Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma

[Display omitted] •We identified 8 MVI preoperative risk factors in HCC, including radiomic features.•Radiomic features do not provide significant added value to radiologist scores.•A model integrating clinic-radiologic and radiomic features demonstrates good performance for predicting MVI. Microvas...

Full description

Saved in:
Bibliographic Details
Published inJournal of hepatology Vol. 70; no. 6; pp. 1133 - 1144
Main Authors Xu, Xun, Zhang, Hai-Long, Liu, Qiu-Ping, Sun, Shu-Wen, Zhang, Jing, Zhu, Fei-Peng, Yang, Guang, Yan, Xu, Zhang, Yu-Dong, Liu, Xi-Sheng
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •We identified 8 MVI preoperative risk factors in HCC, including radiomic features.•Radiomic features do not provide significant added value to radiologist scores.•A model integrating clinic-radiologic and radiomic features demonstrates good performance for predicting MVI. Microvascular invasion (MVI) impairs surgical outcomes in patients with hepatocellular carcinoma (HCC). As there is no single highly reliable factor to preoperatively predict MVI, we developed a computational approach integrating large-scale clinical and imaging modalities, especially radiomic features from contrast-enhanced CT, to predict MVI and clinical outcomes in patients with HCC. In total, 495 surgically resected patients were retrospectively included. MVI-related radiomic scores (R-scores) were built from 7,260 radiomic features in 6 target volumes. Six R-scores, 15 clinical factors, and 12 radiographic scores were integrated into a predictive model, the radiographic-radiomic (RR) model, with multivariate logistic regression. Radiomics related to tumor size and intratumoral heterogeneity were the top-ranked MVI predicting features. The related R-scores showed significant differences according to MVI status (p <0.001). Regression analysis identified 8 MVI risk factors, including 5 radiographic features and an R-score. The R-score (odds ratio [OR] 2.34) was less important than tumor capsule (OR 5.12), tumor margin (OR4.20), and peritumoral enhancement (OR 3.03). The RR model using these predictors achieved an area under the curve (AUC) of 0.909 in training/validation and 0.889 in the test set. Progression-free survival (PFS) and overall survival (OS) were significantly different between the RR-predicted MVI-absent and MVI-present groups (median PFS: 49.5 vs. 12.9 months; median OS: 76.3 vs. 47.3 months). RR-computed MVI probability, histologic MVI, tumor size, and Edmondson-Steiner grade were independently associated with disease-specific recurrence and mortality. The computational approach, integrating large-scale clinico-radiologic and radiomic features, demonstrates good performance for predicting MVI and clinical outcomes. However, radiomics with current CT imaging analysis protocols do not provide statistically significant added value to radiographic scores. The most effective treatment for hepatocellular carcinoma (HCC) is surgical removal of the tumor but often recurrence occurs, partly due to the presence of microvascular invasion (MVI). Lacking a single highly reliable factor able to preoperatively predict MVI, we developed a computational approach to predict MVI and the long-term clinical outcome of patients with HCC. In particular, the added value of radiomics, a newly emerging form of radiography, was comprehensively investigated. This computational method can enhance the communication with the patient about the likely success of the treatment and guide clinical management, with the aim of finding drugs that reduce the risk of recurrence.
AbstractList Microvascular invasion (MVI) impairs surgical outcomes in hepatocellular carcinoma (HCC) patients. As a single highly reliable factor to preoperatively predict MVI is lacking, we developed a computational approach integrating large-scale clinical and imaging modalities, especially radiomic features from contrast-enhanced CT, to predict MVI and clinical outcomes in HCC patients. In total, 495 surgically resected patients were retrospectively included. MVI-related radiomic scores (R-scores) were built from 7,260 radiomic features in six target volumes. Six R-scores, 15 clinical factors, and 12 radiographic scores were integrated into a predictive model, the Radiographic-Radiomic (RR) model, with multivariate logistic regression. Radiomics related to tumor size and intratumoral inhomogeneity were the top-ranked MVI predicting features. The related R-scores showed significant differences according to MVI status (p < 0.001). Regression analysis identified 8 MVI risk factors, including 5 radiographic features and a R-score. The R-score (odds ratio [OR], 2.34) was less important than tumor capsule (OR, 5.12), tumor margin (OR, 4.20), and peritumoral enhancement (OR, 3.03). The RR model using these predictors achieved an area under curve (AUC) of 0.909 in training/validation and 0.889 in the test set. Progression-free survival (PFS) and overall survival (OS) were significantly different between the RR-predicted MVI-absent and MVI-present groups (median PFS: 49.5 vs. 12.9 months; median OS: 76.3 vs. 47.3 months). RR-computed MVI probability, histologic MVI, tumor size, and Edmondson-Steiner grade were independently associated with disease-specific recurrence and mortality. The computational approach integrating large-scale clinicoradiologic and radiomic features demonstrates good performance for successfully predicting MVI and disease clinical outcomes, but radiomics with current CT imaging analysis protocols do not provide statistically significant added value to radiographic scores. The most effective treatment of hepatocellular carcinoma (HCC) is surgical removal of the tumor but often recurrence occurs, partly due to the presence of microvascular invasion (MVI). Lacking a single highly reliable factor able to preoperatively predict MVI, we developed a computational approach integrating large-scale clinical and imaging modalities to predict MVI and the long-term clinical outcome of patients with HCC. In particular, the added value of radiomics, a newly emerging form of radiography, was comprehensively investigated. This computational method can enhance the communication with the patient about the likely success of the treatment, and will help the design of clinical management aimed to find drugs able to decrease the risk of recurrence.
Microvascular invasion (MVI) impairs surgical outcomes in patients with hepatocellular carcinoma (HCC). As there is no single highly reliable factor to preoperatively predict MVI, we developed a computational approach integrating large-scale clinical and imaging modalities, especially radiomic features from contrast-enhanced CT, to predict MVI and clinical outcomes in patients with HCC.BACKGROUND & AIMSMicrovascular invasion (MVI) impairs surgical outcomes in patients with hepatocellular carcinoma (HCC). As there is no single highly reliable factor to preoperatively predict MVI, we developed a computational approach integrating large-scale clinical and imaging modalities, especially radiomic features from contrast-enhanced CT, to predict MVI and clinical outcomes in patients with HCC.In total, 495 surgically resected patients were retrospectively included. MVI-related radiomic scores (R-scores) were built from 7,260 radiomic features in 6 target volumes. Six R-scores, 15 clinical factors, and 12 radiographic scores were integrated into a predictive model, the radiographic-radiomic (RR) model, with multivariate logistic regression.METHODSIn total, 495 surgically resected patients were retrospectively included. MVI-related radiomic scores (R-scores) were built from 7,260 radiomic features in 6 target volumes. Six R-scores, 15 clinical factors, and 12 radiographic scores were integrated into a predictive model, the radiographic-radiomic (RR) model, with multivariate logistic regression.Radiomics related to tumor size and intratumoral heterogeneity were the top-ranked MVI predicting features. The related R-scores showed significant differences according to MVI status (p <0.001). Regression analysis identified 8 MVI risk factors, including 5 radiographic features and an R-score. The R-score (odds ratio [OR] 2.34) was less important than tumor capsule (OR 5.12), tumor margin (OR4.20), and peritumoral enhancement (OR 3.03). The RR model using these predictors achieved an area under the curve (AUC) of 0.909 in training/validation and 0.889 in the test set. Progression-free survival (PFS) and overall survival (OS) were significantly different between the RR-predicted MVI-absent and MVI-present groups (median PFS: 49.5 vs. 12.9 months; median OS: 76.3 vs. 47.3 months). RR-computed MVI probability, histologic MVI, tumor size, and Edmondson-Steiner grade were independently associated with disease-specific recurrence and mortality.RESULTSRadiomics related to tumor size and intratumoral heterogeneity were the top-ranked MVI predicting features. The related R-scores showed significant differences according to MVI status (p <0.001). Regression analysis identified 8 MVI risk factors, including 5 radiographic features and an R-score. The R-score (odds ratio [OR] 2.34) was less important than tumor capsule (OR 5.12), tumor margin (OR4.20), and peritumoral enhancement (OR 3.03). The RR model using these predictors achieved an area under the curve (AUC) of 0.909 in training/validation and 0.889 in the test set. Progression-free survival (PFS) and overall survival (OS) were significantly different between the RR-predicted MVI-absent and MVI-present groups (median PFS: 49.5 vs. 12.9 months; median OS: 76.3 vs. 47.3 months). RR-computed MVI probability, histologic MVI, tumor size, and Edmondson-Steiner grade were independently associated with disease-specific recurrence and mortality.The computational approach, integrating large-scale clinico-radiologic and radiomic features, demonstrates good performance for predicting MVI and clinical outcomes. However, radiomics with current CT imaging analysis protocols do not provide statistically significant added value to radiographic scores.CONCLUSIONSThe computational approach, integrating large-scale clinico-radiologic and radiomic features, demonstrates good performance for predicting MVI and clinical outcomes. However, radiomics with current CT imaging analysis protocols do not provide statistically significant added value to radiographic scores.The most effective treatment for hepatocellular carcinoma (HCC) is surgical removal of the tumor but often recurrence occurs, partly due to the presence of microvascular invasion (MVI). Lacking a single highly reliable factor able to preoperatively predict MVI, we developed a computational approach to predict MVI and the long-term clinical outcome of patients with HCC. In particular, the added value of radiomics, a newly emerging form of radiography, was comprehensively investigated. This computational method can enhance the communication with the patient about the likely success of the treatment and guide clinical management, with the aim of finding drugs that reduce the risk of recurrence.LAY SUMMARYThe most effective treatment for hepatocellular carcinoma (HCC) is surgical removal of the tumor but often recurrence occurs, partly due to the presence of microvascular invasion (MVI). Lacking a single highly reliable factor able to preoperatively predict MVI, we developed a computational approach to predict MVI and the long-term clinical outcome of patients with HCC. In particular, the added value of radiomics, a newly emerging form of radiography, was comprehensively investigated. This computational method can enhance the communication with the patient about the likely success of the treatment and guide clinical management, with the aim of finding drugs that reduce the risk of recurrence.
