microneedle array fabrication using inclined deep X-ray exposure, in: International Mems Conference 2006, 2006, pp. 180–186. – volume: 14 start-page: 727 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0030 article-title: Challenges and recent advances in the subcutaneous delivery of insulin publication-title: Expert Opinion on Drug Delivery doi: 10.1080/17425247.2016.1232247 – volume: 17 start-page: 733 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0685 article-title: Hypoxia and H2O2 dual-sensitive vesicles for enhanced glucose-responsive insulin delivery publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03848 – volume: 6 year: 2016 ident: 10.1016/j.jconrel.2018.08.042_bb0250 article-title: Transdermal delivery of siRNA through microneedle array publication-title: Sci. Rep. – volume: 86 start-page: 284 year: 2014 ident: 10.1016/j.jconrel.2018.08.042_bb0170 article-title: Microneedle-assisted delivery of verapamil hydrochloride and amlodipine besylate publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2013.10.007 – volume: 45 start-page: 203 year: 2018 ident: 10.1016/j.jconrel.2018.08.042_bb0060 article-title: Modulation of transdermal drug delivery with coated microneedles publication-title: Journal of Drug Delivery Science and Technology doi: 10.1016/j.jddst.2018.03.021 – volume: 34 year: 2016 ident: 10.1016/j.jconrel.2018.08.042_bb0220 article-title: Fabrication and characterization of a tungsten microneedle array based on deep reactive ion etching technology publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.4960715 – volume: 12 start-page: 296 year: 2003 ident: 10.1016/j.jconrel.2018.08.042_bb0445 article-title: Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2003.809959 – volume: 73 start-page: 425 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0590 article-title: Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite publication-title: Materials Science & Engineering C-Materials for Biological Applications doi: 10.1016/j.msec.2016.12.111 – volume: 90 start-page: 1699 year: 2001 ident: 10.1016/j.jconrel.2018.08.042_bb0150 article-title: Pharmacokinetic models of dermal absorption publication-title: J. Pharm. Sci. doi: 10.1002/jps.1120 – volume: 23 year: 2013 ident: 10.1016/j.jconrel.2018.08.042_bb0400 article-title: Arrays of hollow out-of-plane microneedles made by metal electrodeposition onto solvent cast conductive polymer structures publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/23/8/085011 – volume: 4 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0720 article-title: Reactive-oxygen-species-responsive drug delivery systems: Promises and challenges publication-title: Advanced Science doi: 10.1002/advs.201600124 – volume: 21 start-page: 1084 year: 2012 ident: 10.1016/j.jconrel.2018.08.042_bb0280 article-title: A flexible microneedle electrode array with solid silicon needles publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2012.2203790 – volume: 18 start-page: 359 year: 2018 ident: 10.1016/j.jconrel.2018.08.042_bb0815 article-title: Therapeutic applications and pharmacoeconomics of microneedle technology publication-title: Expert Review of Pharmacoeconomics & Outcomes Research doi: 10.1080/14737167.2018.1485100 – volume: 7 start-page: 185 year: 2005 ident: 10.1016/j.jconrel.2018.08.042_bb0090 article-title: Sugar micro needles as transdermic drug delivery system publication-title: Biomed. Microdevices doi: 10.1007/s10544-005-3024-7 – volume: 100 start-page: 13755 year: 2003 ident: 10.1016/j.jconrel.2018.08.042_bb0475 article-title: Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2331316100 – volume: 159 start-page: 52 year: 2012 ident: 10.1016/j.jconrel.2018.08.042_bb0565 article-title: Dissolving polymeric microneedle arrays for electrically assisted transdermal drug delivery publication-title: J. Control. Release doi: 10.1016/j.jconrel.2012.01.003 – volume: 26 start-page: 31 year: 2011 ident: 10.1016/j.jconrel.2018.08.042_bb0345 article-title: UV cationic photo-initiator and the development trend publication-title: China Coatings – volume: 112 start-page: 8260 year: 2015 ident: 10.1016/j.jconrel.2018.08.042_bb0200 article-title: Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1505405112 – volume: 16 start-page: 558 year: 2014 ident: 10.1016/j.jconrel.2018.08.042_bb0040 article-title: Insulin pump-associated adverse events in children and adolescents-A prospective study publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2013.0388 – volume: 48 start-page: 521 year: 2015 ident: 10.1016/j.jconrel.2018.08.042_bb0670 article-title: Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties publication-title: Materials Science & Engineering C-Materials for Biological Applications doi: 10.1016/j.msec.2014.12.010 – volume: 87 start-page: 922 year: 1998 ident: 10.1016/j.jconrel.2018.08.042_bb0120 article-title: Microfabricated microneedles: A novel approach to transdermal drug delivery publication-title: J. Pharm. Sci. doi: 10.1021/js980042+ – volume: 29 start-page: 170 year: 2012 ident: 10.1016/j.jconrel.2018.08.042_bb0745 article-title: Development of lidocaine-coated microneedle product for rapid, safe, and prolonged local analgesic action publication-title: Pharm. Res. doi: 