Imaging robust microglial activation after lipopolysaccharide administration in humans with PET
Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of theEscheric...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 40; pp. 12468 - 12473 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
06.10.2015
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of theEscherichia colilipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [11C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [11C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [11C]PBR28 scan. LPS administration significantly increased [11C]PBR28 binding 30–60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [11C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects. |
---|---|
AbstractList | Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [...C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [...C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [...C]PBR28 scan. LPS administration significantly increased [...C]PBR28 binding 30-60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [...C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects. (ProQuest: ... denotes formulae/symbols omitted.) Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of theEscherichia colilipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [11C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [11C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [11C]PBR28 scan. LPS administration significantly increased [11C]PBR28 binding 30–60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [11C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects. Neuroinflammation is a brain immune response that is associated with neurodegenerative diseases and is primarily driven by activation of microglia, the brain’s resident macrophages. Dysfunctional microglial activation may contribute to the behavioral changes observed in neurodegenerative diseases. Upon activation, microglia express translocator protein, which can be imaged with the radiotracer [ 11 C]PBR28 and positron emission tomography (PET) in the living human brain. We imaged healthy human subjects with [ 11 C]PBR28 and PET before and after i.v. administration of lipopolysaccharide (LPS), a potent immune activator. LPS produced a marked increase in brain microglial activation, peripheral inflammatory cytokine levels, and self-reported sickness symptoms. This imaging paradigm can provide a direct approach to test new medications for their potential to reduce acute neuroinflammation. Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [ 11 C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [ 11 C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [ 11 C]PBR28 scan. LPS administration significantly increased [ 11 C]PBR28 binding 30–60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [ 11 C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects. Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [11C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [11C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [11C]PBR28 scan. LPS administration significantly increased [11C]PBR28 binding 30-60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [11C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects.Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [11C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [11C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [11C]PBR28 scan. LPS administration significantly increased [11C]PBR28 binding 30-60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [11C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects. Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [11C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [11C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [11C]PBR28 scan. LPS administration significantly increased [11C]PBR28 binding 30-60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [11C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects. |
Author | Lee, Jae-Yun O’Connor, Kevin C. Hannestad, Jonas Nabulsi, Nabeel Carson, Richard E. Matuskey, David Pittman, Brian Huang, Yiyun Lim, Keunpoong Sandiego, Christine M. Cosgrove, Kelly P. Gallezot, Jean-Dominique Lin, Shu-Fei |