Background & Aims Microvascular invasion (MVI) impairs surgical outcomes in patients with hepatocellular carcinoma (HCC). As there is no single highly reliable factor to preoperatively predict MVI, we developed a computational approach integrating large-scale clinical and imaging modalities, especially radiomic features from contrast-enhanced CT, to predict MVI and clinical outcomes in patients with HCC. Methods In total, 495 surgically resected patients were retrospectively included. MVI-related radiomic scores (R-scores) were built from 7,260 radiomic features in 6 target volumes. Six R-scores, 15 clinical factors, and 12 radiographic scores were integrated into a predictive model, the radiographic-radiomic (RR) model, with multivariate logistic regression. Results Radiomics related to tumor size and intratumoral heterogeneity were the top-ranked MVI predicting features. The related R-scores showed significant differences according to MVI status (p <0.001). Regression analysis identified 8 MVI risk factors, including 5 radiographic features and an R-score. The R-score (odds ratio [OR] 2.34) was less important than tumor capsule (OR 5.12), tumor margin (OR 4.20), and peritumoral enhancement (OR 3.03). The RR model using these predictors achieved an area under the curve (AUC) of 0.909 in training/validation and 0.889 in the test set. Progression-free survival (PFS) and overall survival (OS) were significantly different between the RR-predicted MVI-absent and MVI-present groups (median PFS: 49.5 vs. 12.9 months; median OS: 76.3 vs. 47.3 months). RR-computed MVI probability, histologic MVI, tumor size, and Edmondson-Steiner grade were independently associated with disease-specific recurrence and mortality. Conclusions The computational approach, integrating large-scale clinico-radiologic and radiomic features, demonstrates good performance for predicting MVI and clinical outcomes. However, radiomics with current CT imaging analysis protocols do not provide statistically significant added value to radiographic scores.
[Display omitted] •We identified 8 MVI preoperative risk factors in HCC, including radiomic features.•Radiomic features do not provide significant added value to radiologist scores.•A model integrating clinic-radiologic and radiomic features demonstrates good performance for predicting MVI. Microvascular invasion (MVI) impairs surgical outcomes in patients with hepatocellular carcinoma (HCC). As there is no single highly reliable factor to preoperatively predict MVI, we developed a computational approach integrating large-scale clinical and imaging modalities, especially radiomic features from contrast-enhanced CT, to predict MVI and clinical outcomes in patients with HCC. In total, 495 surgically resected patients were retrospectively included. MVI-related radiomic scores (R-scores) were built from 7,260 radiomic features in 6 target volumes. Six R-scores, 15 clinical factors, and 12 radiographic scores were integrated into a predictive model, the radiographic-radiomic (RR) model, with multivariate logistic regression. Radiomics related to tumor size and intratumoral heterogeneity were the top-ranked MVI predicting features. The related R-scores showed significant differences according to MVI status (p <0.001). Regression analysis identified 8 MVI risk factors, including 5 radiographic features and an R-score. The R-score (odds ratio [OR] 2.34) was less important than tumor capsule (OR 5.12), tumor margin (OR4.20), and peritumoral enhancement (OR 3.03). The RR model using these predictors achieved an area under the curve (AUC) of 0.909 in training/validation and 0.889 in the test set. Progression-free survival (PFS) and overall survival (OS) were significantly different between the RR-predicted MVI-absent and MVI-present groups (median PFS: 49.5 vs. 12.9 months; median OS: 76.3 vs. 47.3 months). RR-computed MVI probability, histologic MVI, tumor size, and Edmondson-Steiner grade were independently associated with disease-specific recurrence and mortality. The computational approach, integrating large-scale clinico-radiologic and radiomic features, demonstrates good performance for predicting MVI and clinical outcomes. However, radiomics with current CT imaging analysis protocols do not provide statistically significant added value to radiographic scores. The most effective treatment for hepatocellular carcinoma (HCC) is surgical removal of the tumor but often recurrence occurs, partly due to the presence of microvascular invasion (MVI). Lacking a single highly reliable factor able to preoperatively predict MVI, we developed a computational approach to predict MVI and the long-term clinical outcome of patients with HCC. In particular, the added value of radiomics, a newly emerging form of radiography, was comprehensively investigated. This computational method can enhance the communication with the patient about the likely success of the treatment and guide clinical management, with the aim of finding drugs that reduce the risk of recurrence.
Author Zhang, Jing
Liu, Xi-Sheng
Liu, Qiu-Ping
Yang, Guang
Yan, Xu
Xu, Xun
Sun, Shu-Wen
Zhang, Hai-Long
Zhang, Yu-Dong
Zhu, Fei-Peng
Author_xml – sequence: 1
  givenname: Xun
  surname: Xu
  fullname: Xu, Xun
  organization: Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
– sequence: 2
  givenname: Hai-Long
  surname: Zhang
  fullname: Zhang, Hai-Long
  organization: Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
– sequence: 3
  givenname: Qiu-Ping
  surname: Liu
  fullname: Liu, Qiu-Ping
  organization: Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
– sequence: 4
  givenname: Shu-Wen
  surname: Sun
  fullname: Sun, Shu-Wen
  organization: Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
– sequence: 5
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
– sequence: 6
  givenname: Fei-Peng
  surname: Zhu
  fullname: Zhu, Fei-Peng
  organization: Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
– sequence: 7
  givenname: Guang
  orcidid: 0000-0001-8942-427X
  surname: Yang
  fullname: Yang, Guang
  organization: Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
– sequence: 8
  givenname: Xu
  surname: Yan
  fullname: Yan, Xu
  organization: MR Scientific Marketing, Siemens Healthcare, Shanghai, China
– sequence: 9
  givenname: Yu-Dong
  surname: Zhang
  fullname: Zhang, Yu-Dong
  email: njmu_zyd@163.com
  organization: Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
– sequence: 10
  givenname: Xi-Sheng
  surname: Liu
  fullname: Liu, Xi-Sheng
  email: njmu_lxs@163.com
  organization: Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30876945$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1q3DAUhUVJaSZpX6CLYuimG0_1Z9ku3ZShfxAolHQtlKtrIteWJpIcmLevnEm7mEUKFyTE94nLORfkzAePhLxmdMsoU-_H7XiL-y2nrN9SXkY8IxumKK2pkuyMbArU1R1vu3NykdJIKRW0ly_IuaBdq3rZbMjdT2NdmB1UxpvpkFyqwlBB8DmalGv0t8YD2mp3Xe0jWgc5VYWO4d4kWCYTK-fL1QVfPrBVWDKEGctjVVYzOQBO0wMGJoLzYTYvyfPBTAlfPZ6X5NeXz9e7b_XVj6_fd5-uamgoy7VlrEExDI2h0oBpG3UDamhQcdliI40USirJJYoW2waRAVje9wwY62xHQVySd8d_9zHcLZiynl1a1zEew5I0Z71gSnBJC_r2BB3DEkseheJNGSq7tlBvHqnlZkar99HNJh703zALwI9AiSeliMM_hFG9NqZHvTam18Y05WVEkboTCVw22T004Kan1Y9HFUuM9w6jTuBwrctFhKxtcE_rH050mJx3YKbfePif_AdGpMWh
CitedBy_id crossref_primary_10_1016_j_eclinm_2024_102808