10.1007/s11095-011-0524-4 – volume: 13 start-page: 443 year: 2011 ident: 10.1016/j.jconrel.2018.08.042_bb0835 article-title: Microneedle-based intradermal versus subcutaneous administration of regular human insulin or insulin lispro: Pharmacokinetics and postprandial glycemic excursions in patients with type 1 diabetes publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2010.0183 – volume: 114 start-page: 267 year: 2004 ident: 10.1016/j.jconrel.2018.08.042_bb0455 article-title: Microneedle array for transdermal biological fluid extraction and in situ analysis publication-title: Sensors and Actuators a-Physical doi: 10.1016/j.sna.2003.11.008 – volume: 2009 start-page: 7026 year: 2009 ident: 10.1016/j.jconrel.2018.08.042_bb0465 article-title: Hollow polymer microneedle array fabricated by photolithography process combined with micromolding technique – volume: 436 start-page: 387 year: 2012 ident: 10.1016/j.jconrel.2018.08.042_bb0585 article-title: Two-layered dissolving microneedles formulated with intermediate-acting insulin publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2012.06.047 – volume: 13 start-page: 907 year: 2016 ident: 10.1016/j.jconrel.2018.08.042_bb0640 article-title: Hydrogel-Forming Microneedle Arrays Made from Light-Responsive Materials for On-Demand Transdermal Drug Delivery publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.5b00807 – volume: 20 year: 2018 ident: 10.1016/j.jconrel.2018.08.042_bb0495 article-title: Finite element analysis of hollow out-of-plane HfO2 microneedles for transdermal drug delivery applications publication-title: Biomed. Microdevices doi: 10.1007/s10544-018-0262-z – volume: 56 start-page: 581 year: 2004 ident: 10.1016/j.jconrel.2018.08.042_bb0055 article-title: Microneedles for transdermal drug delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2003.10.023 – volume: 54 start-page: 903 year: 2007 ident: 10.1016/j.jconrel.2018.08.042_bb0305 article-title: Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery publication-title: Leee Transactions on Biomedical Engineering doi: 10.1109/TBME.2006.889173 – volume: 20 year: 2010 ident: 10.1016/j.jconrel.2018.08.042_bb0470 article-title: A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/20/6/064006 – volume: 5 start-page: 8200 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0680 article-title: H2O2-responsive mesoporous silica nanoparticles integrated with microneedle patches for the glucose-monitored transdermal delivery of insulin publication-title: J. Mater. Chem. B doi: 10.1039/C7TB02082A – volume: 52 start-page: 2790 year: 2003 ident: 10.1016/j.jconrel.2018.08.042_bb0695 article-title: Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor publication-title: Diabetes doi: 10.2337/diabetes.52.11.2790 – volume: 35 start-page: 199 year: 1999 ident: 10.1016/j.jconrel.2018.08.042_bb0050 article-title: Intranasal insulin delivery and therapy publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(98)00073-8 – volume: 300 start-page: 586 year: 2015 ident: 10.1016/j.jconrel.2018.08.042_bb0635 article-title: Microwave-assisted preparation of hydrogel-forming microneedle arrays for transdermal drug delivery applications publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201500016 – volume: 6 start-page: 743 year: 2012 ident: 10.1016/j.jconrel.2018.08.042_bb0795 article-title: Pharmacokinetics and postprandial glycemic excursions following insulin lispro delivered by intradermal microneedle or subcutaneous infusion publication-title: Journal of Diabetes Science and Technology doi: 10.1177/193229681200600403 – volume: 392 start-page: 127 year: 2010 ident: 10.1016/j.jconrel.2018.08.042_bb0190 article-title: Transdermal delivery of insulin using microneedle rollers in vivo publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2010.03.041 – volume: 16 start-page: 2230 year: 2006 ident: 10.1016/j.jconrel.2018.08.042_bb0415 article-title: Fabrication of a hollow needle structure by dicing, wet etching and metal deposition publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/16/10/041 – volume: 71 start-page: 725 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0075 article-title: Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin publication-title: Materials Science & Engineering C-Materials for Biological Applications doi: 10.1016/j.msec.2016.10.063 – volume: 15 start-page: 203 year: 2013 ident: 10.1016/j.jconrel.2018.08.042_bb0405 article-title: Hollow microneedles for intradermal injection fabricated by sacrificial micromolding and selective electrodeposition publication-title: Biomed. Microdevices doi: 10.1007/s10544-012-9717-9 – volume: 9 start-page: 1292 year: 2015 ident: 10.1016/j.jconrel.2018.08.042_bb0035 article-title: Using insulin infusion sets in CSII for longer than the recommended usage time leads to a high risk for adverse events: Results from a prospective randomized crossover study publication-title: Journal of Diabetes Science and Technology doi: 10.1177/1932296815604438 – volume: 260 start-page: 164 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0785 article-title: Microneedles in the clinic publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.05.029 – volume: 44 start-page: 1566 year: 