Quantum defects by design
Optically active point defects in wide-bandgap crystals are leading building blocks for quantum information technologies including quantum processors, repeaters, simulators, and sensors. Although defects and impurities are ubiquitous in all materials, select defect configurations in certain material...
Saved in:
Published in | Nanophotonics (Berlin, Germany) Vol. 8; no. 11; pp. 1867 - 1888 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
04.10.2019
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optically active point defects in wide-bandgap crystals are leading building blocks for quantum information technologies including quantum processors, repeaters, simulators, and sensors. Although defects and impurities are ubiquitous in all materials, select defect configurations in certain materials harbor coherent electronic and nuclear quantum states that can be optically and electronically addressed in solid-state devices, in some cases even at room temperature. Historically, the study of quantum point defects has been limited to a relatively small set of host materials and defect systems. In this article, we consider the potential for identifying defects in new materials, either to advance known applications in quantum science or to enable entirely new capabilities. We propose that, in principle, it should be possible to reverse the historical approach, which is partially based on accidental discovery, in order to
quantum defects with desired properties suitable for specific applications. We discuss the biggest obstacles on the road towards this goal, in particular those related to theoretical prediction, materials growth and processing, and experimental characterization. |
---|---|
AbstractList | Optically active point defects in wide-bandgap crystals are leading building blocks for quantum information technologies including quantum processors, repeaters, simulators, and sensors. Although defects and impurities are ubiquitous in all materials, select defect configurations in certain materials harbor coherent electronic and nuclear quantum states that can be optically and electronically addressed in solid-state devices, in some cases even at room temperature. Historically, the study of quantum point defects has been limited to a relatively small set of host materials and defect systems. In this article, we consider the potential for identifying defects in new materials, either to advance known applications in quantum science or to enable entirely new capabilities. We propose that, in principle, it should be possible to reverse the historical approach, which is partially based on accidental discovery, in order to design quantum defects with desired properties suitable for specific applications. We discuss the biggest obstacles on the road towards this goal, in particular those related to theoretical prediction, materials growth and processing, and experimental characterization. Optically active point defects in wide-bandgap crystals are leading building blocks for quantum information technologies including quantum processors, repeaters, simulators, and sensors. Although defects and impurities are ubiquitous in all materials, select defect configurations in certain materials harbor coherent electronic and nuclear quantum states that can be optically and electronically addressed in solid-state devices, in some cases even at room temperature. Historically, the study of quantum point defects has been limited to a relatively small set of host materials and defect systems. In this article, we consider the potential for identifying defects in new materials, either to advance known applications in quantum science or to enable entirely new capabilities. We propose that, in principle, it should be possible to reverse the historical approach, which is partially based on accidental discovery, in order to design quantum defects with desired properties suitable for specific applications. We discuss the biggest obstacles on the road