Imaging robust microglial activation after lipopolysaccharide administration in humans with PET

Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of theEscheric...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 40; pp. 12468 - 12473
Main Authors Sandiego, Christine M., Gallezot, Jean-Dominique, Pittman, Brian, Nabulsi, Nabeel, Lim, Keunpoong, Lin, Shu-Fei, Matuskey, David, Lee, Jae-Yun, O’Connor, Kevin C., Huang, Yiyun, Carson, Richard E., Hannestad, Jonas, Cosgrove, Kelly P.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 06.10.2015
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of theEscherichia colilipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [11C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [11C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [11C]PBR28 scan. LPS administration significantly increased [11C]PBR28 binding 30–60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [11C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects.
AbstractList Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [...C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [...C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [...C]PBR28 scan. LPS administration significantly increased [...C]PBR28 binding 30-60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [...C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects. (ProQuest: ... denotes formulae/symbols omitted.)
Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of theEscherichia colilipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [11C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [11C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [11C]PBR28 scan. LPS administration significantly increased [11C]PBR28 binding 30–60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [11C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects.
Neuroinflammation is a brain immune response that is associated with neurodegenerative diseases and is primarily driven by activation of microglia, the brain’s resident macrophages. Dysfunctional microglial activation may contribute to the behavioral changes observed in neurodegenerative diseases. Upon activation, microglia express translocator protein, which can be imaged with the radiotracer [ 11 C]PBR28 and positron emission tomography (PET) in the living human brain. We imaged healthy human subjects with [ 11 C]PBR28 and PET before and after i.v. administration of lipopolysaccharide (LPS), a potent immune activator. LPS produced a marked increase in brain microglial activation, peripheral inflammatory cytokine levels, and self-reported sickness symptoms. This imaging paradigm can provide a direct approach to test new medications for their potential to reduce acute neuroinflammation. Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [ 11 C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [ 11 C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [ 11 C]PBR28 scan. LPS administration significantly increased [ 11 C]PBR28 binding 30–60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [ 11 C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects.
Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [11C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [11C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [11C]PBR28 scan. LPS administration significantly increased [11C]PBR28 binding 30-60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [11C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects.Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [11C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [11C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [11C]PBR28 scan. LPS administration significantly increased [11C]PBR28 binding 30-60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [11C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects.
Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [11C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [11C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [11C]PBR28 scan. LPS administration significantly increased [11C]PBR28 binding 30-60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [11C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects.
Author Lee, Jae-Yun
O’Connor, Kevin C.
Hannestad, Jonas
Nabulsi, Nabeel
Carson, Richard E.
Matuskey, David
Pittman, Brian
Huang, Yiyun
Lim, Keunpoong
Sandiego, Christine M.
Cosgrove, Kelly P.
Gallezot, Jean-Dominique
Lin, Shu-Fei
Author_xml – sequence: 1
  givenname: Christine M.
  surname: Sandiego
  fullname: Sandiego, Christine M.
  organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520
– sequence: 2
  givenname: Jean-Dominique
  surname: Gallezot
  fullname: Gallezot, Jean-Dominique
  organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520
– sequence: 3
  givenname: Brian
  surname: Pittman
  fullname: Pittman, Brian
  organization: Department of Psychiatry, Yale University, New Haven, CT 06511
– sequence: 4
  givenname: Nabeel
  surname: Nabulsi
  fullname: Nabulsi, Nabeel
  organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520
– sequence: 5
  givenname: Keunpoong
  surname: Lim
  fullname: Lim, Keunpoong
  organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520
– sequence: 6
  givenname: Shu-Fei
  surname: Lin
  fullname: Lin, Shu-Fei
  organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520
– sequence: 7
  givenname: David
  surname: Matuskey
  fullname: Matuskey, David
  organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520
– sequence: 8
  givenname: Jae-Yun
  surname: Lee
  fullname: Lee, Jae-Yun
  organization: Department of Neurology, Yale University, New Haven, CT 06511
– sequence: 9
  givenname: Kevin C.
  surname: O’Connor
  fullname: O’Connor, Kevin C.
  organization: Department of Neurology, Yale University, New Haven, CT 06511
– sequence: 10
  givenname: Yiyun
  surname: Huang
  fullname: Huang, Yiyun
  organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520
– sequence: 11
  givenname: Richard E.
  surname: Carson
  fullname: Carson, Richard E.
  organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520
– sequence: 12
  givenname: Jonas
  surname: Hannestad
  fullname: Hannestad, Jonas
  organization: UCB Pharma, Braine-l’Alleud, Belgium
– sequence: 13
  givenname: Kelly P.
  surname: Cosgrove
  fullname: Cosgrove, Kelly P.