2016 ident: 10.1016/j.jconrel.2018.08.042_bb0245 article-title: Microneedle electrode array for electrical impedance myography to characterize neurogenic myopathy publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1466-5 – volume: 5 year: 2014 ident: 10.1016/j.jconrel.2018.08.042_bb0690 article-title: ATP-triggered anticancer drug delivery publication-title: Nat. Commun. doi: 10.1038/ncomms4364 – volume: 22 year: 2012 ident: 10.1016/j.jconrel.2018.08.042_bb0490 article-title: Sharp tipped plastic hollow microneedle array by microinjection moulding publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/22/1/015016 – volume: 28 start-page: 3115 year: 2016 ident: 10.1016/j.jconrel.2018.08.042_bb0675 article-title: Microneedles integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery publication-title: Adv. Mater. doi: 10.1002/adma.201506025 – volume: 11 start-page: 329 year: 2009 ident: 10.1016/j.jconrel.2018.08.042_bb0820 article-title: Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2008.0103 – volume: 8 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0210 article-title: Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy publication-title: Nat. Commun. doi: 10.1038/s41467-017-01764-1 – volume: 14 start-page: 255 year: 2006 ident: 10.1016/j.jconrel.2018.08.042_bb0555 article-title: Self-dissolving microneedles for the percutaneous absorption of EPO in mice publication-title: J. Drug Target. doi: 10.1080/10611860600785080 – volume: 414 start-page: 799 year: 2001 ident: 10.1016/j.jconrel.2018.08.042_bb0010 article-title: Insulin signalling and the regulation of glucose and lipid metabolism publication-title: Nature doi: 10.1038/414799a – volume: 14 start-page: 101 year: 2001 ident: 10.1016/j.jconrel.2018.08.042_bb0140 article-title: Novel mechanisms and devices to enable successful transdermal drug delivery publication-title: Eur. J. Pharm. Sci. doi: 10.1016/S0928-0987(01)00167-1 – volume: 52 start-page: 909 year: 2005 ident: 10.1016/j.jconrel.2018.08.042_bb0390 article-title: Hollow metal microneedles for insulin delivery to diabetic rats publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.845240 – volume: 21 start-page: 835 year: 2010 ident: 10.1016/j.jconrel.2018.08.042_bb0540 article-title: Self-dissolving micropile array tips for percutaneous administration of insulin publication-title: Journal of Materials Science-Materials In Medicine doi: 10.1007/s10856-009-3923-x – volume: 7 start-page: 90 year: 2015 ident: 10.1016/j.jconrel.2018.08.042_bb0130 article-title: Transdermal delivery of drugs with microneedles-potential and challenges publication-title: Pharmaceutics doi: 10.3390/pharmaceutics7030090 – volume: 307 start-page: 270 year: 2006 ident: 10.1016/j.jconrel.2018.08.042_bb0015 article-title: Thiolated chitosan microparticles: A vehicle for nasal peptide drug delivery publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2005.10.016 – year: 2010 ident: 10.1016/j.jconrel.2018.08.042_bb0765 – volume: 8 start-page: 2483 year: 2012 ident: 10.1016/j.jconrel.2018.08.042_bb0325 article-title: Curved biodegradable microneedles for vascular drug delivery publication-title: Small doi: 10.1002/smll.201200441 – volume: 13 start-page: 1581 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0360 article-title: Microneedles-based transdermal drug delivery systems: A review publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2017.2474 – volume: 8 start-page: 221 year: 2012 ident: 10.1016/j.jconrel.2018.08.042_bb0155 article-title: Simultaneous basal-bolus delivery of fast-acting insulin and its significance in diabetes management publication-title: Nanomedicine-Nanotechnology Biology and Medicine doi: 10.1016/j.nano.2011.05.017 – volume: 186 start-page: 130 year: 2012 ident: 10.1016/j.jconrel.2018.08.042_bb0350 article-title: Microneedle-based electrodes with integrated through-silicon via for biopotential recording publication-title: Sensors and Actuators a-Physical doi: 10.1016/j.sna.2012.04.037 – volume: 11 start-page: 613 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0205 article-title: H2O2-responsive vesicles integrated with transcutaneous patches for glucose-mediated insulin delivery publication-title: ACS Nano doi: 10.1021/acsnano.6b06892 – volume: 18 start-page: 525 year: 2016 ident: 10.1016/j.jconrel.2018.08.042_bb0790 article-title: Improved insulin pharmacokinetics using a novel microneedle device for intradermal delivery in patients with type 2 diabetes publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2016.0156 – volume: Vol. 13 start-page: 231 year: 2007 ident: 10.1016/j.jconrel.2018.08.042_bb0420 – volume: 22 start-page: 483 year: 2010 ident: 10.1016/j.jconrel.2018.08.042_bb0300 article-title: Drawing lithography: Three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle publication-title: Adv. Mater. doi: 10.1002/adma.200902418 – volume: 12 start-page: 281 year: 2003 ident: 10.1016/j.jconrel.2018.08.042_bb0425 article-title: Surface micromachined metallic microneedles publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2003.809951 – volume: 20 year: 2010 ident: 10.1016/j.jconrel.2018.08.042_bb0285 article-title: Design of experiment characterization of microneedle fabrication processes