towards this goal, in particular those related to theoretical prediction, materials growth and processing, and experimental characterization. Optically active point defects in wide-bandgap crystals are leading building blocks for quantum information technologies including quantum processors, repeaters, simulators, and sensors. Although defects and impurities are ubiquitous in all materials, select defect configurations in certain materials harbor coherent electronic and nuclear quantum states that can be optically and electronically addressed in solid-state devices, in some cases even at room temperature. Historically, the study of quantum point defects has been limited to a relatively small set of host materials and defect systems. In this article, we consider the potential for identifying defects in new materials, either to advance known applications in quantum science or to enable entirely new capabilities. We propose that, in principle, it should be possible to reverse the historical approach, which is partially based on accidental discovery, in order to quantum defects with desired properties suitable for specific applications. We discuss the biggest obstacles on the road towards this goal, in particular those related to theoretical prediction, materials growth and processing, and experimental characterization. |
Author | Bassett, Lee C. Alkauskas, Audrius Fu, Kai-Mei C. Exarhos, Annemarie L. |
Author_xml | – sequence: 1 givenname: Lee C. orcidid: 0000-0001-8729-1530 surname: Bassett fullname: Bassett, Lee C. email: lbassett@seas.upenn.edu organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 2 givenname: Audrius orcidid: 0000-0002-4228-6612 surname: Alkauskas fullname: Alkauskas, Audrius organization: Center for Physical Sciences and Technology (FTMC), Vilnius LT-10257, Lithuania – sequence: 3 givenname: Annemarie L. orcidid: 0000-0003-3026-7737 surname: Exarhos fullname: Exarhos, Annemarie L. organization: Department of Physics, Lafayette College, Easton, PA 18042, USA – sequence: 4 givenname: Kai-Mei C. orcidid: 0000-0003-4775-8524 surname: Fu fullname: Fu, Kai-Mei C. organization: Department of Physics and Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA |
BookMark | eNp9kM1LAzEQxYNUsNbe9VbwvJpJstnsSaT4USiIoOeQZJO6pd3UbBbpf2_WlQqCDoR5hPm9Gd4pGjW-sQidA76CHPLrRjV-95YRDGWGCcARGhMoSSY4sNFBY36Cpm27xqnKkkLJx-jiuVNN7LazyjprYjvT-yTbetWcoWOnNq2dfvcJer2_e5k_Zsunh8X8dpmZHEPMtHFC01wBYC24oyYHXDmihWCkIMYUhjJXmNJQa6zT2iiWG8FsAawHOZ2gxeBbebWWu1BvVdhLr2r59eHDSqoQa7OxMieKYE0oM7hiqqwEtRxAWEyJ1rwiyety8NoF_97ZNsq170KTzpeEAoMCCybSFB6mTPBtG6w7bAUs-zzlkKfs85R9ngnhvxBTRxVr38Sg6s1_4M0AfqhNtKGyq9Dtk_g57C9UQHq8oJ_ROZBt |
CitedBy_id | crossref_primary_10_1103_PRXQuantum_3_010343 crossref_primary_10_1515_nanoph_2020_0484 crossref_primary_10_1016_j_cpc_2021_108091 crossref_primary_10_1007_s41745_022_00336_7 crossref_primary_10_1063_5_0230736 crossref_primary_10_1021_acs_nanolett_4c04657 crossref_primary_10_1021_acsphotonics_2c00795 crossref_primary_10_1103_PhysRevB_108_L041201 crossref_primary_10_1103_PhysRevLett_133_130802 crossref_primary_10_1126_sciadv_adh8617 crossref_primary_10_1103_PhysRevMaterials_8_106201 crossref_primary_10_1063_5_0203366 crossref_primary_10_1088_2633_4356_ac7e9f crossref_primary_10_1039_D3FD00178D crossref_primary_10_1021_acsphotonics_9b01707 crossref_primary_10_1364_OPTICAQ_501568 crossref_primary_10_1063_5_0211707 crossref_primary_10_1103_PhysRevLett_125_193601 crossref_primary_10_1103_PhysRevResearch_6_L022055 crossref_primary_10_1021_acs_chemrev_0c00831 crossref_primary_10_1002_advs_202300190 crossref_primary_10_1021_acs_nanolett_2c04890 crossref_primary_10_1038_s41578_021_00306_y crossref_primary_10_1103_PhysRevB_104_104105 crossref_primary_10_1021_acsnano_3c00191 crossref_primary_10_1021_acs_nanolett_2c04533 crossref_primary_10_1038_s42254_021_00283_9 crossref_primary_10_1103_PRXQuantum_4_010202 crossref_primary_10_1021_acs_jpca_2c06854 crossref_primary_10_2138_rmg_2022_88_12 crossref_primary_10_1021_acsami_1c16988 