  organization: PET Center, Diagnostic Radiology, Yale University, New Haven, CT 06520
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26385967$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFv1DAQhS1URLeFMydQJC5c0s7EdhxfkKqqQKVKcChny3G8u14ldrCTov77ervLUnpAnHyY7z0_-80JOfLBW0LeIpwhCHo-ep3OkCMCUMTqBVkgSCxrJuGILAAqUTasYsfkJKUNAEjewCtyXNW04bIWC6KuB71yflXE0M5pKgZnYlj1TveFNpO705MLvtDLycaid2MYQ3-ftDFrHV1nC90Nzrs0xR3nfLGeB-1T8ctN6-L71e1r8nKp-2Tf7M9T8uPz1e3l1_Lm25fry4ub0nDAqTQtCLNEKxvKoO641KZrbCWMaKluOO2Y4FojN4CirjrZ2aaVDfC2NVaCNfSUfNr5jnM72M5YnzP1aoxu0PFeBe3U3xPv1moV7hSrgXKQ2eDj3iCGn7NNkxpcMrbvtbdhTgoFp0zUKPA_0AoYR0ZZRj88Qzdhjj7_xJZCyVBSyNT7p-EPqX_XlIHzHZDLSSna5QFBUNtFUNtFUH8WISv4M4Vx02NJ-fWu_4eu2EfZDg63YKVYVlSsbjLybods0hTik7Cs5lQ09AEBLc0U
CitedBy_id crossref_primary_10_1124_pharmrev_122_000618
crossref_primary_10_1177_0271678X19859034
crossref_primary_10_1089_neu_2019_6885
crossref_primary_10_1016_j_apsb_2020_08_006
crossref_primary_10_1093_ajcn_nqab126
crossref_primary_10_1002_adbi_202000540
crossref_primary_10_1016_j_schres_2018_10_008
crossref_primary_10_3233_JAD_215054
crossref_primary_10_1016_j_bbr_2019_111975
crossref_primary_10_2174_1570159X21666230807152051
crossref_primary_10_1007_s11882_015_0590_5
crossref_primary_10_1186_s42234_022_00101_2
crossref_primary_10_1016_j_yfrne_2019_100772
crossref_primary_10_1016_j_physbeh_2019_112776
crossref_primary_10_1111_nyas_13864
crossref_primary_10_1016_j_bbi_2020_08_030
crossref_primary_10_1038_s41386_019_0561_y
crossref_primary_10_1007_s12035_020_01994_3
crossref_primary_10_2967_jnumed_120_243717
crossref_primary_10_1136_bmjopen_2020_044062
crossref_primary_10_1007_s11910_016_0660_7
crossref_primary_10_1016_j_cclet_2023_108236
crossref_primary_10_1007_s11481_024_10115_z
crossref_primary_10_1016_j_trac_2024_117546
crossref_primary_10_1016_j_bbi_2024_08_034
crossref_primary_10_1016_j_bbi_2017_04_015
crossref_primary_10_3389_fpsyt_2017_00222
crossref_primary_10_1007_s11307_018_1201_3
crossref_primary_10_3233_JPD_181446
crossref_primary_10_1016_j_bbi_2019_07_001
crossref_primary_10_3390_ijms232214455
crossref_primary_10_4062_biomolther_2023_184
crossref_primary_10_1016_j_neubiorev_2019_05_002
crossref_primary_10_1038_s41586_022_04427_4
crossref_primary_10_1038_s41598_017_11512_6
crossref_primary_10_1038_s41577_021_00643_7
crossref_primary_10_1002_jsfa_12074
crossref_primary_10_1038_s41398_022_02094_7
crossref_primary_10_1039_C8OB01700J
crossref_primary_10_1016_j_euroneuro_2021_10_129
crossref_primary_10_3389_fimmu_2022_987771
crossref_primary_10_1016_j_bbih_2024_100881
crossref_primary_10_1038_s41380_023_02198_6
crossref_primary_10_1177_0271678X17710182
crossref_primary_10_1038_mp_2017_232
crossref_primary_10_1016_j_neubiorev_2017_10_010
crossref_primary_10_1155_2018_3476476
crossref_primary_10_1016_j_bmc_2018_08_017
crossref_primary_10_1016_j_tem_2021_10_005
crossref_primary_10_1146_annurev_immunol_101320_014237
crossref_primary_10_3389_fpsyt_2020_00362
crossref_primary_10_3390_nu16203570
crossref_primary_10_1177_2045125318791944
crossref_primary_10_3389_fimmu_2017_01613
crossref_primary_10_1038_tp_2016_212
crossref_primary_10_1016_j_bbi_2020_01_018
crossref_primary_10_1038_s41531_021_00191_w
crossref_primary_10_1080_10408398_2022_2048291
crossref_primary_10_1186_s13550_017_0305_0
crossref_primary_10_1186_s12974_020_01804_6
crossref_primary_10_1016_j_drugalcdep_2019_06_018
crossref_primary_10_3390_ijms231911193
crossref_primary_10_1080_10253890_2020_1793943
crossref_primary_10_3389_fphar_2017_00766
crossref_primary_10_3389_fneur_2018_01033
crossref_primary_10_1186_s13024_022_00547_7
crossref_primary_10_1371_journal_pone_0222861
crossref_primary_10_1097_PSY_0000000000000339
crossref_primary_10_3390_antiox13091074
crossref_primary_10_1007_s11307_018_1172_4
crossref_primary_10_1016_j_bbi_2021_01_009
crossref_primary_10_1155_2022_3334145
crossref_primary_10_1371_journal_pone_0311218
crossref_primary_10_1016_S2215_0366_18_30087_7
crossref_primary_10_1007_s13311_019_00758_9
crossref_primary_10_1016_j_bbi_2017_05_009
crossref_primary_10_12938_bmfh_17_020
crossref_primary_10_1016_j_bbi_2020_01_020
crossref_primary_10_1186_s10194_022_01430_y
crossref_primary_10_1016_j_bpsc_2020_12_017
crossref_primary_10_1093_oxfimm_iqab004
crossref_primary_10_3390_nu16121938
crossref_primary_10_1016_j_neuint_2020_104855
crossref_primary_10_1038_npp_2017_48
crossref_primary_10_1016_S1473_3099_19_30567_5
crossref_primary_10_1016_j_yfrne_2017_12_004
crossref_primary_10_1111_jcmm_14606
crossref_primary_10_2174_1574887117666220622143423
crossref_primary_10_1016_j_bbi_2020_09_027
crossref_primary_10_1016_j_jhazmat_2020_122259
crossref_primary_10_1016_j_biochi_2024_07_003
crossref_primary_10_1073_pnas_1620415114
crossref_primary_10_1097_SLA_0000000000005489
crossref_primary_10_1254_fpj_153_28