based on dry silicon etching publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/20/2/025024 – volume: 5 start-page: 9507 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0730 article-title: Near-infrared light triggered and separable microneedles for transdermal delivery of metformin in diabetic rats publication-title: J. Mater. Chem. B doi: 10.1039/C7TB02236K – volume: 33 start-page: 1055 year: 2016 ident: 10.1016/j.jconrel.2018.08.042_bb0045 article-title: Microneedles: A new frontier in nanomedicine delivery publication-title: Pharm. Res. doi: 10.1007/s11095-016-1885-5 – volume: 265 start-page: 113 year: 2016 ident: 10.1016/j.jconrel.2018.08.042_bb0580 article-title: Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery publication-title: Journal of controlled release : official journal of the Controlled Release Society doi: 10.1016/j.jconrel.2016.08.031 – ident: 10.1016/j.jconrel.2018.08.042_bb0770 – volume: 103 start-page: 1478 year: 2014 ident: 10.1016/j.jconrel.2018.08.042_bb0085 article-title: Hydrogel-forming microneedles increase in volume during swelling in skin, but skin barrier function recovery is unaffected publication-title: J. Pharm. Sci. doi: 10.1002/jps.23921 – volume: 110 start-page: 11377 year: 2006 ident: 10.1016/j.jconrel.2018.08.042_bb0270 article-title: Reactive species generated during wet chemical etching of silicon in HF/HNO3 mixtures publication-title: J. Phys. Chem. B doi: 10.1021/jp0608168 – volume: 44 start-page: 314 year: 2018 ident: 10.1016/j.jconrel.2018.08.042_bb0320 article-title: Ceramic microneedles and hollow microneedles for transdermal drug delivery: Two decades of research publication-title: Journal of Drug Delivery Science and Technology doi: 10.1016/j.jddst.2018.01.004 – volume: 89 start-page: 4826 year: 1967 ident: 10.1016/j.jconrel.2018.08.042_bb0710 article-title: Thermodynamics of protein denaturation .3. Denaturation of ribonuclease in water and in aqueous urea and aqueous ethanol mixtures publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00995a002 – volume: 16 year: 2016 ident: 10.1016/j.jconrel.2018.08.042_bb0355 article-title: An improved manufacturing approach for discrete silicon microneedle arrays with tunable height-pitch ratio publication-title: Sensors – volume: 19 start-page: 63 year: 2002 ident: 10.1016/j.jconrel.2018.08.042_bb0750 article-title: Macroflux (R) microprojection array patch technology: A new and efficient approach for intracutaneous immunization publication-title: Pharm. Res. doi: 10.1023/A:1013607400040 – volume: 8 start-page: 453 year: 2014 ident: 10.1016/j.jconrel.2018.08.042_bb0135 article-title: Intradermal insulin delivery: a promising future for diabetes management publication-title: Journal of Diabetes Science and Technology doi: 10.1177/1932296814530060 – volume: 21 start-page: 947 year: 2004 ident: 10.1016/j.jconrel.2018.08.042_bb0070 article-title: Transdermal delivery of insulin using microneedles in vivo publication-title: Pharm. Res. doi: 10.1023/B:PHAM.0000029282.44140.2e – volume: 270 start-page: 184 year: 2018 ident: 10.1016/j.jconrel.2018.08.042_bb0195 article-title: Microneedles as the technique of drug delivery enhancement in diverse organs and tissues publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.11.048 – volume: 93 start-page: 1116 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0525 article-title: Dissolving microneedles for transdermal drug delivery: Advances and challenges publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2017.07.019 – volume: 24 start-page: 585 year: 2008 ident: 10.1016/j.jconrel.2018.08.042_bb0515 article-title: Effect of microneedle design on pain in human volunteers publication-title: Clin. J. Pain doi: 10.1097/AJP.0b013e31816778f9 – volume: 117 start-page: 182 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0630 article-title: Poly (methyl vinyl ether-co-maleic acid)-pectin based hydrogel-forming systems: Gel, film, and microneedles publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2017.04.018 – ident: 10.1016/j.jconrel.2018.08.042_bb0775 – volume: 18 start-page: 17967 year: 2010 ident: 10.1016/j.jconrel.2018.08.042_bb0230 article-title: Metal microneedle fabrication using twisted light with spin publication-title: Opt. Express doi: 10.1364/OE.18.017967 – volume: 85 start-page: 18 year: 2018 ident: 10.1016/j.jconrel.2018.08.042_bb0575 article-title: Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats publication-title: Materials Science & Engineering C-Materials for Biological Applications doi: 10.1016/j.msec.2017.12.006 – volume: 25 start-page: 4633 year: 2015 ident: 10.1016/j.jconrel.2018.08.042_bb0625 article-title: Phase-transition microneedle patches for efficient and accurate transdermal delivery of insulin publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500554 – volume: 43 start-page: 3595 year: 2014 ident: 10.1016/j.jconrel.2018.08.042_bb0020 article-title: Emerging micro-and nanotechnology based synthetic approaches for insulin delivery publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60436e – volume: 14 start-page: 891 year: 2012 ident: 10.1016/j.jconrel.2018.08.042_bb0610 article-title: Transdermal insulin application system with dissolving