crossref_primary_10_1016_j_ejso_2024_108274
crossref_primary_10_3389_fonc_2022_852736
crossref_primary_10_1016_j_bspc_2023_104794
crossref_primary_10_1093_jnci_djab098
crossref_primary_10_3233_CBM_230456
crossref_primary_10_1016_j_ejrad_2020_109389
crossref_primary_10_3348_kjr_2019_0752
crossref_primary_10_3389_fphys_2022_928969
crossref_primary_10_1177_10732748221076820
crossref_primary_10_23736_S1824_4785_19_03192_3
crossref_primary_10_1016_j_hpb_2020_10_024
crossref_primary_10_2147_JHC_S309570
crossref_primary_10_3389_fonc_2021_660629
crossref_primary_10_3389_fonc_2020_00887
crossref_primary_10_3389_fonc_2021_633596
crossref_primary_10_1097_JS9_0000000000001752
crossref_primary_10_1007_s00261_023_04071_0
crossref_primary_10_1016_j_tranon_2021_101200
crossref_primary_10_3748_wjg_v28_i24_2733
crossref_primary_10_1155_2022_7261786
crossref_primary_10_1016_j_crad_2022_08_149
crossref_primary_10_1111_liv_15254
crossref_primary_10_1148_radiol_2020192230
crossref_primary_10_1007_s00330_020_07601_2
crossref_primary_10_1002_jmri_28157
crossref_primary_10_1016_j_ejrad_2024_111348
crossref_primary_10_3389_fonc_2020_00872
crossref_primary_10_1186_s13244_024_01743_3
crossref_primary_10_3748_wjg_v26_i14_1647
crossref_primary_10_23736_S0394_9508_24_05762_0
crossref_primary_10_1186_s12957_022_02645_8
crossref_primary_10_1080_02656736_2024_2316097
crossref_primary_10_1155_2023_1554599
crossref_primary_10_1016_j_ultrasmedbio_2023_12_003
crossref_primary_10_1245_s10434_022_11346_1
crossref_primary_10_1016_j_joca_2022_10_014
crossref_primary_10_2147_CMAR_S245475
crossref_primary_10_1016_j_jhep_2021_09_034
crossref_primary_10_1007_s00261_022_03496_3
crossref_primary_10_1002_jmri_29276
crossref_primary_10_1186_s12885_023_11386_0
crossref_primary_10_1186_s12916_023_03137_6
crossref_primary_10_3389_fonc_2022_773840
crossref_primary_10_1007_s00261_021_03192_8
crossref_primary_10_2139_ssrn_3968888
crossref_primary_10_1007_s00066_020_01615_x
crossref_primary_10_1097_RCT_0000000000001169
crossref_primary_10_1016_j_compbiomed_2024_108337
crossref_primary_10_1186_s12957_024_03523_1
crossref_primary_10_1007_s00261_022_03473_w
crossref_primary_10_1007_s00270_022_03221_z
crossref_primary_10_1111_apt_16563
crossref_primary_10_1111_liv_15231
crossref_primary_10_1016_j_clinimag_2020_11_057
crossref_primary_10_1016_j_acra_2023_12_007
crossref_primary_10_1111_liv_14380
crossref_primary_10_1007_s00261_021_02992_2
crossref_primary_10_1093_bjr_tqae056
crossref_primary_10_1111_1759_7714_14730
crossref_primary_10_3390_cancers13112522
crossref_primary_10_3389_fonc_2022_876900
crossref_primary_10_1186_s12967_020_02432_7
crossref_primary_10_3389_fcvm_2023_1014400
crossref_primary_10_1016_j_hpb_2023_01_015
crossref_primary_10_1002_mp_16597
crossref_primary_10_1155_2023_5424204
crossref_primary_10_1007_s00330_022_09085_8
crossref_primary_10_1111_hepr_14149
crossref_primary_10_1038_s41598_021_90257_9
crossref_primary_10_1007_s40846_023_00829_5
crossref_primary_10_1186_s40644_023_00523_4
crossref_primary_10_1016_j_acra_2023_06_022
crossref_primary_10_1016_S2468_1253_24_00434_5
crossref_primary_10_2147_JHC_S493044
crossref_primary_10_1111_aor_14715
crossref_primary_10_3390_cancers17050893
crossref_primary_10_1245_s10434_022_12598_7
crossref_primary_10_1038_s41598_025_88343_3
crossref_primary_10_4240_wjgs_v13_i9_967
crossref_primary_10_1186_s12935_023_02907_9
crossref_primary_10_1016_j_compbiomed_2024_108593
crossref_primary_10_1186_s12880_022_00855_w
crossref_primary_10_3389_fonc_2023_1133867
crossref_primary_10_1016_j_ejca_2021_07_009
crossref_primary_10_3389_fonc_2022_960178
crossref_primary_10_1016_j_acra_2023_06_033
crossref_primary_10_3389_fonc_2021_644165
crossref_primary_10_1016_j_heliyon_2024_e36313
crossref_primary_10_1016_j_ijcard_2024_132617
crossref_primary_10_1016_j_ejrad_2021_109962
crossref_primary_10_1016_j_heliyon_2023_e23166
crossref_primary_10_1016_j_acthis_2021_151793
crossref_primary_10_3389_fonc_2022_763842
crossref_primary_10_3390_diagnostics12010160
crossref_primary_10_1007_s13304_021_01036_0
crossref_primary_10_1007_s12072_022_10326_7
crossref_primary_10_4251_wjgo_v17_i1_96439
crossref_primary_10_1016_j_heliyon_2023_e16997
crossref_primary_10_3390_cancers13225793
crossref_primary_10_1007_s12072_022_10303_0
crossref_primary_10_1016_j_acra_2023_05_015
crossref_primary_10_1186_s12885_024_12829_y
crossref_primary_10_2147_JHC_S356573
crossref_primary_10_1016_j_heliyon_2024_e25535
crossref_primary_10_1002_mp_16127
crossref_primary_10_1016_j_crad_2020_11_002
crossref_primary_10_2139_ssrn_3935656
crossref_primary_10_3389_fonc_2022_878061
crossref_primary_10_1016_j_ejro_2025_100639
crossref_primary_10_1016_j_tranon_2024_102260
crossref_primary_10_1016_j_hbpd_2021_12_004
crossref_primary_10_1007_s13304_024_01789_4
crossref_primary_10_1007_s00066_021_01879_x
crossref_primary_10_1088_1361_6560_abf717
crossref_primary_10_1159_000509424
crossref_primary_10_1007_s00330_022_09290_5
crossref_primary_10_1016_j_ejrad_2020_109429
crossref_primary_10_3389_fonc_2022_831996
crossref_primary_10_1158_1078_0432_CCR_22_2784
crossref_primary_10_1007_s00330_021_07793_1
crossref_primary_10_3389_fneur_2023_1151326
crossref_primary_10_1007_s00330_019_06600_2
crossref_primary_10_1245_s10434_019_08190_1
crossref_primary_10_1007_s00330_020_07119_7
crossref_primary_10_3389_fsurg_2022_833779
crossref_primary_10_1002_mp_15451
crossref_primary_10_1016_j_ejso_2022_08_036
crossref_primary_10_35711_aimi_v3_i4_87
crossref_primary_10_1002_cam4_5546
crossref_primary_10_1259_bjr_20211136
crossref_primary_10_1007_s12094_024_03427_2
crossref_primary_10_1016_j_suronc_2023_101951
crossref_primary_10_1111_liv_14555
crossref_primary_10_17709_2410_1893_2024_11_1_5
crossref_primary_10_1016_j_jhepr_2023_100839
crossref_primary_10_1016_j_crad_2021_12_008
crossref_primary_10_1002_poh2_85
crossref_primary_10_3389_fonc_2020_00353
crossref_primary_10_1016_j_meomic_2021_100005
crossref_primary_10_3389_fonc_2022_818681
crossref_primary_10_3390_cancers14071816
crossref_primary_10_12677_ACM_2023_1351135
crossref_primary_10_3389_fonc_2022_1032115
crossref_primary_10_1111_liv_14763
crossref_primary_10_1148_radiol_2021203614
crossref_primary_10_1016_j_heliyon_2024_e28173
crossref_primary_10_3389_fonc_2023_1218128
crossref_primary_10_3390_diagnostics13122012
crossref_primary_10_1186_s40644_023_00621_3
crossref_primary_10_1186_s40001_024_01973_7
crossref_primary_10_3390_cancers15010063
crossref_primary_10_1159_000518101
crossref_primary_10_1016_j_acra_2022_04_006
crossref_primary_10_1097_JS9_0000000000000119
crossref_primary_10_1186_s12885_023_11491_0
crossref_primary_10_1186_s12935_024_03629_2
crossref_primary_10_1016_j_ejso_2021_11_120
crossref_primary_10_3748_wjg_v26_i26_3720
crossref_primary_10_1155_2022_9556589
crossref_primary_10_1016_j_ultrasmedbio_2023_02_020
crossref_primary_10_1016_j_radonc_2024_110660
crossref_primary_10_1007_s00261_022_03511_7
crossref_primary_10_3390_cancers14184449
crossref_primary_10_23736_S2723_9284_23_00252_0
crossref_primary_10_37549_AR2904
crossref_primary_10_2147_JMDH_S491697
crossref_primary_10_1093_brain_awab340
crossref_primary_10_1016_j_acra_2025_02_006
crossref_primary_10_1007_s12072_021_10229_z
crossref_primary_10_3389_fonc_2022_1021570
crossref_primary_10_3389_fonc_2020_593292
crossref_primary_10_1016_j_ejrad_2020_109111
crossref_primary_10_3748_wjg_v26_i37_5617
crossref_primary_10_1007_s10585_023_10235_5
crossref_primary_10_1016_j_jhepr_2019_07_004
crossref_primary_10_1016_j_ebiom_2021_103395
crossref_primary_10_1007_s00330_025_11352_3
crossref_primary_10_1093_oncolo_oyae286
crossref_primary_10_3390_medicina59050992
crossref_primary_10_1016_j_tranon_2020_100866
crossref_primary_10_2147_JHC_S484027
crossref_primary_10_1039_D3TB01706K
crossref_primary_10_2174_0115734056256824231204073534
crossref_primary_10_1097_TP_0000000000003605
crossref_primary_10_1016_j_amjsurg_2024_116172
crossref_primary_10_1016_j_jhepr_2020_100100
crossref_primary_10_1177_15593258241301525
crossref_primary_10_2217_bmm_2023_0064
crossref_primary_10_1159_000530495
crossref_primary_10_1007_s10278_024_01192_w
crossref_primary_10_1097_PPO_0000000000000435
crossref_primary_10_3390_jpm13030478
crossref_primary_10_1155_2021_6685723
crossref_primary_10_3389_fonc_2023_1036734
crossref_primary_10_1007_s00330_021_08504_6
crossref_primary_10_1016_j_engreg_2023_12_001
crossref_primary_10_1016_j_dld_2022_12_015
crossref_primary_10_1186_s40644_020_00341_y
crossref_primary_10_1007_s10462_021_10023_1
crossref_primary_10_1016_j_crad_2024_01_039
crossref_primary_10_1186_s40644_021_00425_3
crossref_primary_10_3389_fonc_2020_574228
crossref_primary_10_1038_s41416_022_02134_5
crossref_primary_10_3389_fsurg_2022_988484
crossref_primary_10_1007_s00330_023_09503_5
crossref_primary_10_1016_j_acra_2023_09_031
crossref_primary_10_1016_j_acra_2024_11_023
crossref_primary_10_3390_cancers14246123
crossref_primary_10_1038_s41416_023_02317_8
crossref_primary_10_1097_HC9_0000000000000593
crossref_primary_10_12677_ACM_2023_13122666
crossref_primary_10_3390_life13122267
crossref_primary_10_1111_ajt_15697
crossref_primary_10_1016_j_diii_2022_10_001
crossref_primary_10_3389_fonc_2024_1371432
crossref_primary_10_1007_s00330_021_08250_9
crossref_primary_10_1016_j_hbpd_2021_09_011
crossref_primary_10_1016_j_hpb_2022_09_002
crossref_primary_10_3748_wjg_v28_i42_6002
crossref_primary_10_1016_j_compbiomed_2023_107612
crossref_primary_10_2139_ssrn_3746935
crossref_primary_10_2147_JHC_S455878
crossref_primary_10_1038_s41598_021_93528_7
crossref_primary_10_3389_fonc_2023_1164739
crossref_primary_10_1093_ejcts_ezad373
crossref_primary_10_1186_s12885_024_13206_5
crossref_primary_10_1002_jmri_27538
crossref_primary_10_1148_rycan_2020190062
crossref_primary_10_3390_cancers14246036
crossref_primary_10_1007_s00330_021_08198_w
crossref_primary_10_3348_kjr_2024_0070
crossref_primary_10_1021_acsnano_1c08477
crossref_primary_10_1097_MOT_0000000000000775
crossref_primary_10_1007_s00261_021_03056_1
crossref_primary_10_1097_MOT_0000000000000773
crossref_primary_10_1007_s00259_020_04747_5
crossref_primary_10_1016_j_acra_2024_12_039
crossref_primary_10_3389_fonc_2024_1370010
crossref_primary_10_1053_j_sult_2023_03_002
crossref_primary_10_1038_s41418_023_01166_5
crossref_primary_10_3389_fonc_2022_848903
crossref_primary_10_1002_cam4_6933
crossref_primary_10_1245_s10434_022_11505_4
crossref_primary_10_1038_s41598_024_70208_w
crossref_primary_10_1002_ctm2_111
crossref_primary_10_1097_MD_0000000000040790
crossref_primary_10_35711_aimi_v2_i3_64
crossref_primary_10_3389_fcell_2021_678670
crossref_primary_10_1016_j_crad_2021_03_003
crossref_primary_10_1109_ACCESS_2021_3052776
crossref_primary_10_1016_j_hpb_2022_08_007
crossref_primary_10_3390_cancers14194647
crossref_primary_10_3389_fonc_2024_1389177
crossref_primary_10_1097_MEG_0000000000002535
crossref_primary_10_1111_liv_14865
crossref_primary_10_3389_fimmu_2020_613946
crossref_primary_10_1007_s00261_019_02378_5
crossref_primary_10_3389_fgene_2023_1187040
crossref_primary_10_7180_kmj_24_103
crossref_primary_10_2147_JHC_S362772
crossref_primary_10_35712_aig_v3_i4_96
crossref_primary_10_1038_s41598_025_92080_y
crossref_primary_10_3748_wjg_v29_i26_4186
crossref_primary_10_1016_j_crad_2023_05_007
crossref_primary_10_1007_s00261_022_03554_w
crossref_primary_10_1186_s12880_022_00828_z
crossref_primary_10_3748_wjg_v28_i20_2176
crossref_primary_10_1007_s10334_022_01050_2
crossref_primary_10_1093_oncolo_oyad124
crossref_primary_10_1007_s00261_023_04049_y
crossref_primary_10_3389_fonc_2022_857715
crossref_primary_10_1016_j_critrevonc_2023_104107
crossref_primary_10_1111_liv_15846
crossref_primary_10_1016_j_acra_2023_10_001
crossref_primary_10_1007_s00259_021_05325_z
crossref_primary_10_2214_AJR_20_23255
crossref_primary_10_1007_s00259_020_05119_9
crossref_primary_10_12677_ACM_2023_1351040
crossref_primary_10_1186_s13048_022_01089_8
crossref_primary_10_1038_s41598_021_87598_w
crossref_primary_10_2147_JHC_S319639
crossref_primary_10_3390_ijtm3010005
crossref_primary_10_3389_fonc_2020_01121
crossref_primary_10_12677_acm_2024_14102706
crossref_primary_10_1016_j_acra_2020_04_027
crossref_primary_10_1186_s13244_023_01536_0
crossref_primary_10_3389_fonc_2021_621622
crossref_primary_10_7717_peerj_12420
crossref_primary_10_3389_fnins_2021_721268
crossref_primary_10_3389_fsurg_2022_857838
crossref_primary_10_1038_s41598_023_35913_y
crossref_primary_10_1155_2022_4996471
crossref_primary_10_1016_j_iliver_2024_100079
crossref_primary_10_1186_s40644_020_00297_z
crossref_primary_10_1002_jmri_27575
crossref_primary_10_1007_s00330_021_08326_6
crossref_primary_10_1038_s41598_024_61611_4
crossref_primary_10_3389_fonc_2024_1332188
crossref_primary_10_1016_j_ejro_2022_100424
crossref_primary_10_1186_s12967_024_05393_3
crossref_primary_10_1007_s11548_020_02212_0
crossref_primary_10_1186_s13244_023_01427_4
crossref_primary_10_1148_radiol_2020201940
crossref_primary_10_2174_2210298103666230412082214
crossref_primary_10_3389_fcvm_2022_1096422
crossref_primary_10_1016_j_iliver_2022_02_005
crossref_primary_10_2147_JHC_S487370
crossref_primary_10_3233_CH_242175
crossref_primary_10_1016_j_ejrad_2022_110309
crossref_primary_10_1007_s00330_023_09591_3
crossref_primary_10_2147_JHC_S293755
crossref_primary_10_1016_j_acra_2020_05_033
crossref_primary_10_1148_radiol_221291
crossref_primary_10_3390_cancers15082338
crossref_primary_10_3389_fnins_2024_1474780
crossref_primary_10_3389_fonc_2022_853336
crossref_primary_10_3389_fonc_2025_1485393
crossref_primary_10_3390_cancers13102368
crossref_primary_10_1002_jmri_28538
crossref_primary_10_3748_wjg_v28_i14_1479
crossref_primary_10_3389_fonc_2021_756216
crossref_primary_10_1007_s00415_020_09713_7
crossref_primary_10_3389_fonc_2023_1048311
crossref_primary_10_3233_CH_242286
crossref_primary_10_1186_s40644_020_00318_x
crossref_primary_10_1038_s41598_020_67378_8
crossref_primary_10_1007_s00261_023_04015_8
crossref_primary_10_1002_mp_17087
crossref_primary_10_3390_bioengineering10080948
crossref_primary_10_3748_wjg_v27_i41_7173
crossref_primary_10_1007_s00261_024_04202_1
crossref_primary_10_1093_gastro_goae009
crossref_primary_10_3389_fonc_2022_838701
crossref_primary_10_1007_s11547_024_01845_4
crossref_primary_10_1097_HEP_0000000000001180
crossref_primary_10_1016_j_ejrad_2024_111871
crossref_primary_10_1093_gastro_goad035
crossref_primary_10_1002_ehf2_12830
crossref_primary_10_1155_2022_4147753
crossref_primary_10_3389_fonc_2022_1037145
crossref_primary_10_1016_j_asjsur_2023_10_042
crossref_primary_10_1186_s40644_019_0249_x
crossref_primary_10_3389_fonc_2021_774117
crossref_primary_10_1038_s41598_020_72475_9
crossref_primary_10_3748_wjg_v30_i45_4801
crossref_primary_10_1016_j_jhepr_2022_100443
crossref_primary_10_1159_000512028
crossref_primary_10_1016_j_hbpd_2023_03_010
crossref_primary_10_1155_2022_7531452
crossref_primary_10_4251_wjgo_v13_i12_2190
crossref_primary_10_2147_JHC_S417878
crossref_primary_10_1002_jmri_29523
crossref_primary_10_1016_j_acra_2022_08_002
crossref_primary_10_3389_fcell_2025_1449624
crossref_primary_10_52668_kjar_2023_00031
crossref_primary_10_5582_bst_2022_01109
crossref_primary_10_1148_radiol_222729
crossref_primary_10_1245_s10434_022_12000_6
crossref_primary_10_1016_j_biopha_2020_110111
crossref_primary_10_3389_fonc_2023_1249339
crossref_primary_10_1002_jmri_29400
crossref_primary_10_3390_diagnostics11071162
crossref_primary_10_2147_JHC_S423549
crossref_primary_10_1038_s41598_023_34439_7
crossref_primary_10_2147_RMHP_S312330
crossref_primary_10_3389_fonc_2021_731993
crossref_primary_10_1186_s40644_023_00607_1
crossref_primary_10_1016_j_clinsp_2023_100264
crossref_primary_10_1038_s41746_021_00524_2
crossref_primary_10_1007_s00259_023_06184_6
crossref_primary_10_1053_j_semnuclmed_2020_07_003
crossref_primary_10_1002_cam4_3814
crossref_primary_10_1016_j_clinre_2020_11_011
crossref_primary_10_34133_hds_0005
crossref_primary_10_1007_s00330_023_09414_5
crossref_primary_10_1007_s00261_024_04661_6
crossref_primary_10_1148_radiol_221429
crossref_primary_10_1245_s10434_022_12034_w
crossref_primary_10_1111_jgh_15415
crossref_primary_10_1111_jgh_15414
crossref_primary_10_1148_radiol_230255
crossref_primary_10_1259_bjro_20220055
crossref_primary_10_1016_j_eclinm_2020_100379
crossref_primary_10_3390_app13031371
crossref_primary_10_1038_s41416_019_0706_0
crossref_primary_10_1016_j_acra_2023_04_030
crossref_primary_10_1016_j_acra_2024_10_043
crossref_primary_10_1080_00365521_2022_2057198
crossref_primary_10_3233_CH_211363
crossref_primary_10_1007_s00432_023_05361_2
crossref_primary_10_3389_fonc_2023_1167745
crossref_primary_10_1016_j_amjsurg_2024_05_004
crossref_primary_10_1002_nbm_4945
crossref_primary_10_1245_s10434_019_07896_6
crossref_primary_10_1186_s40644_023_00629_9
crossref_primary_10_1371_journal_pone_0318232
crossref_primary_10_1016_j_hpb_2022_03_009
crossref_primary_10_1016_j_ejrad_2021_110055
crossref_primary_10_2147_JHC_S490226
crossref_primary_10_3390_cancers15051538
crossref_primary_10_1016_j_gassur_2024_02_004
crossref_primary_10_2967_jnumed_121_263479
crossref_primary_10_4251_wjgo_v14_i12_2380
crossref_primary_10_1016_j_crad_2023_10_038
crossref_primary_10_3390_s22145171
crossref_primary_10_3390_cancers15030743
crossref_primary_10_1007_s00330_023_09852_1
crossref_primary_10_1186_s40644_020_00338_7
crossref_primary_10_1007_s11547_023_01704_8
crossref_primary_10_7759_cureus_19274
crossref_primary_10_1088_1361_6560_ac16e8
crossref_primary_10_1007_s00330_019_06640_8
crossref_primary_10_3389_fonc_2021_709339
crossref_primary_10_1016_j_acra_2024_10_007
crossref_primary_10_3389_fimmu_2023_1134521
crossref_primary_10_1186_s12876_023_02729_z
crossref_primary_10_1016_j_media_2022_102575
crossref_primary_10_1186_s12885_025_13711_1
crossref_primary_10_1177_15330338241245943
crossref_primary_10_1002_pbc_29932
crossref_primary_10_1007_s00261_019_02299_3
crossref_primary_10_1002_mp_16061
crossref_primary_10_1093_bjr_tqae116
crossref_primary_10_1186_s40644_022_00499_7
crossref_primary_10_3389_fsurg_2022_1046713
crossref_primary_10_3389_fonc_2020_562945
crossref_primary_10_3748_wjg_v29_i1_43
crossref_primary_10_1093_bib_bbac253
crossref_primary_10_1080_02656736_2022_2062463
crossref_primary_10_2147_CMAR_S300627
crossref_primary_10_1007_s43657_023_00136_8
crossref_primary_10_1016_j_ejrad_2022_110295
crossref_primary_10_1016_j_ejrad_2023_111200
crossref_primary_10_1007_s00432_021_03617_3
crossref_primary_10_1088_1361_6560_ab489f
crossref_primary_10_1002_hep_31754
crossref_primary_10_1007_s11547_024_01890_z
crossref_primary_10_1016_j_acra_2023_02_015
crossref_primary_10_3389_fonc_2021_588010
crossref_primary_10_1007_s00330_023_09789_5
crossref_primary_10_1159_000518728
crossref_primary_10_3389_fbioe_2022_872044
crossref_primary_10_1088_1361_6560_ad25c0
crossref_primary_10_1177_15330338231212726
crossref_primary_10_1259_bjr_20210631
crossref_primary_10_1002_aisy_202200004
crossref_primary_10_1097_MNM_0000000000001897
crossref_primary_10_3390_cancers17030507
crossref_primary_10_1259_bjr_20210748
crossref_primary_10_3748_wjg_v28_i31_4399
crossref_primary_10_1016_j_ejrad_2022_110281
crossref_primary_10_1007_s00432_020_03366_9
crossref_primary_10_3389_fonc_2020_01196
crossref_primary_10_2147_CMAR_S346976
crossref_primary_10_1016_j_ajpath_2024_05_007
crossref_primary_10_3389_fonc_2024_1360936
crossref_primary_10_3748_wjg_v30_i15_2128
crossref_primary_10_1259_bjr_20200950
crossref_primary_10_1186_s12876_022_02586_2
crossref_primary_10_14309_ctg_0000000000000712
crossref_primary_10_1016_j_acra_2023_10_060
crossref_primary_10_4251_wjgo_v13_i11_1599
crossref_primary_10_3389_fmed_2022_819670
crossref_primary_10_1016_j_eclinm_2021_101201
crossref_primary_10_18632_aging_103577
crossref_primary_10_3389_fonc_2024_1437347
crossref_primary_10_1016_j_mri_2022_08_013
crossref_primary_10_1016_j_jhep_2022_04_016
crossref_primary_10_1080_09273948_2023_2262028
crossref_primary_10_1007_s00261_021_03027_6
crossref_primary_10_1186_s40644_020_00302_5
crossref_primary_10_1016_j_acra_2024_04_003
crossref_primary_10_1097_MD_0000000000039480
crossref_primary_10_1002_jmri_27043
crossref_primary_10_2139_ssrn_3949775
crossref_primary_10_1186_s12885_025_13649_4
Cites_doi 10.1016/j.jhep.2005.12.027
10.1016/j.cld.2009.02.007
10.1016/j.surg.2006.06.028
10.1073/pnas.1505935112
10.1177/0272989X06295361
10.2214/AJR.10.4720
10.1002/lt.21993
10.1111/j.1365-2036.2012.05174.x
10.1001/jamasurg.2015.4257
10.1001/archsurg.2007.39
10.1111/j.1600-6143.2007.01802.x
10.1200/JCO.2015.65.9128
10.1016/j.jchromb.2012.05.020
10.1158/1078-0432.CCR-16-0702
10.1038/ncomms5006
10.1002/hep.27877
10.1002/hep.29913
10.1016/j.ejrad.2016.12.030
10.1186/1471-2407-14-38
10.1148/radiol.2015151169
10.1148/radiol.2016152234
10.1148/radiol.2015150998
10.1245/s10434-012-2513-1
10.1093/annonc/mdx034
10.1002/lt.21842
10.1007/s12072-017-9799-9
10.5152/dir.2018.17467
10.1016/S1386-6346(03)00007-X
10.1016/j.diii.2018.05.008
10.1007/s00261-017-1072-0
ContentType Journal Article
Copyright 2019 European Association for the Study of the Liver
Copyright © 2019 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Copyright Elsevier Science Ltd. Jun 2019
Copyright_xml – notice: 2019 European Association for the Study of the Liver
– notice: Copyright © 2019 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier Science Ltd. Jun 2019
DBID AAYXX
CITATION
NPM
7T5
H94
7X8
DOI 10.1016/j.jhep.2019.02.023
DatabaseTitle CrossRef
PubMed
AIDS and Cancer Research Abstracts
Immunology Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
AIDS and Cancer Research Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1600-0641
EndPage 1144
ExternalDocumentID 30876945
10_1016_j_jhep_2019_02_023
S016882781930145X
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29K
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
D-I
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HMK
HMO
HVGLF
HX~
HZ~
IHE
J1W
KOM
LZ1
M27
M41
MJL
MO0
N9A
O-L
O9-
OAUVE
OC.
ON0
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
TEORI
UV1
WUQ
X7M
YOC
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAYXX
AGRNS
CITATION
NPM
7T5
H94
7X8
ID FETCH-LOGICAL-c501t-d115e3ff5a04aca756bc6f5e6247e54a43646424e37e75ee1ccd2991c118d80c3
IEDL.DBID .~1
ISSN 0168-8278
1600-0641
IngestDate Fri Jul 11 02:23:41 EDT 2025
Sun Jul 13 05:38:50 EDT 2025
Wed Feb 19 02:34:11 EST 2025
Tue Jul 01 02:34:31 EDT 2025
Thu Apr 24 23:03:01 EDT 2025
Sat Feb 08 15:52:37 EST 2025
Tue Aug 26 20:34:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Clinical outcome
HCC
Liver imaging score
Microvascular invasion
Radiomics
Hepatocellular carcinoma
Language English
License Copyright © 2019 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-d115e3ff5a04aca756bc6f5e6247e54a43646424e37e75ee1ccd2991c118d80c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8942-427X
PMID 30876945
PQID 2252250487
PQPubID 2047556
PageCount 12
ParticipantIDs proquest_miscellaneous_2193163240
proquest_journals_2252250487
pubmed_primary_30876945
crossref_primary_10_1016_j_jhep_2019_02_023
crossref_citationtrail_10_1016_j_jhep_2019_02_023
elsevier_sciencedirect_doi_10_1016_j_jhep_2019_02_023
elsevier_clinicalkey_doi_10_1016_j_jhep_2019_02_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Journal of hepatology
PublicationTitleAlternate J Hepatol
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Huang, Liang, He, Tian, Liang, Chen (b0100) 2016; 34
Du, Chen, Zhao, Tian, Zeng, Tan (b0155) 2014; 14
Gillies, Kinahan, Hricak (b0090) 2016; 278
Zhou, He, Huang, Chen, Wu, Ye (b0135) 2017; 42
Lei, Li, Wu, Xia, Wang, Si (b0065) 2016; 151
Aerts, Velazquez, Leijenaar, Parmar, Grossmann, Carvalho (b0080) 2014; 5
D'Amico, Schwartz, Vitale, Tabrizian, Roayaie, Thung (b0050) 2009; 15
Peng, Zhang, Zhang, Xu, Zhou, Liu (b0110) 2018; 24
Huang, Liu, He, Chen, Pan, Ma (b0095) 2016; 281
Zimmerman, Ghobrial, Tong, Hiatt, Cameron, Hong (b0035) 2008; 143
Kickingereder, Gotz, Muschelli, Wick, Neuberger, Shinohara (b0085) 2016; 22
Unitt, Marshall, Gelson, Rushbrook, Davies, Vowler (b0030) 2006; 45
Zhao, Hua, Dai, He, Tang, Fu (b0150) 2017; 88
Lin, Yang, Zhou, Yin, Kong, Xing (b0125) 2012; 910
Akai, Yasaka, Kunimatsu, Nojima, Kokudo, Kokudo (b0140) 2018; 99
Marrero, Kulik, Sirlin, Zhu, Finn, Abecassis (b0115) 2018; 68
Shah, Cleary, Wei, Yang, Taylor, Hemming (b0055) 2007; 141
Fehr, Veeraraghavan, Wibmer, Gondo, Matsumoto, Vargas (b0120) 2015; 112
Fisher, Kulik, Freise, Lok, Shearon, Brown (b0020) 2007; 7
Omata, Cheng, Kokudo, Kudo, Lee, Jia (b0010) 2017; 11
Banerjee, Wang, Kim, Sirlin, Chan, Korn (b0040) 2015; 62
Zhang, Li, Shen, Lau (b0145) 2017
Vickers, Elkin (b0130) 2006; 26
Marrero, Welling (b0005) 2009; 13
Rodriguez-Peralvarez, Luong, Andreana, Meyer, Dhillon, Burroughs (b0060) 2013; 20
Kanwal, Befeler, Chari, Marrero, Kahn, Afdhal (b0015) 2012; 36
Limkin, Sun, Dercle, Zacharaki, Robert, Reuze (b0105) 2017; 28
Nakashima, Nakashima, Tanaka, Okuda, Nakashima, Kojiro (b0045) 2003; 26
Renzulli, Brocchi, Cucchetti, Mazzotti, Mosconi, Sportoletti (b0070) 2016; 279
Chandarana, Robinson, Hajdu, Drozhinin, Babb, Taouli (b0075) 2011; 196
Marshall, Rushbrook, Vowler, Palmer, Davies, Gibbs (b0025) 2010; 16
Renzulli (10.1016/j.jhep.2019.02.023_b0070) 2016; 279
Marrero (10.1016/j.jhep.2019.02.023_b0115) 2018; 68
Huang (10.1016/j.jhep.2019.02.023_b0100) 2016; 34
Marrero (10.1016/j.jhep.2019.02.023_b0005) 2009; 13
Chandarana (10.1016/j.jhep.2019.02.023_b0075) 2011; 196
Huang (10.1016/j.jhep.2019.02.023_b0095) 2016; 281
Zhou (10.1016/j.jhep.2019.02.023_b0135) 2017; 42
Fisher (10.1016/j.jhep.2019.02.023_b0020) 2007; 7
Lin (10.1016/j.jhep.2019.02.023_b0125) 2012; 910
Banerjee (10.1016/j.jhep.2019.02.023_b0040) 2015; 62
Shah (10.1016/j.jhep.2019.02.023_b0055) 2007; 141
Lei (10.1016/j.jhep.2019.02.023_b0065) 2016; 151
Zimmerman (10.1016/j.jhep.2019.02.023_b0035) 2008; 143
Omata (10.1016/j.jhep.2019.02.023_b0010) 2017; 11
Marshall (10.1016/j.jhep.2019.02.023_b0025) 2010; 16
Fehr (10.1016/j.jhep.2019.02.023_b0120) 2015; 112
Kickingereder (10.1016/j.jhep.2019.02.023_b0085) 2016; 22
Nakashima (10.1016/j.jhep.2019.02.023_b0045) 2003; 26
Limkin (10.1016/j.jhep.2019.02.023_b0105) 2017; 28
Akai (10.1016/j.jhep.2019.02.023_b0140) 2018; 99
Zhang (10.1016/j.jhep.2019.02.023_b0145) 2017
Aerts (10.1016/j.jhep.2019.02.023_b0080) 2014; 5
Kanwal (10.1016/j.jhep.2019.02.023_b0015) 2012; 36
Zhao (10.1016/j.jhep.2019.02.023_b0150) 2017; 88
Du (10.1016/j.jhep.2019.02.023_b0155) 2014; 14
D'Amico (10.1016/j.jhep.2019.02.023_b0050) 2009; 15
Gillies (10.1016/j.jhep.2019.02.023_b0090) 2016; 278
Peng (10.1016/j.jhep.2019.02.023_b0110) 2018; 24
Unitt (10.1016/j.jhep.2019.02.023_b0030) 2006; 45
Vickers (10.1016/j.jhep.2019.02.023_b0130) 2006; 26
Rodriguez-Peralvarez (10.1016/j.jhep.2019.02.023_b0060) 2013; 20
References_xml – volume: 20
  start-page: 325
  year: 2013
  end-page: 339
  ident: b0060
  article-title: A systematic review of microvascular invasion in hepatocellular carcinoma: diagnostic and prognostic variability
  publication-title: Ann Surg Oncol
– volume: 5
  start-page: 4006
  year: 2014
  ident: b0080
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
– volume: 14
  start-page: 38
  year: 2014
  ident: b0155
  article-title: Microvascular invasion (MVI) is a poorer prognostic predictor for small hepatocellular carcinoma
  publication-title: BMC Cancer
– volume: 13
  start-page: 233
  year: 2009
  end-page: 247
  ident: b0005
  article-title: Modern diagnosis and management of hepatocellular carcinoma
  publication-title: Clin Liver Dis
– volume: 26
  start-page: 565
  year: 2006
  end-page: 574
  ident: b0130
  article-title: Decision curve analysis: a novel method for evaluating prediction models
  publication-title: Medical Decis Making
– volume: 143
  start-page: 182
  year: 2008
  end-page: 188
  ident: b0035
  article-title: Recurrence of hepatocellular carcinoma following liver transplantation: a review of preoperative and postoperative prognostic indicators
  publication-title: Arch Surg
– volume: 196
  start-page: 1083
  year: 2011
  end-page: 1089
  ident: b0075
  article-title: Microvascular invasion in hepatocellular carcinoma: is it predictable with pretransplant MRI?
  publication-title: AJR Am J Roentgenol
– volume: 22
  start-page: 5765
  year: 2016
  end-page: 5771
  ident: b0085
  article-title: Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response
  publication-title: Clin Cancer Res
– volume: 11
  start-page: 317
  year: 2017
  end-page: 370
  ident: b0010
  article-title: Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update
  publication-title: Hep Intl
– volume: 28
  start-page: 1191
  year: 2017
  end-page: 1206
  ident: b0105
  article-title: Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology
  publication-title: Ann Oncol
– volume: 24
  start-page: 121
  year: 2018
  end-page: 127
  ident: b0110
  article-title: A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma
  publication-title: Diagn Interventional Radiol
– volume: 281
  start-page: 947
  year: 2016
  end-page: 957
  ident: b0095
  article-title: Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer
  publication-title: Radiology
– volume: 68
  start-page: 723
  year: 2018
  end-page: 750
  ident: b0115
  article-title: Diagnosis, staging, and management of hepatocellular carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases
  publication-title: Hepatology
– volume: 16
  start-page: 279
  year: 2010
  end-page: 288
  ident: b0025
  article-title: Tumor recurrence following liver transplantation for hepatocellular carcinoma: role of tumor proliferation status
  publication-title: Liver Transplant
– volume: 45
  start-page: 246
  year: 2006
  end-page: 253
  ident: b0030
  article-title: Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation
  publication-title: J Hepatol
– volume: 279
  start-page: 432
  year: 2016
  end-page: 442
  ident: b0070
  article-title: Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma?
  publication-title: Radiology
– volume: 36
  start-page: 257
  year: 2012
  end-page: 265
  ident: b0015
  article-title: Potentially curative treatment in patients with hepatocellular cancer–results from the liver cancer research network
  publication-title: Aliment Pharmacol Ther
– volume: 62
  start-page: 792
  year: 2015
  end-page: 800
  ident: b0040
  article-title: A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma
  publication-title: Hepatology
– volume: 26
  start-page: 142
  year: 2003
  end-page: 147
  ident: b0045
  article-title: Portal vein invasion and intrahepatic micrometastasis in small hepatocellular carcinoma by gross type
  publication-title: Hepatol Res
– volume: 88
  start-page: 32
  year: 2017
  end-page: 40
  ident: b0150
  article-title: Development and validation of a novel predictive scoring model for microvascular invasion in patients with hepatocellular carcinoma
  publication-title: Eur J Radiol
– volume: 141
  start-page: 330
  year: 2007
  end-page: 339
  ident: b0055
  article-title: Recurrence after liver resection for hepatocellular carcinoma: risk factors, treatment, and outcomes
  publication-title: Surgery
– volume: 112
  start-page: E6265
  year: 2015
  end-page: 6273
  ident: b0120
  article-title: Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images
  publication-title: PNAS
– volume: 42
  start-page: 1695
  year: 2017
  end-page: 1704
  ident: b0135
  article-title: CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma
  publication-title: Abdominal Radiol
– volume: 278
  start-page: 563
  year: 2016
  end-page: 577
  ident: b0090
  article-title: Radiomics: images are more than pictures, they are data
  publication-title: Radiology
– volume: 7
  start-page: 1601
  year: 2007
  end-page: 1608
  ident: b0020
  article-title: Hepatocellular carcinoma recurrence and death following living and deceased donor liver transplantation
  publication-title: Am J Transplant
– volume: 910
  start-page: 149
  year: 2012
  end-page: 155
  ident: b0125
  article-title: A support vector machine-recursive feature elimination feature selection method based on artificial contrast variables and mutual information
  publication-title: J Chromatogr B: Anal Technol Biomed Life Sci
– volume: 15
  start-page: 1278
  year: 2009
  end-page: 1287
  ident: b0050
  article-title: Predicting recurrence after liver transplantation in patients with hepatocellular carcinoma exceeding the up-to-seven criteria
  publication-title: Liver Transplant
– year: 2017
  ident: b0145
  article-title: Significance of presence of microvascular invasion in specimens obtained after surgical treatment of hepatocellular carcinoma
  publication-title: J Gastroenterol Hepatol
– volume: 34
  start-page: 2157
  year: 2016
  end-page: 2164
  ident: b0100
  article-title: Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer
  publication-title: J Clin Oncol
– volume: 151
  start-page: 356
  year: 2016
  end-page: 363
  ident: b0065
  article-title: Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within the milan criteria
  publication-title: JAMA surgery
– volume: 99
  start-page: 643
  year: 2018
  end-page: 651
  ident: b0140
  article-title: Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest
  publication-title: Diagn Interventional Imaging
– volume: 45
  start-page: 246
  year: 2006
  ident: 10.1016/j.jhep.2019.02.023_b0030
  article-title: Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2005.12.027
– volume: 13
  start-page: 233
  year: 2009
  ident: 10.1016/j.jhep.2019.02.023_b0005
  article-title: Modern diagnosis and management of hepatocellular carcinoma
  publication-title: Clin Liver Dis
  doi: 10.1016/j.cld.2009.02.007
– volume: 141
  start-page: 330
  year: 2007
  ident: 10.1016/j.jhep.2019.02.023_b0055
  article-title: Recurrence after liver resection for hepatocellular carcinoma: risk factors, treatment, and outcomes
  publication-title: Surgery
  doi: 10.1016/j.surg.2006.06.028
– volume: 112
  start-page: E6265
  year: 2015
  ident: 10.1016/j.jhep.2019.02.023_b0120
  article-title: Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images
  publication-title: PNAS
  doi: 10.1073/pnas.1505935112
– volume: 26
  start-page: 565
  year: 2006
  ident: 10.1016/j.jhep.2019.02.023_b0130
  article-title: Decision curve analysis: a novel method for evaluating prediction models
  publication-title: Medical Decis Making
  doi: 10.1177/0272989X06295361
– volume: 196
  start-page: 1083
  year: 2011
  ident: 10.1016/j.jhep.2019.02.023_b0075
  article-title: Microvascular invasion in hepatocellular carcinoma: is it predictable with pretransplant MRI?
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.10.4720
– volume: 16
  start-page: 279
  year: 2010
  ident: 10.1016/j.jhep.2019.02.023_b0025
  article-title: Tumor recurrence following liver transplantation for hepatocellular carcinoma: role of tumor proliferation status
  publication-title: Liver Transplant
  doi: 10.1002/lt.21993
– volume: 36
  start-page: 257
  year: 2012
  ident: 10.1016/j.jhep.2019.02.023_b0015
  article-title: Potentially curative treatment in patients with hepatocellular cancer–results from the liver cancer research network
  publication-title: Aliment Pharmacol Ther
  doi: 10.1111/j.1365-2036.2012.05174.x
– volume: 151
  start-page: 356
  year: 2016
  ident: 10.1016/j.jhep.2019.02.023_b0065
  article-title: Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within the milan criteria
  publication-title: JAMA surgery
  doi: 10.1001/jamasurg.2015.4257
– volume: 143
  start-page: 182
  year: 2008
  ident: 10.1016/j.jhep.2019.02.023_b0035
  article-title: Recurrence of hepatocellular carcinoma following liver transplantation: a review of preoperative and postoperative prognostic indicators
  publication-title: Arch Surg
  doi: 10.1001/archsurg.2007.39
– volume: 7
  start-page: 1601
  year: 2007
  ident: 10.1016/j.jhep.2019.02.023_b0020
  article-title: Hepatocellular carcinoma recurrence and death following living and deceased donor liver transplantation
  publication-title: Am J Transplant
  doi: 10.1111/j.1600-6143.2007.01802.x
– volume: 34
  start-page: 2157
  year: 2016
  ident: 10.1016/j.jhep.2019.02.023_b0100
  article-title: Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2015.65.9128
– volume: 910
  start-page: 149
  year: 2012
  ident: 10.1016/j.jhep.2019.02.023_b0125
  article-title: A support vector machine-recursive feature elimination feature selection method based on artificial contrast variables and mutual information
  publication-title: J Chromatogr B: Anal Technol Biomed Life Sci
  doi: 10.1016/j.jchromb.2012.05.020
– volume: 22
  start-page: 5765
  year: 2016
  ident: 10.1016/j.jhep.2019.02.023_b0085
  article-title: Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-16-0702
– volume: 5
  start-page: 4006
  year: 2014
  ident: 10.1016/j.jhep.2019.02.023_b0080
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
  doi: 10.1038/ncomms5006
– year: 2017
  ident: 10.1016/j.jhep.2019.02.023_b0145
  article-title: Significance of presence of microvascular invasion in specimens obtained after surgical treatment of hepatocellular carcinoma
  publication-title: J Gastroenterol Hepatol
– volume: 62
  start-page: 792
  year: 2015
  ident: 10.1016/j.jhep.2019.02.023_b0040
  article-title: A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma
  publication-title: Hepatology
  doi: 10.1002/hep.27877
– volume: 68
  start-page: 723
  year: 2018
  ident: 10.1016/j.jhep.2019.02.023_b0115
  article-title: Diagnosis, staging, and management of hepatocellular carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases
  publication-title: Hepatology
  doi: 10.1002/hep.29913
– volume: 88
  start-page: 32
  year: 2017
  ident: 10.1016/j.jhep.2019.02.023_b0150
  article-title: Development and validation of a novel predictive scoring model for microvascular invasion in patients with hepatocellular carcinoma
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2016.12.030
– volume: 14
  start-page: 38
  year: 2014
  ident: 10.1016/j.jhep.2019.02.023_b0155
  article-title: Microvascular invasion (MVI) is a poorer prognostic predictor for small hepatocellular carcinoma
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-14-38
– volume: 278
  start-page: 563
  year: 2016
  ident: 10.1016/j.jhep.2019.02.023_b0090
  article-title: Radiomics: images are more than pictures, they are data
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 281
  start-page: 947
  year: 2016
  ident: 10.1016/j.jhep.2019.02.023_b0095
  article-title: Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer
  publication-title: Radiology
  doi: 10.1148/radiol.2016152234
– volume: 279
  start-page: 432
  year: 2016
  ident: 10.1016/j.jhep.2019.02.023_b0070
  article-title: Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma?
  publication-title: Radiology
  doi: 10.1148/radiol.2015150998
– volume: 20
  start-page: 325
  year: 2013
  ident: 10.1016/j.jhep.2019.02.023_b0060
  article-title: A systematic review of microvascular invasion in hepatocellular carcinoma: diagnostic and prognostic variability
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-012-2513-1
– volume: 28
  start-page: 1191
  year: 2017
  ident: 10.1016/j.jhep.2019.02.023_b0105
  article-title: Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdx034
– volume: 15
  start-page: 1278
  year: 2009
  ident: 10.1016/j.jhep.2019.02.023_b0050
  article-title: Predicting recurrence after liver transplantation in patients with hepatocellular carcinoma exceeding the up-to-seven criteria
  publication-title: Liver Transplant
  doi: 10.1002/lt.21842
– volume: 11
  start-page: 317
  year: 2017
  ident: 10.1016/j.jhep.2019.02.023_b0010
  article-title: Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update
  publication-title: Hep Intl
  doi: 10.1007/s12072-017-9799-9
– volume: 24
  start-page: 121
  year: 2018
  ident: 10.1016/j.jhep.2019.02.023_b0110
  article-title: A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma
  publication-title: Diagn Interventional Radiol
  doi: 10.5152/dir.2018.17467
– volume: 26
  start-page: 142
  year: 2003
  ident: 10.1016/j.jhep.2019.02.023_b0045
  article-title: Portal vein invasion and intrahepatic micrometastasis in small hepatocellular carcinoma by gross type
  publication-title: Hepatol Res
  doi: 10.1016/S1386-6346(03)00007-X
– volume: 99
  start-page: 643
  year: 2018
  ident: 10.1016/j.jhep.2019.02.023_b0140
  article-title: Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest
  publication-title: Diagn Interventional Imaging
  doi: 10.1016/j.diii.2018.05.008
– volume: 42
  start-page: 1695
  year: 2017
  ident: 10.1016/j.jhep.2019.02.023_b0135
  article-title: CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma
  publication-title: Abdominal Radiol
  doi: 10.1007/s00261-017-1072-0
SSID ssj0003094
Score 2.6924195
Snippet [Display omitted] •We identified 8 MVI preoperative risk factors in HCC, including radiomic features.•Radiomic features do not provide significant added value...
Microvascular invasion (MVI) impairs surgical outcomes in hepatocellular carcinoma (HCC) patients. As a single highly reliable factor to preoperatively predict...
Background & Aims Microvascular invasion (MVI) impairs surgical outcomes in patients with hepatocellular carcinoma (HCC). As there is no single highly reliable...
Microvascular invasion (MVI) impairs surgical outcomes in patients with hepatocellular carcinoma (HCC). As there is no single highly reliable factor to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1133
SubjectTerms Clinical outcome
Clinical outcomes
Computed tomography
Computer applications
HCC
Hepatocellular carcinoma
Liver cancer
Liver imaging score
Microvascular invasion
Microvasculature
Prediction models
Radiomics
Risk factors
Statistical analysis
Survival
Title Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma
URI https://www.clinicalkey.com/#!/content/1-s2.0-S016882781930145X
https://dx.doi.org/10.1016/j.jhep.2019.02.023
https://www.ncbi.nlm.nih.gov/pubmed/30876945
https://www.proquest.com/docview/2252250487
https://www.proquest.com/docview/2193163240
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CCqWXkr43TYMKvRV3bUuy7GNYGjZtE0qawN6ELI_JhsbeZr3X_vbO2PKWHpJCwOCXxsia0Whkf_MJ4EPqUZlcl5EsVR0pzgEuKOyI0iotXIFa-34VhdOzbH6pviz0YgdmYy4MwyqD7x98eu-tw5VpaM3parmc_qBghcJDQ0MaTwv0gjPYlWEr__T7L8xDxkXg984jLh0SZwaM1_UVMmdlUvS8nam8a3C6K_jsB6HjPXgaokdxNFTwGexg8xwen4b_4y_g17mrlpxnLFwgGxFtLXo4ult3ETZX_Q9_MbsQq1uW6tbihiF5IyBVLBs6JF3RAyrRbjpqF6SLgl6Bpuf8mb8v5nkJoqa9cS_h8vjzxWwehUUVIq_jpIsqCgFR1rV2sXLeGZ2VPqs1ZqkyqJVTMlM0J1EoDRqNmHhPaisSTzORKo-9fAW7TdvgGxBJjSbTdVxqjSrHypkqywrlKYpg8Fs1gWRsTesD4zgvfPHTjtCya8sasKwBG6e0yQl83MqsBr6Ne0vLUUl2zCQl32dpOLhXSm-l_rG1_8odjHZgQ09fW_KHKdPA5WYC77e3qY-yRlyD7YbKkIkmzIsfT-D1YD_bl2NGRmo0vf_ASr2FJ3w2oNcOYLe73eA7ipO68rDvCIfw6Gh2_u0770--zs_-AMsbEy4
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6FNh2GfZeunbTgN0GI35IfhyLoEX6SA5bCuQmyDKNpmjtrHH-f0lbNtBDO2CAD4YkGpJIUZRFfgT4GVqUSapyL8pl6UmOAc7I7PDCIsxMhkrZNovCfBHPruT5Sq32YNrHwrBbpdP9nU5vtbUrmbjZnGzW68kfMlbIPExoS-NjgVq9gH1Gp1Ij2D8-u5gtBoUc-ZmD-E49JnCxM52b1801MmxlkLXQnWH01P70lP3Z7kOnb-GNMyDFcdfHd7CH1Xt4OXdX5B_g729TrDnUWBiHNyLqUrQe6WbbeFhdt3f-YroUm3umarbijr3yep9Usa7oldhFHyhEvWtoapAKBQ2BTuj8p79tZjkLUVXfmY9wdXqynM48l1fBs8oPGq8gKxCjslTGl8aaRMW5jUuFcSgTVNLIKJZ0LJEYJZgoxMBa4lwWWDqMFKlvo08wquoKv4AISkxiVfq5UihTLExSxHEmLRkS7P9WjCHoZ1NbBzrOuS9ude9ddqOZA5o5oP2QnmgMvwaaTQe58WzrqGeS7oNJSf1p2hGepVID1SNx-yfdYS8H2i32rSaVGDISXJqM4cdQTcuUOWIqrHfUhqQ0YGh8fwyfO_kZBsegjDRp6uA_O_UdXs2W80t9eba4-AqvuaZzZjuEUXO_wyMym5r8m1sWD4uNFEo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomic+analysis+of+contrast-enhanced+CT+predicts+microvascular+invasion+and+outcome+in+hepatocellular+carcinoma&rft.jtitle=Journal+of+hepatology&rft.au=Xu%2C+Xun&rft.au=Zhang%2C+Hai-Long&rft.au=Liu%2C+Qiu-Ping&rft.au=Sun%2C+Shu-Wen&rft.date=2019-06-01&rft.pub=Elsevier+B.V&rft.issn=0168-8278&rft.volume=70&rft.issue=6&rft.spage=1133&rft.epage=1144&rft_id=info:doi/10.1016%2Fj.jhep.2019.02.023&rft.externalDocID=S016882781930145X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-8278&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-8278&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-8278&client=summon