Fermentation Strategies for Production of Pharmaceutical Terpenoids in Engineered Yeast

Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorpti...

Full description

Saved in:
Bibliographic Details
Published inPharmaceuticals (Basel, Switzerland) Vol. 14; no. 4; p. 295
Main Authors Carsanba, Erdem, Pintado, Manuela, Oliveira, Carla
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.03.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Production of these compounds are generally carried out through extraction from their natural sources or chemical synthesis. However, these processes are generally unsustainable, produce low yield, and result in wasting of substantial resources, most of them limited. Microbial production of terpenoids provides a sustainable and environment-friendly alternative. In recent years, the yeast Saccharomyces cerevisiae has become a suitable cell factory for industrial terpenoid biosynthesis due to developments in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling. Besides that, fermentation development has a significant importance on achieving high titer, yield, and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not been yet comprehensively discussed in the literature. This review summarizes recent studies of recombinant production of pharmaceutically important terpenoids by engineered yeast, S. cerevisiae, with special focus on fermentation strategies to increase TYP in order to meet industrial demands to feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed (strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and continuous) are discussed.
AbstractList Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Production of these compounds are generally carried out through extraction from their natural sources or chemical synthesis. However, these processes are generally unsustainable, produce low yield, and result in wasting of substantial resources, most of them limited. Microbial production of terpenoids provides a sustainable and environment-friendly alternative. In recent years, the yeast Saccharomyces cerevisiae has become a suitable cell factory for industrial terpenoid biosynthesis due to developments in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling. Besides that, fermentation development has a significant importance on achieving high titer, yield, and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not been yet comprehensively discussed in the literature. This review summarizes recent studies of recombinant production of pharmaceutically important terpenoids by engineered yeast, S. cerevisiae, with special focus on fermentation strategies to increase TYP in order to meet industrial demands to feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed (strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and continuous) are discussed.
Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Production of these compounds are generally carried out through extraction from their natural sources or chemical synthesis. However, these processes are generally unsustainable, produce low yield, and result in wasting of substantial resources, most of them limited. Microbial production of terpenoids provides a sustainable and environment-friendly alternative. In recent years, the yeast Saccharomyces cerevisiae has become a suitable cell factory for industrial terpenoid biosynthesis due to developments in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling. Besides that, fermentation development has a significant importance on achieving high titer, yield, and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not been yet comprehensively discussed in the literature. This review summarizes recent studies of recombinant production of pharmaceutically important terpenoids by engineered yeast, S. cerevisiae , with special focus on fermentation strategies to increase TYP in order to meet industrial demands to feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed (strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and continuous) are discussed.
Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Production of these compounds are generally carried out through extraction from their natural sources or chemical synthesis. However, these processes are generally unsustainable, produce low yield, and result in wasting of substantial resources, most of them limited. Microbial production of terpenoids provides a sustainable and environment-friendly alternative. In recent years, the yeast has become a suitable cell factory for industrial terpenoid biosynthesis due to developments in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling. Besides that, fermentation development has a significant importance on achieving high titer, yield, and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not been yet comprehensively discussed in the literature. This review summarizes recent studies of recombinant production of pharmaceutically important terpenoids by engineered yeast, , with special focus on fermentation strategies to increase TYP in order to meet industrial demands to feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed (strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and continuous) are discussed.
Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Production of these compounds are generally carried out through extraction from their natural sources or chemical synthesis. However, these processes are generally unsustainable, produce low yield, and result in wasting of substantial resources, most of them limited. Microbial production of terpenoids provides a sustainable and environment-friendly alternative. In recent years, the yeast Saccharomyces cerevisiae has become a suitable cell factory for industrial terpenoid biosynthesis due to developments in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling. Besides that, fermentation development has a significant importance on achieving high titer, yield, and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not been yet comprehensively discussed in the literature. This review summarizes recent studies of recombinant production of pharmaceutically important terpenoids by engineered yeast, S. cerevisiae, with special focus on fermentation strategies to increase TYP in order to meet industrial demands to feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed (strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and continuous) are discussed.Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Production of these compounds are generally carried out through extraction from their natural sources or chemical synthesis. However, these processes are generally unsustainable, produce low yield, and result in wasting of substantial resources, most of them limited. Microbial production of terpenoids provides a sustainable and environment-friendly alternative. In recent years, the yeast Saccharomyces cerevisiae has become a suitable cell factory for industrial terpenoid biosynthesis due to developments in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling. Besides that, fermentation development has a significant importance on achieving high titer, yield, and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not been yet comprehensively discussed in the literature. This review summarizes recent studies of recombinant production of pharmaceutically important terpenoids by engineered yeast, S. cerevisiae, with special focus on fermentation strategies to increase TYP in order to meet industrial demands to feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed (strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and continuous) are discussed.
Author Carsanba, Erdem
Pintado, Manuela
Oliveira, Carla
AuthorAffiliation 2 CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; mpintado@porto.ucp.pt
1 Amyris BioProducts Portugal, Unipessoal, Lda. Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; carsanba@amyris.com
AuthorAffiliation_xml – name: 1 Amyris BioProducts Portugal, Unipessoal, Lda. Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; carsanba@amyris.com
– name: 2 CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; mpintado@porto.ucp.pt
Author_xml – sequence: 1
  givenname: Erdem
  surname: Carsanba
  fullname: Carsanba, Erdem
– sequence: 2
  givenname: Manuela
  surname: Pintado
  fullname: Pintado, Manuela
– sequence: 3
  givenname: Carla
  surname: Oliveira
  fullname: Oliveira, Carla
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33810302$$D View this record in MEDLINE/PubMed
BookMark eNptkltrFTEQgINU7EVf_AGy4IsUjk5uJ7svQimtFgoWrIhPIZtMzslhNzkmu4L_3rSn1bb4lMt88zHMzCHZiykiIa8pvOe8gw_bNRUggHXyGTmggolFy4Tae3DfJ4elbACkooK-IPuctxQ4sAPy_RzziHEyU0ix-TplM-EqYGl8ys1VTm62t5Hkm6u1yaOxOE_BmqG5xrzFmIIrTYjNWVyFiJjRNT_QlOklee7NUPDV3XlEvp2fXZ9-Xlx--XRxenK5sBLotHCit5SxnjInPVAvuG29M4IrakEB9NwLqBHeWsado54CCCPrW7AWVc-PyMXO65LZ6G0Oo8m_dTJB336kvNIm14IH1KJVoBizYKURVvEOXa9UZ3vpe7Pksro-7lzbuR_R2dqWbIZH0seRGNZ6lX7pFpZLQVkVvLsT5PRzxjLpMRSLw2AiprloJqGVlYSuom-foJs051hbVSkJrNqAV-rNw4r-lnI_vwrADrA5lZLRaxt2s6wFhkFT0Dcrov-tSE05fpJyb_0P_Acbw7sQ
CitedBy_id crossref_primary_10_1016_j_coisb_2023_100502
crossref_primary_10_1016_j_fbio_2025_105912
crossref_primary_10_1016_j_phymed_2024_155638
crossref_primary_10_1002_cbic_202400902
crossref_primary_10_1016_j_phytochem_2024_114099
crossref_primary_10_1093_lambio_ovae054
crossref_primary_10_3390_molecules29051127
crossref_primary_10_3389_fbioe_2022_805429
crossref_primary_10_3390_fermentation8080372
crossref_primary_10_1371_journal_pone_0309325
crossref_primary_10_1016_j_phytochem_2022_113380
crossref_primary_10_1021_acs_jafc_3c02932
crossref_primary_10_1021_acs_jafc_3c01820
crossref_primary_10_1021_acs_jafc_4c06818
crossref_primary_10_1186_s12934_025_02667_3
crossref_primary_10_3389_fmicb_2022_960558
crossref_primary_10_1021_acs_jafc_4c08813
crossref_primary_10_1016_j_lwt_2024_117244
crossref_primary_10_3390_molecules29143328
crossref_primary_10_1016_j_tifs_2023_104252
crossref_primary_10_3390_ijms252010909
crossref_primary_10_1186_s40643_023_00647_2
crossref_primary_10_1007_s43994_024_00180_8
crossref_primary_10_1021_acs_jafc_5c00273
crossref_primary_10_1016_j_heliyon_2025_e42937
crossref_primary_10_3390_fermentation9110969
crossref_primary_10_3390_fermentation11030147
crossref_primary_10_1002_biot_202200510
crossref_primary_10_3389_fbioe_2023_1250667
crossref_primary_10_3390_plants11060789
crossref_primary_10_1080_10408347_2023_2219757
crossref_primary_10_1007_s10068_023_01287_0
crossref_primary_10_1016_j_indcrop_2022_115721
crossref_primary_10_1007_s00253_023_12514_3
crossref_primary_10_1007_s11274_022_03241_4
crossref_primary_10_1016_j_chroma_2024_464815
crossref_primary_10_1186_s12934_022_01949_4
crossref_primary_10_1016_j_ymben_2024_04_003
crossref_primary_10_5327_Z2176_94781859
crossref_primary_10_1016_j_psep_2024_08_122
crossref_primary_10_1039_D2GC00867J
Cites_doi 10.1007/s00253-020-10495-1
10.1016/j.ymben.2014.07.006
10.1002/yea.3300
10.1016/j.copbio.2017.07.002
10.3390/molecules14062016
10.1016/B978-0-08-088504-9.00090-8
10.2174/0929867325666180214110932
10.1002/bit.24547
10.1021/acs.jafc.9b07290
10.1073/pnas.1515826113
10.1016/B978-0-08-099953-1.00006-5
10.1016/j.ymben.2018.03.005
10.1007/s10815-015-0553-8
10.1186/1475-2859-11-117
10.1007/s10295-020-02314-3
10.1111/j.1476-5381.2011.01238.x
10.4196/kjpp.2015.19.1.21
10.1016/S0020-7519(02)00194-7
10.1128/AAC.01033-07
10.1016/j.ejphar.2017.09.049
10.1016/j.ymben.2018.07.010
10.1128/AEM.01361-10
10.1002/aic.14950
10.1016/B978-0-12-816695-6.00009-X
10.1186/1475-2859-12-76
10.1016/j.jbiosc.2009.02.012
10.1021/acs.jafc.8b07141
10.1021/acssynbio.9b00135
10.1080/07388551.2017.1299679
10.1093/femsyr/fox080
10.1016/j.ymben.2012.07.010
10.1186/s12934-019-1198-6
10.1016/j.copbio.2020.02.001
10.1186/1475-2859-12-84
10.1007/s10600-012-0237-x
10.1016/j.micres.2017.11.013
10.1111/j.1567-1364.2012.00802.x
10.1016/j.tibtech.2018.11.008
10.1093/femsyr/fox037
10.1016/j.ijfoodmicro.2017.07.006
10.1016/j.phytochem.2020.112608
10.1021/acs.jafc.9b06203
10.1128/AEM.71.5.2239-2243.2005
10.1007/s00253-019-09892-y
10.1186/s40643-019-0242-z
10.1016/j.synbio.2019.02.002
10.3934/microbiol.2020001
10.1002/bit.23129
10.1128/AEM.00277-09
10.1007/s00253-016-7337-7
10.1016/j.biortech.2016.12.061
10.1155/2014/957102
10.1021/acs.jafc.9b03456
10.3390/molecules24213961
10.1016/S0168-1605(02)00144-7
10.1186/s12934-020-1284-9
10.1155/2014/215872
10.1186/s12934-019-1099-8
10.1016/j.jprot.2014.01.031
10.1109/ACC.2006.1657601
10.1007/s00425-018-3047-y
10.1073/pnas.1110740109
10.1016/S0740-0020(02)00091-6
10.1016/j.jbiotec.2004.09.010
10.1186/s13068-019-1360-8
10.1016/j.jgr.2016.08.004
10.1016/j.ymben.2017.03.005
10.1007/s00404-014-3408-0
10.1016/j.jbiotec.2009.09.020
10.1128/AAC.00122-17
10.1038/s41421-018-0075-5