microneedles publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2012.0096 – volume: 104 start-page: 51 year: 2005 ident: 10.1016/j.jconrel.2018.08.042_bb0335 article-title: Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery publication-title: J. Control. Release doi: 10.1016/j.jconrel.2005.02.002 – volume: 251 start-page: 11 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0510 article-title: Microneedle, bio-microneedle and bio-inspired microneedle: A review publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.02.011 – volume: 390 start-page: 649 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0805 article-title: The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial publication-title: Lancet doi: 10.1016/S0140-6736(17)30575-5 – volume: 13 start-page: 16672 year: 2013 ident: 10.1016/j.jconrel.2018.08.042_bb0240 article-title: Fabrication of a microneedle/CNT hierarchical micro/nano surface electrochemical sensor and its in-vitro glucose sensing characterization publication-title: Sensors doi: 10.3390/s131216672 – volume: 3 start-page: 357 year: 2001 ident: 10.1016/j.jconrel.2018.08.042_bb0700 article-title: Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels publication-title: Diabetes Technol. Ther. doi: 10.1089/15209150152607132 – volume: 5 start-page: 332 year: 2015 ident: 10.1016/j.jconrel.2018.08.042_bb0825 article-title: Intradermal insulin infusion achieves faster insulin action than subcutaneous infusion for 3-day wear publication-title: Drug Delivery and Translational Research doi: 10.1007/s13346-015-0239-x – volume: 3 start-page: 304 year: 2009 ident: 10.1016/j.jconrel.2018.08.042_bb0315 article-title: Fabrication of polymer microneedles using a two-photon polymerization and micromolding process publication-title: Journal of Diabetes Science and Technology doi: 10.1177/193229680900300211 – volume: 21 start-page: 44 year: 2012 ident: 10.1016/j.jconrel.2018.08.042_bb0480 article-title: Hollow out-of-plane polymer microneedles made by solvent casting for transdermal drug delivery publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2011.2174429 – volume: 28 start-page: 5506 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0830 article-title: Effect of minimally invasive insulin therapy on primary and secondary outcomes in gestational diabetic women publication-title: Biomedical Research-India – volume: 29 start-page: 2113 year: 2008 ident: 10.1016/j.jconrel.2018.08.042_bb0530 article-title: Dissolving microneedles for transdermal drug delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.12.048 – volume: 16 start-page: 1598 year: 2015 ident: 10.1016/j.jconrel.2018.08.042_bb0725 article-title: Near-infrared light-responsive composite microneedles for on-demand transdermal drug delivery publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b00185 – volume: 20 start-page: 933 year: 2008 ident: 10.1016/j.jconrel.2018.08.042_bb0550 article-title: Minimally invasive protein delivery with rapidly dissolving polymer microneedles publication-title: Adv. Mater. doi: 10.1002/adma.200701205 – volume: 8 start-page: 78 year: 2013 ident: 10.1016/j.jconrel.2018.08.042_bb0460 article-title: Design and fabrication of hollow out-of-plane silicon microneedles publication-title: Micro & Nano Letters doi: 10.1049/mnl.2012.0903 – volume: 162 start-page: 130 year: 2010 ident: 10.1016/j.jconrel.2018.08.042_bb0260 article-title: A wafer-scale etching technique for high aspect ratio implantable MEMS structures publication-title: Sensors and Actuators a-Physical doi: 10.1016/j.sna.2010.06.011 – volume: 19 start-page: 159 year: 2006 ident: 10.1016/j.jconrel.2018.08.042_bb0165 article-title: Ethnic variation in vellus hair follicle size and distribution publication-title: Skin Pharmacol. Physiol. doi: 10.1159/000093050 – volume: 16 year: 2010 ident: 10.1016/j.jconrel.2018.08.042_bb0560 article-title: Dissolving polymer microneedle patches for influenza vaccination publication-title: Nat. Med. doi: 10.1038/nm.2182 – volume: 25 year: 2015 ident: 10.1016/j.jconrel.2018.08.042_bb0365 article-title: Dense vertical SU-8 microneedles drawn from a heated mold with precisely controlled volume publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/25/2/025013 – volume: 120 start-page: 427 year: 1998 ident: 10.1016/j.jconrel.2018.08.042_bb0715 article-title: Hydrophobic interactions in aqueous urea solutions with implications for the mechanism of protein denaturation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja972053v – volume: 75 start-page: 10 year: 2015 ident: 10.1016/j.jconrel.2018.08.042_bb0125 article-title: In vitro skin models as a tool in optimization of drug formulation publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2015.02.018 – volume: C32 start-page: 1 year: 1992 ident: 10.1016/j.jconrel.2018.08.042_bb0645 article-title: 2-Hydroxyethyl methacrylate (HEMA)-chemical-properties and applications in biomedical fields publication-title: J. Macromol. Sci.