Author_xml | – sequence: 1 givenname: Christine M. surname: Sandiego fullname: Sandiego, Christine M. organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520 – sequence: 2 givenname: Jean-Dominique surname: Gallezot fullname: Gallezot, Jean-Dominique organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520 – sequence: 3 givenname: Brian surname: Pittman fullname: Pittman, Brian organization: Department of Psychiatry, Yale University, New Haven, CT 06511 – sequence: 4 givenname: Nabeel surname: Nabulsi fullname: Nabulsi, Nabeel organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520 – sequence: 5 givenname: Keunpoong surname: Lim fullname: Lim, Keunpoong organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520 – sequence: 6 givenname: Shu-Fei surname: Lin fullname: Lin, Shu-Fei organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520 – sequence: 7 givenname: David surname: Matuskey fullname: Matuskey, David organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520 – sequence: 8 givenname: Jae-Yun surname: Lee fullname: Lee, Jae-Yun organization: Department of Neurology, Yale University, New Haven, CT 06511 – sequence: 9 givenname: Kevin C. surname: O’Connor fullname: O’Connor, Kevin C. organization: Department of Neurology, Yale University, New Haven, CT 06511 – sequence: 10 givenname: Yiyun surname: Huang fullname: Huang, Yiyun organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520 – sequence: 11 givenname: Richard E. surname: Carson fullname: Carson, Richard E. organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520 – sequence: 12 givenname: Jonas surname: Hannestad fullname: Hannestad, Jonas organization: UCB Pharma, Braine-l’Alleud, Belgium – sequence: 13 givenname: Kelly P. surname: Cosgrove fullname: Cosgrove, Kelly P. organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26385967$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkFv1DAQhS1URLeFMydQJC5c0s7EdhxfkKqqQKVKcChny3G8u14ldrCTov77ervLUnpAnHyY7z0_-80JOfLBW0LeIpwhCHo-ep3OkCMCUMTqBVkgSCxrJuGILAAqUTasYsfkJKUNAEjewCtyXNW04bIWC6KuB71yflXE0M5pKgZnYlj1TveFNpO705MLvtDLycaid2MYQ3-ftDFrHV1nC90Nzrs0xR3nfLGeB-1T8ctN6-L71e1r8nKp-2Tf7M9T8uPz1e3l1_Lm25fry4ub0nDAqTQtCLNEKxvKoO641KZrbCWMaKluOO2Y4FojN4CirjrZ2aaVDfC2NVaCNfSUfNr5jnM72M5YnzP1aoxu0PFeBe3U3xPv1moV7hSrgXKQ2eDj3iCGn7NNkxpcMrbvtbdhTgoFp0zUKPA_0AoYR0ZZRj88Qzdhjj7_xJZCyVBSyNT7p-EPqX_XlIHzHZDLSSna5QFBUNtFUNtFUH8WISv4M4Vx02NJ-fWu_4eu2EfZDg63YKVYVlSsbjLybods0hTik7Cs5lQ09AEBLc0U |
CitedBy_id | crossref_primary_10_1124_pharmrev_122_000618 crossref_primary_10_1177_0271678X19859034 crossref_primary_10_1089_neu_2019_6885 crossref_primary_10_1016_j_apsb_2020_08_006 crossref_primary_10_1093_ajcn_nqab126 crossref_primary_10_1002_adbi_202000540 crossref_primary_10_1016_j_schres_2018_10_008 crossref_primary_10_3233_JAD_215054 crossref_primary_10_1016_j_bbr_2019_111975 crossref_primary_10_2174_1570159X21666230807152051 crossref_primary_10_1007_s11882_015_0590_5 crossref_primary_10_1186_s42234_022_00101_2 crossref_primary_10_1016_j_yfrne_2019_100772 crossref_primary_10_1016_j_physbeh_2019_112776 crossref_primary_10_1111_nyas_13864 crossref_primary_10_1016_j_bbi_2020_08_030 crossref_primary_10_1038_s41386_019_0561_y crossref_primary_10_1007_s12035_020_01994_3 crossref_primary_10_2967_jnumed_120_243717 crossref_primary_10_1136_bmjopen_2020_044062 crossref_primary_10_1007_s11910_016_0660_7 crossref_primary_10_1016_j_cclet_2023_108236 crossref_primary_10_1007_s11481_024_10115_z crossref_primary_10_1016_j_trac_2024_117546 crossref_primary_10_1016_j_bbi_2024_08_034 crossref_primary_10_1016_j_bbi_2017_04_015 crossref_primary_10_3389_fpsyt_2017_00222 crossref_primary_10_1007_s11307_018_1201_3 crossref_primary_10_3233_JPD_181446 crossref_primary_10_1016_j_bbi_2019_07_001 crossref_primary_10_3390_ijms232214455 crossref_primary_10_4062_biomolther_2023_184 crossref_primary_10_1016_j_neubiorev_2019_05_002 crossref_primary_10_1038_s41586_022_04427_4 crossref_primary_10_1038_s41598_017_11512_6 crossref_primary_10_1038_s41577_021_00643_7 crossref_primary_10_1002_jsfa_12074 crossref_primary_10_1038_s41398_022_02094_7 crossref_primary_10_1039_C8OB01700J crossref_primary_10_1016_j_euroneuro_2021_10_129 crossref_primary_10_3389_fimmu_2022_987771 crossref_primary_10_1016_j_bbih_2024_100881 crossref_primary_10_1038_s41380_023_02198_6 crossref_primary_10_1177_0271678X17710182 crossref_primary_10_1038_mp_2017_232 crossref_primary_10_1016_j_neubiorev_2017_10_010 crossref_primary_10_1155_2018_3476476 crossref_primary_10_1016_j_bmc_2018_08_017 crossref_primary_10_1016_j_tem_2021_10_005 