10.1038/sj.bjp.0706406
10.1002/yea.1827
10.1007/s10295-019-02231-0
10.1186/s13068-017-0728-x
10.1111/jam.13105
10.1016/j.bej.2019.03.011
10.1002/bit.26377
10.1016/j.ejphar.2016.12.008
10.3389/fmicb.2018.02460
10.1186/s12934-017-0641-9
10.1038/s41589-018-0166-5
10.1111/j.1574-6976.2000.tb00533.x
10.1016/j.pharep.2016.03.014
10.1038/aps.2008.5
10.3389/fpls.2014.00390
10.1016/j.enzmictec.2019.109485
10.1016/j.tibtech.2011.06.012
10.1186/s12934-018-0913-z
10.1016/j.copbio.2015.10.007
10.1016/j.biotechadv.2019.06.008
10.1002/bab.1272
10.1021/mp700151b
10.3892/ijo.2016.3427
10.1021/jf900673n
10.1093/femsyr/foy077
10.1039/C9RA05558D
10.1016/j.jbiotec.2005.11.020
10.1016/j.copbio.2014.12.004
10.1007/s00449-020-02295-8
10.1038/s41467-019-11290-x
10.1016/j.ymben.2013.10.004
10.1038/ncomms1494
10.1038/nbt.3095
10.1021/acs.chemrev.7b00287
10.1021/sb400115e
10.1016/S0141-0229(03)00132-7
10.15255/CABEQ.2018.1394
10.1186/s11658-019-0164-y
10.1002/anie.201601967
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/ph14040295
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1424-8247
ExternalDocumentID oai_doaj_org_article_4870722c0c5a4c739edb779cb5fba635
PMC8066412
33810302
10_3390_ph14040295
Genre Journal Article
Review
GrantInformation_xml – fundername: Amyris Bio Products Portugal Unipessoal Lda and Escola Superior de Biotecnolo-gia-Universidade Católica Portuguesa through Alchemy project-Capturing high value from industrial fermentation bio products
  grantid: POCI-01-0247-FEDER-027578
GroupedDBID ---
2WC
53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACUHS
ADBBV
AEAQA
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DIK
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HH5
HYE
IAO
IHR
KQ8
M2O
M48
MK0
MODMG
M~E
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
TUS
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ITC
PUEGO
ID FETCH-LOGICAL-c501t-d4bc122b12d5f01f43c8fda4371c0700b3f405f038c23dd1f1004a5038428e7b3
IEDL.DBID M48
ISSN 1424-8247
IngestDate Wed Aug 27 01:14:52 EDT 2025
Thu Aug 21 18:45:51 EDT 2025
Fri Jul 11 01:14:05 EDT 2025
Mon Jun 30 14:46:25 EDT 2025
Thu Apr 03 07:05:47 EDT 2025
Thu Apr 24 23:09:08 EDT 2025
Tue Jul 01 04:13:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords fermentation
pharmaceutics
terpenoids
fed-batch
S. cerevisiae
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-d4bc122b12d5f01f43c8fda4371c0700b3f405f038c23dd1f1004a5038428e7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.proquest.com/docview/2550212303?pq-origsite=%requestingapplication%
PMID 33810302
PQID 2550212303
PQPubID 2032350
ParticipantIDs doaj_primary_oai_doaj_org_article_4870722c0c5a4c739edb779cb5fba635
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8066412
proquest_miscellaneous_2508564109
proquest_journals_2550212303
pubmed_primary_33810302
crossref_citationtrail_10_3390_ph14040295
crossref_primary_10_3390_ph14040295
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210326
PublicationDateYYYYMMDD 2021-03-26
PublicationDate_xml – month: 3
  year: 2021
  text: 20210326
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Pharmaceuticals (Basel, Switzerland)
PublicationTitleAlternate Pharmaceuticals (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ni (ref_109) 2019; 4
Dai (ref_79) 2013; 20
Zhao (ref_74) 2017; 227
Khor (ref_117) 2010; 28
Russo (ref_48) 2011; 163
Qu (ref_19) 2020; 134
Appalasamy (ref_43) 2014; 2014
Ahmed (ref_85) 2019; 146
Torija (ref_102) 2003; 80
Chen (ref_101) 2018; 17
Ebert (ref_120) 2018; 18
Chen (ref_55) 2021; 182
Jongedijk (ref_81) 2014; 32
Luo (ref_51) 2020; 580
Ahmed (ref_46) 2020; 43
Paramasivan (ref_57) 2017; 37
Ajikumar (ref_52) 2008; 5
Cheng (ref_72) 2019; 8
Cho (ref_53) 2016; 48
Kundas (ref_83) 2018; 56
Ouyang (ref_21) 2019; 9
Kiyama (ref_47) 2017; 815
(ref_92) 2000; 24
Muramatsu (ref_100) 2009; 108
Wohlfarth (ref_45) 2008; 30
Narendranath (ref_98) 2005; 71
Zhang (ref_71) 2015; 61
Sandoval (ref_95) 2014; 25
Amiri (ref_37) 2020; 38
Hu (ref_64) 2014; 62
Biggs (ref_15) 2016; 113
Wang (ref_35) 2019; 5
Dai (ref_78) 2012; 109
Ateba (ref_29) 2018; 25
Zhang (ref_77) 2018; 49
Shang (ref_94) 2006; 122
Fischer (ref_88) 2011; 108
Efferth (ref_42) 2001; 18
Agarwal (ref_49) 2015; 32
Peng (ref_84) 2017; 10
Nandy (ref_16) 2018; 207
Tan (ref_106) 2003; 33
Zhuang (ref_24) 2019; 18
Scalcinati (ref_61) 2012; 11
Albertsen (ref_67) 2010; 77
Meadows (ref_26) 2016; 537
Zhao (ref_91) 2014; 101
Ignea (ref_70) 2014; 3
Meshnick (ref_39) 2002; 32
Mantzouridou (ref_110) 2009; 57
Bian (ref_58) 2017; 48
Czarnotta (ref_75) 2017; 114
Torija (ref_93) 2003; 20
Jongedijk (ref_54) 2016; 100
Zhao (ref_69) 2017; 16
Creek (ref_41) 2008; 52
Belo (ref_107) 2005; 115
Song (ref_33) 2014; 291
Tu (ref_40) 2016; 47
Saarela (ref_118) 2003; 21
Belcher (ref_2) 2020; 65
Pertwee (ref_50) 2006; 147
Zhu (ref_14) 2019; 24
Paddon (ref_27) 2013; 496
Benjamin (ref_13) 2016; 27
Xu (ref_32) 2017; 61
Tokuhiro (ref_89) 2009; 75
Zhang (ref_7) 2017; 17
Xiao (ref_12) 2019; 37
Ouellet (ref_66) 2011; 2
Morales (ref_96) 2012; 12
Alexander (ref_18) 2017; 35
Trojan (ref_99) 2009; 14
Zhou (ref_90) 2015; 33
Kim (ref_36) 2017; 41
Moser (ref_5) 2019; 103
Jiang (ref_73) 2017; 41
Chen (ref_65) 2020; 68
Behrendorff (ref_80) 2013; 12
Wang (ref_23) 2018; 9
Wang (ref_6) 2019; 6
Lyu (ref_56) 2019; 67
Burd (ref_76) 2013; 15
Zhang (ref_4) 2020; 68
Deng (ref_68) 2016; 121
Subramaniam (ref_114) 2019; 32
Christianson (ref_1) 2017; 117
Sharma (ref_9) 2017; 795
Hill (ref_28) 2020; 47
Ding (ref_111) 2009; 144
ref_119
Esmaeili (ref_116) 2012; 48
Carvalho (ref_34) 2017; 17
Gruchattka (ref_86) 2013; 12
Zabed (ref_103) 2014; 2014
ref_113
ref_112
Wong (ref_82) 2018; 47
Leavell (ref_11) 2016; 37
Kim (ref_44) 2014; 19
Cunha (ref_87) 2019; 12
An (ref_38) 2020; 104
Ma (ref_22) 2019; 67
Westfall (ref_60) 2012; 109
Mesquita (ref_108) 2019; 18
ref_104
Manayi (ref_31) 2016; 68
Parapouli (ref_17) 2020; 6
ref_105
Krivoruchko (ref_10) 2015; 35
Ignea (ref_63) 2019; 10
Yang (ref_3) 2020; 15
Hansen (ref_20) 2020; 19
Ignea (ref_62) 2018; 14
Lin (ref_25) 2019; 249
Jaeger (ref_30) 2016; 11
Urlacher (ref_59) 2012; 30
Vendramini (ref_97) 2017; 258
ref_8
Song (ref_115) 2019; 46
References_xml – volume: 104
  start-page: 3339
  year: 2020
  ident: ref_38
  article-title: Biotechnological production of betulinic acid and derivatives and their applications
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-020-10495-1
– volume: 25
  start-page: 215