-Rev. Macromol. Chem. Phys. doi: 10.1080/15321799208018377 – volume: 102 start-page: 123 year: 2016 ident: 10.1016/j.jconrel.2018.08.042_bb0655 article-title: Hydrogel-forming microneedle arrays: Potential for use in minimally-invasive lithium monitoring publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2016.03.009 – volume: 29 start-page: 82 year: 2006 ident: 10.1016/j.jconrel.2018.08.042_bb0095 article-title: Feasibility of microneedles for percutaneous absorption of insulin publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2006.05.011 – ident: 10.1016/j.jconrel.2018.08.042_bb0005 – volume: 24 start-page: 106 year: 2015 ident: 10.1016/j.jconrel.2018.08.042_bb0605 article-title: Poly-gamma-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.06.021 – volume: 35 start-page: 1242 year: 2009 ident: 10.1016/j.jconrel.2018.08.042_bb0545 article-title: Processing difficulties and instability of carbohydrate microneedle arrays publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639040902882280 – ident: 10.1016/j.jconrel.2018.08.042_bb0440 doi: 10.1088/1742-6596/34/1/187 – volume: 16 start-page: 473 year: 2006 ident: 10.1016/j.jconrel.2018.08.042_bb0485 article-title: Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/16/3/001 – volume: 51 start-page: 2124 year: 2012 ident: 10.1016/j.jconrel.2018.08.042_bb0705 article-title: A synthetic approach toward a self-regulated insulin delivery system publication-title: Angewandte Chemie-International Edition doi: 10.1002/anie.201106252 – volume: 35 ( start-page: 6676 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0235 article-title: Safety, acceptability and tolerability of uncoated and excipient-coated high density silicon micro-projection array patches in human subjects publication-title: Vaccine doi: 10.1016/j.vaccine.2017.10.021 – volume: 17 start-page: 187 year: 2010 ident: 10.1016/j.jconrel.2018.08.042_bb0145 article-title: Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety publication-title: Drug Delivery doi: 10.3109/10717541003667798 – volume: 14 start-page: 1462 year: 2004 ident: 10.1016/j.jconrel.2018.08.042_bb0265 article-title: Non-photolithographic pattern transfer for fabricating pen-shaped microneedle structures publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/14/11/005 – volume: Vol. 18 start-page: 37 year: 2012 ident: 10.1016/j.jconrel.2018.08.042_bb0410 – volume: 13 start-page: 435 year: 2011 ident: 10.1016/j.jconrel.2018.08.042_bb0800 article-title: Intradermal microneedle delivery of insulin lispro achieves faster insulin absorption and insulin action than subcutaneous injection publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2010.0184 – volume: 5 start-page: 397 year: 2015 ident: 10.1016/j.jconrel.2018.08.042_bb0290 article-title: Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays publication-title: Drug Delivery and Translational Research doi: 10.1007/s13346-015-0238-y – volume: 2 start-page: 197 year: 2000 ident: 10.1016/j.jconrel.2018.08.042_bb0430 article-title: Hollow metallic micromachined needle arrays publication-title: Biomed. Microdevices doi: 10.1023/A:1009980412628 – volume: 96 start-page: 1167 year: 2008 ident: 10.1016/j.jconrel.2018.08.042_bb0275 article-title: Noninvasive neural prostheses using mobile and wireless EEG publication-title: Proceedings of the Leee – volume: 65 start-page: 152 year: 2013 ident: 10.1016/j.jconrel.2018.08.042_bb0115 article-title: Modeling the human skin barrier - Towards a better understanding of dermal absorption publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.04.003 – volume: 161 start-page: 933 year: 2012 ident: 10.1016/j.jconrel.2018.08.042_bb0180 article-title: The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin publication-title: J. Control. Release doi: 10.1016/j.jconrel.2012.05.030 – volume: 14 start-page: 375 year: 2007 ident: 10.1016/j.jconrel.2018.08.042_bb0755 article-title: Preclinical evaluation of microneedle technology for intradermal delivery of influenza vaccines publication-title: Clin. Vaccine Immunol. doi: 10.1128/CVI.00387-06 – volume: 13 start-page: 451 year: 2011 ident: 10.1016/j.jconrel.2018.08.042_bb0080 article-title: Rapid pharmacokinetics of intradermal insulin administered using microneedles in type 1 diabetes subjects publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2010.0204 – volume: 33 start-page: 2472 year: 2000 ident: 10.1016/j.jconrel.2018.08.042_bb0650 article-title: Structure and morphology of freeze/thawed PVA hydrogels publication-title: Macromolecules doi: 10.1021/ma9907587 – volume: 54 start-page: S41 year: 2002 ident: 10.1016/j.jconrel.2018.08.042_bb0100 article-title: Skin structure and mode of action of vesicles publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(02)00114-X – volume: 19 start-page: 406 year: 2004 ident: 10.1016/j.jconrel.2018.08.042_bb0375 article-title: Study for the asepsis storage period of insulin in jection after seal removing publication-title: Journal of Nurses Training – volume: 43 start-page: 321 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0735 article-title: Microneedling: A comprehensive review publication-title: Dermatol. Surg. doi: 10.1097/DSS.0000000000000924 – volume: 23 start-page: 991 year: 2014 ident: 10.1016/j.jconrel.2018.08.042_bb0500 article-title: Hypodermic-needle-like hollow polymer microneedle array: Fabrication and characterization publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2014.2307320 – volume: 127 start-page: 119 