crossref_primary_10_2174_1381612825666190722114248
crossref_primary_10_1016_j_neubiorev_2018_07_013
crossref_primary_10_1016_j_neuroscience_2018_03_034
crossref_primary_10_3390_ijms25137006
crossref_primary_10_3389_fnagi_2019_00299
crossref_primary_10_1186_s12974_023_02746_5
crossref_primary_10_3389_fimmu_2024_1503063
crossref_primary_10_1093_nutrit_nuz072
crossref_primary_10_1093_brain_awx339
crossref_primary_10_1002_sctm_19_0150
crossref_primary_10_1007_s00259_021_05248_9
crossref_primary_10_1159_000499621
crossref_primary_10_1038_nri_2015_5
crossref_primary_10_3389_fnins_2020_00903
crossref_primary_10_1186_s12974_019_1564_7
crossref_primary_10_1097_SHK_0000000000001703
crossref_primary_10_1016_j_isci_2024_110464
crossref_primary_10_1097_PSY_0000000000000311
crossref_primary_10_1016_j_neuro_2020_01_014
crossref_primary_10_3390_ijms241612634
crossref_primary_10_1038_s41598_021_90817_z
crossref_primary_10_1097_MNH_0000000000000250
crossref_primary_10_1016_j_immuni_2020_09_018
crossref_primary_10_1021_acs_jmedchem_7b00374
crossref_primary_10_1016_j_neuropharm_2024_110285
crossref_primary_10_1186_s13024_024_00722_y
crossref_primary_10_3390_nu16234079
crossref_primary_10_1016_j_bbi_2022_08_016
crossref_primary_10_1038_s41380_019_0433_1
crossref_primary_10_4103_NRR_NRR_D_23_02063
crossref_primary_10_1002_glia_22986
crossref_primary_10_1111_ejn_15239
crossref_primary_10_18632_aging_103883
crossref_primary_10_1016_j_bbi_2017_10_003
crossref_primary_10_3390_ijms24032821
crossref_primary_10_1007_s11307_024_01979_x
crossref_primary_10_1016_j_jneuroim_2019_577000
crossref_primary_10_1186_s42234_021_00065_9
crossref_primary_10_4103_1673_5374_308067
crossref_primary_10_1016_j_bbi_2016_04_001
crossref_primary_10_1111_jnc_15491
crossref_primary_10_3390_ijms20133161
crossref_primary_10_1038_mp_2016_130
crossref_primary_10_1038_s41467_020_15930_5
crossref_primary_10_1016_j_bbih_2023_100624
crossref_primary_10_1016_j_bbi_2017_06_018
crossref_primary_10_1021_acschemneuro_2c00558
crossref_primary_10_1016_j_bbi_2017_10_013
crossref_primary_10_1016_j_chmed_2023_08_001
crossref_primary_10_1016_j_bpsc_2017_12_011
crossref_primary_10_1016_j_yfrne_2018_06_005
crossref_primary_10_1016_j_yexcr_2018_04_008
crossref_primary_10_1038_npp_2016_143
crossref_primary_10_1016_j_bbr_2023_114459
crossref_primary_10_3390_biology10111097
crossref_primary_10_1177_0891988719834346
crossref_primary_10_1038_s41380_019_0470_9
crossref_primary_10_1007_s00213_016_4214_0
crossref_primary_10_1038_mp_2016_264
crossref_primary_10_1007_s00259_016_3391_8
crossref_primary_10_1016_j_immuni_2020_11_007
crossref_primary_10_1016_j_bbi_2018_07_006
crossref_primary_10_3389_fimmu_2018_01926
crossref_primary_10_1007_s40263_020_00765_x
crossref_primary_10_1073_pnas_2406005121
crossref_primary_10_1039_C6MD00523C
crossref_primary_10_3390_molecules27092780
crossref_primary_10_1002_JLB_3A1219_729RR
crossref_primary_10_1124_jpet_120_266163
crossref_primary_10_1002_acn3_50837
crossref_primary_10_1038_s41386_018_0124_7
crossref_primary_10_1016_j_bbi_2020_06_027
crossref_primary_10_1016_S2215_0366_18_30048_8
crossref_primary_10_1016_j_biopsych_2017_08_005
crossref_primary_10_1080_09637486_2019_1580682
crossref_primary_10_1172_jci_insight_131329
crossref_primary_10_1146_annurev_bioeng_062117_121056
crossref_primary_10_1186_s12944_023_01817_z
crossref_primary_10_1155_2021_8174789
crossref_primary_10_1016_j_biochi_2023_11_013
crossref_primary_10_3390_nu12102982
crossref_primary_10_1016_j_neuropharm_2022_109189
crossref_primary_10_1186_s12974_021_02280_2
crossref_primary_10_1186_s12888_020_02553_9
crossref_primary_10_1093_ijnp_pyw077
crossref_primary_10_1002_ana_24966
crossref_primary_10_1016_j_bbi_2020_06_022
crossref_primary_10_1152_physrev_00010_2018
crossref_primary_10_1016_j_bbi_2023_04_010
crossref_primary_10_1016_j_obmed_2019_100117
crossref_primary_10_1093_brain_awae343
crossref_primary_10_3389_fimmu_2017_00276
crossref_primary_10_3389_fphar_2020_614990
crossref_primary_10_3390_nu13041162
crossref_primary_10_2967_jnumed_119_237735
crossref_primary_10_1016_j_bbr_2022_113847
crossref_primary_10_1038_tp_2017_18
crossref_primary_10_3390_ijms26072940
crossref_primary_10_1097_HRP_0000000000000323
crossref_primary_10_1097_CCM_0000000000005307
crossref_primary_10_1186_s13019_021_01627_3
crossref_primary_10_3389_fnagi_2020_622360
crossref_primary_10_1007_s00259_021_05379_z
crossref_primary_10_1038_npp_2016_199
crossref_primary_10_1097_CCM_0000000000005313
crossref_primary_10_1111_nan_12502
crossref_primary_10_1177_0271678X241236755
crossref_primary_10_1007_s00540_016_2294_y
crossref_primary_10_1038_s41380_020_00869_2
crossref_primary_10_3389_fnins_2020_00871
crossref_primary_10_1038_s41398_020_0768_z
crossref_primary_10_3389_fnmol_2017_00421
crossref_primary_10_1016_j_cpnec_2021_100048
crossref_primary_10_1177_0271678X17748786
