Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma
[Display omitted] •We identified 8 MVI preoperative risk factors in HCC, including radiomic features.•Radiomic features do not provide significant added value to radiologist scores.•A model integrating clinic-radiologic and radiomic features demonstrates good performance for predicting MVI. Microvas...
Saved in:
Published in | Journal of hepatology Vol. 70; no. 6; pp. 1133 - 1144 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•We identified 8 MVI preoperative risk factors in HCC, including radiomic features.•Radiomic features do not provide significant added value to radiologist scores.•A model integrating clinic-radiologic and radiomic features demonstrates good performance for predicting MVI.
Microvascular invasion (MVI) impairs surgical outcomes in patients with hepatocellular carcinoma (HCC). As there is no single highly reliable factor to preoperatively predict MVI, we developed a computational approach integrating large-scale clinical and imaging modalities, especially radiomic features from contrast-enhanced CT, to predict MVI and clinical outcomes in patients with HCC.
In total, 495 surgically resected patients were retrospectively included. MVI-related radiomic scores (R-scores) were built from 7,260 radiomic features in 6 target volumes. Six R-scores, 15 clinical factors, and 12 radiographic scores were integrated into a predictive model, the radiographic-radiomic (RR) model, with multivariate logistic regression.
Radiomics related to tumor size and intratumoral heterogeneity were the top-ranked MVI predicting features. The related R-scores showed significant differences according to MVI status (p <0.001). Regression analysis identified 8 MVI risk factors, including 5 radiographic features and an R-score. The R-score (odds ratio [OR] 2.34) was less important than tumor capsule (OR 5.12), tumor margin (OR4.20), and peritumoral enhancement (OR 3.03). The RR model using these predictors achieved an area under the curve (AUC) of 0.909 in training/validation and 0.889 in the test set. Progression-free survival (PFS) and overall survival (OS) were significantly different between the RR-predicted MVI-absent and MVI-present groups (median PFS: 49.5 vs. 12.9 months; median OS: 76.3 vs. 47.3 months). RR-computed MVI probability, histologic MVI, tumor size, and Edmondson-Steiner grade were independently associated with disease-specific recurrence and mortality.
The computational approach, integrating large-scale clinico-radiologic and radiomic features, demonstrates good performance for predicting MVI and clinical outcomes. However, radiomics with current CT imaging analysis protocols do not provide statistically significant added value to radiographic scores.
The most effective treatment for hepatocellular carcinoma (HCC) is surgical removal of the tumor but often recurrence occurs, partly due to the presence of microvascular invasion (MVI). Lacking a single highly reliable factor able to preoperatively predict MVI, we developed a computational approach to predict MVI and the long-term clinical outcome of patients with HCC. In particular, the added value of radiomics, a newly emerging form of radiography, was comprehensively investigated. This computational method can enhance the communication with the patient about the likely success of the treatment and guide clinical management, with the aim of finding drugs that reduce the risk of recurrence. |
---|---|
AbstractList | Microvascular invasion (MVI) impairs surgical outcomes in hepatocellular carcinoma (HCC) patients. As a single highly reliable factor to preoperatively predict MVI is lacking, we developed a computational approach integrating large-scale clinical and imaging modalities, especially radiomic features from contrast-enhanced CT, to predict MVI and clinical outcomes in HCC patients.
In total, 495 surgically resected patients were retrospectively included. MVI-related radiomic scores (R-scores) were built from 7,260 radiomic features in six target volumes. Six R-scores, 15 clinical factors, and 12 radiographic scores were integrated into a predictive model, the Radiographic-Radiomic (RR) model, with multivariate logistic regression.
Radiomics related to tumor size and intratumoral inhomogeneity were the top-ranked MVI predicting features. The related R-scores showed significant differences according to MVI status (p < 0.001). Regression analysis identified 8 MVI risk factors, including 5 radiographic features and a R-score. The R-score (odds ratio [OR], 2.34) was less important than tumor capsule (OR, 5.12), tumor margin (OR, 4.20), and peritumoral enhancement (OR, 3.03). The RR model using these predictors achieved an area under curve (AUC) of 0.909 in training/validation and 0.889 in the test set. Progression-free survival (PFS) and overall survival (OS) were significantly different between the RR-predicted MVI-absent and MVI-present groups (median PFS: 49.5 vs. 12.9 months; median OS: 76.3 vs. 47.3 months). RR-computed MVI probability, histologic MVI, tumor size, and Edmondson-Steiner grade were independently associated with disease-specific recurrence and mortality.
The computational approach integrating large-scale clinicoradiologic and radiomic features demonstrates good performance for successfully predicting MVI and disease clinical outcomes, but radiomics with current CT imaging analysis protocols do not provide statistically significant added value to radiographic scores.
The most effective treatment of hepatocellular carcinoma (HCC) is surgical removal of the tumor but often recurrence occurs, partly due to the presence of microvascular invasion (MVI). Lacking a single highly reliable factor able to preoperatively predict MVI, we developed a computational approach integrating large-scale clinical and imaging modalities to predict MVI and the long-term clinical outcome of patients with HCC. In particular, the added value of radiomics, a newly emerging form of radiography, was comprehensively investigated. This computational method can enhance the communication with the patient about the likely success of the treatment, and will help the design of clinical management aimed to find drugs able to decrease the risk of recurrence. Microvascular invasion (MVI) impairs surgical outcomes in patients with hepatocellular carcinoma (HCC). As there is no single highly reliable factor to preoperatively predict MVI, we developed a computational approach integrating large-scale clinical and imaging modalities, especially radiomic features from contrast-enhanced CT, to predict MVI and clinical outcomes in patients with HCC.BACKGROUND & AIMSMicrovascular invasion (MVI) impairs surgical outcomes in patients with hepatocellular carcinoma (HCC). As there is no single highly reliable factor to preoperatively predict MVI, we developed a computational approach integrating large-scale clinical and imaging modalities, especially radiomic features from contrast-enhanced CT, to predict MVI and clinical outcomes in patients with HCC.In total, 495 surgically resected patients were retrospectively included. MVI-related radiomic scores (R-scores) were built from 7,260 radiomic features in 6 target volumes. Six R-scores, 15 clinical factors, and 12 radiographic scores were integrated into a predictive model, the radiographic-radiomic (RR) model, with multivariate logistic regression.METHODSIn total, 495 surgically resected patients were retrospectively included. MVI-related radiomic scores (R-scores) were built from 7,260 radiomic features in 6 target volumes. Six R-scores, 15 clinical factors, and 12 radiographic scores were integrated into a predictive model, the radiographic-radiomic (RR) model, with multivariate logistic regression.Radiomics related to tumor size and intratumoral heterogeneity