year: 2018 ident: 10.1016/j.jconrel.2018.08.042_bb0780 article-title: Insulin delivery systems combined with microneedle technology publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2018.03.011 – volume: 30 start-page: 1099 year: 2013 ident: 10.1016/j.jconrel.2018.08.042_bb0110 article-title: Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum publication-title: Pharm. Res. doi: 10.1007/s11095-012-0946-7 – volume: 6 start-page: 191 year: 2014 ident: 10.1016/j.jconrel.2018.08.042_bb0620 article-title: Hydrogel microneedle arrays for transdermal drug delivery publication-title: Nano-Micro Letters doi: 10.1007/BF03353783 – volume: 14 start-page: 472 year: 2005 ident: 10.1016/j.jconrel.2018.08.042_bb0450 article-title: Arrays of hollow out-of-plane microneedles for drug delivery publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2005.844843 – volume: 106 start-page: 48 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0660 article-title: Swellable silk fibroin microneedles for transdermal drug delivery publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.07.178 – volume: 7 start-page: 15408 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0175 article-title: A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin publication-title: RSC Adv. doi: 10.1039/C6RA26759A – start-page: U1425 year: 2006 ident: 10.1016/j.jconrel.2018.08.042_bb0340 article-title: Study of cross-linking reactions in negative-type thick-film resists – volume: 104 start-page: 1 year: 2016 ident: 10.1016/j.jconrel.2018.08.042_bb0740 article-title: Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development publication-title: Materials Science & Engineering R-Reports doi: 10.1016/j.mser.2016.03.001 – volume: 139 start-page: 63 year: 2009 ident: 10.1016/j.jconrel.2018.08.042_bb0380 article-title: Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin publication-title: J. Control. Release doi: 10.1016/j.jconrel.2009.05.031 – volume: 14 start-page: 459 year: 2013 ident: 10.1016/j.jconrel.2018.08.042_bb0395 article-title: Faster pharmacokinetics and increased patient acceptance of intradermal insulin delivery using a single hollow microneedle in children and adolescents with type 1 diabetes publication-title: Pediatr. Diabetes doi: 10.1111/pedi.12031 – volume: 27 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0160 article-title: A novel ultrafine needle (UN) for innocuous and efficient subcutaneous insulin delivery publication-title: Adv. Funct. Mater. – volume: 24 start-page: 48 year: 2015 ident: 10.1016/j.jconrel.2018.08.042_bb0105 article-title: An ex vivo human skin model for studying skin barrier repair publication-title: Exp. Dermatol. doi: 10.1111/exd.12579 – volume: 31 start-page: 1632 year: 2011 ident: 10.1016/j.jconrel.2018.08.042_bb0535 article-title: Rapidly dissolving fibroin microneedles for transdermal drug delivery publication-title: Materials Science & Engineering C-Materials for Biological Applications doi: 10.1016/j.msec.2011.06.010 – volume: 53 start-page: 493 year: 2000 ident: 10.1016/j.jconrel.2018.08.042_bb0295 article-title: Use of SU-8 photoresist for very high aspect ratio x-ray lithography publication-title: Microelectron. Eng. doi: 10.1016/S0167-9317(00)00363-4 – volume: 437 start-page: 51 year: 2012 ident: 10.1016/j.jconrel.2018.08.042_bb0370 article-title: Novel lyophilized hydrogel patches for convenient and effective administration of microneedle-mediated insulin delivery publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2012.07.035 – volume: 127 start-page: 106 year: 2018 ident: 10.1016/j.jconrel.2018.08.042_bb0520 article-title: Polymeric microneedles for transdermal protein delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2018.01.015 – volume: 7 start-page: 5067 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0600 article-title: Fabrication of two-layer dissolving polyvinylpyrrolidone microneedles with different molecular weights for in vivo insulin transdermal delivery publication-title: RSC Adv. doi: 10.1039/C6RA27476E – volume: 3 start-page: 555 year: 2014 ident: 10.1016/j.jconrel.2018.08.042_bb0255 article-title: Nanocomposite-strengthened dissolving microneedles for improved transdermal delivery to human skin publication-title: Advanced Healthcare Materials doi: 10.1002/adhm.201300312 – volume: 23 start-page: 1026 year: 2018 ident: 10.1016/j.jconrel.2018.08.042_bb0810 article-title: Microarray patches: potentially useful delivery systems for long-acting nanosuspensions publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2017.10.013 – volume: 20 year: 2015 ident: 10.1016/j.jconrel.2018.08.042_bb0505 article-title: Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: a skin-mimicking phantom study publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.20.6.061102 – volume: 265 start-page: 2 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0215 article-title: Formulation of hydrophobic peptides for skin delivery via coated microneedles publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.03.015 – volume: 11 start-page: 1195 year: 2009 ident: 10.1016/j.jconrel.2018.08.042_bb0330 article-title: Mass producible and biocompatible microneedle patch and functional verification of its