crossref_primary_10_1002_cpt_618
crossref_primary_10_1016_j_bbi_2021_05_025
crossref_primary_10_1016_j_bbi_2023_03_031
crossref_primary_10_1186_s40635_015_0066_x
crossref_primary_10_3389_fpsyt_2024_1337888
crossref_primary_10_3389_fmed_2024_1388045
crossref_primary_10_1002_ana_24909
crossref_primary_10_1136_pn_2022_003373
crossref_primary_10_1152_physrev_00039_2016
crossref_primary_10_1002_mds_29432
crossref_primary_10_1038_s41582_019_0231_z
crossref_primary_10_1186_s12974_023_02945_0
crossref_primary_10_1038_tp_2016_278
crossref_primary_10_1111_jdv_19813
crossref_primary_10_3390_ph14050416
crossref_primary_10_1371_journal_pone_0185767
crossref_primary_10_1016_j_bbi_2016_01_019
crossref_primary_10_1038_s41380_020_0745_1
crossref_primary_10_31083_j_jin2206148
crossref_primary_10_1007_s11011_019_0388_6
crossref_primary_10_1186_s12974_019_1692_0
crossref_primary_10_1186_s13550_020_0605_7
crossref_primary_10_3389_fpsyt_2020_00789
crossref_primary_10_1016_j_bbi_2021_04_004
crossref_primary_10_1007_s00406_017_0774_1
crossref_primary_10_1093_eurheartj_suaa119
crossref_primary_10_1038_mp_2016_248
crossref_primary_10_1038_mp_2017_10
crossref_primary_10_1016_j_brainres_2020_147225
crossref_primary_10_1016_j_bbi_2018_09_024
crossref_primary_10_1016_j_pharmthera_2018_09_003
crossref_primary_10_1242_jeb_225847
crossref_primary_10_1038_npp_2016_167
crossref_primary_10_1016_S2215_0366_17_30101_3
crossref_primary_10_1177_0271678X221126830
crossref_primary_10_1186_s40035_016_0054_4
crossref_primary_10_1016_j_bbi_2021_10_005
crossref_primary_10_1016_j_biopsych_2020_05_028
crossref_primary_10_1016_j_biopsycho_2018_12_008
Cites_doi 10.1016/j.bbi.2013.09.015
10.1111/imm.12177
10.1016/j.tips.2006.06.005
10.1038/npp.2014.199
10.1016/j.neuron.2012.12.023
10.2967/jnumed.111.097014
10.2967/jnumed.113.135129
10.1016/j.neuroscience.2014.11.018
10.1002/sim.1562
10.1016/j.bbi.2010.12.013
10.1016/S1474-4422(15)70016-5
10.1021/cn500138n
10.2174/092986707780597961
10.1001/jamapsychiatry.2014.2427
10.1007/s11481-014-9540-6
10.4161/viru.26083
10.2174/138161208786549443
10.1016/j.cellimm.2015.04.006
10.1111/bpa.12196
10.1016/j.tins.2013.11.002
10.1038/nrn2297
10.1002/glia.22350
10.1038/sj.jcbfm.9600493
10.1523/JNEUROSCI.0928-14.2014
10.1038/npp.2014.196
10.1016/j.neuroscience.2013.10.023
10.1016/j.bbi.2010.10.015
10.1186/1742-2094-9-242
10.1111/j.1365-2990.2010.01156.x
10.1155/2013/271359
10.1038/jcbfm.2012.131
10.4172/2161-0460.1000160
10.1038/ncomms7176
10.1002/glia.1106
10.2967/jnumed.114.149443
10.1016/j.nbd.2009.10.006
10.1016/j.nurt.2007.07.002
10.1016/j.neuroimage.2007.11.011
10.1016/j.pneurobio.2006.10.002
10.1016/j.bbi.2013.06.010
10.1038/jcbfm.2014.46
10.1097/01.shk.0000090843.66556.74
10.1016/j.it.2009.07.009
10.1517/14728222.2014.988707
10.1007/s12640-012-9348-1
10.1093/brain/awt145
10.1007/s00259-015-3043-4
10.1111/nan.12011
10.1016/j.neuroimage.2012.06.055
10.1186/1742-2094-1-14
10.1111/bph.12139
10.1038/jcbfm.2011.147
10.1016/j.bbi.2010.10.013
10.1016/0166-2236(96)10049-7
10.1038/nri2448
10.1016/j.bbr.2012.08.052
10.3390/ph7121028
10.1097/00004647-200106000-00002
10.1155/2015/610813
ContentType Journal Article
Copyright Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Oct 6, 2015
Copyright_xml – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Oct 6, 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1511003112
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts


MEDLINE - Academic
MEDLINE
Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Imaging microglial activation in humans with PET
EISSN 1091-6490
EndPage 12473
ExternalDocumentID PMC4603509
3835580541
26385967
10_1073_pnas_1511003112
112_40_12468
26465378
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P50 AG047270
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c501t-cb07cf1e983406d59acd8e27c7b3a853d475aa15c01762d9de8b9805bbce90ec3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:18:08 EDT 2025
Fri Jul 11 01:53:53 EDT 2025
Fri Jul 11 06:26:11 EDT 2025
Sat Aug 23 12:33:12 EDT 2025
Mon Jul 21 05:59:22 EDT 2025
Tue Jul 01 01:53:33 EDT 2025
Thu Apr 24 22:55:32 EDT 2025
Wed Nov 11 00:29:33 EST 2020
Fri May 30 12:01:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords PBR28
cytokines
neuroinflammation
microglia
endotoxin
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c501t-cb07cf1e983406d59acd8e27c7b3a853d475aa15c01762d9de8b9805bbce90ec3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: J.H. and K.P.C. designed research; C.M.S., N.N., K.L., S.-F.L., D.M., J.-Y.L., K.C.O., Y.H., R.E.C., and K.P.C. performed research; C.M.S., J.-D.G., and B.P. analyzed data; D.M. is the medical doctor (M.D.) on study; K.C.O. provided immunology expertise; Y.H. senior radiochemist; R.E.C. checked analysis and helped with writing; and C.M.S. and K.P.C. wrote the paper.
Edited by Joanna S. Fowler, Brookhaven National Laboratory, Upton, NY, and approved August 4, 2015 (received for review June 4, 2015)
OpenAccessLink https://www.pnas.org/content/pnas/112/40/12468.full.pdf
PMID 26385967
PQID 1721941930
PQPubID 42026
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_1511003112
proquest_miscellaneous_1753476171
proquest_miscellaneous_1720451434
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4603509
pubmed_primary_26385967
jstor_primary_26465378
crossref_citationtrail_10_1073_pnas_1511003112
pnas_primary_112_40_12468
proquest_journals_1721941930
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-06
PublicationDateYYYYMMDD 2015-10-06
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
Li Y (e_1_3_3_55_2) 2014; 2014
e_1_3_3_5_2
e_1_3_3_7_2
Orihuela R (e_1_3_3_47_2) 2015
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
Tufekci KU (e_1_3_3_28_2) 2011; 2011
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
Carson REBW (e_1_3_3_60_2) 2003; 5
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
17504139 - Curr Med Chem. 2007;14(11):1189-97
23935246 - Mediators Inflamm. 2013;2013:271359
25792098 - Lancet Neurol. 2015 Apr;14(4):388-405
24022070 - Virulence. 2014 Jan 1;5(1):143-53
21166690 - Neuropathol Appl Neurobiol. 2011 Aug;37(5):513-24
24355813 - Trends Neurosci. 2014 Feb;37(2):55-65
18073775 - Nat Rev Neurosci. 2008 Jan;9(1):46-56
16822554 - Trends Pharmacol Sci. 2006 Aug;27(8):402-9
14560107 - Shock. 2003 Nov;20(5):431-6
24687172 - J Neuroimmune Pharmacol. 2014 Jun;9(3):424-37
25429645 - Pharmaceuticals (Basel). 2014 Nov 25;7(12):1028-48
25834699 - Oxid Med Cell Longev. 2015;2015:610813
25463515 - Neuroscience. 2015 Aug 27;302:59-73
25345894 - Brain Pathol. 2014 Nov;24(6):631-53
15285801 - J Neuroinflammation. 2004 Jul 30;1(1):14
25197646 - Biomed Res Int. 2014;2014:437483
21193024 - Brain Behav Immun. 2011 Jun;25 Suppl 1:S13-20
25664220 - J Alzheimers Dis Parkinsonism. 2014 Nov;4(5):null
8843599 - Trends Neurosci. 1996 Aug;19(8):312-8
23775979 - Brain. 2013 Jul;136(Pt 7):2228-38
22776451 - Neuroimage. 2012 Oct 15;63(1):232-9
25103178 - Neuropsychopharmacology. 2015 Jan;40(2):502-12
11596125 - Glia. 2001 Nov;36(2):165-79
17156911 - Prog Neurobiol. 2006 Dec;80(6):308-22
19075709 - Curr Pharm Des. 2008;14(31):3297-315
25944389 - Cell Immunol. 2015 Aug;296(2):122-32
22895696 - Neurotox Res. 2013 Feb;23(2):131-44
17920538 - Neurotherapeutics. 2007 Oct;4(4):571-9
25800044 - Br J Pharmacol. 2016 Feb;173(4):649-65
19781994 - Trends Immunol. 2009 Oct;30(10):475-87
23850810 - Brain Behav Immun. 2013 Oct;33:131-8
25435348 - Expert Opin Ther Targets. 2015 Apr;19(4):497-506
24116890 - Immunology. 2014 Mar;141(3):328-39
25833352 - Eur J Nucl Med Mol Imaging. 2015 Jun;42(7):1081-92
24161284 - Neuroscience. 2014 Jan 3;256:210-22
23095517 - J Neuroinflammation. 2012;9:242
25057196 - J Neurosci. 2014 Jul 23;34(30):9945-50
14601019 - Stat Med. 2003 Nov 30;22(22):3557-68
21331154 - Parkinsons Dis. 2011 Jan 18;2011:487450
23441623 - Br J Pharmacol. 2013 May;169(2):337-52
22008728 - J Cereb Blood Flow Metab. 2012 Jan;32(1):1-5
22985845 - Behav Brain Res. 2013 Jan 1;236(1):270-82
19029990 - Nat Rev Immunol. 2008 Dec;8(12):958-69
20970492 - Brain Behav Immun. 2011 Feb;25(2):181-213
23312512 - Neuron. 2013 Jan 9;77(1):10-8
25630253 - Nat Commun. 2015;6:6176
20955776 - Brain Behav Immun. 2011 Feb;25(2):256-9
22968319 - J Cereb Blood Flow Metab. 2013 Jan;33(1):53-8
19833208 - Neurobiol Dis. 2010 Mar;37(3):503-9
25228141 - Neuropsychopharmacology. 2015 Feb;40(3):525-36
22674585 - Glia. 2013 Jan;61(1):71-90
24643083 - J Cereb Blood Flow Metab. 2014 Jun;34(6):989-94
17519979 - J Cereb Blood Flow Metab. 2007 Sep;27(9):1533-9
24904112 - J Nucl Med. 2014 Jul;55(7):1112-8
25840980 - J Nucl Med. 2015 May;56(5):707-13
11488533 - J Cereb Blood Flow Metab. 2001 Jun;21(6):635-52
25123416 - ACS Chem Neurosci. 2014 Oct 15;5(10):963-71
23252647 - Neuropathol Appl Neurobiol. 2013 Feb;39(1):3-18
24491305 - Brain Behav Immun. 2014 Jan;35:1-8
25629589 - JAMA Psychiatry. 2015 Mar;72(3):268-75
18093844 - Neuroimage. 2008 Mar 1;40(1):43-52
22414635 - J Nucl Med. 2012 Apr;53(4):601-7
References_xml – ident: e_1_3_3_33_2
  doi: 10.1016/j.bbi.2013.09.015
– ident: e_1_3_3_52_2
  doi: 10.1111/imm.12177
– ident: e_1_3_3_16_2
  doi: 10.1016/j.tips.2006.06.005
– ident: e_1_3_3_38_2
  doi: 10.1038/npp.2014.199
– ident: e_1_3_3_11_2
  doi: 10.1016/j.neuron.2012.12.023
– ident: e_1_3_3_36_2
  doi: 10.2967/jnumed.111.097014
– ident: e_1_3_3_23_2
  doi: 10.2967/jnumed.113.135129
– ident: e_1_3_3_8_2
  doi: 10.1016/j.neuroscience.2014.11.018
– ident: e_1_3_3_63_2
  doi: 10.1002/sim.1562
– ident: e_1_3_3_4_2
  doi: 10.1016/j.bbi.2010.12.013
– ident: e_1_3_3_6_2
  doi: 10.1016/S1474-4422(15)70016-5
– ident: e_1_3_3_58_2
  doi: 10.1021/cn500138n
– ident: e_1_3_3_12_2
  doi: 10.2174/092986707780597961
– ident: e_1_3_3_27_2
  doi: 10.1001/jamapsychiatry.2014.2427
– volume: 2011
  start-page: 487450
  year: 2011
  ident: e_1_3_3_28_2
  article-title: The endotoxin-induced neuroinflammation model of Parkinson's disease
  publication-title: Parkinsons Dis
– ident: e_1_3_3_21_2
  doi: 10.1007/s11481-014-9540-6
– ident: e_1_3_3_45_2
  doi: 10.4161/viru.26083
– ident: e_1_3_3_17_2
  doi: 10.2174/138161208786549443
– volume: 5
  start-page: 3281
  year: 2003
  ident: e_1_3_3_60_2
  article-title: Design of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction of the HRRT
  publication-title: IEEE Nuclear Science Symposium and Medical Imaging Conference
– ident: e_1_3_3_1_2
  doi: 10.1016/j.cellimm.2015.04.006
– ident: e_1_3_3_19_2
  doi: 10.1111/bpa.12196
– ident: e_1_3_3_7_2
  doi: 10.1016/j.tins.2013.11.002
– ident: e_1_3_3_14_2
  doi: 10.1038/nrn2297
– ident: e_1_3_3_31_2
  doi: 10.1002/glia.22350
– ident: e_1_3_3_62_2
  doi: 10.1038/sj.jcbfm.9600493
– ident: e_1_3_3_25_2
  doi: 10.1523/JNEUROSCI.0928-14.2014
– ident: e_1_3_3_39_2
  doi: 10.1038/npp.2014.196
– ident: e_1_3_3_40_2
  doi: 10.1016/j.neuroscience.2013.10.023
– ident: e_1_3_3_15_2
  doi: 10.1016/j.bbi.2010.10.015
– ident: e_1_3_3_43_2
  doi: 10.1186/1742-2094-9-242
– ident: e_1_3_3_51_2
  doi: 10.1111/j.1365-2990.2010.01156.x
– ident: e_1_3_3_41_2
  doi: 10.1155/2013/271359
– ident: e_1_3_3_35_2
  doi: 10.1038/jcbfm.2012.131
– ident: e_1_3_3_57_2
  doi: 10.4172/2161-0460.1000160
– ident: e_1_3_3_54_2
  doi: 10.1038/ncomms7176
– ident: e_1_3_3_9_2
  doi: 10.1002/glia.1106
– ident: e_1_3_3_59_2
  doi: 10.2967/jnumed.114.149443
– ident: e_1_3_3_2_2
  doi: 10.1016/j.nbd.2009.10.006
– ident: e_1_3_3_10_2
  doi: 10.1016/j.nurt.2007.07.002
– ident: e_1_3_3_18_2
  doi: 10.1016/j.neuroimage.2007.11.011
– ident: e_1_3_3_20_2
  doi: 10.1016/j.pneurobio.2006.10.002
– ident: e_1_3_3_24_2
  doi: 10.1016/j.bbi.2013.06.010
– volume: 2014
  start-page: 437483
  year: 2014
  ident: e_1_3_3_55_2
  article-title: Microglia in Alzheimer's disease
  publication-title: Biomed Res Int
– ident: e_1_3_3_44_2
  doi: 10.1038/jcbfm.2014.46
– ident: e_1_3_3_46_2
  doi: 10.1097/01.shk.0000090843.66556.74
– ident: e_1_3_3_37_2
  doi: 10.1016/j.it.2009.07.009
– year: 2015
  ident: e_1_3_3_47_2
  article-title: Microglial M1/M2 polarization and metabolic states
  publication-title: Br J Pharmacol
– ident: e_1_3_3_53_2
  doi: 10.1517/14728222.2014.988707
– ident: e_1_3_3_3_2
  doi: 10.1007/s12640-012-9348-1
– ident: e_1_3_3_22_2
  doi: 10.1093/brain/awt145
– ident: e_1_3_3_26_2
  doi: 10.1007/s00259-015-3043-4
– ident: e_1_3_3_48_2
  doi: 10.1111/nan.12011
– ident: e_1_3_3_32_2
  doi: 10.1016/j.neuroimage.2012.06.055
– ident: e_1_3_3_5_2
  doi: 10.1186/1742-2094-1-14
– ident: e_1_3_3_56_2
  doi: 10.1111/bph.12139
– ident: e_1_3_3_34_2
  doi: 10.1038/jcbfm.2011.147
– ident: e_1_3_3_42_2
  doi: 10.1016/j.bbi.2010.10.013
– ident: e_1_3_3_49_2
  doi: 10.1016/0166-2236(96)10049-7
– ident: e_1_3_3_29_2
  doi: 10.1038/nri2448
– ident: e_1_3_3_13_2
  doi: 10.1016/j.bbr.2012.08.052
– ident: e_1_3_3_30_2
  doi: 10.3390/ph7121028
– ident: e_1_3_3_61_2
  doi: 10.1097/00004647-200106000-00002
– ident: e_1_3_3_50_2
  doi: 10.1155/2015/610813
– reference: 25630253 - Nat Commun. 2015;6:6176
– reference: 21193024 - Brain Behav Immun. 2011 Jun;25 Suppl 1:S13-20
– reference: 23252647 - Neuropathol Appl Neurobiol. 2013 Feb;39(1):3-18
– reference: 17504139 - Curr Med Chem. 2007;14(11):1189-97
– reference: 19833208 - Neurobiol Dis. 2010 Mar;37(3):503-9
– reference: 17920538 - Neurotherapeutics. 2007 Oct;4(4):571-9
– reference: 20955776 - Brain Behav Immun. 2011 Feb;25(2):256-9
– reference: 24161284 - Neuroscience. 2014 Jan 3;256:210-22
– reference: 24022070 - Virulence. 2014 Jan 1;5(1):143-53
– reference: 25345894 - Brain Pathol. 2014 Nov;24(6):631-53
– reference: 25629589 - JAMA Psychiatry. 2015 Mar;72(3):268-75
– reference: 17156911 - Prog Neurobiol. 2006 Dec;80(6):308-22
– reference: 11596125 - Glia. 2001 Nov;36(2):165-79
– reference: 25429645 - Pharmaceuticals (Basel). 2014 Nov 25;7(12):1028-48
– reference: 19075709 - Curr Pharm Des. 2008;14(31):3297-315
– reference: 15285801 - J Neuroinflammation. 2004 Jul 30;1(1):14
– reference: 23312512 - Neuron. 2013 Jan 9;77(1):10-8
– reference: 25123416 - ACS Chem Neurosci. 2014 Oct 15;5(10):963-71
– reference: 25834699 - Oxid Med Cell Longev. 2015;2015:610813
– reference: 24116890 - Immunology. 2014 Mar;141(3):328-39
– reference: 25435348 - Expert Opin Ther Targets. 2015 Apr;19(4):497-506
– reference: 19029990 - Nat Rev Immunol. 2008 Dec;8(12):958-69
– reference: 24904112 - J Nucl Med. 2014 Jul;55(7):1112-8
– reference: 11488533 - J Cereb Blood Flow Metab. 2001 Jun;21(6):635-52
– reference: 25840980 - J Nucl Med. 2015 May;56(5):707-13
– reference: 25664220 - J Alzheimers Dis Parkinsonism. 2014 Nov;4(5):null
– reference: 14601019 - Stat Med. 2003 Nov 30;22(22):3557-68
– reference: 22895696 - Neurotox Res. 2013 Feb;23(2):131-44
– reference: 18093844 - Neuroimage. 2008 Mar 1;40(1):43-52
– reference: 23935246 - Mediators Inflamm. 2013;2013:271359
– reference: 25103178 - Neuropsychopharmacology. 2015 Jan;40(2):502-12
– reference: 25057196 - J Neurosci. 2014 Jul 23;34(30):9945-50
– reference: 8843599 - Trends Neurosci. 1996 Aug;19(8):312-8
– reference: 25944389 - Cell Immunol. 2015 Aug;296(2):122-32
– reference: 25197646 - Biomed Res Int. 2014;2014:437483
– reference: 18073775 - Nat Rev Neurosci. 2008 Jan;9(1):46-56
– reference: 23441623 - Br J Pharmacol. 2013 May;169(2):337-52
– reference: 21166690 - Neuropathol Appl Neurobiol. 2011 Aug;37(5):513-24
– reference: 22414635 - J Nucl Med. 2012 Apr;53(4):601-7
– reference: 23850810 - Brain Behav Immun. 2013 Oct;33:131-8
– reference: 25792098 - Lancet Neurol. 2015 Apr;14(4):388-405
– reference: 19781994 - Trends Immunol. 2009 Oct;30(10):475-87
– reference: 21331154 - Parkinsons Dis. 2011 Jan 18;2011:487450
– reference: 24687172 - J Neuroimmune Pharmacol. 2014 Jun;9(3):424-37
– reference: 24355813 - Trends Neurosci. 2014 Feb;37(2):55-65
– reference: 23095517 - J Neuroinflammation. 2012;9:242
– reference: 22985845 - Behav Brain Res. 2013 Jan 1;236(1):270-82
– reference: 25833352 - Eur J Nucl Med Mol Imaging. 2015 Jun;42(7):1081-92
– reference: 24491305 - Brain Behav Immun. 2014 Jan;35:1-8
– reference: 25800044 - Br J Pharmacol. 2016 Feb;173(4):649-65
– reference: 17519979 - J Cereb Blood Flow Metab. 2007 Sep;27(9):1533-9
– reference: 24643083 - J Cereb Blood Flow Metab. 2014 Jun;34(6):989-94
– reference: 22776451 - Neuroimage. 2012 Oct 15;63(1):232-9
– reference: 22008728 - J Cereb Blood Flow Metab. 2012 Jan;32(1):1-5
– reference: 22674585 - Glia. 2013 Jan;61(1):71-90
– reference: 25463515 - Neuroscience. 2015 Aug 27;302:59-73
– reference: 25228141 - Neuropsychopharmacology. 2015 Feb;40(3):525-36
– reference: 23775979 - Brain. 2013 Jul;136(Pt 7):2228-38
– reference: 20970492 - Brain Behav Immun. 2011 Feb;25(2):181-213
– reference: 22968319 - J Cereb Blood Flow Metab. 2013 Jan;33(1):53-8
– reference: 16822554 - Trends Pharmacol Sci. 2006 Aug;27(8):402-9
– reference: 14560107 - Shock. 2003 Nov;20(5):431-6
SSID ssj0009580
Score 2.5991886
Snippet Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of...
Neuroinflammation is a brain immune response that is associated with neurodegenerative diseases and is primarily driven by activation of microglia, the brain’s...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12468
SubjectTerms Acetamides - metabolism
Acetamides - pharmacokinetics
Adult
Binding sites
Biological Sciences
Biomarkers
Biomarkers - metabolism
Brain - immunology
Brain - metabolism
Carbon Radioisotopes - metabolism
Carbon Radioisotopes - pharmacokinetics
Cytokines - blood
Cytokines - metabolism
E coli
Endotoxins
Escherichia coli
Humans
Inflammation
Inflammation Mediators - blood
Inflammation Mediators - metabolism
Lipopolysaccharides - administration & dosage
Lipopolysaccharides - immunology
Male
Microglia - immunology
Microglia - metabolism
Neurodegeneration
Positron-Emission Tomography - methods
Protein Binding
Pyridines - metabolism
Pyridines - pharmacokinetics
Radioactive tracers
Radiopharmaceuticals - metabolism
Radiopharmaceuticals - pharmacokinetics
Receptors, GABA - metabolism
Reproducibility of Results
Tomography
Young Adult
Title Imaging robust microglial activation after lipopolysaccharide administration in humans with PET
URI https://www.jstor.org/stable/26465378
http://www.pnas.org/content/112/40/12468.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26385967
https://www.proquest.com/docview/1721941930
https://www.proquest.com/docview/1720451434
https://www.proquest.com/docview/1753476171
https://pubmed.ncbi.nlm.nih.gov/PMC4603509
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAQGMhIPAxVKfmw4-RxQKeBRqlEK-0tchx3ROqSqUkf2H_Bf8w5dr62ggYvUZVcLSv38_l8ufsdQm-FoFwQlsL65qlNpAxgzXmJrRh-nBXhoS9UgfPXWXC6JF_O6flo9KuXtbStkom43llX8j9ahXugV1Ul-w-abQeFG_Ab9AtX0DBc76Tjz5e6x9CmSLZlNb5UyXUXaxUDV-UKOthquoCvsyvVDuFnyYUqtMpSOeYD3lwV-Kgb9pl6t_l00Xdc5-1GVzZpBbMmjnjcVaUYU1GO7fF81vU4_q6KZ-RF0dEZKOe2I-dXDV2uC_1ZRPLc_lSoqel8cG25s6oysdoPmx6iZzzZrstM7xOJNPn_Jorh1uynTtAzvOC32AHRrUMncse9xlq7Xg-WmurJGF9wVXSLnlvbAtgx1cs45-UEPBxXWTIzzICAe_YtPlmencWL6fniHrrvwcnDbwJALY9zqAkuzNQatijmv78x_MDR0bmuikAXhHYdZm7m5PacnMUj9NCcTvCxhto-Gsn8MdpvlIqPDEn5uycoNtjDGnu4wx7usIdr7OHb2MND7OEsxxp7WGEPA_aeouXJdPHx1DbNOmxBHbeyReIwsXJlFPrgI6Y04iINpccES3wOPmFKGOXcpQK2gMBLo1SGSRQ6NEmEjBwp_AO0lxe5fI5wEPAVZasodVJw1kkSMRHBxgyeacqcUFALTZo3GwvDZK8aqqzjOqOC-bF6y3GnCgsdtX-40iQufxY9qFXVysGBIaA-Cy1k1aLt_10vJjCGwpyFDhuFxsY8wJgMnAEC5yPHQm_ax2C81Rc5nstiW8sofifik7_JUJ8wOGi4FnqmMdKbnB_SKGAWYgP0tAKKPH74JM9-1CTyJFA5BdGLO8ztJXrQLdlDtFdttvIVuOJV8rpeHL8BXhTiwg
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imaging+robust+microglial+activation+after+lipopolysaccharide+administration+in+humans+with+PET&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Sandiego%2C+Christine+M&rft.au=Gallezot%2C+Jean-Dominique&rft.au=Pittman%2C+Brian&rft.au=Nabulsi%2C+Nabeel&rft.date=2015-10-06&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=112&rft.issue=40&rft.spage=12468&rft_id=info:doi/10.1073%2Fpnas.1511003112&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F40.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F40.cover.gif