were the top-ranked MVI predicting features. The related R-scores showed significant differences according to MVI status (p <0.001). Regression analysis identified 8 MVI risk factors, including 5 radiographic features and an R-score. The R-score (odds ratio [OR] 2.34) was less important than tumor capsule (OR 5.12), tumor margin (OR4.20), and peritumoral enhancement (OR 3.03). The RR model using these predictors achieved an area under the curve (AUC) of 0.909 in training/validation and 0.889 in the test set. Progression-free survival (PFS) and overall survival (OS) were significantly different between the RR-predicted MVI-absent and MVI-present groups (median PFS: 49.5 vs. 12.9 months; median OS: 76.3 vs. 47.3 months). RR-computed MVI probability, histologic MVI, tumor size, and Edmondson-Steiner grade were independently associated with disease-specific recurrence and mortality.RESULTSRadiomics related to tumor size and intratumoral heterogeneity were the top-ranked MVI predicting features. The related R-scores showed significant differences according to MVI status (p <0.001). Regression analysis identified 8 MVI risk factors, including 5 radiographic features and an R-score. The R-score (odds ratio [OR] 2.34) was less important than tumor capsule (OR 5.12), tumor margin (OR4.20), and peritumoral enhancement (OR 3.03). The RR model using these predictors achieved an area under the curve (AUC) of 0.909 in training/validation and 0.889 in the test set. Progression-free survival (PFS) and overall survival (OS) were significantly different between the RR-predicted MVI-absent and MVI-present groups (median PFS: 49.5 vs. 12.9 months; median OS: 76.3 vs. 47.3 months). RR-computed MVI probability, histologic MVI, tumor size, and Edmondson-Steiner grade were independently associated with disease-specific recurrence and mortality.The computational approach, integrating large-scale clinico-radiologic and radiomic features, demonstrates good performance for predicting MVI and clinical outcomes. However, radiomics with current CT imaging analysis protocols do not provide statistically significant added value to radiographic scores.CONCLUSIONSThe computational approach, integrating large-scale clinico-radiologic and radiomic features, demonstrates good performance for predicting MVI and clinical outcomes. However, radiomics with current CT imaging analysis protocols do not provide statistically significant added value to radiographic scores.The most effective treatment for hepatocellular carcinoma (HCC) is surgical removal of the tumor but often recurrence occurs, partly due to the presence of microvascular invasion (MVI). Lacking a single highly reliable factor able to preoperatively predict MVI, we developed a computational approach to predict MVI and the long-term clinical outcome of patients with HCC. In particular, the added value of radiomics, a newly emerging form of radiography, was comprehensively investigated. This computational method can enhance the communication with the patient about the likely success of the treatment and guide clinical management, with the aim of finding drugs that reduce the risk of recurrence.LAY SUMMARYThe most effective treatment for hepatocellular carcinoma (HCC) is surgical removal of the tumor but often recurrence occurs, partly due to the presence of microvascular invasion (MVI). Lacking a single highly reliable factor able to preoperatively predict MVI, we developed a computational approach to predict MVI and the long-term clinical outcome of patients with HCC. In particular, the added value of radiomics, a newly emerging form of radiography, was comprehensively investigated. This computational method can enhance the communication with the patient about the likely success of the treatment and guide clinical management, with the aim of finding drugs that reduce the risk of recurrence. Background & Aims Microvascular invasion (MVI) impairs surgical outcomes in patients with hepatocellular carcinoma (HCC). As there is no single highly reliable factor to preoperatively predict MVI, we developed a computational approach integrating large-scale clinical and imaging modalities, especially radiomic features from contrast-enhanced CT, to predict MVI and clinical outcomes in patients with HCC. Methods In total, 495 surgically resected patients were retrospectively included. MVI-related radiomic scores (R-scores) were built from 7,260 radiomic features in 6 target volumes. Six R-scores, 15 clinical factors, and 12 radiographic scores were integrated into a predictive model, the radiographic-radiomic (RR) model, with multivariate logistic regression. Results Radiomics related to tumor size and intratumoral heterogeneity were the top-ranked MVI predicting features. The related R-scores showed significant differences according to MVI status (p <0.001). Regression analysis identified 8 MVI risk factors, including 5 radiographic features and an R-score. The R-score (odds ratio [OR] 2.34) was less important than tumor capsule (OR 5.12), tumor margin (OR 4.20), and peritumoral enhancement (OR 3.03). The RR model using these predictors achieved an area under the curve (AUC) of 0.909 in training/validation and 0.889 in the test set. Progression-free survival (PFS) and overall survival (OS) were significantly different between the RR-predicted MVI-absent and MVI-present groups (median PFS: 49.5 vs. 12.9 months; median OS: 76.3 vs. 47.3 months). RR-computed MVI probability, histologic MVI, tumor size, and Edmondson-Steiner grade were independently associated with disease-specific recurrence and mortality. Conclusions The computational approach, integrating large-scale clinico-radiologic and radiomic features, demonstrates good performance for predicting MVI and clinical outcomes. However, radiomics with current CT imaging analysis protocols do not provide statistically significant added value to radiographic scores. [Display omitted] •We identified 8 MVI preoperative risk factors in HCC, including radiomic features.•Radiomic features do not provide significant added value to radiologist scores.•A model integrating clinic-radiologic and radiomic features demonstrates good performance for predicting MVI. Microvascular invasion (MVI) impairs surgical outcomes in patients with hepatocellular carcinoma (HCC). As there is no single highly reliable factor to preoperatively predict MVI, we developed a computational approach integrating large-scale clinical and imaging modalities, especially radiomic features from contrast-enhanced CT, to predict MVI and clinical outcomes in patients with HCC. In total, 495 surgically resected patients were retrospectively included. MVI-related radiomic scores (R-scores) were built from 7,260 radiomic features in 6 target volumes. Six R-scores, 15 clinical factors, and 12 radiographic scores were integrated into a predictive model, the radiographic-radiomic (RR) model, with multivariate logistic regression. Radiomics related to tumor size and intratumoral heterogeneity were the top-ranked MVI predicting features. The related R-scores showed significant differences according to MVI status (p <0.001). Regression analysis identified 8 MVI risk factors, including 5 radiographic features and an R-score. The R-score (odds ratio [OR] 2.34) was less important than tumor capsule (OR 5.12), tumor margin (OR4.20), and peritumoral enhancement (OR 3.03). The RR model using these predictors achieved an area under the curve (AUC) of 0.909 in training/validation and 0.889 in the test set. Progression-free survival (PFS) and overall survival (OS) were significantly different between the RR-predicted MVI-absent and MVI-present groups (median PFS: 49.5 vs. 12.9 months; median OS: 76.3 vs. 47.3 months). RR-computed MVI probability, histologic MVI, tumor size, and Edmondson-Steiner grade were independently associated with disease-specific recurrence and mortality. The computational approach, integrating large-scale clinico-radiologic and radiomic features, demonstrates good performance for predicting MVI and clinical outcomes. However, radiomics with current CT imaging analysis protocols do not provide statistically significant added value to radiographic scores. The most effective treatment for hepatocellular carcinoma (HCC) is surgical removal of the tumor but often recurrence occurs, partly due to the presence of microvascular invasion (MVI). Lacking a single highly reliable factor able to preoperatively predict MVI, we developed a computational approach to predict MVI and the long-term clinical outcome of patients with HCC. In particular, the added value of radiomics, a newly emerging form of radiography, was comprehensively investigated. This computational method can enhance the communication with the patient about the likely success of the treatment and guide clinical management, with the aim of finding drugs that reduce the risk of recurrence. |