usefulness for transdermal drug delivery publication-title: Biomed. Microdevices doi: 10.1007/s10544-009-9337-1 – volume: 5 start-page: 51934 year: 2015 ident: 10.1016/j.jconrel.2018.08.042_bb0025 article-title: Biodegradable and conductive chitosan-graphene quantum dot nanocomposite microneedles for delivery of both small and large molecular weight therapeutics publication-title: RSC Adv. doi: 10.1039/C5RA04340A – volume: 9 start-page: 8952 year: 2013 ident: 10.1016/j.jconrel.2018.08.042_bb0185 article-title: Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.06.029 – volume: 20 year: 2010 ident: 10.1016/j.jconrel.2018.08.042_bb0435 article-title: Sharpening of hollow silicon microneedles to reduce skin penetration force publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/20/4/045011 – ident: 10.1016/j.jconrel.2018.08.042_bb0310 doi: 10.1088/1742-6596/34/1/030 – volume: 110 start-page: 30 year: 2018 ident: 10.1016/j.jconrel.2018.08.042_bb0065 article-title: Microneedles: A versatile strategy for transdermal delivery of biological molecules publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.12.027 – volume: 34 start-page: 461 year: 2010 ident: 10.1016/j.jconrel.2018.08.042_bb0225 article-title: Design and development of a biocompatible painless microneedle by the ion sputtering deposition method publication-title: Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology – volume: 9 start-page: 3704 year: 2013 ident: 10.1016/j.jconrel.2018.08.042_bb0665 article-title: Transdermal delivery devices: Fabrication, mechanics and drug release from silk publication-title: Small doi: 10.1002/smll.201202075 – volume: 37 start-page: 1387 year: 2011 ident: 10.1016/j.jconrel.2018.08.042_bb0570 article-title: Two-layered dissolving microneedles for percutaneous delivery of sumatriptan in rats publication-title: Drug Dev. Ind. Pharm. doi: 10.3109/03639045.2011.576426 – volume: 80 start-page: 187 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0595 article-title: Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin publication-title: Materials Science & Engineering C-Materials for Biological Applications doi: 10.1016/j.msec.2017.05.143 – volume: 22 start-page: 4879 year: 2012 ident: 10.1016/j.jconrel.2018.08.042_bb0385 article-title: Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200864 – volume: 105 start-page: 84 year: 2017 ident: 10.1016/j.jconrel.2018.08.042_bb0615 article-title: Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.35869 |
SSID | ssj0005347 |
Score | 2.5808496 |
SecondaryResourceType | review_article |
Snippet | Microneedle technology relates to pharmacy, polymer chemistry and micromachining. Microneedle can effectively deliver insulin into systemic circulation across... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 173 |
SubjectTerms | Diabetes Glucose-responsive microneedle Hydrogel Insulin Microneedle fabrication pain phase transition Phase transition microneedle polymers Skin subcutaneous injection |
Title | Preparation, properties and challenges of the microneedles-based insulin delivery system |
URI | https://dx.doi.org/10.1016/j.jconrel.2018.08.042 https://www.ncbi.nlm.nih.gov/pubmed/30189223 https://www.proquest.com/docview/2101271902 https://www.proquest.com/docview/2153624847 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyNBEG5EL15kfewa3ZUWxFM6mUfPTPdRRImKElAht6afYIiTkMchl_3tW5WZMXpQYY8zdEPRVVPf19NVXxNyBhDlXC4yZrSIGE-NZMJEBQtBxlprJzXHRuH7h7z3zG8H2WCDXDa9MFhWWef-KqevsnX9pluvZnfy8tJ9BLIi0jyTEJQRnvZgBzsvMMo7f9-VeaS8apnOBcPR6y6e7rAzhD3n1OMJRCxWSp48-QyfPuOfKxy6_kF2agJJLyobd8mGL_fIeb9SoF626dO6oWrWpue0v9amXu6TQX_qK7XvcdmmE_wTP0VJVapLR21zscqMjgMFZkhfsVyvBIAb-RlDwHO0Ll6nzo-wpGNJKy3oA_J8ffV02WP15QrMZlE8Z05boWNngxOWe5MZY0LKfSJFHlnYprhYOB_SxLtcu0JGwmtjRAKb18w7aWz6k2yWYMEhoS5PTR6kj422vDCx5jKJjQcy40ORhaJFeLOkytbK43gBxkg1JWZDVXtCoScUXozJkxbpvE2bVNIb300Qjb_UhxhSAA_fTT1t_Kvg-8JDE1368WKmEhRAK4A2fTkmAx7AAehb5FcVHG8WQwIVEjjY0f8bd0y28QkRMxG_yeZ8uvB_gArNzckq1k_I1sXNXe_hHy3YDLk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcoALKs8GKCwS9JRN7PXa3j30gIAqpQ9FIpVyW_YpNQpOFKeqcuFP8QeZjdcNHEolpF5trzWaGc986535BqH3kKKsLXhOtOIJYZkWhOukJN6LVCllhWKhUfj0rBics6_jfLyFfrW9MKGsMsb-Jqavo3W80o_a7M8vLvrfAKzwrMgFOGUSTntiZeWxW13Bvq0-OPoMRv5A6eGX0acBiaMFiMmTdEmsMlyl1njLDXM611r7jDkqeJEYAOk25db5jDpbKFuKhDulNaewdcudFdpk8N576D6DcBHGJvR-_lFXkrGmR7vgJIi3aRvqT3oT2OQuXDjySPmaOpTRmxLiTYB3nfgOd9CjiFjxx0Ypj9GWq56g_WFDeb3q4tGmg6vu4n083JBhr56i8XDhGnrxWdXF8_DrfxE4XLGqLDbtJJcazzwGKIp_hPrACjLq1NUkZFiLY7U8tm4aakhWuCGffobO70Tlz9F2BRLsImyLTBdeuFQrw0qdKiZoqh2gJ-fL3JcdxFqVShOpzsPEjalsa9omMlpCBkvIMImT0Q7qXS-bN1wfty3grb3kX04rIR_dtvRda18JH3Q4pVGVm13WkgbGtRJw2j-fyQF4MEAWHfSicY5riSFicwGg7-X_C_cWPRiMTk_kydHZ8Sv0MNwJ6Zry12h7ubh0e4DDlvrN2u8x-n7XH9pvXFVLaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation%2C+properties+and+challenges+of+the+microneedles-based+insulin+delivery+system&rft.jtitle=Journal+of+controlled+release&rft.au=Chen%2C+Xiang&rft.au=Wang%2C+Li&rft.au=Yu%2C+Haojie&rft.au=Li%2C+Chengjiang&rft.date=2018-10-28&rft.pub=Elsevier+B.V&rft.issn=0168-3659&rft.eissn=1873-4995&rft.volume=288&rft.spage=173&rft.epage=188&rft_id=info:doi/10.1016%2Fj.jconrel.2018.08.042&rft.externalDocID=S0168365918305169 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon |