Fermentation Strategies for Production of Pharmaceutical Terpenoids in Engineered Yeast
Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorpti...
Saved in:
Published in | Pharmaceuticals (Basel, Switzerland) Vol. 14; no. 4; p. 295 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.03.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Production of these compounds are generally carried out through extraction from their natural sources or chemical synthesis. However, these processes are generally unsustainable, produce low yield, and result in wasting of substantial resources, most of them limited. Microbial production of terpenoids provides a sustainable and environment-friendly alternative. In recent years, the yeast Saccharomyces cerevisiae has become a suitable cell factory for industrial terpenoid biosynthesis due to developments in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling. Besides that, fermentation development has a significant importance on achieving high titer, yield, and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not been yet comprehensively discussed in the literature. This review summarizes recent studies of recombinant production of pharmaceutically important terpenoids by engineered yeast, S. cerevisiae, with special focus on fermentation strategies to increase TYP in order to meet industrial demands to feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed (strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and continuous) are discussed. |
---|---|
AbstractList | Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Production of these compounds are generally carried out through extraction from their natural sources or chemical synthesis. However, these processes are generally unsustainable, produce low yield, and result in wasting of substantial resources, most of them limited. Microbial production of terpenoids provides a sustainable and environment-friendly alternative. In recent years, the yeast Saccharomyces cerevisiae has become a suitable cell factory for industrial terpenoid biosynthesis due to developments in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling. Besides that, fermentation development has a significant importance on achieving high titer, yield, and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not been yet comprehensively discussed in the literature. This review summarizes recent studies of recombinant production of pharmaceutically important terpenoids by engineered yeast, S. cerevisiae, with special focus on fermentation strategies to increase TYP in order to meet industrial demands to feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed (strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and continuous) are discussed. Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Production of these compounds are generally carried out through extraction from their natural sources or chemical synthesis. However, these processes are generally unsustainable, produce low yield, and result in wasting of substantial resources, most of them limited. Microbial production of terpenoids provides a sustainable and environment-friendly alternative. In recent years, the yeast Saccharomyces cerevisiae has become a suitable cell factory for industrial terpenoid biosynthesis due to developments in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling. Besides that, fermentation development has a significant importance on achieving high titer, yield, and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not been yet comprehensively discussed in the literature. This review summarizes recent studies of recombinant production of pharmaceutically important terpenoids by engineered yeast, S. cerevisiae , with special focus on fermentation strategies to increase TYP in order to meet industrial demands to feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed (strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and continuous) are discussed. Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Production of these compounds are generally carried out through extraction from their natural sources or chemical synthesis. However, these processes are generally unsustainable, produce low yield, and result in wasting of substantial resources, most of them limited. Microbial production of terpenoids provides a sustainable and environment-friendly alternative. In recent years, the yeast has become a suitable cell factory for industrial terpenoid biosynthesis due to developments in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling. Besides that, fermentation development has a significant importance on achieving high titer, yield, and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not been yet comprehensively discussed in the literature. This review summarizes recent studies of recombinant production of pharmaceutically important terpenoids by engineered yeast, , with special focus on fermentation strategies to increase TYP in order to meet industrial demands to feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed (strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and continuous) are discussed. Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Production of these compounds are generally carried out through extraction from their natural sources or chemical synthesis. However, these processes are generally unsustainable, produce low yield, and result in wasting of substantial resources, most of them limited. Microbial production of terpenoids provides a sustainable and environment-friendly alternative. In recent years, the yeast Saccharomyces cerevisiae has become a suitable cell factory for industrial terpenoid biosynthesis due to developments in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling. Besides that, fermentation development has a significant importance on achieving high titer, yield, and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not been yet comprehensively discussed in the literature. This review summarizes recent studies of recombinant production of pharmaceutically important terpenoids by engineered yeast, S. cerevisiae, with special focus on fermentation strategies to increase TYP in order to meet industrial demands to feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed (strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and continuous) are discussed.Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Production of these compounds are generally carried out through extraction from their natural sources or chemical synthesis. However, these processes are generally unsustainable, produce low yield, and result in wasting of substantial resources, most of them limited. Microbial production of terpenoids provides a sustainable and environment-friendly alternative. In recent years, the yeast Saccharomyces cerevisiae has become a suitable cell factory for industrial terpenoid biosynthesis due to developments in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling. Besides that, fermentation development has a significant importance on achieving high titer, yield, and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not been yet comprehensively discussed in the literature. This review summarizes recent studies of recombinant production of pharmaceutically important terpenoids by engineered yeast, S. cerevisiae, with special focus on fermentation strategies to increase TYP in order to meet industrial demands to feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed (strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and continuous) are discussed. |
Author | Carsanba, Erdem Pintado, Manuela Oliveira, Carla |
AuthorAffiliation | 2 CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; mpintado@porto.ucp.pt 1 Amyris BioProducts Portugal, Unipessoal, Lda. Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; carsanba@amyris.com |
AuthorAffiliation_xml | – name: 1 Amyris BioProducts Portugal, Unipessoal, Lda. Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; carsanba@amyris.com – name: 2 CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; mpintado@porto.ucp.pt |
Author_xml | – sequence: 1 givenname: Erdem surname: Carsanba fullname: Carsanba, Erdem – sequence: 2 givenname: Manuela surname: Pintado fullname: Pintado, Manuela – sequence: 3 givenname: Carla surname: Oliveira fullname: Oliveira, Carla |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33810302$$D View this record in MEDLINE/PubMed |
BookMark | eNptkltrFTEQgINU7EVf_AGy4IsUjk5uJ7svQimtFgoWrIhPIZtMzslhNzkmu4L_3rSn1bb4lMt88zHMzCHZiykiIa8pvOe8gw_bNRUggHXyGTmggolFy4Tae3DfJ4elbACkooK-IPuctxQ4sAPy_RzziHEyU0ix-TplM-EqYGl8ys1VTm62t5Hkm6u1yaOxOE_BmqG5xrzFmIIrTYjNWVyFiJjRNT_QlOklee7NUPDV3XlEvp2fXZ9-Xlx--XRxenK5sBLotHCit5SxnjInPVAvuG29M4IrakEB9NwLqBHeWsado54CCCPrW7AWVc-PyMXO65LZ6G0Oo8m_dTJB336kvNIm14IH1KJVoBizYKURVvEOXa9UZ3vpe7Pksro-7lzbuR_R2dqWbIZH0seRGNZ6lX7pFpZLQVkVvLsT5PRzxjLpMRSLw2AiprloJqGVlYSuom-foJs051hbVSkJrNqAV-rNw4r-lnI_vwrADrA5lZLRaxt2s6wFhkFT0Dcrov-tSE05fpJyb_0P_Acbw7sQ |
CitedBy_id | crossref_primary_10_1016_j_coisb_2023_100502 crossref_primary_10_1016_j_fbio_2025_105912 crossref_primary_10_1016_j_phymed_2024_155638 crossref_primary_10_1002_cbic_202400902 crossref_primary_10_1016_j_phytochem_2024_114099 crossref_primary_10_1093_lambio_ovae054 crossref_primary_10_3390_molecules29051127 crossref_primary_10_3389_fbioe_2022_805429 crossref_primary_10_3390_fermentation8080372 crossref_primary_10_1371_journal_pone_0309325 crossref_primary_10_1016_j_phytochem_2022_113380 crossref_primary_10_1021_acs_jafc_3c02932 crossref_primary_10_1021_acs_jafc_3c01820 crossref_primary_10_1021_acs_jafc_4c06818 crossref_primary_10_1186_s12934_025_02667_3 crossref_primary_10_3389_fmicb_2022_960558 crossref_primary_10_1021_acs_jafc_4c08813 crossref_primary_10_1016_j_lwt_2024_117244 crossref_primary_10_3390_molecules29143328 crossref_primary_10_1016_j_tifs_2023_104252 crossref_primary_10_3390_ijms252010909 crossref_primary_10_1186_s40643_023_00647_2 crossref_primary_10_1007_s43994_024_00180_8 crossref_primary_10_1021_acs_jafc_5c00273 crossref_primary_10_1016_j_heliyon_2025_e42937 crossref_primary_10_3390_fermentation9110969 crossref_primary_10_3390_fermentation11030147 crossref_primary_10_1002_biot_202200510 crossref_primary_10_3389_fbioe_2023_1250667 crossref_primary_10_3390_plants11060789 crossref_primary_10_1080_10408347_2023_2219757 crossref_primary_10_1007_s10068_023_01287_0 crossref_primary_10_1016_j_indcrop_2022_115721 crossref_primary_10_1007_s00253_023_12514_3 crossref_primary_10_1007_s11274_022_03241_4 crossref_primary_10_1016_j_chroma_2024_464815 crossref_primary_10_1186_s12934_022_01949_4 crossref_primary_10_1016_j_ymben_2024_04_003 crossref_primary_10_5327_Z2176_94781859 crossref_primary_10_1016_j_psep_2024_08_122 crossref_primary_10_1039_D2GC00867J |
Cites_doi | 10.1007/s00253-020-10495-1 10.1016/j.ymben.2014.07.006 10.1002/yea.3300 10.1016/j.copbio.2017.07.002 10.3390/molecules14062016 10.1016/B978-0-08-088504-9.00090-8 10.2174/0929867325666180214110932 10.1002/bit.24547 10.1021/acs.jafc.9b07290 10.1073/pnas.1515826113 10.1016/B978-0-08-099953-1.00006-5 10.1016/j.ymben.2018.03.005 10.1007/s10815-015-0553-8 10.1186/1475-2859-11-117 10.1007/s10295-020-02314-3 10.1111/j.1476-5381.2011.01238.x 10.4196/kjpp.2015.19.1.21 10.1016/S0020-7519(02)00194-7 10.1128/AAC.01033-07 10.1016/j.ejphar.2017.09.049 10.1016/j.ymben.2018.07.010 10.1128/AEM.01361-10 10.1002/aic.14950 10.1016/B978-0-12-816695-6.00009-X 10.1186/1475-2859-12-76 10.1016/j.jbiosc.2009.02.012 10.1021/acs.jafc.8b07141 10.1021/acssynbio.9b00135 10.1080/07388551.2017.1299679 10.1093/femsyr/fox080 10.1016/j.ymben.2012.07.010 10.1186/s12934-019-1198-6 10.1016/j.copbio.2020.02.001 10.1186/1475-2859-12-84 10.1007/s10600-012-0237-x 10.1016/j.micres.2017.11.013 10.1111/j.1567-1364.2012.00802.x 10.1016/j.tibtech.2018.11.008 10.1093/femsyr/fox037 10.1016/j.ijfoodmicro.2017.07.006 10.1016/j.phytochem.2020.112608 10.1021/acs.jafc.9b06203 10.1128/AEM.71.5.2239-2243.2005 10.1007/s00253-019-09892-y 10.1186/s40643-019-0242-z 10.1016/j.synbio.2019.02.002 10.3934/microbiol.2020001 10.1002/bit.23129 10.1128/AEM.00277-09 10.1007/s00253-016-7337-7 10.1016/j.biortech.2016.12.061 