Author | Zhang, Jing Liu, Xi-Sheng Liu, Qiu-Ping Yang, Guang Yan, Xu Xu, Xun Sun, Shu-Wen Zhang, Hai-Long Zhang, Yu-Dong Zhu, Fei-Peng |
Author_xml | – sequence: 1 givenname: Xun surname: Xu fullname: Xu, Xun organization: Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China – sequence: 2 givenname: Hai-Long surname: Zhang fullname: Zhang, Hai-Long organization: Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China – sequence: 3 givenname: Qiu-Ping surname: Liu fullname: Liu, Qiu-Ping organization: Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China – sequence: 4 givenname: Shu-Wen surname: Sun fullname: Sun, Shu-Wen organization: Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China – sequence: 5 givenname: Jing surname: Zhang fullname: Zhang, Jing organization: Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China – sequence: 6 givenname: Fei-Peng surname: Zhu fullname: Zhu, Fei-Peng organization: Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China – sequence: 7 givenname: Guang orcidid: 0000-0001-8942-427X surname: Yang fullname: Yang, Guang organization: Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China – sequence: 8 givenname: Xu surname: Yan fullname: Yan, Xu organization: MR Scientific Marketing, Siemens Healthcare, Shanghai, China – sequence: 9 givenname: Yu-Dong surname: Zhang fullname: Zhang, Yu-Dong email: njmu_zyd@163.com organization: Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China – sequence: 10 givenname: Xi-Sheng surname: Liu fullname: Liu, Xi-Sheng email: njmu_lxs@163.com organization: Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30876945$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1q3DAUhUVJaSZpX6CLYuimG0_1Z9ku3ZShfxAolHQtlKtrIteWJpIcmLevnEm7mEUKFyTE94nLORfkzAePhLxmdMsoU-_H7XiL-y2nrN9SXkY8IxumKK2pkuyMbArU1R1vu3NykdJIKRW0ly_IuaBdq3rZbMjdT2NdmB1UxpvpkFyqwlBB8DmalGv0t8YD2mp3Xe0jWgc5VYWO4d4kWCYTK-fL1QVfPrBVWDKEGctjVVYzOQBO0wMGJoLzYTYvyfPBTAlfPZ6X5NeXz9e7b_XVj6_fd5-uamgoy7VlrEExDI2h0oBpG3UDamhQcdliI40USirJJYoW2waRAVje9wwY62xHQVySd8d_9zHcLZiynl1a1zEew5I0Z71gSnBJC_r2BB3DEkseheJNGSq7tlBvHqnlZkar99HNJh703zALwI9AiSeliMM_hFG9NqZHvTam18Y05WVEkboTCVw22T004Kan1Y9HFUuM9w6jTuBwrctFhKxtcE_rH050mJx3YKbfePif_AdGpMWh |
CitedBy_id | crossref_primary_10_1016_j_eclinm_2024_102808 crossref_primary_10_1016_j_ejso_2024_108274 crossref_primary_10_3389_fonc_2022_852736 crossref_primary_10_1016_j_bspc_2023_104794 crossref_primary_10_1093_jnci_djab098 crossref_primary_10_3233_CBM_230456 crossref_primary_10_1016_j_ejrad_2020_109389 crossref_primary_10_3348_kjr_2019_0752 crossref_primary_10_3389_fphys_2022_928969 crossref_primary_10_1177_10732748221076820 crossref_primary_10_23736_S1824_4785_19_03192_3 crossref_primary_10_1016_j_hpb_2020_10_024 crossref_primary_10_2147_JHC_S309570 crossref_primary_10_3389_fonc_2021_660629 crossref_primary_10_3389_fonc_2020_00887 crossref_primary_10_3389_fonc_2021_633596 crossref_primary_10_1097_JS9_0000000000001752 crossref_primary_10_1007_s00261_023_04071_0 crossref_primary_10_1016_j_tranon_2021_101200 crossref_primary_10_3748_wjg_v28_i24_2733 crossref_primary_10_1155_2022_7261786 crossref_primary_10_1016_j_crad_2022_08_149 crossref_primary_10_1111_liv_15254 crossref_primary_10_1148_radiol_2020192230 crossref_primary_10_1007_s00330_020_07601_2 crossref_primary_10_1002_jmri_28157 crossref_primary_10_1016_j_ejrad_2024_111348 crossref_primary_10_3389_fonc_2020_00872 crossref_primary_10_1186_s13244_024_01743_3 crossref_primary_10_3748_wjg_v26_i14_1647 crossref_primary_10_23736_S0394_9508_24_05762_0 crossref_primary_10_1186_s12957_022_02645_8 crossref_primary_10_1080_02656736_2024_2316097 crossref_primary_10_1155_2023_1554599 crossref_primary_10_1016_j_ultrasmedbio_2023_12_003 crossref_primary_10_1245_s10434_022_11346_1 crossref_primary_10_1016_j_joca_2022_10_014 crossref_primary_10_2147_CMAR_S245475 crossref_primary_10_1016_j_jhep_2021_09_034 crossref_primary_10_1007_s00261_022_03496_3 crossref_primary_10_1002_jmri_29276 crossref_primary_10_1186_s12885_023_11386_0 crossref_primary_10_1186_s12916_023_03137_6 crossref_primary_10_3389_fonc_2022_773840 crossref_primary_10_1007_s00261_021_03192_8 crossref_primary_10_2139_ssrn_3968888 crossref_primary_10_1007_s00066_020_01615_x crossref_primary_10_1097_RCT_0000000000001169 crossref_primary_10_1016_j_compbiomed_2024_108337 crossref_primary_10_1186_s12957_024_03523_1 crossref_primary_10_1007_s00261_022_03473_w crossref_primary_10_1007_s00270_022_03221_z crossref_primary_10_1111_apt_16563 crossref_primary_10_1111_liv_15231 crossref_primary_10_1016_j_clinimag_2020_11_057 crossref_primary_10_1016_j_acra_2023_12_007 crossref_primary_10_1111_liv_14380 crossref_primary_10_1007_s00261_021_02992_2 crossref_primary_10_1093_bjr_tqae056 crossref_primary_10_1111_1759_7714_14730 crossref_primary_10_3390_cancers13112522 crossref_primary_10_3389_fonc_2022_876900 crossref_primary_10_1186_s12967_020_02432_7 crossref_primary_10_3389_fcvm_2023_1014400 crossref_primary_10_1016_j_hpb_2023_01_015 crossref_primary_10_1002_mp_16597 crossref_primary_10_1155_2023_5424204 crossref_primary_10_1007_s00330_022_09085_8 crossref_primary_10_1111_hepr_14149 crossref_primary_10_1038_s41598_021_90257_9 crossref_primary_10_1007_s40846_023_00829_5 crossref_primary_10_1186_s40644_023_00523_4 crossref_primary_10_1016_j_acra_2023_06_022 crossref_primary_10_1016_S2468_1253_24_00434_5 crossref_primary_10_2147_JHC_S493044 crossref_primary_10_1111_aor_14715 crossref_primary_10_3390_cancers17050893 crossref_primary_10_1245_s10434_022_12598_7 crossref_primary_10_1038_s41598_025_88343_3 crossref_primary_10_4240_wjgs_v13_i9_967 crossref_primary_10_1186_s12935_023_02907_9 crossref_primary_10_1016_j_compbiomed_2024_108593 crossref_primary_10_1186_s12880_022_00855_w crossref_primary_10_3389_fonc_2023_1133867 crossref_primary_10_1016_j_ejca_2021_07_009 crossref_primary_10_3389_fonc_2022_960178 crossref_primary_10_1016_j_acra_2023_06_033 crossref_primary_10_3389_fonc_2021_644165 crossref_primary_10_1016_j_heliyon_2024_e36313 crossref_primary_10_1016_j_ijcard_2024_132617 crossref_primary_10_1016_j_ejrad_2021_109962 crossref_primary_10_1016_j_heliyon_2023_e23166 crossref_primary_10_1016_j_acthis_2021_151793 crossref_primary_10_3389_fonc_2022_763842 crossref_primary_10_3390_diagnostics12010160 crossref_primary_10_1007_s13304_021_01036_0 crossref_primary_10_1007_s12072_022_10326_7 crossref_primary_10_4251_wjgo_v17_i1_96439 crossref_primary_10_1016_j_heliyon_2023_e16997 crossref_primary_10_3390_cancers13225793 crossref_primary_10_1007_s12072_022_10303_0 crossref_primary_10_1016_j_acra_2023_05_015 crossref_primary_10_1186_s12885_024_12829_y crossref_primary_10_2147_JHC_S356573 crossref_primary_10_1016_j_heliyon_2024_e25535 crossref_primary_10_1002_mp_16127 crossref_primary_10_1016_j_crad_2020_11_002 crossref_primary_10_2139_ssrn_3935656 crossref_primary_10_3389_fonc_2022_878061 crossref_primary_10_1016_j_ejro_2025_100639 crossref_primary_10_1016_j_tranon_2024_102260 crossref_primary_10_1016_j_hbpd_2021_12_004 crossref_primary_10_1007_s13304_024_01789_4 crossref_primary_10_1007_s00066_021_01879_x crossref_primary_10_1088_1361_6560_abf717 crossref_primary_10_1159_000509424 crossref_primary_10_1007_s00330_022_09290_5 crossref_primary_10_1016_j_ejrad_2020_109429 crossref_primary_10_3389_fonc_2022_831996 crossref_primary_10_1158_1078_0432_CCR_22_2784 crossref_primary_10_1007_s00330_021_07793_1 crossref_primary_10_3389_fneur_2023_1151326 crossref_primary_10_1007_s00330_019_06600_2 crossref_primary_10_1245_s10434_019_08190_1 crossref_primary_10_1007_s00330_020_07119_7 crossref_primary_10_3389_fsurg_2022_833779 crossref_primary_10_1002_mp_15451 crossref_primary_10_1016_j_ejso_2022_08_036 crossref_primary_10_35711_aimi_v3_i4_87 crossref_primary_10_1002_cam4_5546 crossref_primary_10_1259_bjr_20211136 crossref_primary_10_1007_s12094_024_03427_2 crossref_primary_10_1016_j_suronc_2023_101951 crossref_primary_10_1111_liv_14555 crossref_primary_10_17709_2410_1893_2024_11_1_5 crossref_primary_10_1016_j_jhepr_2023_100839 crossref_primary_10_1016_j_crad_2021_12_008 crossref_primary_10_1002_poh2_85 crossref_primary_10_3389_fonc_2020_00353 crossref_primary_10_1016_j_meomic_2021_100005 crossref_primary_10_3389_fonc_2022_818681 crossref_primary_10_3390_cancers14071816 crossref_primary_10_12677_ACM_2023_1351135 crossref_primary_10_3389_fonc_2022_1032115 crossref_primary_10_1111_liv_14763 crossref_primary_10_1148_radiol_2021203614 crossref_primary_10_1016_j_heliyon_2024_e28173 crossref_primary_10_3389_fonc_2023_1218128 crossref_primary_10_3390_diagnostics13122012 crossref_primary_10_1186_s40644_023_00621_3 crossref_primary_10_1186_s40001_024_01973_7 crossref_primary_10_3390_cancers15010063 crossref_primary_10_1159_000518101 crossref_primary_10_1016_j_acra_2022_04_006 crossref_primary_10_1097_JS9_0000000000000119 crossref_primary_10_1186_s12885_023_11491_0 crossref_primary_10_1186_s12935_024_03629_2 crossref_primary_10_1016_j_ejso_2021_11_120 crossref_primary_10_3748_wjg_v26_i26_3720 crossref_primary_10_1155_2022_9556589 crossref_primary_10_1016_j_ultrasmedbio_2023_02_020 crossref_primary_10_1016_j_radonc_2024_110660 crossref_primary_10_1007_s00261_022_03511_7 crossref_primary_10_3390_cancers14184449 crossref_primary_10_23736_S2723_9284_23_00252_0 crossref_primary_10_37549_AR2904 crossref_primary_10_2147_JMDH_S491697 crossref_primary_10_1093_brain_awab340 crossref_primary_10_1016_j_acra_2025_02_006 crossref_primary_10_1007_s12072_021_10229_z crossref_primary_10_3389_fonc_2022_1021570 crossref_primary_10_3389_fonc_2020_593292 crossref_primary_10_1016_j_ejrad_2020_109111 crossref_primary_10_3748_wjg_v26_i37_5617 crossref_primary_10_1007_s10585_023_10235_5 crossref_primary_10_1016_j_jhepr_2019_07_004 crossref_primary_10_1016_j_ebiom_2021_103395 crossref_primary_10_1007_s00330_025_11352_3 crossref_primary_10_1093_oncolo_oyae286 crossref_primary_10_3390_medicina59050992 crossref_primary_10_1016_j_tranon_2020_100866 crossref_primary_10_2147_JHC_S484027 crossref_primary_10_1039_D3TB01706K crossref_primary_10_2174_0115734056256824231204073534 crossref_primary_10_1097_TP_0000000000003605 crossref_primary_10_1016_j_amjsurg_2024_116172 crossref_primary_10_1016_j_jhepr_2020_100100 crossref_primary_10_1177_15593258241301525 crossref_primary_10_2217_bmm_2023_0064 crossref_primary_10_1159_000530495 crossref_primary_10_1007_s10278_024_01192_w crossref_primary_10_1097_PPO_0000000000000435 crossref_primary_10_3390_jpm13030478 crossref_primary_10_1155_2021_6685723 crossref_primary_10_3389_fonc_2023_1036734 crossref_primary_10_1007_s00330_021_08504_6 crossref_primary_10_1016_j_engreg_2023_12_001 crossref_primary_10_1016_j_dld_2022_12_015 crossref_primary_10_1186_s40644_020_00341_y crossref_primary_10_1007_s10462_021_10023_1 crossref_primary_10_1016_j_crad_2024_01_039 crossref_primary_10_1186_s40644_021_00425_3 crossref_primary_10_3389_fonc_2020_574228 crossref_primary_10_1038_s41416_022_02134_5 crossref_primary_10_3389_fsurg_2022_988484 crossref_primary_10_1007_s00330_023_09503_5 crossref_primary_10_1016_j_acra_2023_09_031 crossref_primary_10_1016_j_acra_2024_11_023 crossref_primary_10_3390_cancers14246123 crossref_primary_10_1038_s41416_023_02317_8 crossref_primary_10_1097_HC9_0000000000000593 crossref_primary_10_12677_ACM_2023_13122666 crossref_primary_10_3390_life13122267 crossref_primary_10_1111_ajt_15697 crossref_primary_10_1016_j_diii_2022_10_001 crossref_primary_10_3389_fonc_2024_1371432 crossref_primary_10_1007_s00330_021_08250_9 crossref_primary_10_1016_j_hbpd_2021_09_011 crossref_primary_10_1016_j_hpb_2022_09_002 crossref_primary_10_3748_wjg_v28_i42_6002 crossref_primary_10_1016_j_compbiomed_2023_107612 crossref_primary_10_2139_ssrn_3746935 crossref_primary_10_2147_JHC_S455878 crossref_primary_10_1038_s41598_021_93528_7 crossref_primary_10_3389_fonc_2023_1164739 crossref_primary_10_1093_ejcts_ezad373 crossref_primary_10_1186_s12885_024_13206_5 crossref_primary_10_1002_jmri_27538 crossref_primary_10_1148_rycan_2020190062 crossref_primary_10_3390_cancers14246036 crossref_primary_10_1007_s00330_021_08198_w crossref_primary_10_3348_kjr_2024_0070 crossref_primary_10_1021_acsnano_1c08477 crossref_primary_10_1097_MOT_0000000000000775 crossref_primary_10_1007_s00261_021_03056_1 crossref_primary_10_1097_MOT_0000000000000773 crossref_primary_10_1007_s00259_020_04747_5 crossref_primary_10_1016_j_acra_2024_12_039 crossref_primary_10_3389_fonc_2024_1370010 crossref_primary_10_1053_j_sult_2023_03_002 crossref_primary_10_1038_s41418_023_01166_5 crossref_primary_10_3389_fonc_2022_848903 crossref_primary_10_1002_cam4_6933 crossref_primary_10_1245_s10434_022_11505_4 crossref_primary_10_1038_s41598_024_70208_w crossref_primary_10_1002_ctm2_111 crossref_primary_10_1097_MD_0000000000040790 crossref_primary_10_35711_aimi_v2_i3_64 crossref_primary_10_3389_fcell_2021_678670 crossref_primary_10_1016_j_crad_2021_03_003 crossref_primary_10_1109_ACCESS_2021_3052776 crossref_primary_10_1016_j_hpb_2022_08_007 crossref_primary_10_3390_cancers14194647 crossref_primary_10_3389_fonc_2024_1389177 crossref_primary_10_1097_MEG_0000000000002535 crossref_primary_10_1111_liv_14865 crossref_primary_10_3389_fimmu_2020_613946 crossref_primary_10_1007_s00261_019_02378_5 crossref_primary_10_3389_fgene_2023_1187040 crossref_primary_10_7180_kmj_24_103 crossref_primary_10_2147_JHC_S362772 crossref_primary_10_35712_aig_v3_i4_96 crossref_primary_10_1038_s41598_025_92080_y crossref_primary_10_3748_wjg_v29_i26_4186 crossref_primary_10_1016_j_crad_2023_05_007 crossref_primary_10_1007_s00261_022_03554_w crossref_primary_10_1186_s12880_022_00828_z crossref_primary_10_3748_wjg_v28_i20_2176 crossref_primary_10_1007_s10334_022_01050_2 crossref_primary_10_1093_oncolo_oyad124 crossref_primary_10_1007_s00261_023_04049_y crossref_primary_10_3389_fonc_2022_857715 crossref_primary_10_1016_j_critrevonc_2023_104107 crossref_primary_10_1111_liv_15846 crossref_primary_10_1016_j_acra_2023_10_001 crossref_primary_10_1007_s00259_021_05325_z crossref_primary_10_2214_AJR_20_23255 crossref_primary_10_1007_s00259_020_05119_9 crossref_primary_10_12677_ACM_2023_1351040 crossref_primary_10_1186_s13048_022_01089_8 crossref_primary_10_1038_s41598_021_87598_w crossref_primary_10_2147_JHC_S319639 crossref_primary_10_3390_ijtm3010005 crossref_primary_10_3389_fonc_2020_01121 crossref_primary_10_12677_acm_2024_14102706 crossref_primary_10_1016_j_acra_2020_04_027 crossref_primary_10_1186_s13244_023_01536_0 crossref_primary_10_3389_fonc_2021_621622 crossref_primary_10_7717_peerj_12420 crossref_primary_10_3389_fnins_2021_721268 crossref_primary_10_3389_fsurg_2022_857838 crossref_primary_10_1038_s41598_023_35913_y crossref_primary_10_1155_2022_4996471 crossref_primary_10_1016_j_iliver_2024_100079 crossref_primary_10_1186_s40644_020_00297_z crossref_primary_10_1002_jmri_27575 crossref_primary_10_1007_s00330_021_08326_6 crossref_primary_10_1038_s41598_024_61611_4 crossref_primary_10_3389_fonc_2024_1332188 crossref_primary_10_1016_j_ejro_2022_100424 crossref_primary_10_1186_s12967_024_05393_3 crossref_primary_10_1007_s11548_020_02212_0 crossref_primary_10_1186_s13244_023_01427_4 crossref_primary_10_1148_radiol_2020201940 crossref_primary_10_2174_2210298103666230412082214 crossref_primary_10_3389_fcvm_2022_1096422 crossref_primary_10_1016_j_iliver_2022_02_005 crossref_primary_10_2147_JHC_S487370 crossref_primary_10_3233_CH_242175 crossref_primary_10_1016_j_ejrad_2022_110309 crossref_primary_10_1007_s00330_023_09591_3 crossref_primary_10_2147_JHC_S293755 crossref_primary_10_1016_j_acra_2020_05_033 crossref_primary_10_1148_radiol_221291 crossref_primary_10_3390_cancers15082338 crossref_primary_10_3389_fnins_2024_1474780 crossref_primary_10_3389_fonc_2022_853336 crossref_primary_10_3389_fonc_2025_1485393 crossref_primary_10_3390_cancers13102368 crossref_primary_10_1002_jmri_28538 crossref_primary_10_3748_wjg_v28_i14_1479 crossref_primary_10_3389_fonc_2021_756216 crossref_primary_10_1007_s00415_020_09713_7 crossref_primary_10_3389_fonc_2023_1048311 crossref_primary_10_3233_CH_242286 crossref_primary_10_1186_s40644_020_00318_x crossref_primary_10_1038_s41598_020_67378_8 crossref_primary_10_1007_s00261_023_04015_8 crossref_primary_10_1002_mp_17087 crossref_primary_10_3390_bioengineering10080948 crossref_primary_10_3748_wjg_v27_i41_7173 crossref_primary_10_1007_s00261_024_04202_1 crossref_primary_10_1093_gastro_goae009 crossref_primary_10_3389_fonc_2022_838701 crossref_primary_10_1007_s11547_024_01845_4 crossref_primary_10_1097_HEP_0000000000001180 crossref_primary_10_1016_j_ejrad_2024_111871 crossref_primary_10_1093_gastro_goad035 crossref_primary_10_1002_ehf2_12830 crossref_primary_10_1155_2022_4147753 crossref_primary_10_3389_fonc_2022_1037145 crossref_primary_10_1016_j_asjsur_2023_10_042 crossref_primary_10_1186_s40644_019_0249_x crossref_primary_10_3389_fonc_2021_774117 crossref_primary_10_1038_s41598_020_72475_9 crossref_primary_10_3748_wjg_v30_i45_4801 crossref_primary_10_1016_j_jhepr_2022_100443 crossref_primary_10_1159_000512028 crossref_primary_10_1016_j_hbpd_2023_03_010 crossref_primary_10_1155_2022_7531452 crossref_primary_10_4251_wjgo_v13_i12_2190 crossref_primary_10_2147_JHC_S417878 crossref_primary_10_1002_jmri_29523 crossref_primary_10_1016_j_acra_2022_08_002 crossref_primary_10_3389_fcell_2025_1449624 crossref_primary_10_52668_kjar_2023_00031 crossref_primary_10_5582_bst_2022_01109 crossref_primary_10_1148_radiol_222729 crossref_primary_10_1245_s10434_022_12000_6 crossref_primary_10_1016_j_biopha_2020_110111 crossref_primary_10_3389_fonc_2023_1249339 crossref_primary_10_1002_jmri_29400 crossref_primary_10_3390_diagnostics11071162 crossref_primary_10_2147_JHC_S423549 crossref_primary_10_1038_s41598_023_34439_7 crossref_primary_10_2147_RMHP_S312330 crossref_primary_10_3389_fonc_2021_731993 crossref_primary_10_1186_s40644_023_00607_1 crossref_primary_10_1016_j_clinsp_2023_100264 crossref_primary_10_1038_s41746_021_00524_2 crossref_primary_10_1007_s00259_023_06184_6 crossref_primary_10_1053_j_semnuclmed_2020_07_003 crossref_primary_10_1002_cam4_3814 crossref_primary_10_1016_j_clinre_2020_11_011 crossref_primary_10_34133_hds_0005 crossref_primary_10_1007_s00330_023_09414_5 crossref_primary_10_1007_s00261_024_04661_6 crossref_primary_10_1148_radiol_221429 crossref_primary_10_1245_s10434_022_12034_w crossref_primary_10_1111_jgh_15415 crossref_primary_10_1111_jgh_15414 crossref_primary_10_1148_radiol_230255 crossref_primary_10_1259_bjro_20220055 crossref_primary_10_1016_j_eclinm_2020_100379 crossref_primary_10_3390_app13031371 crossref_primary_10_1038_s41416_019_0706_0 crossref_primary_10_1016_j_acra_2023_04_030 crossref_primary_10_1016_j_acra_2024_10_043 crossref_primary_10_1080_00365521_2022_2057198 crossref_primary_10_3233_CH_211363 crossref_primary_10_1007_s00432_023_05361_2 crossref_primary_10_3389_fonc_2023_1167745 crossref_primary_10_1016_j_amjsurg_2024_05_004 crossref_primary_10_1002_nbm_4945 crossref_primary_10_1245_s10434_019_07896_6 crossref_primary_10_1186_s40644_023_00629_9 crossref_primary_10_1371_journal_pone_0318232 crossref_primary_10_1016_j_hpb_2022_03_009 crossref_primary_10_1016_j_ejrad_2021_110055 crossref_primary_10_2147_JHC_S490226 crossref_primary_10_3390_cancers15051538 crossref_primary_10_1016_j_gassur_2024_02_004 crossref_primary_10_2967_jnumed_121_263479 crossref_primary_10_4251_wjgo_v14_i12_2380 crossref_primary_10_1016_j_crad_2023_10_038 crossref_primary_10_3390_s22145171 crossref_primary_10_3390_cancers15030743 crossref_primary_10_1007_s00330_023_09852_1 crossref_primary_10_1186_s40644_020_00338_7 crossref_primary_10_1007_s11547_023_01704_8 crossref_primary_10_7759_cureus_19274 crossref_primary_10_1088_1361_6560_ac16e8 crossref_primary_10_1007_s00330_019_06640_8 crossref_primary_10_3389_fonc_2021_709339 crossref_primary_10_1016_j_acra_2024_10_007 crossref_primary_10_3389_fimmu_2023_1134521 crossref_primary_10_1186_s12876_023_02729_z crossref_primary_10_1016_j_media_2022_102575 crossref_primary_10_1186_s12885_025_13711_1 crossref_primary_10_1177_15330338241245943 crossref_primary_10_1002_pbc_29932 crossref_primary_10_1007_s00261_019_02299_3 crossref_primary_10_1002_mp_16061 crossref_primary_10_1093_bjr_tqae116 crossref_primary_10_1186_s40644_022_00499_7 crossref_primary_10_3389_fsurg_2022_1046713 crossref_primary_10_3389_fonc_2020_562945 crossref_primary_10_3748_wjg_v29_i1_43 crossref_primary_10_1093_bib_bbac253 crossref_primary_10_1080_02656736_2022_2062463 crossref_primary_10_2147_CMAR_S300627 crossref_primary_10_1007_s43657_023_00136_8 crossref_primary_10_1016_j_ejrad_2022_110295 crossref_primary_10_1016_j_ejrad_2023_111200 crossref_primary_10_1007_s00432_021_03617_3 crossref_primary_10_1088_1361_6560_ab489f crossref_primary_10_1002_hep_31754 crossref_primary_10_1007_s11547_024_01890_z crossref_primary_10_1016_j_acra_2023_02_015 crossref_primary_10_3389_fonc_2021_588010 crossref_primary_10_1007_s00330_023_09789_5 crossref_primary_10_1159_000518728 crossref_primary_10_3389_fbioe_2022_872044 crossref_primary_10_1088_1361_6560_ad25c0 crossref_primary_10_1177_15330338231212726 crossref_primary_10_1259_bjr_20210631 crossref_primary_10_1002_aisy_202200004 crossref_primary_10_1097_MNM_0000000000001897 crossref_primary_10_3390_cancers17030507 crossref_primary_10_1259_bjr_20210748 crossref_primary_10_3748_wjg_v28_i31_4399 crossref_primary_10_1016_j_ejrad_2022_110281 crossref_primary_10_1007_s00432_020_03366_9 crossref_primary_10_3389_fonc_2020_01196 crossref_primary_10_2147_CMAR_S346976 crossref_primary_10_1016_j_ajpath_2024_05_007 crossref_primary_10_3389_fonc_2024_1360936 crossref_primary_10_3748_wjg_v30_i15_2128 crossref_primary_10_1259_bjr_20200950 crossref_primary_10_1186_s12876_022_02586_2 crossref_primary_10_14309_ctg_0000000000000712 crossref_primary_10_1016_j_acra_2023_10_060 crossref_primary_10_4251_wjgo_v13_i11_1599 crossref_primary_10_3389_fmed_2022_819670 crossref_primary_10_1016_j_eclinm_2021_101201 crossref_primary_10_18632_aging_103577 crossref_primary_10_3389_fonc_2024_1437347 crossref_primary_10_1016_j_mri_2022_08_013 crossref_primary_10_1016_j_jhep_2022_04_016 crossref_primary_10_1080_09273948_2023_2262028 crossref_primary_10_1007_s00261_021_03027_6 crossref_primary_10_1186_s40644_020_00302_5 crossref_primary_10_1016_j_acra_2024_04_003 crossref_primary_10_1097_MD_0000000000039480 crossref_primary_10_1002_jmri_27043 crossref_primary_10_2139_ssrn_3949775 crossref_primary_10_1186_s12885_025_13649_4 |
Cites_doi | 10.1016/j.jhep.2005.12.027 10.1016/j.cld.2009.02.007 10.1016/j.surg.2006.06.028 10.1073/pnas.1505935112 10.1177/0272989X06295361 10.2214/AJR.10.4720 10.1002/lt.21993 10.1111/j.1365-2036.2012.05174.x 10.1001/jamasurg.2015.4257 10.1001/archsurg.2007.39 10.1111/j.1600-6143.2007.01802.x 10.1200/JCO.2015.65.9128 10.1016/j.jchromb.2012.05.020 10.1158/1078-0432.CCR-16-0702 10.1038/ncomms5006 10.1002/hep.27877 10.1002/hep.29913 10.1016/j.ejrad.2016.12.030 10.1186/1471-2407-14-38 10.1148/radiol.2015151169 10.1148/radiol.2016152234 10.1148/radiol.2015150998 10.1245/s10434-012-2513-1 10.1093/annonc/mdx034 10.1002/lt.21842 10.1007/s12072-017-9799-9 10.5152/dir.2018.17467 10.1016/S1386-6346(03)00007-X 10.1016/j.diii.2018.05.008 10.1007/s00261-017-1072-0 |
ContentType | Journal Article |
Copyright | 2019 European Association for the Study of the Liver Copyright © 2019 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved. Copyright Elsevier Science Ltd. Jun 2019 |
Copyright_xml | – notice: 2019 European Association for the Study of the Liver – notice: Copyright © 2019 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved. – notice: Copyright Elsevier Science Ltd. Jun 2019 |
DBID | AAYXX CITATION NPM 7T5 H94 7X8 |
DOI | 10.1016/j.jhep.2019.02.023 |
DatabaseTitle | CrossRef PubMed AIDS and Cancer Research Abstracts Immunology Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1600-0641 |
EndPage | 1144 |
ExternalDocumentID | 30876945 10_1016_j_jhep_2019_02_023 S016882781930145X |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29K 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 D-I DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDZ HMK HMO HVGLF HX~ HZ~ IHE J1W KOM LZ1 M27 M41 MJL MO0 N9A O-L O9- OAUVE OC. ON0 OVD OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K TEORI UV1 WUQ X7M YOC Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAYXX AGRNS CITATION NPM 7T5 H94 7X8 |
ID | FETCH-LOGICAL-c501t-d115e3ff5a04aca756bc6f5e6247e54a43646424e37e75ee1ccd2991c118d80c3 |
IEDL.DBID | .~1 |
ISSN | 0168-8278 1600-0641 |
IngestDate | Fri Jul 11 02:23:41 EDT 2025 Sun Jul 13 05:38:50 EDT 2025 Wed Feb 19 02:34:11 EST 2025 Tue Jul 01 02:34:31 EDT 2025 Thu Apr 24 23:03:01 EDT 2025 Sat Feb 08 15:52:37 EST 2025 Tue Aug 26 20:34:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Clinical outcome HCC Liver imaging score Microvascular invasion Radiomics Hepatocellular carcinoma |
Language | English |
License | Copyright © 2019 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-d115e3ff5a04aca756bc6f5e6247e54a43646424e37e75ee1ccd2991c118d80c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8942-427X |
PMID | 30876945 |
PQID | 2252250487 |
PQPubID | 2047556 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2193163240 proquest_journals_2252250487 pubmed_primary_30876945 crossref_primary_10_1016_j_jhep_2019_02_023 crossref_citationtrail_10_1016_j_jhep_2019_02_023 elsevier_sciencedirect_doi_10_1016_j_jhep_2019_02_023 elsevier_clinicalkey_doi_10_1016_j_jhep_2019_02_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Journal of hepatology |
PublicationTitleAlternate | J Hepatol |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Huang, Liang, He, Tian, Liang, Chen (b0100) 2016; 34 Du, Chen, Zhao, Tian, Zeng, Tan (b0155) 2014; 14 Gillies, Kinahan, Hricak (b0090) 2016; 278 Zhou, He, Huang, Chen, Wu, Ye (b0135) 2017; 42 Lei, Li, Wu, Xia, Wang, Si (b0065) 2016; 151 Aerts, Velazquez, Leijenaar, Parmar, Grossmann, Carvalho (b0080) 2014; 5 D'Amico, Schwartz, Vitale, Tabrizian, Roayaie, Thung (b0050) 2009; 15 Peng, Zhang, Zhang, Xu, Zhou, Liu (b0110) 2018; 24 Huang, Liu, He, Chen, Pan, Ma (b0095) 2016; 281 Zimmerman, Ghobrial, Tong, Hiatt, Cameron, Hong (b0035) 2008; 143 Kickingereder, Gotz, Muschelli, Wick, Neuberger, Shinohara (b0085) 2016; 22 Unitt, Marshall, Gelson, Rushbrook, Davies, Vowler (b0030) 2006; 45 Zhao, Hua, Dai, He, Tang, Fu (b0150) 2017; 88 Lin, Yang, Zhou, Yin, Kong, Xing (b0125) 2012; 910 Akai, Yasaka, Kunimatsu, Nojima, Kokudo, Kokudo (b0140) 2018; 99 Marrero, Kulik, Sirlin, Zhu, Finn, Abecassis (b0115) 2018; 68 Shah, Cleary, Wei, Yang, Taylor, Hemming (b0055) 2007; 141 Fehr, Veeraraghavan, Wibmer, Gondo, Matsumoto, Vargas (b0120) 2015; 112 Fisher, Kulik, Freise, Lok, Shearon, Brown (b0020) 2007; 7 Omata, Cheng, Kokudo, Kudo, Lee, Jia (b0010) 2017; 11 Banerjee, Wang, Kim, Sirlin, Chan, Korn (b0040) 2015; 62 Zhang, Li, Shen, Lau (b0145) 2017 Vickers, Elkin (b0130) 2006; 26 Marrero, Welling (b0005) 2009; 13 Rodriguez-Peralvarez, Luong, Andreana, Meyer, Dhillon, Burroughs (b0060) 2013; 20 Kanwal, Befeler, Chari, Marrero, Kahn, Afdhal (b0015) 2012; 36 Limkin, Sun, Dercle, Zacharaki, Robert, Reuze (b0105) 2017; 28 Nakashima, Nakashima, Tanaka, Okuda, Nakashima, Kojiro (b0045) 2003; 26 Renzulli, Brocchi, Cucchetti, Mazzotti, Mosconi, Sportoletti (b0070) 2016; 279 Chandarana, Robinson, Hajdu, Drozhinin, Babb, Taouli (b0075) 2011; 196 Marshall, Rushbrook, Vowler, Palmer, Davies, Gibbs (b0025) 2010; 16 Renzulli (10.1016/j.jhep.2019.02.023_b0070) 2016; 279 Marrero (10.1016/j.jhep.2019.02.023_b0115) 2018; 68 Huang (10.1016/j.jhep.2019.02.023_b0100) 2016; 34 Marrero (10.1016/j.jhep.2019.02.023_b0005) 2009; 13 Chandarana (10.1016/j.jhep.2019.02.023_b0075) 2011; 196 Huang (10.1016/j.jhep.2019.02.023_b0095) 2016; 281 Zhou (10.1016/j.jhep.2019.02.023_b0135) 2017; 42 Fisher (10.1016/j.jhep.2019.02.023_b0020) 2007; 7 Lin (10.1016/j.jhep.2019.02.023_b0125) 2012; 910 Banerjee (10.1016/j.jhep.2019.02.023_b0040) 2015; 62 Shah (10.1016/j.jhep.2019.02.023_b0055) 2007; 141 Lei (10.1016/j.jhep.2019.02.023_b0065) 2016; 151 Zimmerman (10.1016/j.jhep.2019.02.023_b0035) 2008; 143 Omata (10.1016/j.jhep.2019.02.023_b0010) 2017; 11 Marshall (10.1016/j.jhep.2019.02.023_b0025) 2010; 16 Fehr (10.1016/j.jhep.2019.02.023_b0120) 2015; 112 Kickingereder (10.1016/j.jhep.2019.02.023_b0085) 2016; 22 Nakashima (10.1016/j.jhep.2019.02.023_b0045) 2003; 26 Limkin (10.1016/j.jhep.2019.02.023_b0105) 2017; 28 Akai (10.1016/j.jhep.2019.02.023_b0140) 2018; 99 Zhang (10.1016/j.jhep.2019.02.023_b0145) 2017 Aerts (10.1016/j.jhep.2019.02.023_b0080) 2014; 5 Kanwal (10.1016/j.jhep.2019.02.023_b0015) 2012; 36 Zhao (10.1016/j.jhep.2019.02.023_b0150) 2017; 88 Du (10.1016/j.jhep.2019.02.023_b0155) 2014; 14 D'Amico (10.1016/j.jhep.2019.02.023_b0050) 2009; 15 Gillies (10.1016/j.jhep.2019.02.023_b0090) 2016; 278 Peng (10.1016/j.jhep.2019.02.023_b0110) 2018; 24 Unitt (10.1016/j.jhep.2019.02.023_b0030) 2006; 45 Vickers (10.1016/j.jhep.2019.02.023_b0130) 2006; 26 Rodriguez-Peralvarez (10.1016/j.jhep.2019.02.023_b0060) 2013; 20 |
References_xml | – volume: 20 start-page: 325 year: 2013 end-page: 339 ident: b0060 article-title: A systematic review of microvascular invasion in hepatocellular carcinoma: diagnostic and prognostic variability publication-title: Ann Surg Oncol – volume: 5 start-page: 4006 year: 2014 ident: b0080 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun – volume: 14 start-page: 38 year: 2014 ident: b0155 article-title: Microvascular invasion (MVI) is a poorer prognostic predictor for small hepatocellular carcinoma publication-title: BMC Cancer – volume: 13 start-page: 233 year: 2009 end-page: 247 ident: b0005 article-title: Modern diagnosis and management of hepatocellular carcinoma publication-title: Clin Liver Dis – volume: 26 start-page: 565 year: 2006 end-page: 574 ident: b0130 article-title: Decision curve analysis: a novel method for evaluating prediction models publication-title: Medical Decis Making – volume: 143 start-page: 182 year: 2008 end-page: 188 ident: b0035 article-title: Recurrence of hepatocellular carcinoma following liver transplantation: a review of preoperative and postoperative prognostic indicators publication-title: Arch Surg – volume: 196 start-page: 1083 year: 2011 end-page: 1089 ident: b0075 article-title: Microvascular invasion in hepatocellular carcinoma: is it predictable with pretransplant MRI? publication-title: AJR Am J Roentgenol – volume: 22 start-page: 5765 year: 2016 end-page: 5771 ident: b0085 article-title: Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response publication-title: Clin Cancer Res – volume: 11 start-page: 317 year: 2017 end-page: 370 ident: b0010 article-title: Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update publication-title: Hep Intl – volume: 28 start-page: 1191 year: 2017 end-page: 1206 ident: b0105 article-title: Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology publication-title: Ann Oncol – volume: 24 start-page: 121 year: 2018 end-page: 127 ident: b0110 article-title: A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma publication-title: Diagn Interventional Radiol – volume: 281 start-page: 947 year: 2016 end-page: 957 ident: b0095 article-title: Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer publication-title: Radiology – volume: 68 start-page: 723 year: 2018 end-page: 750 ident: b0115 article-title: Diagnosis, staging, and management of hepatocellular carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases publication-title: Hepatology – volume: 16 start-page: 279 year: 2010 end-page: 288 ident: b0025 article-title: Tumor recurrence following liver transplantation for hepatocellular carcinoma: role of tumor proliferation status publication-title: Liver Transplant – volume: 45 start-page: 246 year: 2006 end-page: 253 ident: b0030 article-title: Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation publication-title: J Hepatol – volume: 279 start-page: 432 year: 2016 end-page: 442 ident: b0070 article-title: Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma? publication-title: Radiology – volume: 36 start-page: 257 year: 2012 end-page: 265 ident: b0015 article-title: Potentially curative treatment in patients with hepatocellular cancer–results from the liver cancer research network publication-title: Aliment Pharmacol Ther – volume: 62 start-page: 792 year: 2015 end-page: 800 ident: b0040 article-title: A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma publication-title: Hepatology – volume: 26 start-page: 142 year: 2003 end-page: 147 ident: b0045 article-title: Portal vein invasion and intrahepatic micrometastasis in small hepatocellular carcinoma by gross type publication-title: Hepatol Res – volume: 88 start-page: 32 year: 2017 end-page: 40 ident: b0150 article-title: Development and validation of a novel predictive scoring model for microvascular invasion in patients with hepatocellular carcinoma publication-title: Eur J Radiol – volume: 141 start-page: 330 year: 2007 end-page: 339 ident: b0055 article-title: Recurrence after liver resection for hepatocellular carcinoma: risk factors, treatment, and outcomes publication-title: Surgery – volume: 112 start-page: E6265 year: 2015 end-page: 6273 ident: b0120 article-title: Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images publication-title: PNAS – volume: 42 start-page: 1695 year: 2017 end-page: 1704 ident: b0135 article-title: CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma publication-title: Abdominal Radiol – volume: 278 start-page: 563 year: 2016 end-page: 577 ident: b0090 article-title: Radiomics: images are more than pictures, they are data publication-title: Radiology – volume: 7 start-page: 1601 year: 2007 end-page: 1608 ident: b0020 article-title: Hepatocellular carcinoma recurrence and death following living and deceased donor liver transplantation publication-title: Am J Transplant – volume: 910 start-page: 149 year: 2012 end-page: 155 ident: b0125 article-title: A support vector machine-recursive feature elimination feature selection method based on artificial contrast variables and mutual information publication-title: J Chromatogr B: Anal Technol Biomed Life Sci – volume: 15 start-page: 1278 year: 2009 end-page: 1287 ident: b0050 article-title: Predicting recurrence after liver transplantation in patients with hepatocellular carcinoma exceeding the up-to-seven criteria publication-title: Liver Transplant – year: 2017 ident: b0145 article-title: Significance of presence of microvascular invasion in specimens obtained after surgical treatment of hepatocellular carcinoma publication-title: J Gastroenterol Hepatol – volume: 34 start-page: 2157 year: 2016 end-page: 2164 ident: b0100 article-title: Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer publication-title: J Clin Oncol – volume: 151 start-page: 356 year: 2016 end-page: 363 ident: b0065 article-title: Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within the milan criteria publication-title: JAMA surgery – volume: 99 start-page: 643 year: 2018 end-page: 651 ident: b0140 article-title: Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest publication-title: Diagn Interventional Imaging – volume: 45 start-page: 246 year: 2006 ident: 10.1016/j.jhep.2019.02.023_b0030 article-title: Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation publication-title: J Hepatol doi: 10.1016/j.jhep.2005.12.027 – volume: 13 start-page: 233 year: 2009 ident: 10.1016/j.jhep.2019.02.023_b0005 article-title: Modern diagnosis and management of hepatocellular carcinoma publication-title: Clin Liver Dis doi: 10.1016/j.cld.2009.02.007 – volume: 141 start-page: 330 year: 2007 ident: 10.1016/j.jhep.2019.02.023_b0055 article-title: Recurrence after liver resection for hepatocellular carcinoma: risk factors, treatment, and outcomes publication-title: Surgery doi: 10.1016/j.surg.2006.06.028 – volume: 112 start-page: E6265 year: 2015 ident: 10.1016/j.jhep.2019.02.023_b0120 article-title: Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images publication-title: PNAS doi: 10.1073/pnas.1505935112 – volume: 26 start-page: 565 year: 2006 ident: 10.1016/j.jhep.2019.02.023_b0130 article-title: Decision curve analysis: a novel method for evaluating prediction models publication-title: Medical Decis Making doi: 10.1177/0272989X06295361 – volume: 196 start-page: 1083 year: 2011 ident: 10.1016/j.jhep.2019.02.023_b0075 article-title: Microvascular invasion in hepatocellular carcinoma: is it predictable with pretransplant MRI? publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.10.4720 – volume: 16 start-page: 279 year: 2010 ident: 10.1016/j.jhep.2019.02.023_b0025 article-title: Tumor recurrence following liver transplantation for hepatocellular carcinoma: role of tumor proliferation status publication-title: Liver Transplant doi: 10.1002/lt.21993 – volume: 36 start-page: 257 year: 2012 ident: 10.1016/j.jhep.2019.02.023_b0015 article-title: Potentially curative treatment in patients with hepatocellular cancer–results from the liver cancer research network publication-title: Aliment Pharmacol Ther doi: 10.1111/j.1365-2036.2012.05174.x – volume: 151 start-page: 356 year: 2016 ident: 10.1016/j.jhep.2019.02.023_b0065 article-title: Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within the milan criteria publication-title: JAMA surgery doi: 10.1001/jamasurg.2015.4257 – volume: 143 start-page: 182 year: 2008 ident: 10.1016/j.jhep.2019.02.023_b0035 article-title: Recurrence of hepatocellular carcinoma following liver transplantation: a review of preoperative and postoperative prognostic indicators publication-title: Arch Surg doi: 10.1001/archsurg.2007.39 – volume: 7 start-page: 1601 year: 2007 ident: 10.1016/j.jhep.2019.02.023_b0020 article-title: Hepatocellular carcinoma recurrence and death following living and deceased donor liver transplantation publication-title: Am J Transplant doi: 10.1111/j.1600-6143.2007.01802.x – volume: 34 start-page: 2157 year: 2016 ident: 10.1016/j.jhep.2019.02.023_b0100 article-title: Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2015.65.9128 – volume: 910 start-page: 149 year: 2012 ident: 10.1016/j.jhep.2019.02.023_b0125 article-title: A support vector machine-recursive feature elimination feature selection method based on artificial contrast variables and mutual information publication-title: J Chromatogr B: Anal Technol Biomed Life Sci doi: 10.1016/j.jchromb.2012.05.020 – volume: 22 start-page: 5765 year: 2016 ident: 10.1016/j.jhep.2019.02.023_b0085 article-title: Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-16-0702 – volume: 5 start-page: 4006 year: 2014 ident: 10.1016/j.jhep.2019.02.023_b0080 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun doi: 10.1038/ncomms5006 – year: 2017 ident: 10.1016/j.jhep.2019.02.023_b0145 article-title: Significance of presence of microvascular invasion in specimens obtained after surgical treatment of hepatocellular carcinoma publication-title: J Gastroenterol Hepatol – volume: 62 start-page: 792 year: 2015 ident: 10.1016/j.jhep.2019.02.023_b0040 article-title: A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma publication-title: Hepatology doi: 10.1002/hep.27877 – volume: 68 start-page: 723 year: 2018 ident: 10.1016/j.jhep.2019.02.023_b0115 article-title: Diagnosis, staging, and management of hepatocellular carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases publication-title: Hepatology doi: 10.1002/hep.29913 – volume: 88 start-page: 32 year: 2017 ident: 10.1016/j.jhep.2019.02.023_b0150 article-title: Development and validation of a novel predictive scoring model for microvascular invasion in patients with hepatocellular carcinoma publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2016.12.030 – volume: 14 start-page: 38 year: 2014 ident: 10.1016/j.jhep.2019.02.023_b0155 article-title: Microvascular invasion (MVI) is a poorer prognostic predictor for small hepatocellular carcinoma publication-title: BMC Cancer doi: 10.1186/1471-2407-14-38 – volume: 278 start-page: 563 year: 2016 ident: 10.1016/j.jhep.2019.02.023_b0090 article-title: Radiomics: images are more than pictures, they are data publication-title: Radiology doi: 10.1148/radiol.2015151169 – volume: 281 start-page: 947 year: 2016 ident: 10.1016/j.jhep.2019.02.023_b0095 article-title: Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer publication-title: Radiology doi: 10.1148/radiol.2016152234 – volume: 279 start-page: 432 year: 2016 ident: 10.1016/j.jhep.2019.02.023_b0070 article-title: Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma? publication-title: Radiology doi: 10.1148/radiol.2015150998 – volume: 20 start-page: 325 year: 2013 ident: 10.1016/j.jhep.2019.02.023_b0060 article-title: A systematic review of microvascular invasion in hepatocellular carcinoma: diagnostic and prognostic variability publication-title: Ann Surg Oncol doi: 10.1245/s10434-012-2513-1 – volume: 28 start-page: 1191 year: 2017 ident: 10.1016/j.jhep.2019.02.023_b0105 article-title: Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology publication-title: Ann Oncol doi: 10.1093/annonc/mdx034 – volume: 15 start-page: 1278 year: 2009 ident: 10.1016/j.jhep.2019.02.023_b0050 article-title: Predicting recurrence after liver transplantation in patients with hepatocellular carcinoma exceeding the up-to-seven criteria publication-title: Liver Transplant doi: 10.1002/lt.21842 – volume: 11 start-page: 317 year: 2017 ident: 10.1016/j.jhep.2019.02.023_b0010 article-title: Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update publication-title: Hep Intl doi: 10.1007/s12072-017-9799-9 – volume: 24 start-page: 121 year: 2018 ident: 10.1016/j.jhep.2019.02.023_b0110 article-title: A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma publication-title: Diagn Interventional Radiol doi: 10.5152/dir.2018.17467 – volume: 26 start-page: 142 year: 2003 ident: 10.1016/j.jhep.2019.02.023_b0045 article-title: Portal vein invasion and intrahepatic micrometastasis in small hepatocellular carcinoma by gross type publication-title: Hepatol Res doi: 10.1016/S1386-6346(03)00007-X – volume: 99 start-page: 643 year: 2018 ident: 10.1016/j.jhep.2019.02.023_b0140 article-title: Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest publication-title: Diagn Interventional Imaging doi: 10.1016/j.diii.2018.05.008 – volume: 42 start-page: 1695 year: 2017 ident: 10.1016/j.jhep.2019.02.023_b0135 article-title: CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma publication-title: Abdominal Radiol doi: 10.1007/s00261-017-1072-0 |
SSID | ssj0003094 |
Score | 2.6924195 |
Snippet | [Display omitted]
•We identified 8 MVI preoperative risk factors in HCC, including radiomic features.•Radiomic features do not provide significant added value... Microvascular invasion (MVI) impairs surgical outcomes in hepatocellular carcinoma (HCC) patients. As a single highly reliable factor to preoperatively predict... Background & Aims Microvascular invasion (MVI) impairs surgical outcomes in patients with hepatocellular carcinoma (HCC). As there is no single highly reliable... Microvascular invasion (MVI) impairs surgical outcomes in patients with hepatocellular carcinoma (HCC). As there is no single highly reliable factor to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1133 |
SubjectTerms | Clinical outcome Clinical outcomes Computed tomography Computer applications HCC Hepatocellular carcinoma Liver cancer Liver imaging score Microvascular invasion Microvasculature Prediction models Radiomics Risk factors Statistical analysis Survival |
Title | Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S016882781930145X https://dx.doi.org/10.1016/j.jhep.2019.02.023 https://www.ncbi.nlm.nih.gov/pubmed/30876945 https://www.proquest.com/docview/2252250487 https://www.proquest.com/docview/2193163240 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CCqWXkr43TYMKvRV3bUuy7GNYGjZtE0qawN6ELI_JhsbeZr3X_vbO2PKWHpJCwOCXxsia0Whkf_MJ4EPqUZlcl5EsVR0pzgEuKOyI0iotXIFa-34VhdOzbH6pviz0YgdmYy4MwyqD7x98eu-tw5VpaM3parmc_qBghcJDQ0MaTwv0gjPYlWEr__T7L8xDxkXg984jLh0SZwaM1_UVMmdlUvS8nam8a3C6K_jsB6HjPXgaokdxNFTwGexg8xwen4b_4y_g17mrlpxnLFwgGxFtLXo4ult3ETZX_Q9_MbsQq1uW6tbihiF5IyBVLBs6JF3RAyrRbjpqF6SLgl6Bpuf8mb8v5nkJoqa9cS_h8vjzxWwehUUVIq_jpIsqCgFR1rV2sXLeGZ2VPqs1ZqkyqJVTMlM0J1EoDRqNmHhPaisSTzORKo-9fAW7TdvgGxBJjSbTdVxqjSrHypkqywrlKYpg8Fs1gWRsTesD4zgvfPHTjtCya8sasKwBG6e0yQl83MqsBr6Ne0vLUUl2zCQl32dpOLhXSm-l_rG1_8odjHZgQ09fW_KHKdPA5WYC77e3qY-yRlyD7YbKkIkmzIsfT-D1YD_bl2NGRmo0vf_ASr2FJ3w2oNcOYLe73eA7ipO68rDvCIfw6Gh2_u0770--zs_-AMsbEy4 |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6FNh2GfZeunbTgN0GI35IfhyLoEX6SA5bCuQmyDKNpmjtrHH-f0lbNtBDO2CAD4YkGpJIUZRFfgT4GVqUSapyL8pl6UmOAc7I7PDCIsxMhkrZNovCfBHPruT5Sq32YNrHwrBbpdP9nU5vtbUrmbjZnGzW68kfMlbIPExoS-NjgVq9gH1Gp1Ij2D8-u5gtBoUc-ZmD-E49JnCxM52b1801MmxlkLXQnWH01P70lP3Z7kOnb-GNMyDFcdfHd7CH1Xt4OXdX5B_g729TrDnUWBiHNyLqUrQe6WbbeFhdt3f-YroUm3umarbijr3yep9Usa7oldhFHyhEvWtoapAKBQ2BTuj8p79tZjkLUVXfmY9wdXqynM48l1fBs8oPGq8gKxCjslTGl8aaRMW5jUuFcSgTVNLIKJZ0LJEYJZgoxMBa4lwWWDqMFKlvo08wquoKv4AISkxiVfq5UihTLExSxHEmLRkS7P9WjCHoZ1NbBzrOuS9ude9ddqOZA5o5oP2QnmgMvwaaTQe58WzrqGeS7oNJSf1p2hGepVID1SNx-yfdYS8H2i32rSaVGDISXJqM4cdQTcuUOWIqrHfUhqQ0YGh8fwyfO_kZBsegjDRp6uA_O_UdXs2W80t9eba4-AqvuaZzZjuEUXO_wyMym5r8m1sWD4uNFEo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomic+analysis+of+contrast-enhanced+CT+predicts+microvascular+invasion+and+outcome+in+hepatocellular+carcinoma&rft.jtitle=Journal+of+hepatology&rft.au=Xu%2C+Xun&rft.au=Zhang%2C+Hai-Long&rft.au=Liu%2C+Qiu-Ping&rft.au=Sun%2C+Shu-Wen&rft.date=2019-06-01&rft.pub=Elsevier+B.V&rft.issn=0168-8278&rft.volume=70&rft.issue=6&rft.spage=1133&rft.epage=1144&rft_id=info:doi/10.1016%2Fj.jhep.2019.02.023&rft.externalDocID=S016882781930145X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-8278&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-8278&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-8278&client=summon |