  year: 2014
  ident: ref_95
  article-title: Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2014.07.006
– volume: 35
  start-page: 355
  year: 2017
  ident: ref_18
  article-title: A history of genome editing inSaccharomyces cerevisiae
  publication-title: Yeast
  doi: 10.1002/yea.3300
– volume: 48
  start-page: 234
  year: 2017
  ident: ref_58
  article-title: Strategies for terpenoid overproduction and new terpenoid discovery
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2017.07.002
– volume: 14
  start-page: 2016
  year: 2009
  ident: ref_99
  article-title: Pentacyclic Triterpene Distribution in Various Plants—Rich Sources for a New Group of Multi-Potent Plant Extracts
  publication-title: Molecules
  doi: 10.3390/molecules14062016
– ident: ref_112
  doi: 10.1016/B978-0-08-088504-9.00090-8
– volume: 25
  start-page: 3162
  year: 2018
  ident: ref_29
  article-title: Natural Terpenoids Against Female Breast Cancer: A 5-year Recent Research
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867325666180214110932
– volume: 109
  start-page: 2845
  year: 2012
  ident: ref_78
  article-title: Production of miltiradiene by metabolically engineeredSaccharomyces cerevisiae
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.24547
– volume: 68
  start-page: 1382
  year: 2020
  ident: ref_4
  article-title: Harnessing Yeast Peroxisomes and Cytosol Acetyl-CoA for Sesquiterpene α-Humulene Production
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.9b07290
– volume: 113
  start-page: 3209
  year: 2016
  ident: ref_15
  article-title: Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1515826113
– ident: ref_113
  doi: 10.1016/B978-0-08-099953-1.00006-5
– volume: 47
  start-page: 94
  year: 2018
  ident: ref_82
  article-title: De novo synthesis of the sedative valerenic acid in Saccharomyces cerevisiae
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2018.03.005
– volume: 32
  start-page: 1575
  year: 2015
  ident: ref_49
  article-title: Marijuana, phytocannabinoids, the endocannabinoid system, and male fertility
  publication-title: J. Assist. Reprod. Genet.
  doi: 10.1007/s10815-015-0553-8
– volume: 11
  start-page: 117
  year: 2012
  ident: ref_61
  article-title: Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae
  publication-title: Microb. Cell Factories
  doi: 10.1186/1475-2859-11-117
– volume: 47
  start-page: 965
  year: 2020
  ident: ref_28
  article-title: Clean manufacturing powered by biology: How Amyris has deployed technology and aims to do it better
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-020-02314-3
– volume: 21
  start-page: 1
  year: 2003
  ident: ref_118
  article-title: Modelling of a fed-batch fermentation process
  publication-title: Most
– volume: 163
  start-page: 1344
  year: 2011
  ident: ref_48
  article-title: Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.2011.01238.x
– volume: 19
  start-page: 21
  year: 2014
  ident: ref_44
  article-title: Anti-inflammatory, Antioxidant and Antimicrobial Effects of Artemisinin Extracts fromArtemisia annuaL
  publication-title: Korean J. Physiol. Pharmacol.
  doi: 10.4196/kjpp.2015.19.1.21
– volume: 32
  start-page: 1655
  year: 2002
  ident: ref_39
  article-title: Artemisinin: Mechanisms of action, resistance and toxicity
  publication-title: Int. J. Parasitol.
  doi: 10.1016/S0020-7519(02)00194-7
– volume: 52
  start-page: 1291
  year: 2008
  ident: ref_41
  article-title: Relationship between Antimalarial Activity and Heme Alkylation for Spiro- and Dispiro-1,2,4-Trioxolane Antimalarials
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01033-07
– volume: 815
  start-page: 405
  year: 2017
  ident: ref_47
  article-title: Estrogenic terpenes and terpenoids: Pathways, functions and applications
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2017.09.049
– volume: 49
  start-page: 28
  year: 2018
  ident: ref_77
  article-title: Production of sesquiterpenoid zerumbone from metabolic engineered Saccharomyces cerevisiae
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2018.07.010
– volume: 77
  start-page: 1033
  year: 2010
  ident: ref_67
  article-title: Diversion of Flux toward Sesquiterpene Production inSaccharomyces cerevisiaeby Fusion of Host and Heterologous Enzymes
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01361-10
– volume: 61
  start-page: 3172
  year: 2015
  ident: ref_71
  article-title: Refactoring β-amyrin synthesis inSaccharomyces cerevisiae
  publication-title: AIChE J.
  doi: 10.1002/aic.14950
– ident: ref_104
  doi: 10.1016/B978-0-12-816695-6.00009-X
– volume: 537
  start-page: 694
  year: 2016
  ident: ref_26
  article-title: Rewriting yeast central carbon metabolism for industrial isoprenoid production
  publication-title: Nat. Cell Biol.
– volume: 12
  start-page: 76
  year: 2013
  ident: ref_80
  article-title: 2,2-Diphenyl-1-picrylhydrazyl as a screening tool for recombinant monoterpene biosynthesis
  publication-title: Microb. Cell Factories
  doi: 10.1186/1475-2859-12-76
– volume: 15
  start-page: 15
  year: 2020
  ident: ref_3
  article-title: Advances in Pharmacological Activities of Terpenoids
  publication-title: Nat. Prod. Commun.
– volume: 108
  start-page: 52
  year: 2009
  ident: ref_100
  article-title: Alkaline pH enhances farnesol production by Saccharomyces cerevisiae
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2009.02.012
– volume: 67
  start-page: 4397
  year: 2019
  ident: ref_56
  article-title: Potential Natural Food Preservatives and Their Sustainable Production in Yeast: Terpenoids and Polyphenols
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.8b07141
– volume: 11
  start-page: 1373
  year: 2016
  ident: ref_30
  article-title: Terpenoids with Special Pharmacological Significance: A Review
  publication-title: Nat. Prod. Commun.
– volume: 8
  start-page: 968
  year: 2019
  ident: ref_72
  article-title: Orthogonal Engineering of Biosynthetic Pathway for Efficient Production of Limonene in Saccharomyces cerevisiae
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.9b00135
– volume: 37
  start-page: 974
  year: 2017
  ident: ref_57
  article-title: Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388551.2017.1299679
– volume: 496
  start-page: 528
  year: 2013
  ident: ref_27
  article-title: High-level semi-synthetic production of the potent antimalarial artemisinin
  publication-title: Nat. Cell Biol.
– volume: 17
  start-page: 17
  year: 2017
  ident: ref_7
  article-title: Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels
  publication-title: FEMS Yeast Res.
  doi: 10.1093/femsyr/fox080
– volume: 15
  start-page: 174
  year: 2013
  ident: ref_76
  article-title: Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2012.07.010
– volume: 18
  start-page: 1
  year: 2019
  ident: ref_108
  article-title: Metabolic fluxes-oriented control of bioreactors: A novel approach to tune micro-aeration and substrate feeding in fermentations
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-019-1198-6
– volume: 65
  start-page: 88
  year: 2020
  ident: ref_2
  article-title: New frontiers: Harnessing pivotal advances in microbial engineering for the biosynthesis of plant-derived terpenoids
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2020.02.001
– volume: 12
  start-page: 84
  year: 2013
  ident: ref_86
  article-title: In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories
  publication-title: Microb. Cell Factories
  doi: 10.1186/1475-2859-12-84
– volume: 48
  start-page: 322
  year: 2012
  ident: ref_116
  article-title: Biotransformation of citral by free and immobilized Saccharomyces cerevisiae
  publication-title: Chem. Nat. Compd.
  doi: 10.1007/s10600-012-0237-x
– volume: 207
  start-page: 83
  year: 2018
  ident: ref_16
  article-title: A review on sustainable yeast biotechnological processes and applications
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2017.11.013
– volume: 12
  start-page: 477
  year: 2012
  ident: ref_96
  article-title: Biomass production and alcoholic fermentation performance of Saccharomyces cerevisiae as a function of nitrogen source
  publication-title: FEMS Yeast Res.
  doi: 10.1111/j.1567-1364.2012.00802.x
– volume: 37
  start-page: 618
  year: 2019
  ident: ref_12
  article-title: Discovery and Engineering of Cytochrome P450s for Terpenoid Biosynthesis
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.11.008
– volume: 17
  start-page: 17
  year: 2017
  ident: ref_34
  article-title: Designing microorganisms for heterologous biosynthesis of cannabinoids
  publication-title: FEMS Yeast Res.
  doi: 10.1093/femsyr/fox037
– volume: 258
  start-page: 1
  year: 2017
  ident: ref_97
  article-title: The role of nitrogen uptake on the competition ability of three vineyard Saccharomyces cerevisiae strains
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2017.07.006
– volume: 182
  start-page: 112608
  year: 2021
  ident: ref_55
  article-title: Biotransformation of betulinic acid by Circinella muscae and Cunninghamella echinulata to discover anti-inflammatory derivatives
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2020.112608
– volume: 68
  start-page: 10252
  year: 2020
  ident: ref_65
  article-title: Metabolic Engineering Strategies for Sustainable Terpenoid Flavor and Fragrance Synthesis
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.9b06203
– volume: 71
  start-page: 2239
  year: 2005
  ident: ref_98
  article-title: Relationship between pH and Medium Dissolved Solids in Terms of Growth and Metabolism of Lactobacilli and Saccharomyces cerevisiae during Ethanol Production
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.71.5.2239-2243.2005
– volume: 103
  start-page: 5501
  year: 2019
  ident: ref_5
  article-title: Identifying and engineering the ideal microbial terpenoid production host
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-019-09892-y
– volume: 6
  start-page: 6
  year: 2019
  ident: ref_6
  article-title: Towards efficient terpenoid biosynthesis: Manipulating IPP and DMAPP supply
  publication-title: Bioresour. Bioprocess.
  doi: 10.1186/s40643-019-0242-z
– volume: 4
  start-page: 79
  year: 2019
  ident: ref_109
  article-title: Simultaneously down-regulation of multiplex branch pathways using CRISPRi and fermentation optimization for enhancing β-amyrin production in Saccharomyces cerevisiae
  publication-title: Synth. Syst. Biotechnol.
  doi: 10.1016/j.synbio.2019.02.002
– volume: 32
  start-page: 159
  year: 2014
  ident: ref_81
  article-title: Capturing of the monoterpene olefin limonene produced inSaccharomyces cerevisiae
  publication-title: Yeast
– volume: 6
  start-page: 1
  year: 2020
  ident: ref_17
  article-title: Saccharomyces cerevisiae and its industrial applications
  publication-title: AIMS Microbiol.
  doi: 10.3934/microbiol.2020001
– volume: 108
  start-page: 1883
  year: 2011
  ident: ref_88
  article-title: Metabolic engineering of monoterpene synthesis in yeast
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.23129
– volume: 75
  start-page: 5536
  year: 2009
  ident: ref_89
  article-title: Overproduction of Geranylgeraniol by Metabolically Engineered Saccharomyces cerevisiae
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00277-09
– volume: 100
  start-page: 2927
  year: 2016
  ident: ref_54
  article-title: Biotechnological production of limonene in microorganisms
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-016-7337-7
– volume: 227
  start-page: 308
  year: 2017
  ident: ref_74
  article-title: Enhancing Saccharomyces cerevisiae reactive oxygen species and ethanol stress tolerance for high-level production of protopanoxadiol
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.12.061
– volume: 2014
  start-page: 1
  year: 2014
  ident: ref_103
  article-title: Bioethanol Production from Fermentable Sugar Juice
  publication-title: Sci. World J.
  doi: 10.1155/2014/957102
– volume: 67
  start-page: 8590
  year: 2019
  ident: ref_22
  article-title: Significantly Enhanced Production of Patchoulol in Metabolically Engineered Saccharomyces cerevisiae
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.9b03456
– ident: ref_8
  doi: 10.3390/molecules24213961
– volume: 80
  start-page: 47
  year: 2003
  ident: ref_102
  article-title: Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/S0168-1605(02)00144-7
– volume: 19
  start-page: 1
  year: 2020
  ident: ref_20
  article-title: Integrating pathway elucidation with yeast engineering to produce polpunonic acid the precursor of the anti-obesity agent celastrol
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-020-1284-9
– volume: 2014
  start-page: 1
  year: 2014
  ident: ref_43
  article-title: Antimicrobial Activity of Artemisinin and Precursor Derived fromIn VitroPlantlets ofArtemisia annuaL
  publication-title: BioMed Res. Int.
  doi: 10.1155/2014/215872
– volume: 18
  start-page: 1
  year: 2019
  ident: ref_24
  article-title: Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-019-1099-8
– volume: 101
  start-page: 102
  year: 2014
  ident: ref_91
  article-title: Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources
  publication-title: J. Proteom.
  doi: 10.1016/j.jprot.2014.01.031
– ident: ref_119
  doi: 10.1109/ACC.2006.1657601
– volume: 249
  start-page: 145
  year: 2019
  ident: ref_25
  article-title: Engineering cyanobacteria for production of terpenoids
  publication-title: Planta
  doi: 10.1007/s00425-018-3047-y
– volume: 109
  start-page: E111
  year: 2012
  ident: ref_60
  article-title: Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1110740109
– volume: 20
  start-page: 255
  year: 2003
  ident: ref_93
  article-title: Effect of the nitrogen source on the fatty acid composition of Saccharomyces cerevisiae
  publication-title: Food Microbiol.
  doi: 10.1016/S0740-0020(02)00091-6
– volume: 115
  start-page: 397
  year: 2005
  ident: ref_107
  article-title: Morphological and physiological changes in Saccharomyces cerevisiae by oxidative stress from hyperbaric air
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2004.09.010
– volume: 580
  start-page: E2
  year: 2020
  ident: ref_51
  article-title: Author Correction: Complete biosynthesis of cannabinoids and their unnatural analogues in yeast
  publication-title: Nat. Cell Biol.
– volume: 12
  start-page: 20
  year: 2019
  ident: ref_87
  article-title: Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-019-1360-8
– volume: 41
  start-page: 435
  year: 2017
  ident: ref_36
  article-title: Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2016.08.004
– volume: 41
  start-page: 57
  year: 2017
  ident: ref_73
  article-title: Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2017.03.005
– volume: 291
  start-page: 143
  year: 2014
  ident: ref_33
  article-title: Sequential combination of flavopiridol with Taxol synergistically suppresses human ovarian carcinoma growth
  publication-title: Arch. Gynecol. Obstet.
  doi: 10.1007/s00404-014-3408-0
– volume: 144
  start-page: 279
  year: 2009
  ident: ref_111
  article-title: Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2009.09.020
– volume: 61
  start-page: e00122-17
  year: 2017
  ident: ref_32
  article-title: In Vitro and In Vivo Antibacterial Activities of Patchouli Alcohol, a Naturally Occurring Tricyclic Sesquiterpene, against Helicobacter pylori Infection
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00122-17
– volume: 5
  start-page: 1
  year: 2019
  ident: ref_35
  article-title: Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency
  publication-title: Cell Discov.
  doi: 10.1038/s41421-018-0075-5
– volume: 147
  start-page: S163
  year: 2006
  ident: ref_50
  article-title: Cannabinoid pharmacology: The first 66 years
  publication-title: Br. J. Pharmacol.
  doi: 10.1038/sj.bjp.0706406
– volume: 28
  start-page: 93
  year: 2010
  ident: ref_117
  article-title: Saccharomyces cerevisiae: A potential stereospecific reduction tool for biotransformation of mono- and sesquiterpenoids
  publication-title: Yeast
  doi: 10.1002/yea.1827
– volume: 46
  start-page: 1583
  year: 2019
  ident: ref_115
  article-title: Microbial production of 2,3-butanediol for industrial applications
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-019-02231-0
– volume: 10
  start-page: 1
  year: 2017
  ident: ref_84
  article-title: Coupling gene regulatory patterns to bioprocess conditions to optimize synthetic metabolic modules for improved sesquiterpene production in yeast
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-017-0728-x
– volume: 121
  start-page: 187
  year: 2016
  ident: ref_68
  article-title: Enhanced (S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.13105
– volume: 146
  start-page: 105
  year: 2019
  ident: ref_85
  article-title: Design and construction of short synthetic terminators for β-amyrin production in Saccharomyces cerevisiae
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2019.03.011
– volume: 114
  start-page: 2528
  year: 2017
  ident: ref_75
  article-title: Fermentation and purification strategies for the production of betulinic acid and its lupane-type precursors in Saccharomyces cerevisiae
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26377
– volume: 27
  start-page: 1339
  year: 2016
  ident: ref_13
  article-title: Developing Commercial Production of Semi-Synthetic Artemisinin, and of β-Farnesene, an Isoprenoid Produced by Fermentation of Brazilian Sugar
  publication-title: J. Braz. Chem. Soc.
– volume: 795
  start-page: 169
  year: 2017
  ident: ref_9
  article-title: Terpenoids as anti-colon cancer agents—A comprehensive review on its mechanistic perspectives
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2016.12.008
– volume: 9
  start-page: 2460
  year: 2018
  ident: ref_23
  article-title: Microbial platform for terpenoid production: Escherichia coli and Yeast
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.02460
– volume: 16
  start-page: 1
  year: 2017
  ident: ref_69
  article-title: Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-017-0641-9
– volume: 14
  start-page: 1090
  year: 2018
  ident: ref_62
  article-title: Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-018-0166-5
– volume: 24
  start-page: 67
  year: 2000
  ident: ref_92
  article-title: The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2000.tb00533.x
– volume: 68
  start-page: 671
  year: 2016
  ident: ref_31
  article-title: Natural terpenoids as a promising source for modulation of GABAergic system and treatment of neurological diseases
  publication-title: Pharmacol. Rep.
  doi: 10.1016/j.pharep.2016.03.014
– volume: 30
  start-page: 25
  year: 2008
  ident: ref_45
  article-title: Natural products as promising drug candidates for the treatment of hepatitis B and C
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/aps.2008.5
– ident: ref_105
  doi: 10.3389/fpls.2014.00390
– volume: 134
  start-page: 109485
  year: 2020
  ident: ref_19
  article-title: Overexpression of the transcription factor HAC1 improves nerolidol production in engineered yeast
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2019.109485
– volume: 30
  start-page: 26
  year: 2012
  ident: ref_59
  article-title: Cytochrome P450 monooxygenases: An update on perspectives for synthetic application
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2011.06.012
– volume: 17
  start-page: 1
  year: 2018
  ident: ref_101
  article-title: Enhancement of the catalytic activity of Isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-018-0913-z
– volume: 37
  start-page: 114
  year: 2016
  ident: ref_11
  article-title: Developing fermentative terpenoid production for commercial usage
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2015.10.007
– volume: 38
  start-page: 107409
  year: 2020
  ident: ref_37
  article-title: Betulin and its derivatives as novel compounds with different pharmacological effects
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2019.06.008
– volume: 62
  start-page: 323
  year: 2014
  ident: ref_64
  article-title: Insight into yeast: A study model of lipid metabolism and terpenoid biosynthesis
  publication-title: Biotechnol. Appl. Biochem.
  doi: 10.1002/bab.1272
– volume: 5
  start-page: 167
  year: 2008
  ident: ref_52
  article-title: Terpenoids: Opportunities for Biosynthesis of Natural Product Drugs Using Engineered Microorganisms
  publication-title: Mol. Pharm.
  doi: 10.1021/mp700151b
– volume: 48
  start-page: 1772
  year: 2016
  ident: ref_53
  article-title: The antitumor effects of geraniol: Modulation of cancer hallmark pathways (Review)
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2016.3427
– volume: 18
  start-page: 767
  year: 2001
  ident: ref_42
  article-title: The anti-malarial artesunate is also active against cancer
  publication-title: Int. J. Oncol.
– volume: 56
  start-page: 289
  year: 2018
  ident: ref_83
  article-title: Bioethanol Production from Renewable Raw Materials and its Separation and Purification: A Review
  publication-title: Food Technol. Biotechnol.
– volume: 57
  start-page: 6189
  year: 2009
  ident: ref_110
  article-title: Squalene versus Ergosterol Formation Using Saccharomyces cerevisiae: Combined Effect of Oxygen Supply, Inoculum Size, and Fermentation Time on Yield and Selectivity of the Bioprocess
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf900673n
– volume: 18
  start-page: 8
  year: 2018
  ident: ref_120
  article-title: Physiologic and metabolic characterization of Saccharomyces cerevisiae reveals limitations in the synthesis of the triterpene squalene
  publication-title: FEMS Yeast Res.
  doi: 10.1093/femsyr/foy077
– volume: 9
  start-page: 30171
  year: 2019
  ident: ref_21
  article-title: Stepwise engineering of Saccharomyces cerevisiae to produce (+)-valencene and its related sesquiterpenes
  publication-title: RSC Adv.
  doi: 10.1039/C9RA05558D
– volume: 122
  start-page: 285
  year: 2006
  ident: ref_94
  article-title: Effect of nitrogen limitation on the ergosterol production by fed-batch culture of Saccharomyces cerevisiae
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2005.11.020
– volume: 35
  start-page: 7
  year: 2015
  ident: ref_10
  article-title: Production of natural products through metabolic engineering of Saccharomyces cerevisiae
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2014.12.004
– volume: 43
  start-page: 997
  year: 2020
  ident: ref_46
  article-title: Semi-continuous production of the anticancer drug taxol by Aspergillus fumigatus and Alternaria tenuissima immobilized in calcium alginate beads
  publication-title: Bioprocess. Biosyst. Eng.
  doi: 10.1007/s00449-020-02295-8
– volume: 10
  start-page: 1
  year: 2019
  ident: ref_63
  article-title: Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11290-x
– volume: 20
  start-page: 146
  year: 2013
  ident: ref_79
  article-title: Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2013.10.004
– volume: 2
  start-page: 483
  year: 2011
  ident: ref_66
  article-title: Identification and microbial production of a terpene-based advanced biofuel
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1494
– volume: 33
  start-page: 377
  year: 2015
  ident: ref_90
  article-title: Distributing a metabolic pathway among a microbial consortium enhances production of natural products
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3095
– volume: 117
  start-page: 11570
  year: 2017
  ident: ref_1
  article-title: Structural and Chemical Biology of Terpenoid Cyclases
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00287
– volume: 3
  start-page: 298
  year: 2014
  ident: ref_70
  article-title: Engineering Monoterpene Production in Yeast Using a Synthetic Dominant Negative Geranyl Diphosphate Synthase
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb400115e
– volume: 33
  start-page: 366
  year: 2003
  ident: ref_106
  article-title: Ergosterol production by fed-batch fermentation of Saccharomyces cerevisiae
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/S0141-0229(03)00132-7
– volume: 32
  start-page: 451
  year: 2019
  ident: ref_114
  article-title: High-density Cultivation in the Production of Microbial Products
  publication-title: Chem. Biochem. Eng. Q.
  doi: 10.15255/CABEQ.2018.1394
– volume: 24
  start-page: 1
  year: 2019
  ident: ref_14
  article-title: Progress in research on paclitaxel and tumor immunotherapy
  publication-title: Cell. Mol. Biol. Lett.
  doi: 10.1186/s11658-019-0164-y
– volume: 47
  start-page: 10210
  year: 2016
  ident: ref_40
  article-title: ChemInform Abstract: Artemisinin—A Gift from Traditional Chinese Medicine to the World (Nobel Lecture)
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201601967
SSID ssj0057141
Score 2.43588
SecondaryResourceType review_article
Snippet Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 295
SubjectTerms Biosynthesis
Cancer
Chemical synthesis
Cyanobacteria
Cytochrome
E coli
Enzymes
fed-batch
Fermentation
Genetic engineering
Industrial production
Lignocellulose
Metabolites
Microorganisms
Natural products
Pharmaceutical industry
pharmaceutics
Productivity
Raw materials
Review
S. cerevisiae
terpenoids
Yeast
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1La9wwEIBFySmX0jZ9uE2DSkqgEBO9bNnHtHQJOZQ9bGh6MpI8IgvFu2Q3h_z7zlj2Pkqgl16tMcieGc2MLX3D2GdfeoDYQm6Jh2isqHNX1S6XUYDzPpYC-l2-P8qrG3N9W9zutPqiPWEJD5xe3AUm1MIqFUQonAlW19B6a-vgi-gdRktafTHmjcVUWoMLK41MMFKNRf3F8o4oMkJRF4md8NNT-p9KLf_eIbkTciYv2PMhV-SXaY4v2TPoXrGzaYJNP57z2fbs1Oqcn_HpFkP9eMR-TnDRHU4WdXyk0MKKY5rKpwn0SiOLON44fNjmM7hfQreYtys-7_hILISW_6JGP6_ZzeT77NtVPrRRyEMh5DpvjQ9SKS9VW0Qho9Ghiq0z2sqADi-8jpi1RaGroHTbykgQOUeYGCxNwHr9hh10iw7eMW49GChc9BEilkqmCrEsqUKsy5q4ihn7Mr7dJgyMcWp18bvBWoM00Ww1kbHTjewykTWelPpKStpIEA27v4A20gw20vzLRjJ2PKq4GVx01WAtRXh7DOEZ-7QZRueiPyaug8UDyWBGWhop6oy9TRaxmYkmNpoWKmN2z1b2pro_0s3veoB3hXmeker9_3i2D-xQ0TYboXNVHrOD9f0DfMQ8ae1Pepf4A00AEy4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3La9wwEIdFm1x6KW3Th9u0KLQECjHRy5Z9Kk3IEnoIS9nQ9GSsV7JQ7O16c8h_3xlb3s2WkKtHBuGRRr-RpW8I-WJy431wPtXIQ1SalWldlHXKA_O1MSFnvj_le5GfX6ofV9lV3HDr4rHKMSb2gdq1FvfIj0H6Io0cIu63xd8Uq0bh39VYQuMp2QVbAcnX7snZxfTnGIszzRUfoKQSkvvjxQ3SZJjAahL3lqGe1v-QxPz_pOS9pWfygjyPmpF-H5z8kjzxzStyOB2g03dHdLa5Q9Ud0UM63eCo7_bIrwkE33jDqKEjjdZ3FOQqnQ7AV7S0YXwxbnDTmV8ufNPOXUfnDR3Jhd7R31jw5zW5nJzNTs_TWE4htRnjq9QpY7kQhguXBcaDkrYIrlZScwsTnxkZQL0FJgsrpHM8IEyuRlwMpCheG_mG7DRt498Rqo1XPquDCT5AyqQKG_IcM8UyL5GvmJCv49etbGSNY8mLPxXkHOiJauOJhHxet10MhI0HW52gk9YtkIrdP2iX11WcZBUkX0wLYZnNamW1LL0zWpfWZMHUoKwSsj-6uIpTtas2AyshB2szTDL8c1I3vr3FNqBMc8VZmZC3w4hY90QiI00ykRC9NVa2urptaeY3Pci7AL2nuHj_eLc-kGcCD9IwmYp8n-yslrf-IyihlfkUh_s_FsMLyw
  priority: 102
  providerName: ProQuest
Title Fermentation Strategies for Production of Pharmaceutical Terpenoids in Engineered Yeast
URI https://www.ncbi.nlm.nih.gov/pubmed/33810302
https://www.proquest.com/docview/2550212303
https://www.proquest.com/docview/2508564109
https://pubmed.ncbi.nlm.nih.gov/PMC8066412
https://doaj.org/article/4870722c0c5a4c739edb779cb5fba635
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3fa9swEMePrn3Zy9jveeuCxkZhUG-yJFv2wxjraCiDlTAS1j0ZS5baQLG7JIXlv9-df2UpedirJYHQ6aT7ytLnAN6ZxDjnSxdq4iEqzbOwSLMijDx3hTE-4a655XuenM3Ut4v4Yg_6_J3dAC53SjvKJzVbXH_483v9GR3-EylOlOwfb66IEcNFFt-DA9yRNDnodzX8TYh1m8GSHnWFqVC6xZTeabu1MTX8_l1B5927k_9sRuOH8KCLItmX1uyPYM9Vj-Fo0mKo18dsunlVtTxmR2yyAVSvn8DPMS7H3ZujivV8WrdkGMCySYuApZLa9w27I282dQscnXpeLtm8Yj3L0JXsF6UAegqz8en061nYJVgIbcyjVVgqYyMhTCTK2PPIK2lTXxZK6sjiUsCN9BjPeS5TK2RZRp7wcgUBZFC0OG3kM9iv6sq9AKaNUy4uvPHOo4hSqfVJQtoxSzIiLgbwvh_d3Hb0cUqCcZ2jCiFL5BtLBPB2qHvTMjd21johIw01iJPdfKgXl3nndjnKMa6FsNzGhbJaZq40WmfWxN4UGGsFcNibOO_nXo4qi8D3uLkH8GYoRrejfylF5epbqoOxaqIingXwvJ0RQ08kUdMkFwHorbmy1dXtkmp-1aC9U4wAVSRe_tcIvIL7gm7YcBmK5BD2V4tb9xpDpJUZwcHJ6fnkx6g5Yhg13vAXhiwSmA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1bb9MwFMePRvcAL4g7GQOMgElIi-Zb4uYBIQarOjaqCnViewqxY7NKU1LaTqhfis-ITy7tiibe9ho7kZVzfPI_sf07AG90rK11uQ0V8hClokmYdZMsZI7aTGsXU1vt8h3E_RP55TQ63YA_7VkY3FbZxsQqUOelwX_ke176Io3cR9wPk18hVo3C1dW2hEbtFkd28dunbLP3h5-9fd9y3jsYfeqHTVWB0ESUzcNcasM414znkaPMSWG6Ls-kUMx4_6daOC9iHBVdw0WeM4dMtQypKV6pW6WFf-4t2JTCpzId2Nw_GAy_tbE_UkyyGoIqREL3JudIr6Ecq1dc-exV1QGuk7T_7sy88qnr3YO7jUYlH2unug8btngAO8Macr3YJaPVma3ZLtkhwxX-evEQvvd8sG9ONBWkpd_aGfHymAxrwCy2lK69sfmhTkZ2OrFFOc5nZFyQlpRoc3KGBYYewcmNvOjH0CnKwj4ForSVNsqcdtb5FE12jYtjzEyTOEGeYwDv2rebmoZtjiU2LlKf46Al0pUlAni97DupiR7X9tpHIy17IIW7ulBOf6bNpE59skcV54aaKJNGicTmWqnE6MjpzCu5ALZbE6dNaJilK0cO4NWy2U9qXKnJClteYh-vhGPJaBLAk9ojliMRyGQTlAeg1nxlbajrLcX4vAKHd72-lIxv_X9YL-F2f_T1OD0-HBw9gzscN_FQEfJ4Gzrz6aV97lXYXL9oXJ_Aj5uebX8B6ZBHOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYR4QdwJDDACJiEtqm-JmweEGFu1MVRFqBPjKcSOzSqhpDSdUP8avw6fJmlXNPG21_gksnIu_o59_B2A1zrW1rrChgr5EKWiSZgPkjxkjtpcaxdTu6zyHcVHp_LTWXS2BX-6uzBYVtnFxGWgLiqDe-R9D32RjdxH3L5ryyLSg-H76a8QO0jhSWvXTqMxkRO7-O3Tt_rd8YHX9RvOh4fjj0dh22EgNBFl87CQ2jDONeNF5ChzUpiBK3IpFDPeF6gWzgMaR8XAcFEUzCG_Wo4MKh61W6WF_-4N2FY-K6I92N4_HKVfunUgUkyyhhBViIT2p-fIZEM5drK4tAQuOwVcBW__rdK8tOwN78DtFq-SD42B3YUtW96D3bQhvF7skfH6_la9R3ZJuqbCXtyHr0Mf-NvbTSXpmHBtTTxUJmlDNosjletebDfXydjOprasJkVNJiXpWBNtQb5hs6EHcHotP_oh9MqqtI-BKG2ljXKnnXU-XZMD4-IYs9QkTpDbMYC33d_NTMtzju02fmY-30FNZGtNBPBqJTtt2D2ulNpHJa0kkJF7-aCa_chaB8984kcV54aaKJdGicQWWqnE6Mjp3KO6AHY6FWdtmKiztVEH8HI17B0cT23y0lYXKONRcSwZTQJ41FjEaiYC-dkE5QGoDVvZmOrmSDk5X5KIDzzWlIw_-f-0XsBN72XZ5-PRyVO4xbGeh4qQxzvQm88u7DMPyOb6eWv5BL5ft7P9BQJvS28
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fermentation+Strategies+for+Production+of+Pharmaceutical+Terpenoids+in+Engineered+Yeast&rft.jtitle=Pharmaceuticals+%28Basel%2C+Switzerland%29&rft.au=Carsanba%2C+Erdem&rft.au=Pintado%2C+Manuela&rft.au=Oliveira%2C+Carla&rft.date=2021-03-26&rft.issn=1424-8247&rft.eissn=1424-8247&rft.volume=14&rft.issue=4&rft.spage=295&rft_id=info:doi/10.3390%2Fph14040295&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ph14040295
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8247&client=summon