crossref_primary_10_1146_annurev_immunol_101320_014237 crossref_primary_10_3389_fpsyt_2020_00362 crossref_primary_10_3390_nu16203570 crossref_primary_10_1177_2045125318791944 crossref_primary_10_3389_fimmu_2017_01613 crossref_primary_10_1038_tp_2016_212 crossref_primary_10_1016_j_bbi_2020_01_018 crossref_primary_10_1038_s41531_021_00191_w crossref_primary_10_1080_10408398_2022_2048291 crossref_primary_10_1186_s13550_017_0305_0 crossref_primary_10_1186_s12974_020_01804_6 crossref_primary_10_1016_j_drugalcdep_2019_06_018 crossref_primary_10_3390_ijms231911193 crossref_primary_10_1080_10253890_2020_1793943 crossref_primary_10_3389_fphar_2017_00766 crossref_primary_10_3389_fneur_2018_01033 crossref_primary_10_1186_s13024_022_00547_7 crossref_primary_10_1371_journal_pone_0222861 crossref_primary_10_1097_PSY_0000000000000339 crossref_primary_10_3390_antiox13091074 crossref_primary_10_1007_s11307_018_1172_4 crossref_primary_10_1016_j_bbi_2021_01_009 crossref_primary_10_1155_2022_3334145 crossref_primary_10_1371_journal_pone_0311218 crossref_primary_10_1016_S2215_0366_18_30087_7 crossref_primary_10_1007_s13311_019_00758_9 crossref_primary_10_1016_j_bbi_2017_05_009 crossref_primary_10_12938_bmfh_17_020 crossref_primary_10_1016_j_bbi_2020_01_020 crossref_primary_10_1186_s10194_022_01430_y crossref_primary_10_1016_j_bpsc_2020_12_017 crossref_primary_10_1093_oxfimm_iqab004 crossref_primary_10_3390_nu16121938 crossref_primary_10_1016_j_neuint_2020_104855 crossref_primary_10_1038_npp_2017_48 crossref_primary_10_1016_S1473_3099_19_30567_5 crossref_primary_10_1016_j_yfrne_2017_12_004 crossref_primary_10_1111_jcmm_14606 crossref_primary_10_2174_1574887117666220622143423 crossref_primary_10_1016_j_bbi_2020_09_027 crossref_primary_10_1016_j_jhazmat_2020_122259 crossref_primary_10_1016_j_biochi_2024_07_003 crossref_primary_10_1073_pnas_1620415114 crossref_primary_10_1097_SLA_0000000000005489 crossref_primary_10_1254_fpj_153_28 crossref_primary_10_2174_1381612825666190722114248 crossref_primary_10_1016_j_neubiorev_2018_07_013 crossref_primary_10_1016_j_neuroscience_2018_03_034 crossref_primary_10_3390_ijms25137006 crossref_primary_10_3389_fnagi_2019_00299 crossref_primary_10_1186_s12974_023_02746_5 crossref_primary_10_3389_fimmu_2024_1503063 crossref_primary_10_1093_nutrit_nuz072 crossref_primary_10_1093_brain_awx339 crossref_primary_10_1002_sctm_19_0150 crossref_primary_10_1007_s00259_021_05248_9 crossref_primary_10_1159_000499621 crossref_primary_10_1038_nri_2015_5 crossref_primary_10_3389_fnins_2020_00903 crossref_primary_10_1186_s12974_019_1564_7 crossref_primary_10_1097_SHK_0000000000001703 crossref_primary_10_1016_j_isci_2024_110464 crossref_primary_10_1097_PSY_0000000000000311 crossref_primary_10_1016_j_neuro_2020_01_014 crossref_primary_10_3390_ijms241612634 crossref_primary_10_1038_s41598_021_90817_z crossref_primary_10_1097_MNH_0000000000000250 crossref_primary_10_1016_j_immuni_2020_09_018 crossref_primary_10_1021_acs_jmedchem_7b00374 crossref_primary_10_1016_j_neuropharm_2024_110285 crossref_primary_10_1186_s13024_024_00722_y crossref_primary_10_3390_nu16234079 crossref_primary_10_1016_j_bbi_2022_08_016 crossref_primary_10_1038_s41380_019_0433_1 crossref_primary_10_4103_NRR_NRR_D_23_02063 crossref_primary_10_1002_glia_22986 crossref_primary_10_1111_ejn_15239 crossref_primary_10_18632_aging_103883 crossref_primary_10_1016_j_bbi_2017_10_003 crossref_primary_10_3390_ijms24032821 crossref_primary_10_1007_s11307_024_01979_x crossref_primary_10_1016_j_jneuroim_2019_577000 crossref_primary_10_1186_s42234_021_00065_9 crossref_primary_10_4103_1673_5374_308067 crossref_primary_10_1016_j_bbi_2016_04_001 crossref_primary_10_1111_jnc_15491 crossref_primary_10_3390_ijms20133161 crossref_primary_10_1038_mp_2016_130 crossref_primary_10_1038_s41467_020_15930_5 crossref_primary_10_1016_j_bbih_2023_100624 crossref_primary_10_1016_j_bbi_2017_06_018 crossref_primary_10_1021_acschemneuro_2c00558 crossref_primary_10_1016_j_bbi_2017_10_013 crossref_primary_10_1016_j_chmed_2023_08_001 crossref_primary_10_1016_j_bpsc_2017_12_011 crossref_primary_10_1016_j_yfrne_2018_06_005 crossref_primary_10_1016_j_yexcr_2018_04_008 crossref_primary_10_1038_npp_2016_143 crossref_primary_10_1016_j_bbr_2023_114459 crossref_primary_10_3390_biology10111097 crossref_primary_10_1177_0891988719834346 crossref_primary_10_1038_s41380_019_0470_9 crossref_primary_10_1007_s00213_016_4214_0 crossref_primary_10_1038_mp_2016_264 crossref_primary_10_1007_s00259_016_3391_8 crossref_primary_10_1016_j_immuni_2020_11_007 crossref_primary_10_1016_j_bbi_2018_07_006 crossref_primary_10_3389_fimmu_2018_01926 crossref_primary_10_1007_s40263_020_00765_x crossref_primary_10_1073_pnas_2406005121 crossref_primary_10_1039_C6MD00523C crossref_primary_10_3390_molecules27092780 crossref_primary_10_1002_JLB_3A1219_729RR crossref_primary_10_1124_jpet_120_266163 crossref_primary_10_1002_acn3_50837 crossref_primary_10_1038_s41386_018_0124_7 crossref_primary_10_1016_j_bbi_2020_06_027 crossref_primary_10_1016_S2215_0366_18_30048_8 crossref_primary_10_1016_j_biopsych_2017_08_005 crossref_primary_10_1080_09637486_2019_1580682 crossref_primary_10_1172_jci_insight_131329 crossref_primary_10_1146_annurev_bioeng_062117_121056 crossref_primary_10_1186_s12944_023_01817_z crossref_primary_10_1155_2021_8174789 crossref_primary_10_1016_j_biochi_2023_11_013 crossref_primary_10_3390_nu12102982 crossref_primary_10_1016_j_neuropharm_2022_109189 crossref_primary_10_1186_s12974_021_02280_2 crossref_primary_10_1186_s12888_020_02553_9 crossref_primary_10_1093_ijnp_pyw077 crossref_primary_10_1002_ana_24966 crossref_primary_10_1016_j_bbi_2020_06_022 crossref_primary_10_1152_physrev_00010_2018 crossref_primary_10_1016_j_bbi_2023_04_010 crossref_primary_10_1016_j_obmed_2019_100117 crossref_primary_10_1093_brain_awae343 crossref_primary_10_3389_fimmu_2017_00276 crossref_primary_10_3389_fphar_2020_614990 crossref_primary_10_3390_nu13041162 crossref_primary_10_2967_jnumed_119_237735 crossref_primary_10_1016_j_bbr_2022_113847 crossref_primary_10_1038_tp_2017_18 crossref_primary_10_3390_ijms26072940 crossref_primary_10_1097_HRP_0000000000000323 crossref_primary_10_1097_CCM_0000000000005307 crossref_primary_10_1186_s13019_021_01627_3 crossref_primary_10_3389_fnagi_2020_622360 crossref_primary_10_1007_s00259_021_05379_z crossref_primary_10_1038_npp_2016_199 crossref_primary_10_1097_CCM_0000000000005313 crossref_primary_10_1111_nan_12502 crossref_primary_10_1177_0271678X241236755 crossref_primary_10_1007_s00540_016_2294_y crossref_primary_10_1038_s41380_020_00869_2 crossref_primary_10_3389_fnins_2020_00871 crossref_primary_10_1038_s41398_020_0768_z crossref_primary_10_3389_fnmol_2017_00421 crossref_primary_10_1016_j_cpnec_2021_100048 crossref_primary_10_1177_0271678X17748786 crossref_primary_10_1002_cpt_618 crossref_primary_10_1016_j_bbi_2021_05_025 crossref_primary_10_1016_j_bbi_2023_03_031 crossref_primary_10_1186_s40635_015_0066_x crossref_primary_10_3389_fpsyt_2024_1337888 crossref_primary_10_3389_fmed_2024_1388045 crossref_primary_10_1002_ana_24909 crossref_primary_10_1136_pn_2022_003373 crossref_primary_10_1152_physrev_00039_2016 crossref_primary_10_1002_mds_29432 crossref_primary_10_1038_s41582_019_0231_z crossref_primary_10_1186_s12974_023_02945_0 crossref_primary_10_1038_tp_2016_278 crossref_primary_10_1111_jdv_19813 crossref_primary_10_3390_ph14050416 crossref_primary_10_1371_journal_pone_0185767 crossref_primary_10_1016_j_bbi_2016_01_019 crossref_primary_10_1038_s41380_020_0745_1 crossref_primary_10_31083_j_jin2206148 crossref_primary_10_1007_s11011_019_0388_6 crossref_primary_10_1186_s12974_019_1692_0 crossref_primary_10_1186_s13550_020_0605_7 crossref_primary_10_3389_fpsyt_2020_00789 crossref_primary_10_1016_j_bbi_2021_04_004 crossref_primary_10_1007_s00406_017_0774_1 crossref_primary_10_1093_eurheartj_suaa119 crossref_primary_10_1038_mp_2016_248 crossref_primary_10_1038_mp_2017_10 crossref_primary_10_1016_j_brainres_2020_147225 crossref_primary_10_1016_j_bbi_2018_09_024 crossref_primary_10_1016_j_pharmthera_2018_09_003 crossref_primary_10_1242_jeb_225847 crossref_primary_10_1038_npp_2016_167 crossref_primary_10_1016_S2215_0366_17_30101_3 crossref_primary_10_1177_0271678X221126830 crossref_primary_10_1186_s40035_016_0054_4 crossref_primary_10_1016_j_bbi_2021_10_005 crossref_primary_10_1016_j_biopsych_2020_05_028 crossref_primary_10_1016_j_biopsycho_2018_12_008 |