10.1155/2014/957102 10.1021/acs.jafc.9b03456 10.3390/molecules24213961 10.1016/S0168-1605(02)00144-7 10.1186/s12934-020-1284-9 10.1155/2014/215872 10.1186/s12934-019-1099-8 10.1016/j.jprot.2014.01.031 10.1109/ACC.2006.1657601 10.1007/s00425-018-3047-y 10.1073/pnas.1110740109 10.1016/S0740-0020(02)00091-6 10.1016/j.jbiotec.2004.09.010 10.1186/s13068-019-1360-8 10.1016/j.jgr.2016.08.004 10.1016/j.ymben.2017.03.005 10.1007/s00404-014-3408-0 10.1016/j.jbiotec.2009.09.020 10.1128/AAC.00122-17 10.1038/s41421-018-0075-5 10.1038/sj.bjp.0706406 10.1002/yea.1827 10.1007/s10295-019-02231-0 10.1186/s13068-017-0728-x 10.1111/jam.13105 10.1016/j.bej.2019.03.011 10.1002/bit.26377 10.1016/j.ejphar.2016.12.008 10.3389/fmicb.2018.02460 10.1186/s12934-017-0641-9 10.1038/s41589-018-0166-5 10.1111/j.1574-6976.2000.tb00533.x 10.1016/j.pharep.2016.03.014 10.1038/aps.2008.5 10.3389/fpls.2014.00390 10.1016/j.enzmictec.2019.109485 10.1016/j.tibtech.2011.06.012 10.1186/s12934-018-0913-z 10.1016/j.copbio.2015.10.007 10.1016/j.biotechadv.2019.06.008 10.1002/bab.1272 10.1021/mp700151b 10.3892/ijo.2016.3427 10.1021/jf900673n 10.1093/femsyr/foy077 10.1039/C9RA05558D 10.1016/j.jbiotec.2005.11.020 10.1016/j.copbio.2014.12.004 10.1007/s00449-020-02295-8 10.1038/s41467-019-11290-x 10.1016/j.ymben.2013.10.004 10.1038/ncomms1494 10.1038/nbt.3095 10.1021/acs.chemrev.7b00287 10.1021/sb400115e 10.1016/S0141-0229(03)00132-7 10.15255/CABEQ.2018.1394 10.1186/s11658-019-0164-y 10.1002/anie.201601967 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3390/ph14040295 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1424-8247 |
ExternalDocumentID | oai_doaj_org_article_4870722c0c5a4c739edb779cb5fba635 PMC8066412 33810302 10_3390_ph14040295 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Amyris Bio Products Portugal Unipessoal Lda and Escola Superior de Biotecnolo-gia-Universidade Católica Portuguesa through Alchemy project-Capturing high value from industrial fermentation bio products grantid: POCI-01-0247-FEDER-027578 |
GroupedDBID | --- 2WC 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACGFO ACIHN ACUHS ADBBV AEAQA AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ CCPQU CITATION DIK DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH GX1 HH5 HYE IAO IHR KQ8 M2O M48 MK0 MODMG M~E OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM TUS NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ITC PUEGO |
ID | FETCH-LOGICAL-c501t-d4bc122b12d5f01f43c8fda4371c0700b3f405f038c23dd1f1004a5038428e7b3 |
IEDL.DBID | M48 |
ISSN | 1424-8247 |
IngestDate | Wed Aug 27 01:14:52 EDT 2025 Thu Aug 21 18:45:51 EDT 2025 Fri Jul 11 01:14:05 EDT 2025 Mon Jun 30 14:46:25 EDT 2025 Thu Apr 03 07:05:47 EDT 2025 Thu Apr 24 23:09:08 EDT 2025 Tue Jul 01 04:13:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | fermentation pharmaceutics terpenoids fed-batch S. cerevisiae |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-d4bc122b12d5f01f43c8fda4371c0700b3f405f038c23dd1f1004a5038428e7b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2550212303?pq-origsite=%requestingapplication% |
PMID | 33810302 |
PQID | 2550212303 |
PQPubID | 2032350 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4870722c0c5a4c739edb779cb5fba635 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8066412 proquest_miscellaneous_2508564109 proquest_journals_2550212303 pubmed_primary_33810302 crossref_citationtrail_10_3390_ph14040295 crossref_primary_10_3390_ph14040295 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210326 |
PublicationDateYYYYMMDD | 2021-03-26 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210326 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Pharmaceuticals (Basel, Switzerland) |
PublicationTitleAlternate | Pharmaceuticals (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ni (ref_109) 2019; 4 Dai (ref_79) 2013; 20 Zhao (ref_74) 2017; 227 Khor (ref_117) 2010; 28 Russo (ref_48) 2011; 163 Qu (ref_19) 2020; 134 Appalasamy (ref_43) 2014; 2014 Ahmed (ref_85) 2019; 146 Torija (ref_102) 2003; 80 Chen (ref_101) 2018; 17 Ebert (ref_120) 2018; 18 Chen (ref_55) 2021; 182 Jongedijk (ref_81) 2014; 32 Luo (ref_51) 2020; 580 Ahmed (ref_46) 2020; 43 Paramasivan (ref_57) 2017; 37 Ajikumar (ref_52) 2008; 5 Cheng (ref_72) 2019; 8 Cho (ref_53) 2016; 48 Kundas (ref_83) 2018; 56 Ouyang (ref_21) 2019; 9 Kiyama (ref_47) 2017; 815 (ref_92) 2000; 24 Muramatsu (ref_100) 2009; 108 Wohlfarth (ref_45) 2008; 30 Narendranath (ref_98) 2005; 71 Zhang (ref_71) 2015; 61 Sandoval (ref_95) 2014; 25 Amiri (ref_37) 2020; 38 Hu (ref_64) 2014; 62 Biggs (ref_15) 2016; 113 Wang (ref_35) 2019; 5 Dai (ref_78) 2012; 109 Ateba (ref_29) 2018; 25 Zhang (ref_77) 2018; 49 Shang (ref_94) 2006; 122 Fischer (ref_88) 2011; 108 Efferth (ref_42) 2001; 18 Agarwal (ref_49) 2015; 32 Peng (ref_84) 2017; 10 Nandy (ref_16) 2018; 207 Tan (ref_106) 2003; 33 Zhuang (ref_24) 2019; 18 Scalcinati (ref_61) 2012; 11 Albertsen (ref_67) 2010; 77 Meadows (ref_26) 2016; 537 Zhao (ref_91) 2014; 101 Ignea (ref_70) 2014; 3 Meshnick (ref_39) 2002; 32 Mantzouridou (ref_110) 2009; 57 Bian (ref_58) 2017; 48 Czarnotta (ref_75) 2017; 114 Torija (ref_93) 2003; 20 Jongedijk (ref_54) 2016; 100 Zhao (ref_69) 2017; 16 Creek (ref_41) 2008; 52 Belo (ref_107) 2005; 115 Song (ref_33) 2014; 291 Tu (ref_40) 2016; 47 Saarela (ref_118) 2003; 21 Belcher (ref_2) 2020; 65 Pertwee (ref_50) 2006; 147 Zhu (ref_14) 2019; 24 Paddon (ref_27) 2013; 496 Benjamin (ref_13) 2016; 27 Xu (ref_32) 2017; 61 Tokuhiro (ref_89) 2009; 75 Zhang (ref_7) 2017; 17 Xiao (ref_12) 2019; 37 Ouellet (ref_66) 2011; 2 Morales (ref_96) 2012; 12 Alexander (ref_18) 2017; 35 Trojan (ref_99) 2009; 14 Zhou (ref_90) 2015; 33 Kim (ref_36) 2017; 41 Moser (ref_5) 2019; 103 Jiang (ref_73) 2017; 41 Chen (ref_65) 2020; 68 Behrendorff (ref_80) 2013; 12 Wang (ref_23) 2018; 9 Wang (ref_6) 2019; 6 Lyu (ref_56) 2019; 67 Burd (ref_76) 2013; 15 Zhang (ref_4) 2020; 68 Deng (ref_68) 2016; 121 Subramaniam (ref_114) 2019; 32 Christianson (ref_1) 2017; 117 Sharma (ref_9) 2017; 795 Hill (ref_28) 2020; 47 Ding (ref_111) 2009; 144 ref_119 Esmaeili (ref_116) 2012; 48 Carvalho (ref_34) 2017; 17 Gruchattka (ref_86) 2013; 12 Zabed (ref_103) 2014; 2014 ref_113 ref_112 Wong (ref_82) 2018; 47 Leavell (ref_11) 2016; 37 Kim (ref_44) 2014; 19 Cunha (ref_87) 2019; 12 An (ref_38) 2020; 104 Ma (ref_22) 2019; 67 Westfall (ref_60) 2012; 109 Mesquita (ref_108) 2019; 18 ref_104 Manayi (ref_31) 2016; 68 Parapouli (ref_17) 2020; 6 ref_105 Krivoruchko (ref_10) 2015; 35 Ignea (ref_63) 2019; 10 Yang (ref_3) 2020; 15 Hansen (ref_20) 2020; 19 Ignea (ref_62) 2018; 14 Lin (ref_25) 2019; 249 Jaeger (ref_30) 2016; 11 Urlacher (ref_59) 2012; 30 Vendramini (ref_97) 2017; 258 ref_8 Song (ref_115) 2019; 46 |
References_xml | – volume: 104 start-page: 3339 year: 2020 ident: ref_38 article-title: Biotechnological production of betulinic acid and derivatives and their applications publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-020-10495-1 – volume: 25 start-page: 215 year: 2014 ident: ref_95 article-title: Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae publication-title: Metab. Eng. doi: 10.1016/j.ymben.2014.07.006 – volume: 35 start-page: 355 year: 2017 ident: ref_18 article-title: A history of genome editing inSaccharomyces cerevisiae publication-title: Yeast doi: 10.1002/yea.3300 – volume: 48 start-page: 234 year: 2017 ident: ref_58 article-title: Strategies for terpenoid overproduction and new terpenoid discovery publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2017.07.002 – volume: 14 start-page: 2016 year: 2009 ident: ref_99 article-title: Pentacyclic Triterpene Distribution in Various Plants—Rich Sources for a New Group of Multi-Potent Plant Extracts publication-title: Molecules doi: 10.3390/molecules14062016 – ident: ref_112 doi: 10.1016/B978-0-08-088504-9.00090-8 – volume: 25 start-page: 3162 year: 2018 ident: ref_29 article-title: Natural Terpenoids Against Female Breast Cancer: A 5-year Recent Research publication-title: Curr. Med. Chem. doi: 10.2174/0929867325666180214110932 – volume: 109 start-page: 2845 year: 2012 ident: ref_78 article-title: Production of miltiradiene by metabolically engineeredSaccharomyces cerevisiae publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.24547 – volume: 68 start-page: 1382 year: 2020 ident: ref_4 article-title: Harnessing Yeast Peroxisomes and Cytosol Acetyl-CoA for Sesquiterpene α-Humulene Production publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.9b07290 – volume: 113 start-page: 3209 year: 2016 ident: ref_15 article-title: Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1515826113 – ident: ref_113 doi: 10.1016/B978-0-08-099953-1.00006-5 – volume: 47 start-page: 94 year: 2018 ident: ref_82 article-title: De novo synthesis of the sedative valerenic acid in Saccharomyces cerevisiae publication-title: Metab. Eng. doi: 10.1016/j.ymben.2018.03.005 – volume: 32 start-page: 1575 year: 2015 ident: ref_49 article-title: Marijuana, phytocannabinoids, the endocannabinoid system, and male fertility publication-title: J. Assist. Reprod. Genet. doi: 10.1007/s10815-015-0553-8 – volume: 11 start-page: 117 year: 2012 ident: ref_61 article-title: Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae publication-title: Microb. Cell Factories doi: 10.1186/1475-2859-11-117 – volume: 47 start-page: 965 year: 2020 ident: ref_28 article-title: Clean manufacturing powered by biology: How Amyris has deployed technology and aims to do it better publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-020-02314-3 – volume: 21 start-page: 1 year: 2003 ident: ref_118 article-title: Modelling of a fed-batch fermentation process publication-title: Most – volume: 163 start-page: 1344 year: 2011 ident: ref_48 article-title: Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.2011.01238.x – volume: 19 start-page: 21 year: 2014 ident: ref_44 article-title: Anti-inflammatory, Antioxidant and Antimicrobial Effects of Artemisinin Extracts fromArtemisia annuaL publication-title: Korean J. Physiol. Pharmacol. doi: 10.4196/kjpp.2015.19.1.21 – volume: 32 start-page: 1655 year: 2002 ident: ref_39 article-title: Artemisinin: Mechanisms of action, resistance and toxicity publication-title: Int. J. Parasitol. doi: 10.1016/S0020-7519(02)00194-7 – volume: 52 start-page: 1291 year: 2008 ident: ref_41 article-title: Relationship between Antimalarial Activity and Heme Alkylation for Spiro- and Dispiro-1,2,4-Trioxolane Antimalarials publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01033-07 – volume: 815 start-page: 405 year: 2017 ident: ref_47 article-title: Estrogenic terpenes and terpenoids: Pathways, functions and applications publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2017.09.049 – volume: 49 start-page: 28 year: 2018 ident: ref_77 article-title: Production of sesquiterpenoid zerumbone from metabolic engineered Saccharomyces cerevisiae publication-title: Metab. Eng. doi: 10.1016/j.ymben.2018.07.010 – volume: 77 start-page: 1033 year: 2010 ident: ref_67 article-title: Diversion of Flux toward Sesquiterpene Production inSaccharomyces cerevisiaeby Fusion of Host and Heterologous Enzymes publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01361-10 – volume: 61 start-page: 3172 year: 2015 ident: ref_71 article-title: Refactoring β-amyrin synthesis inSaccharomyces cerevisiae publication-title: AIChE J. doi: 10.1002/aic.14950 – ident: ref_104 doi: 10.1016/B978-0-12-816695-6.00009-X – volume: 537 start-page: 694 year: 2016 ident: ref_26 article-title: Rewriting yeast central carbon metabolism for industrial isoprenoid production publication-title: Nat. Cell Biol. – volume: 12 start-page: 76 year: 2013 ident: ref_80 article-title: 2,2-Diphenyl-1-picrylhydrazyl as a screening tool for recombinant monoterpene biosynthesis publication-title: Microb. Cell Factories doi: 10.1186/1475-2859-12-76 – volume: 15 start-page: 15 year: 2020 ident: ref_3 article-title: Advances in Pharmacological Activities of Terpenoids publication-title: Nat. Prod. Commun. – volume: 108 start-page: 52 year: 2009 ident: ref_100 article-title: Alkaline pH enhances farnesol production by Saccharomyces cerevisiae publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2009.02.012 – volume: 67 start-page: 4397 year: 2019 ident: ref_56 article-title: Potential Natural Food Preservatives and Their Sustainable Production in Yeast: Terpenoids and Polyphenols publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.8b07141 – volume: 11 start-page: 1373 year: 2016 ident: ref_30 article-title: Terpenoids with Special Pharmacological Significance: A Review publication-title: Nat. Prod. Commun. – volume: 8 start-page: 968 year: 2019 ident: ref_72 article-title: Orthogonal Engineering of Biosynthetic Pathway for Efficient Production of Limonene in Saccharomyces cerevisiae publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.9b00135 – volume: 37 start-page: 974 year: 2017 ident: ref_57 article-title: Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388551.2017.1299679 – volume: 496 start-page: 528 year: 2013 ident: ref_27 article-title: High-level semi-synthetic production of the potent antimalarial artemisinin publication-title: Nat. Cell Biol. – volume: 17 start-page: 17 year: 2017 ident: ref_7 article-title: Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels publication-title: FEMS Yeast Res. doi: 10.1093/femsyr/fox080 – volume: 15 start-page: 174 year: 2013 ident: ref_76 article-title: Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production publication-title: Metab. Eng. doi: 10.1016/j.ymben.2012.07.010 – volume: 18 start-page: 1 year: 2019 ident: ref_108 article-title: Metabolic fluxes-oriented control of bioreactors: A novel approach to tune micro-aeration and substrate feeding in fermentations publication-title: Microb. Cell Factories doi: 10.1186/s12934-019-1198-6 – volume: 65 start-page: 88 year: 2020 ident: ref_2 article-title: New frontiers: Harnessing pivotal advances in microbial engineering for the biosynthesis of plant-derived terpenoids publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2020.02.001 – volume: 12 start-page: 84 year: 2013 ident: ref_86 article-title: In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories publication-title: Microb. Cell Factories doi: 10.1186/1475-2859-12-84 – volume: 48 start-page: 322 year: 2012 ident: ref_116 article-title: Biotransformation of citral by free and immobilized Saccharomyces cerevisiae publication-title: Chem. Nat. Compd. doi: 10.1007/s10600-012-0237-x – volume: 207 start-page: 83 year: 2018 ident: ref_16 article-title: A review on sustainable yeast biotechnological processes and applications publication-title: Microbiol. Res. doi: 10.1016/j.micres.2017.11.013 – volume: 12 start-page: 477 year: 2012 ident: ref_96 article-title: Biomass production and alcoholic fermentation performance of Saccharomyces cerevisiae as a function of nitrogen source publication-title: FEMS Yeast Res. doi: 10.1111/j.1567-1364.2012.00802.x – volume: 37 start-page: 618 year: 2019 ident: ref_12 article-title: Discovery and Engineering of Cytochrome P450s for Terpenoid Biosynthesis publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.11.008 – volume: 17 start-page: 17 year: 2017 ident: ref_34 article-title: Designing microorganisms for heterologous biosynthesis of cannabinoids publication-title: FEMS Yeast Res. doi: 10.1093/femsyr/fox037 – volume: 258 start-page: 1 year: 2017 ident: ref_97 article-title: The role of nitrogen uptake on the competition ability of three vineyard Saccharomyces cerevisiae strains publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2017.07.006 – volume: 182 start-page: 112608 year: 2021 ident: ref_55 article-title: Biotransformation of betulinic acid by Circinella muscae and Cunninghamella echinulata to discover anti-inflammatory derivatives publication-title: Phytochemistry doi: 10.1016/j.phytochem.2020.112608 – volume: 68 start-page: 10252 year: 2020 ident: ref_65 article-title: Metabolic Engineering Strategies for Sustainable Terpenoid Flavor and Fragrance Synthesis publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.9b06203 – volume: 71 start-page: 2239 year: 2005 ident: ref_98 article-title: Relationship between pH and Medium Dissolved Solids in Terms of Growth and Metabolism of Lactobacilli and Saccharomyces cerevisiae during Ethanol Production publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.5.2239-2243.2005 – volume: 103 start-page: 5501 year: 2019 ident: ref_5 article-title: Identifying and engineering the ideal microbial terpenoid production host publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-019-09892-y – volume: 6 start-page: 6 year: 2019 ident: ref_6 article-title: Towards efficient terpenoid biosynthesis: Manipulating IPP and DMAPP supply publication-title: Bioresour. Bioprocess. doi: 10.1186/s40643-019-0242-z – volume: 4 start-page: 79 year: 2019 ident: ref_109 article-title: Simultaneously down-regulation of multiplex branch pathways using CRISPRi and fermentation optimization for enhancing β-amyrin production in Saccharomyces cerevisiae publication-title: Synth. Syst. Biotechnol. doi: 10.1016/j.synbio.2019.02.002 – volume: 32 start-page: 159 year: 2014 ident: ref_81 article-title: Capturing of the monoterpene olefin limonene produced inSaccharomyces cerevisiae publication-title: Yeast – volume: 6 start-page: 1 year: 2020 ident: ref_17 article-title: Saccharomyces cerevisiae and its industrial applications publication-title: AIMS Microbiol. doi: 10.3934/microbiol.2020001 – volume: 108 start-page: 1883 year: 2011 ident: ref_88 article-title: Metabolic engineering of monoterpene synthesis in yeast publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.23129 – volume: 75 start-page: 5536 year: 2009 ident: ref_89 article-title: Overproduction of Geranylgeraniol by Metabolically Engineered Saccharomyces cerevisiae publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00277-09 – volume: 100 start-page: 2927 year: 2016 ident: ref_54 article-title: Biotechnological production of limonene in microorganisms publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-7337-7 – volume: 227 start-page: 308 year: 2017 ident: ref_74 article-title: Enhancing Saccharomyces cerevisiae reactive oxygen species and ethanol stress tolerance for high-level production of protopanoxadiol publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.12.061 – volume: 2014 start-page: 1 year: 2014 ident: ref_103 article-title: Bioethanol Production from Fermentable Sugar Juice publication-title: Sci. World J. doi: 10.1155/2014/957102 – volume: 67 start-page: 8590 year: 2019 ident: ref_22 article-title: Significantly Enhanced Production of Patchoulol in Metabolically Engineered Saccharomyces cerevisiae publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.9b03456 – ident: ref_8 doi: 10.3390/molecules24213961 – volume: 80 start-page: 47 year: 2003 ident: ref_102 article-title: Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae publication-title: Int. J. Food Microbiol. doi: 10.1016/S0168-1605(02)00144-7 – volume: 19 start-page: 1 year: 2020 ident: ref_20 article-title: Integrating pathway elucidation with yeast engineering to produce polpunonic acid the precursor of the anti-obesity agent celastrol publication-title: Microb. Cell Factories doi: 10.1186/s12934-020-1284-9 – volume: 2014 start-page: 1 year: 2014 ident: ref_43 article-title: Antimicrobial Activity of Artemisinin and Precursor Derived fromIn VitroPlantlets ofArtemisia annuaL publication-title: BioMed Res. Int. doi: 10.1155/2014/215872 – volume: 18 start-page: 1 year: 2019 ident: ref_24 article-title: Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides publication-title: Microb. Cell Factories doi: 10.1186/s12934-019-1099-8 – volume: 101 start-page: 102 year: 2014 ident: ref_91 article-title: Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources publication-title: J. Proteom. doi: 10.1016/j.jprot.2014.01.031 – ident: ref_119 doi: 10.1109/ACC.2006.1657601 – volume: 249 start-page: 145 year: 2019 ident: ref_25 article-title: Engineering cyanobacteria for production of terpenoids publication-title: Planta doi: 10.1007/s00425-018-3047-y – volume: 109 start-page: E111 year: 2012 ident: ref_60 article-title: Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1110740109 – volume: 20 start-page: 255 year: 2003 ident: ref_93 article-title: Effect of the nitrogen source on the fatty acid composition of Saccharomyces cerevisiae publication-title: Food Microbiol. doi: 10.1016/S0740-0020(02)00091-6 – volume: 115 start-page: 397 year: 2005 ident: ref_107 article-title: Morphological and physiological changes in Saccharomyces cerevisiae by oxidative stress from hyperbaric air publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2004.09.010 – volume: 580 start-page: E2 year: 2020 ident: ref_51 article-title: Author Correction: Complete biosynthesis of cannabinoids and their unnatural analogues in yeast publication-title: Nat. Cell Biol. – volume: 12 start-page: 20 year: 2019 ident: ref_87 article-title: Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-019-1360-8 – volume: 41 start-page: 435 year: 2017 ident: ref_36 article-title: Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2016.08.004 – volume: 41 start-page: 57 year: 2017 ident: ref_73 article-title: Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae publication-title: Metab. Eng. doi: 10.1016/j.ymben.2017.03.005 – volume: 291 start-page: 143 year: 2014 ident: ref_33 article-title: Sequential combination of flavopiridol with Taxol synergistically suppresses human ovarian carcinoma growth publication-title: Arch. Gynecol. Obstet. doi: 10.1007/s00404-014-3408-0 – volume: 144 start-page: 279 year: 2009 ident: ref_111 article-title: Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2009.09.020 – volume: 61 start-page: e00122-17 year: 2017 ident: ref_32 article-title: In Vitro and In Vivo Antibacterial Activities of Patchouli Alcohol, a Naturally Occurring Tricyclic Sesquiterpene, against Helicobacter pylori Infection publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00122-17 – volume: 5 start-page: 1 year: 2019 ident: ref_35 article-title: Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency publication-title: Cell Discov. doi: 10.1038/s41421-018-0075-5 – volume: 147 start-page: S163 year: 2006 ident: ref_50 article-title: Cannabinoid pharmacology: The first 66 years publication-title: Br. J. Pharmacol. doi: 10.1038/sj.bjp.0706406 – volume: 28 start-page: 93 year: 2010 ident: ref_117 article-title: Saccharomyces cerevisiae: A potential stereospecific reduction tool for biotransformation of mono- and sesquiterpenoids publication-title: Yeast doi: 10.1002/yea.1827 – volume: 46 start-page: 1583 year: 2019 ident: ref_115 article-title: Microbial production of 2,3-butanediol for industrial applications publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-019-02231-0 – volume: 10 start-page: 1 year: 2017 ident: ref_84 article-title: Coupling gene regulatory patterns to bioprocess conditions to optimize synthetic metabolic modules for improved sesquiterpene production in yeast publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-017-0728-x – volume: 121 start-page: 187 year: 2016 ident: ref_68 article-title: Enhanced (S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae publication-title: J. Appl. Microbiol. doi: 10.1111/jam.13105 – volume: 146 start-page: 105 year: 2019 ident: ref_85 article-title: Design and construction of short synthetic terminators for β-amyrin production in Saccharomyces cerevisiae publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2019.03.011 – volume: 114 start-page: 2528 year: 2017 ident: ref_75 article-title: Fermentation and purification strategies for the production of betulinic acid and its lupane-type precursors in Saccharomyces cerevisiae publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26377 – volume: 27 start-page: 1339 year: 2016 ident: ref_13 article-title: Developing Commercial Production of Semi-Synthetic Artemisinin, and of β-Farnesene, an Isoprenoid Produced by Fermentation of Brazilian Sugar publication-title: J. Braz. Chem. Soc. – volume: 795 start-page: 169 year: 2017 ident: ref_9 article-title: Terpenoids as anti-colon cancer agents—A comprehensive review on its mechanistic perspectives publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2016.12.008 – volume: 9 start-page: 2460 year: 2018 ident: ref_23 article-title: Microbial platform for terpenoid production: Escherichia coli and Yeast publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02460 – volume: 16 start-page: 1 year: 2017 ident: ref_69 article-title: Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae publication-title: Microb. Cell Factories doi: 10.1186/s12934-017-0641-9 – volume: 14 start-page: 1090 year: 2018 ident: ref_62 article-title: Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0166-5 – volume: 24 start-page: 67 year: 2000 ident: ref_92 article-title: The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2000.tb00533.x – volume: 68 start-page: 671 year: 2016 ident: ref_31 article-title: Natural terpenoids as a promising source for modulation of GABAergic system and treatment of neurological diseases publication-title: Pharmacol. Rep. doi: 10.1016/j.pharep.2016.03.014 – volume: 30 start-page: 25 year: 2008 ident: ref_45 article-title: Natural products as promising drug candidates for the treatment of hepatitis B and C publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2008.5 – ident: ref_105 doi: 10.3389/fpls.2014.00390 – volume: 134 start-page: 109485 year: 2020 ident: ref_19 article-title: Overexpression of the transcription factor HAC1 improves nerolidol production in engineered yeast publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2019.109485 – volume: 30 start-page: 26 year: 2012 ident: ref_59 article-title: Cytochrome P450 monooxygenases: An update on perspectives for synthetic application publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2011.06.012 – volume: 17 start-page: 1 year: 2018 ident: ref_101 article-title: Enhancement of the catalytic activity of Isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis publication-title: Microb. Cell Factories doi: 10.1186/s12934-018-0913-z – volume: 37 start-page: 114 year: 2016 ident: ref_11 article-title: Developing fermentative terpenoid production for commercial usage publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2015.10.007 – volume: 38 start-page: 107409 year: 2020 ident: ref_37 article-title: Betulin and its derivatives as novel compounds with different pharmacological effects publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2019.06.008 – volume: 62 start-page: 323 year: 2014 ident: ref_64 article-title: Insight into yeast: A study model of lipid metabolism and terpenoid biosynthesis publication-title: Biotechnol. Appl. Biochem. doi: 10.1002/bab.1272 – volume: 5 start-page: 167 year: 2008 ident: ref_52 article-title: Terpenoids: Opportunities for Biosynthesis of Natural Product Drugs Using Engineered Microorganisms publication-title: Mol. Pharm. doi: 10.1021/mp700151b – volume: 48 start-page: 1772 year: 2016 ident: ref_53 article-title: The antitumor effects of geraniol: Modulation of cancer hallmark pathways (Review) publication-title: Int. J. Oncol. doi: 10.3892/ijo.2016.3427 – volume: 18 start-page: 767 year: 2001 ident: ref_42 article-title: The anti-malarial artesunate is also active against cancer publication-title: Int. J. Oncol. – volume: 56 start-page: 289 year: 2018 ident: ref_83 article-title: Bioethanol Production from Renewable Raw Materials and its Separation and Purification: A Review publication-title: Food Technol. Biotechnol. – volume: 57 start-page: 6189 year: 2009 ident: ref_110 article-title: Squalene versus Ergosterol Formation Using Saccharomyces cerevisiae: Combined Effect of Oxygen Supply, Inoculum Size, and Fermentation Time on Yield and Selectivity of the Bioprocess publication-title: J. Agric. Food Chem. doi: 10.1021/jf900673n – volume: 18 start-page: 8 year: 2018 ident: ref_120 article-title: Physiologic and metabolic characterization of Saccharomyces cerevisiae reveals limitations in the synthesis of the triterpene squalene publication-title: FEMS Yeast Res. doi: 10.1093/femsyr/foy077 – volume: 9 start-page: 30171 year: 2019 ident: ref_21 article-title: Stepwise engineering of Saccharomyces cerevisiae to produce (+)-valencene and its related sesquiterpenes publication-title: RSC Adv. doi: 10.1039/C9RA05558D – volume: 122 start-page: 285 year: 2006 ident: ref_94 article-title: Effect of nitrogen limitation on the ergosterol production by fed-batch culture of Saccharomyces cerevisiae publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2005.11.020 – volume: 35 start-page: 7 year: 2015 ident: ref_10 article-title: Production of natural products through metabolic engineering of Saccharomyces cerevisiae publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2014.12.004 – volume: 43 start-page: 997 year: 2020 ident: ref_46 article-title: Semi-continuous production of the anticancer drug taxol by Aspergillus fumigatus and Alternaria tenuissima immobilized in calcium alginate beads publication-title: Bioprocess. Biosyst. Eng. doi: 10.1007/s00449-020-02295-8 – volume: 10 start-page: 1 year: 2019 ident: ref_63 article-title: Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate publication-title: Nat. Commun. doi: 10.1038/s41467-019-11290-x – volume: 20 start-page: 146 year: 2013 ident: ref_79 article-title: Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides publication-title: Metab. Eng. doi: 10.1016/j.ymben.2013.10.004 – volume: 2 start-page: 483 year: 2011 ident: ref_66 article-title: Identification and microbial production of a terpene-based advanced biofuel publication-title: Nat. Commun. doi: 10.1038/ncomms1494 – volume: 33 start-page: 377 year: 2015 ident: ref_90 article-title: Distributing a metabolic pathway among a microbial consortium enhances production of natural products publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3095 – volume: 117 start-page: 11570 year: 2017 ident: ref_1 article-title: Structural and Chemical Biology of Terpenoid Cyclases publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00287 – volume: 3 start-page: 298 year: 2014 ident: ref_70 article-title: Engineering Monoterpene Production in Yeast Using a Synthetic Dominant Negative Geranyl Diphosphate Synthase publication-title: ACS Synth. Biol. doi: 10.1021/sb400115e – volume: 33 start-page: 366 year: 2003 ident: ref_106 article-title: Ergosterol production by fed-batch fermentation of Saccharomyces cerevisiae publication-title: Enzym. Microb. Technol. doi: 10.1016/S0141-0229(03)00132-7 – volume: 32 start-page: 451 year: 2019 ident: ref_114 article-title: High-density Cultivation in the Production of Microbial Products publication-title: Chem. Biochem. Eng. Q. doi: 10.15255/CABEQ.2018.1394 – volume: 24 start-page: 1 year: 2019 ident: ref_14 article-title: Progress in research on paclitaxel and tumor immunotherapy publication-title: Cell. Mol. Biol. Lett. doi: 10.1186/s11658-019-0164-y – volume: 47 start-page: 10210 year: 2016 ident: ref_40 article-title: ChemInform Abstract: Artemisinin—A Gift from Traditional Chinese Medicine to the World (Nobel Lecture) publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201601967 |
SSID | ssj0057141 |
Score | 2.43588 |
SecondaryResourceType | review_article |
Snippet | Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 295 |
SubjectTerms | Biosynthesis Cancer Chemical synthesis Cyanobacteria Cytochrome E coli Enzymes fed-batch Fermentation Genetic engineering Industrial production Lignocellulose Metabolites Microorganisms Natural products Pharmaceutical industry pharmaceutics Productivity Raw materials Review S. cerevisiae terpenoids Yeast |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1La9wwEIBFySmX0jZ9uE2DSkqgEBO9bNnHtHQJOZQ9bGh6MpI8IgvFu2Q3h_z7zlj2Pkqgl16tMcieGc2MLX3D2GdfeoDYQm6Jh2isqHNX1S6XUYDzPpYC-l2-P8qrG3N9W9zutPqiPWEJD5xe3AUm1MIqFUQonAlW19B6a-vgi-gdRktafTHmjcVUWoMLK41MMFKNRf3F8o4oMkJRF4md8NNT-p9KLf_eIbkTciYv2PMhV-SXaY4v2TPoXrGzaYJNP57z2fbs1Oqcn_HpFkP9eMR-TnDRHU4WdXyk0MKKY5rKpwn0SiOLON44fNjmM7hfQreYtys-7_hILISW_6JGP6_ZzeT77NtVPrRRyEMh5DpvjQ9SKS9VW0Qho9Ghiq0z2sqADi-8jpi1RaGroHTbykgQOUeYGCxNwHr9hh10iw7eMW49GChc9BEilkqmCrEsqUKsy5q4ihn7Mr7dJgyMcWp18bvBWoM00Ww1kbHTjewykTWelPpKStpIEA27v4A20gw20vzLRjJ2PKq4GVx01WAtRXh7DOEZ-7QZRueiPyaug8UDyWBGWhop6oy9TRaxmYkmNpoWKmN2z1b2pro_0s3veoB3hXmeker9_3i2D-xQ0TYboXNVHrOD9f0DfMQ8ae1Pepf4A00AEy4 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3La9wwEIdFm1x6KW3Th9u0KLQECjHRy5Z9Kk3IEnoIS9nQ9GSsV7JQ7O16c8h_3xlb3s2WkKtHBuGRRr-RpW8I-WJy431wPtXIQ1SalWldlHXKA_O1MSFnvj_le5GfX6ofV9lV3HDr4rHKMSb2gdq1FvfIj0H6Io0cIu63xd8Uq0bh39VYQuMp2QVbAcnX7snZxfTnGIszzRUfoKQSkvvjxQ3SZJjAahL3lqGe1v-QxPz_pOS9pWfygjyPmpF-H5z8kjzxzStyOB2g03dHdLa5Q9Ud0UM63eCo7_bIrwkE33jDqKEjjdZ3FOQqnQ7AV7S0YXwxbnDTmV8ufNPOXUfnDR3Jhd7R31jw5zW5nJzNTs_TWE4htRnjq9QpY7kQhguXBcaDkrYIrlZScwsTnxkZQL0FJgsrpHM8IEyuRlwMpCheG_mG7DRt498Rqo1XPquDCT5AyqQKG_IcM8UyL5GvmJCv49etbGSNY8mLPxXkHOiJauOJhHxet10MhI0HW52gk9YtkIrdP2iX11WcZBUkX0wLYZnNamW1LL0zWpfWZMHUoKwSsj-6uIpTtas2AyshB2szTDL8c1I3vr3FNqBMc8VZmZC3w4hY90QiI00ykRC9NVa2urptaeY3Pci7AL2nuHj_eLc-kGcCD9IwmYp8n-yslrf-IyihlfkUh_s_FsMLyw priority: 102 providerName: ProQuest |
Title | Fermentation Strategies for Production of Pharmaceutical Terpenoids in Engineered Yeast |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33810302 https://www.proquest.com/docview/2550212303 https://www.proquest.com/docview/2508564109 https://pubmed.ncbi.nlm.nih.gov/PMC8066412 https://doaj.org/article/4870722c0c5a4c739edb779cb5fba635 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3fa9swEMePrn3Zy9jveeuCxkZhUG-yJFv2wxjraCiDlTAS1j0ZS5baQLG7JIXlv9-df2UpedirJYHQ6aT7ytLnAN6ZxDjnSxdq4iEqzbOwSLMijDx3hTE-4a655XuenM3Ut4v4Yg_6_J3dAC53SjvKJzVbXH_483v9GR3-EylOlOwfb66IEcNFFt-DA9yRNDnodzX8TYh1m8GSHnWFqVC6xZTeabu1MTX8_l1B5927k_9sRuOH8KCLItmX1uyPYM9Vj-Fo0mKo18dsunlVtTxmR2yyAVSvn8DPMS7H3ZujivV8WrdkGMCySYuApZLa9w27I282dQscnXpeLtm8Yj3L0JXsF6UAegqz8en061nYJVgIbcyjVVgqYyMhTCTK2PPIK2lTXxZK6sjiUsCN9BjPeS5TK2RZRp7wcgUBZFC0OG3kM9iv6sq9AKaNUy4uvPHOo4hSqfVJQtoxSzIiLgbwvh_d3Hb0cUqCcZ2jCiFL5BtLBPB2qHvTMjd21johIw01iJPdfKgXl3nndjnKMa6FsNzGhbJaZq40WmfWxN4UGGsFcNibOO_nXo4qi8D3uLkH8GYoRrejfylF5epbqoOxaqIingXwvJ0RQ08kUdMkFwHorbmy1dXtkmp-1aC9U4wAVSRe_tcIvIL7gm7YcBmK5BD2V4tb9xpDpJUZwcHJ6fnkx6g5Yhg13vAXhiwSmA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1bb9MwFMePRvcAL4g7GQOMgElIi-Zb4uYBIQarOjaqCnViewqxY7NKU1LaTqhfis-ITy7tiibe9ho7kZVzfPI_sf07AG90rK11uQ0V8hClokmYdZMsZI7aTGsXU1vt8h3E_RP55TQ63YA_7VkY3FbZxsQqUOelwX_ke176Io3cR9wPk18hVo3C1dW2hEbtFkd28dunbLP3h5-9fd9y3jsYfeqHTVWB0ESUzcNcasM414znkaPMSWG6Ls-kUMx4_6daOC9iHBVdw0WeM4dMtQypKV6pW6WFf-4t2JTCpzId2Nw_GAy_tbE_UkyyGoIqREL3JudIr6Ecq1dc-exV1QGuk7T_7sy88qnr3YO7jUYlH2unug8btngAO8Macr3YJaPVma3ZLtkhwxX-evEQvvd8sG9ONBWkpd_aGfHymAxrwCy2lK69sfmhTkZ2OrFFOc5nZFyQlpRoc3KGBYYewcmNvOjH0CnKwj4ForSVNsqcdtb5FE12jYtjzEyTOEGeYwDv2rebmoZtjiU2LlKf46Al0pUlAni97DupiR7X9tpHIy17IIW7ulBOf6bNpE59skcV54aaKJNGicTmWqnE6MjpzCu5ALZbE6dNaJilK0cO4NWy2U9qXKnJClteYh-vhGPJaBLAk9ojliMRyGQTlAeg1nxlbajrLcX4vAKHd72-lIxv_X9YL-F2f_T1OD0-HBw9gzscN_FQEfJ4Gzrz6aV97lXYXL9oXJ_Aj5uebX8B6ZBHOg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYR4QdwJDDACJiEtqm-JmweEGFu1MVRFqBPjKcSOzSqhpDSdUP8avw6fJmlXNPG21_gksnIu_o59_B2A1zrW1rrChgr5EKWiSZgPkjxkjtpcaxdTu6zyHcVHp_LTWXS2BX-6uzBYVtnFxGWgLiqDe-R9D32RjdxH3L5ryyLSg-H76a8QO0jhSWvXTqMxkRO7-O3Tt_rd8YHX9RvOh4fjj0dh22EgNBFl87CQ2jDONeNF5ChzUpiBK3IpFDPeF6gWzgMaR8XAcFEUzCG_Wo4MKh61W6WF_-4N2FY-K6I92N4_HKVfunUgUkyyhhBViIT2p-fIZEM5drK4tAQuOwVcBW__rdK8tOwN78DtFq-SD42B3YUtW96D3bQhvF7skfH6_la9R3ZJuqbCXtyHr0Mf-NvbTSXpmHBtTTxUJmlDNosjletebDfXydjOprasJkVNJiXpWBNtQb5hs6EHcHotP_oh9MqqtI-BKG2ljXKnnXU-XZMD4-IYs9QkTpDbMYC33d_NTMtzju02fmY-30FNZGtNBPBqJTtt2D2ulNpHJa0kkJF7-aCa_chaB8984kcV54aaKJdGicQWWqnE6Mjp3KO6AHY6FWdtmKiztVEH8HI17B0cT23y0lYXKONRcSwZTQJ41FjEaiYC-dkE5QGoDVvZmOrmSDk5X5KIDzzWlIw_-f-0XsBN72XZ5-PRyVO4xbGeh4qQxzvQm88u7DMPyOb6eWv5BL5ft7P9BQJvS28 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fermentation+Strategies+for+Production+of+Pharmaceutical+Terpenoids+in+Engineered+Yeast&rft.jtitle=Pharmaceuticals+%28Basel%2C+Switzerland%29&rft.au=Carsanba%2C+Erdem&rft.au=Pintado%2C+Manuela&rft.au=Oliveira%2C+Carla&rft.date=2021-03-26&rft.issn=1424-8247&rft.eissn=1424-8247&rft.volume=14&rft.issue=4&rft.spage=295&rft_id=info:doi/10.3390%2Fph14040295&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ph14040295 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8247&client=summon |