Cites_doi | 10.1016/j.bbi.2013.09.015 10.1111/imm.12177 10.1016/j.tips.2006.06.005 10.1038/npp.2014.199 10.1016/j.neuron.2012.12.023 10.2967/jnumed.111.097014 10.2967/jnumed.113.135129 10.1016/j.neuroscience.2014.11.018 10.1002/sim.1562 10.1016/j.bbi.2010.12.013 10.1016/S1474-4422(15)70016-5 10.1021/cn500138n 10.2174/092986707780597961 10.1001/jamapsychiatry.2014.2427 10.1007/s11481-014-9540-6 10.4161/viru.26083 10.2174/138161208786549443 10.1016/j.cellimm.2015.04.006 10.1111/bpa.12196 10.1016/j.tins.2013.11.002 10.1038/nrn2297 10.1002/glia.22350 10.1038/sj.jcbfm.9600493 10.1523/JNEUROSCI.0928-14.2014 10.1038/npp.2014.196 10.1016/j.neuroscience.2013.10.023 10.1016/j.bbi.2010.10.015 10.1186/1742-2094-9-242 10.1111/j.1365-2990.2010.01156.x 10.1155/2013/271359 10.1038/jcbfm.2012.131 10.4172/2161-0460.1000160 10.1038/ncomms7176 10.1002/glia.1106 10.2967/jnumed.114.149443 10.1016/j.nbd.2009.10.006 10.1016/j.nurt.2007.07.002 10.1016/j.neuroimage.2007.11.011 10.1016/j.pneurobio.2006.10.002 10.1016/j.bbi.2013.06.010 10.1038/jcbfm.2014.46 10.1097/01.shk.0000090843.66556.74 10.1016/j.it.2009.07.009 10.1517/14728222.2014.988707 10.1007/s12640-012-9348-1 10.1093/brain/awt145 10.1007/s00259-015-3043-4 10.1111/nan.12011 10.1016/j.neuroimage.2012.06.055 10.1186/1742-2094-1-14 10.1111/bph.12139 10.1038/jcbfm.2011.147 10.1016/j.bbi.2010.10.013 10.1016/0166-2236(96)10049-7 10.1038/nri2448 10.1016/j.bbr.2012.08.052 10.3390/ph7121028 10.1097/00004647-200106000-00002 10.1155/2015/610813 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Oct 6, 2015 |
Copyright_xml | – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Oct 6, 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1511003112 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Imaging microglial activation in humans with PET |
EISSN | 1091-6490 |
EndPage | 12473 |
ExternalDocumentID | PMC4603509 3835580541 26385967 10_1073_pnas_1511003112 112_40_12468 26465378 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P50 AG047270 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c501t-cb07cf1e983406d59acd8e27c7b3a853d475aa15c01762d9de8b9805bbce90ec3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:18:08 EDT 2025 Fri Jul 11 01:53:53 EDT 2025 Fri Jul 11 06:26:11 EDT 2025 Sat Aug 23 12:33:12 EDT 2025 Mon Jul 21 05:59:22 EDT 2025 Tue Jul 01 01:53:33 EDT 2025 Thu Apr 24 22:55:32 EDT 2025 Wed Nov 11 00:29:33 EST 2020 Fri May 30 12:01:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Keywords | PBR28 cytokines neuroinflammation microglia endotoxin |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c501t-cb07cf1e983406d59acd8e27c7b3a853d475aa15c01762d9de8b9805bbce90ec3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: J.H. and K.P.C. designed research; C.M.S., N.N., K.L., S.-F.L., D.M., J.-Y.L., K.C.O., Y.H., R.E.C., and K.P.C. performed research; C.M.S., J.-D.G., and B.P. analyzed data; D.M. is the medical doctor (M.D.) on study; K.C.O. provided immunology expertise; Y.H. senior radiochemist; R.E.C. checked analysis and helped with writing; and C.M.S. and K.P.C. wrote the paper. Edited by Joanna S. Fowler, Brookhaven National Laboratory, Upton, NY, and approved August 4, 2015 (received for review June 4, 2015) |
OpenAccessLink | https://www.pnas.org/content/pnas/112/40/12468.full.pdf |
PMID | 26385967 |
PQID | 1721941930 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1073_pnas_1511003112 proquest_miscellaneous_1753476171 proquest_miscellaneous_1720451434 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4603509 pubmed_primary_26385967 jstor_primary_26465378 crossref_citationtrail_10_1073_pnas_1511003112 pnas_primary_112_40_12468 proquest_journals_1721941930 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-06 |
PublicationDateYYYYMMDD | 2015-10-06 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2015 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 Li Y (e_1_3_3_55_2) 2014; 2014 e_1_3_3_5_2 e_1_3_3_7_2 Orihuela R (e_1_3_3_47_2) 2015 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 Tufekci KU (e_1_3_3_28_2) 2011; 2011 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 Carson REBW (e_1_3_3_60_2) 2003; 5 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 17504139 - Curr Med Chem. 2007;14(11):1189-97 23935246 - Mediators Inflamm. 2013;2013:271359 25792098 - Lancet Neurol. 2015 Apr;14(4):388-405 24022070 - Virulence. 2014 Jan 1;5(1):143-53 21166690 - Neuropathol Appl Neurobiol. 2011 Aug;37(5):513-24 24355813 - Trends Neurosci. 2014 Feb;37(2):55-65 18073775 - Nat Rev Neurosci. 2008 Jan;9(1):46-56 16822554 - Trends Pharmacol Sci. 2006 Aug;27(8):402-9 14560107 - Shock. 2003 Nov;20(5):431-6 24687172 - J Neuroimmune Pharmacol. 2014 Jun;9(3):424-37 25429645 - Pharmaceuticals (Basel). 2014 Nov 25;7(12):1028-48 25834699 - Oxid Med Cell Longev. 2015;2015:610813 25463515 - Neuroscience. 2015 Aug 27;302:59-73 25345894 - Brain Pathol. 2014 Nov;24(6):631-53 15285801 - J Neuroinflammation. 2004 Jul 30;1(1):14 25197646 - Biomed Res Int. 2014;2014:437483 21193024 - Brain Behav Immun. 2011 Jun;25 Suppl 1:S13-20 25664220 - J Alzheimers Dis Parkinsonism. 2014 Nov;4(5):null 8843599 - Trends Neurosci. 1996 Aug;19(8):312-8 23775979 - Brain. 2013 Jul;136(Pt 7):2228-38 22776451 - Neuroimage. 2012 Oct 15;63(1):232-9 25103178 - Neuropsychopharmacology. 2015 Jan;40(2):502-12 11596125 - Glia. 2001 Nov;36(2):165-79 17156911 - Prog Neurobiol. 2006 Dec;80(6):308-22 19075709 - Curr Pharm Des. 2008;14(31):3297-315 25944389 - Cell Immunol. 2015 Aug;296(2):122-32 22895696 - Neurotox Res. 2013 Feb;23(2):131-44 17920538 - Neurotherapeutics. 2007 Oct;4(4):571-9 25800044 - Br J Pharmacol. 2016 Feb;173(4):649-65 19781994 - Trends Immunol. 2009 Oct;30(10):475-87 23850810 - Brain Behav Immun. 2013 Oct;33:131-8 25435348 - Expert Opin Ther Targets. 2015 Apr;19(4):497-506 24116890 - Immunology. 2014 Mar;141(3):328-39 25833352 - Eur J Nucl Med Mol Imaging. 2015 Jun;42(7):1081-92 24161284 - Neuroscience. 2014 Jan 3;256:210-22 23095517 - J Neuroinflammation. 2012;9:242 25057196 - J Neurosci. 2014 Jul 23;34(30):9945-50 14601019 - Stat Med. 2003 Nov 30;22(22):3557-68 21331154 - Parkinsons Dis. 2011 Jan 18;2011:487450 23441623 - Br J Pharmacol. 2013 May;169(2):337-52 22008728 - J Cereb Blood Flow Metab. 2012 Jan;32(1):1-5 22985845 - Behav Brain Res. 2013 Jan 1;236(1):270-82 19029990 - Nat Rev Immunol. 2008 Dec;8(12):958-69 20970492 - Brain Behav Immun. 2011 Feb;25(2):181-213 23312512 - Neuron. 2013 Jan 9;77(1):10-8 25630253 - Nat Commun. 2015;6:6176 20955776 - Brain Behav Immun. 2011 Feb;25(2):256-9 22968319 - J Cereb Blood Flow Metab. 2013 Jan;33(1):53-8 19833208 - Neurobiol Dis. 2010 Mar;37(3):503-9 25228141 - Neuropsychopharmacology. 2015 Feb;40(3):525-36 22674585 - Glia. 2013 Jan;61(1):71-90 24643083 - J Cereb Blood Flow Metab. 2014 Jun;34(6):989-94 17519979 - J Cereb Blood Flow Metab. 2007 Sep;27(9):1533-9 24904112 - J Nucl Med. 2014 Jul;55(7):1112-8 25840980 - J Nucl Med. 2015 May;56(5):707-13 11488533 - J Cereb Blood Flow Metab. 2001 Jun;21(6):635-52 25123416 - ACS Chem Neurosci. 2014 Oct 15;5(10):963-71 23252647 - Neuropathol Appl Neurobiol. 2013 Feb;39(1):3-18 24491305 - Brain Behav Immun. 2014 Jan;35:1-8 25629589 - JAMA Psychiatry. 2015 Mar;72(3):268-75 18093844 - Neuroimage. 2008 Mar 1;40(1):43-52 22414635 - J Nucl Med. 2012 Apr;53(4):601-7 |
References_xml | – ident: e_1_3_3_33_2 doi: 10.1016/j.bbi.2013.09.015 – ident: e_1_3_3_52_2 doi: 10.1111/imm.12177 – ident: e_1_3_3_16_2 doi: 10.1016/j.tips.2006.06.005 – ident: e_1_3_3_38_2 doi: 10.1038/npp.2014.199 – ident: e_1_3_3_11_2 doi: 10.1016/j.neuron.2012.12.023 – ident: e_1_3_3_36_2 doi: 10.2967/jnumed.111.097014 – ident: e_1_3_3_23_2 doi: 10.2967/jnumed.113.135129 – ident: e_1_3_3_8_2 doi: 10.1016/j.neuroscience.2014.11.018 – ident: e_1_3_3_63_2 doi: 10.1002/sim.1562 – ident: e_1_3_3_4_2 doi: 10.1016/j.bbi.2010.12.013 – ident: e_1_3_3_6_2 doi: 10.1016/S1474-4422(15)70016-5 – ident: e_1_3_3_58_2 doi: 10.1021/cn500138n – ident: e_1_3_3_12_2 doi: 10.2174/092986707780597961 – ident: e_1_3_3_27_2 doi: 10.1001/jamapsychiatry.2014.2427 – volume: 2011 start-page: 487450 year: 2011 ident: e_1_3_3_28_2 article-title: The endotoxin-induced neuroinflammation model of Parkinson's disease publication-title: Parkinsons Dis – ident: e_1_3_3_21_2 doi: 10.1007/s11481-014-9540-6 – ident: e_1_3_3_45_2 doi: 10.4161/viru.26083 – ident: e_1_3_3_17_2 doi: 10.2174/138161208786549443 – volume: 5 start-page: 3281 year: 2003 ident: e_1_3_3_60_2 article-title: Design of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction of the HRRT publication-title: IEEE Nuclear Science Symposium and Medical Imaging Conference – ident: e_1_3_3_1_2 doi: 10.1016/j.cellimm.2015.04.006 – ident: e_1_3_3_19_2 doi: 10.1111/bpa.12196 – ident: e_1_3_3_7_2 doi: 10.1016/j.tins.2013.11.002 – ident: e_1_3_3_14_2 doi: 10.1038/nrn2297 – ident: e_1_3_3_31_2 doi: 10.1002/glia.22350 – ident: e_1_3_3_62_2 doi: 10.1038/sj.jcbfm.9600493 – ident: e_1_3_3_25_2 doi: 10.1523/JNEUROSCI.0928-14.2014 – ident: e_1_3_3_39_2 doi: 10.1038/npp.2014.196 – ident: e_1_3_3_40_2 doi: 10.1016/j.neuroscience.2013.10.023 – ident: e_1_3_3_15_2 doi: 10.1016/j.bbi.2010.10.015 – ident: e_1_3_3_43_2 doi: 10.1186/1742-2094-9-242 – ident: e_1_3_3_51_2 doi: 10.1111/j.1365-2990.2010.01156.x – ident: e_1_3_3_41_2 doi: 10.1155/2013/271359 – ident: e_1_3_3_35_2 doi: 10.1038/jcbfm.2012.131 – ident: e_1_3_3_57_2 doi: 10.4172/2161-0460.1000160 – ident: e_1_3_3_54_2 doi: 10.1038/ncomms7176 – ident: e_1_3_3_9_2 doi: 10.1002/glia.1106 – ident: e_1_3_3_59_2 doi: 10.2967/jnumed.114.149443 – ident: e_1_3_3_2_2 doi: 10.1016/j.nbd.2009.10.006 – ident: e_1_3_3_10_2 doi: 10.1016/j.nurt.2007.07.002 – ident: e_1_3_3_18_2 doi: 10.1016/j.neuroimage.2007.11.011 – ident: e_1_3_3_20_2 doi: 10.1016/j.pneurobio.2006.10.002 – ident: e_1_3_3_24_2 doi: 10.1016/j.bbi.2013.06.010 – volume: 2014 start-page: 437483 year: 2014 ident: e_1_3_3_55_2 article-title: Microglia in Alzheimer's disease publication-title: Biomed Res Int – ident: e_1_3_3_44_2 doi: 10.1038/jcbfm.2014.46 – ident: e_1_3_3_46_2 doi: 10.1097/01.shk.0000090843.66556.74 – ident: e_1_3_3_37_2 doi: 10.1016/j.it.2009.07.009 – year: 2015 ident: e_1_3_3_47_2 article-title: Microglial M1/M2 polarization and metabolic states publication-title: Br J Pharmacol – ident: e_1_3_3_53_2 doi: 10.1517/14728222.2014.988707 – ident: e_1_3_3_3_2 doi: 10.1007/s12640-012-9348-1 – ident: e_1_3_3_22_2 doi: 10.1093/brain/awt145 – ident: e_1_3_3_26_2 doi: 10.1007/s00259-015-3043-4 – ident: e_1_3_3_48_2 doi: 10.1111/nan.12011 – ident: e_1_3_3_32_2 doi: 10.1016/j.neuroimage.2012.06.055 – ident: e_1_3_3_5_2 doi: 10.1186/1742-2094-1-14 – ident: e_1_3_3_56_2 doi: 10.1111/bph.12139 – ident: e_1_3_3_34_2 doi: 10.1038/jcbfm.2011.147 – ident: e_1_3_3_42_2 doi: 10.1016/j.bbi.2010.10.013 – ident: e_1_3_3_49_2 doi: 10.1016/0166-2236(96)10049-7 – ident: e_1_3_3_29_2 doi: 10.1038/nri2448 – ident: e_1_3_3_13_2 doi: 10.1016/j.bbr.2012.08.052 – ident: e_1_3_3_30_2 doi: 10.3390/ph7121028 – ident: e_1_3_3_61_2 doi: 10.1097/00004647-200106000-00002 – ident: e_1_3_3_50_2 doi: 10.1155/2015/610813 – reference: 25630253 - Nat Commun. 2015;6:6176 – reference: 21193024 - Brain Behav Immun. 2011 Jun;25 Suppl 1:S13-20 – reference: 23252647 - Neuropathol Appl Neurobiol. 2013 Feb;39(1):3-18 – reference: 17504139 - Curr Med Chem. 2007;14(11):1189-97 – reference: 19833208 - Neurobiol Dis. 2010 Mar;37(3):503-9 – reference: 17920538 - Neurotherapeutics. 2007 Oct;4(4):571-9 – reference: 20955776 - Brain Behav Immun. 2011 Feb;25(2):256-9 – reference: 24161284 - Neuroscience. 2014 Jan 3;256:210-22 – reference: 24022070 - Virulence. 2014 Jan 1;5(1):143-53 – reference: 25345894 - Brain Pathol. 2014 Nov;24(6):631-53 – reference: 25629589 - JAMA Psychiatry. 2015 Mar;72(3):268-75 – reference: 17156911 - Prog Neurobiol. 2006 Dec;80(6):308-22 – reference: 11596125 - Glia. 2001 Nov;36(2):165-79 – reference: 25429645 - Pharmaceuticals (Basel). 2014 Nov 25;7(12):1028-48 – reference: 19075709 - Curr Pharm Des. 2008;14(31):3297-315 – reference: 15285801 - J Neuroinflammation. 2004 Jul 30;1(1):14 – reference: 23312512 - Neuron. 2013 Jan 9;77(1):10-8 – reference: 25123416 - ACS Chem Neurosci. 2014 Oct 15;5(10):963-71 – reference: 25834699 - Oxid Med Cell Longev. 2015;2015:610813 – reference: 24116890 - Immunology. 2014 Mar;141(3):328-39 – reference: 25435348 - Expert Opin Ther Targets. 2015 Apr;19(4):497-506 – reference: 19029990 - Nat Rev Immunol. 2008 Dec;8(12):958-69 – reference: 24904112 - J Nucl Med. 2014 Jul;55(7):1112-8 – reference: 11488533 - J Cereb Blood Flow Metab. 2001 Jun;21(6):635-52 – reference: 25840980 - J Nucl Med. 2015 May;56(5):707-13 – reference: 25664220 - J Alzheimers Dis Parkinsonism. 2014 Nov;4(5):null – reference: 14601019 - Stat Med. 2003 Nov 30;22(22):3557-68 – reference: 22895696 - Neurotox Res. 2013 Feb;23(2):131-44 – reference: 18093844 - Neuroimage. 2008 Mar 1;40(1):43-52 – reference: 23935246 - Mediators Inflamm. 2013;2013:271359 – reference: 25103178 - Neuropsychopharmacology. 2015 Jan;40(2):502-12 – reference: 25057196 - J Neurosci. 2014 Jul 23;34(30):9945-50 – reference: 8843599 - Trends Neurosci. 1996 Aug;19(8):312-8 – reference: 25944389 - Cell Immunol. 2015 Aug;296(2):122-32 – reference: 25197646 - Biomed Res Int. 2014;2014:437483 – reference: 18073775 - Nat Rev Neurosci. 2008 Jan;9(1):46-56 – reference: 23441623 - Br J Pharmacol. 2013 May;169(2):337-52 – reference: 21166690 - Neuropathol Appl Neurobiol. 2011 Aug;37(5):513-24 – reference: 22414635 - J Nucl Med. 2012 Apr;53(4):601-7 – reference: 23850810 - Brain Behav Immun. 2013 Oct;33:131-8 – reference: 25792098 - Lancet Neurol. 2015 Apr;14(4):388-405 – reference: 19781994 - Trends Immunol. 2009 Oct;30(10):475-87 – reference: 21331154 - Parkinsons Dis. 2011 Jan 18;2011:487450 – reference: 24687172 - J Neuroimmune Pharmacol. 2014 Jun;9(3):424-37 – reference: 24355813 - Trends Neurosci. 2014 Feb;37(2):55-65 – reference: 23095517 - J Neuroinflammation. 2012;9:242 – reference: 22985845 - Behav Brain Res. 2013 Jan 1;236(1):270-82 – reference: 25833352 - Eur J Nucl Med Mol Imaging. 2015 Jun;42(7):1081-92 – reference: 24491305 - Brain Behav Immun. 2014 Jan;35:1-8 – reference: 25800044 - Br J Pharmacol. 2016 Feb;173(4):649-65 – reference: 17519979 - J Cereb Blood Flow Metab. 2007 Sep;27(9):1533-9 – reference: 24643083 - J Cereb Blood Flow Metab. 2014 Jun;34(6):989-94 – reference: 22776451 - Neuroimage. 2012 Oct 15;63(1):232-9 – reference: 22008728 - J Cereb Blood Flow Metab. 2012 Jan;32(1):1-5 – reference: 22674585 - Glia. 2013 Jan;61(1):71-90 – reference: 25463515 - Neuroscience. 2015 Aug 27;302:59-73 – reference: 25228141 - Neuropsychopharmacology. 2015 Feb;40(3):525-36 – reference: 23775979 - Brain. 2013 Jul;136(Pt 7):2228-38 – reference: 20970492 - Brain Behav Immun. 2011 Feb;25(2):181-213 – reference: 22968319 - J Cereb Blood Flow Metab. 2013 Jan;33(1):53-8 – reference: 16822554 - Trends Pharmacol Sci. 2006 Aug;27(8):402-9 – reference: 14560107 - Shock. 2003 Nov;20(5):431-6 |
SSID | ssj0009580 |
Score | 2.5991886 |
Snippet | Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of... Neuroinflammation is a brain immune response that is associated with neurodegenerative diseases and is primarily driven by activation of microglia, the brain’s... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12468 |
SubjectTerms | Acetamides - metabolism Acetamides - pharmacokinetics Adult Binding sites Biological Sciences Biomarkers Biomarkers - metabolism Brain - immunology Brain - metabolism Carbon Radioisotopes - metabolism Carbon Radioisotopes - pharmacokinetics Cytokines - blood Cytokines - metabolism E coli Endotoxins Escherichia coli Humans Inflammation Inflammation Mediators - blood Inflammation Mediators - metabolism Lipopolysaccharides - administration & dosage Lipopolysaccharides - immunology Male Microglia - immunology Microglia - metabolism Neurodegeneration Positron-Emission Tomography - methods Protein Binding Pyridines - metabolism Pyridines - pharmacokinetics Radioactive tracers Radiopharmaceuticals - metabolism Radiopharmaceuticals - pharmacokinetics Receptors, GABA - metabolism Reproducibility of Results Tomography Young Adult |
Title | Imaging robust microglial activation after lipopolysaccharide administration in humans with PET |
URI | https://www.jstor.org/stable/26465378 http://www.pnas.org/content/112/40/12468.abstract https://www.ncbi.nlm.nih.gov/pubmed/26385967 https://www.proquest.com/docview/1721941930 https://www.proquest.com/docview/1720451434 https://www.proquest.com/docview/1753476171 https://pubmed.ncbi.nlm.nih.gov/PMC4603509 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAQGMhIPAxVKfmw4-RxQKeBRqlEK-0tchx3ROqSqUkf2H_Bf8w5dr62ggYvUZVcLSv38_l8ufsdQm-FoFwQlsL65qlNpAxgzXmJrRh-nBXhoS9UgfPXWXC6JF_O6flo9KuXtbStkom43llX8j9ahXugV1Ul-w-abQeFG_Ab9AtX0DBc76Tjz5e6x9CmSLZlNb5UyXUXaxUDV-UKOthquoCvsyvVDuFnyYUqtMpSOeYD3lwV-Kgb9pl6t_l00Xdc5-1GVzZpBbMmjnjcVaUYU1GO7fF81vU4_q6KZ-RF0dEZKOe2I-dXDV2uC_1ZRPLc_lSoqel8cG25s6oysdoPmx6iZzzZrstM7xOJNPn_Jorh1uynTtAzvOC32AHRrUMncse9xlq7Xg-WmurJGF9wVXSLnlvbAtgx1cs45-UEPBxXWTIzzICAe_YtPlmencWL6fniHrrvwcnDbwJALY9zqAkuzNQatijmv78x_MDR0bmuikAXhHYdZm7m5PacnMUj9NCcTvCxhto-Gsn8MdpvlIqPDEn5uycoNtjDGnu4wx7usIdr7OHb2MND7OEsxxp7WGEPA_aeouXJdPHx1DbNOmxBHbeyReIwsXJlFPrgI6Y04iINpccES3wOPmFKGOXcpQK2gMBLo1SGSRQ6NEmEjBwp_AO0lxe5fI5wEPAVZasodVJw1kkSMRHBxgyeacqcUFALTZo3GwvDZK8aqqzjOqOC-bF6y3GnCgsdtX-40iQufxY9qFXVysGBIaA-Cy1k1aLt_10vJjCGwpyFDhuFxsY8wJgMnAEC5yPHQm_ax2C81Rc5nstiW8sofifik7_JUJ8wOGi4FnqmMdKbnB_SKGAWYgP0tAKKPH74JM9-1CTyJFA5BdGLO8ztJXrQLdlDtFdttvIVuOJV8rpeHL8BXhTiwg |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imaging+robust+microglial+activation+after+lipopolysaccharide+administration+in+humans+with+PET&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Sandiego%2C+Christine+M&rft.au=Gallezot%2C+Jean-Dominique&rft.au=Pittman%2C+Brian&rft.au=Nabulsi%2C+Nabeel&rft.date=2015-10-06&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=112&rft.issue=40&rft.spage=12468&rft_id=info:doi/10.1073%2Fpnas.1511003112&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F40.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F40.cover.gif |