crossref_primary_10_1103_PRXQuantum_3_030331 crossref_primary_10_1515_nanoph_2019_0437 crossref_primary_10_1103_PhysRevA_110_032606 crossref_primary_10_1103_PhysRevB_108_075302 crossref_primary_10_1140_epjp_s13360_022_03065_z crossref_primary_10_1093_mam_ozae044_775 crossref_primary_10_1109_TQE_2021_3057799 crossref_primary_10_1002_adma_202201064 crossref_primary_10_1557_s43577_023_00659_5 crossref_primary_10_1103_PhysRevB_103_014115 crossref_primary_10_1103_PhysRevB_110_125116 crossref_primary_10_1116_5_0025186 crossref_primary_10_1002_qute_202200044 crossref_primary_10_1016_j_commatsci_2020_109754 crossref_primary_10_1002_qute_202100003 crossref_primary_10_1063_5_0061330 crossref_primary_10_1103_PhysRevB_104_235301 crossref_primary_10_1063_5_0205525 crossref_primary_10_1109_TQE_2023_3322342 crossref_primary_10_1021_acsmaterialslett_1c00139 crossref_primary_10_1038_s41563_024_01887_z crossref_primary_10_1002_adma_202303098 crossref_primary_10_1103_PhysRevMaterials_6_L053201 crossref_primary_10_1088_1674_1056_ad5a75 crossref_primary_10_1103_PhysRevB_104_045303 crossref_primary_10_1364_OPTICA_398628 crossref_primary_10_1038_s41467_022_28133_x crossref_primary_10_1063_5_0156874 crossref_primary_10_1021_acs_nanolett_4c01333 crossref_primary_10_1021_acs_cgd_0c01417 crossref_primary_10_1021_acs_nanolett_4c05337 crossref_primary_10_1103_PhysRevMaterials_8_036201 crossref_primary_10_1557_s43577_023_00584_7 crossref_primary_10_1038_s41467_022_35048_0 crossref_primary_10_1038_s44310_024_00031_8 crossref_primary_10_1002_inf2_12128 crossref_primary_10_1103_PhysRevB_103_205203 crossref_primary_10_1088_2633_4356_ad1d38 crossref_primary_10_1002_adhm_202101181 crossref_primary_10_1088_2515_7647_ac1ef4 crossref_primary_10_1021_acs_nanolett_1c00685 crossref_primary_10_1038_s41567_022_01815_5 crossref_primary_10_1038_s41467_024_47876_3 |
Cites_doi | 10.1021/acsnano.8b02001 10.1126/science.aav2789 10.1016/S0039-6028(03)00485-0 10.1038/s41467-017-00810-2 10.1146/annurev-matsci-070317-124453 10.1021/acs.nanolett.6b03268 10.1126/science.aaw2104 10.1126/sciadv.aar3580 10.1103/PhysRevApplied.10.064061 10.1063/1.2103389 10.1103/PhysRevLett.114.145502 10.1103/PhysRevB.77.035119 10.1126/science.1239584 10.1021/cr200148b 10.1088/1367-2630/18/2/023021 10.1098/rspa.1976.0039 10.1021/acs.nanolett.6b01987 10.1038/30156 10.1103/PhysRevX.5.031031 10.1038/nnano.2015.75 10.1103/PhysRevB.92.115206 10.1103/PhysRevLett.113.113602 10.1103/PhysRevB.97.115135 10.1103/PhysRevLett.120.213603 10.1103/PhysRevB.98.155143 10.1126/science.aao0290 10.1126/science.1255541 10.1103/PhysRevLett.113.197601 10.1021/acs.chemrev.7b00536 10.1126/science.aaw2906 10.1103/PhysRevB.98.085207 10.1063/1.5112375 10.1103/PhysRevLett.64.669 10.1103/PhysRevB.90.241203 10.1021/acsnano.7b00638 10.1038/nature12016 10.1103/PhysRevMaterials.4.023402 10.1038/s41467-018-03290-0 10.1038/nnano.2015.67 10.1103/PhysRevB.96.020101 10.1038/ncomms9577 10.1103/PhysRevLett.93.130501 10.1038/s41467-018-08185-8 10.1103/PhysRevLett.112.036405 10.1038/ncomms2771 10.1126/science.1157233 10.1103/PhysRevX.8.041027 10.1038/s41535-018-0103-6 10.1038/nnano.2014.2 10.1103/RevModPhys.74.601 10.1146/annurev-physchem-040513-103659 10.1126/science.aau4691 10.1103/RevModPhys.89.035002 10.1103/PhysRevLett.114.136402 10.1038/nnano.2010.172 10.1557/mrs.2015.266 10.1038/nnano.2015.79 10.1103/PhysRevLett.85.290 10.1103/PhysRevB.95.041402 10.1364/CLEO_QELS.2019.FM4A.5 10.1038/nature12919 10.1103/PhysRevX.8.021063 10.1038/nphys141 10.1103/PhysRevLett.103.256404 10.1021/acs.nanolett.8b01030 10.1088/0953-8984/21/36/364210 10.7567/APEX.7.055201 10.3390/mi9090437 10.1021/nl204010e 10.1103/PhysRevA.20.1693 10.1126/science.aau7392 10.1126/science.1217635 10.1134/1.2142873 10.1016/j.physrep.2013.02.001 10.1038/nmat4145 10.1126/science.aan0070 10.1038/nphoton.2015.58 10.1038/nature10562 10.1103/PhysRevLett.110.167402 10.1103/PhysRevB.97.165202 10.1103/PhysRevB.95.035207 10.1038/nnano.2015.242 10.1021/acs.chemmater.7b00183 10.1038/ncomms4895 10.1021/acs.nanolett.5b03312 10.1063/1.5001520 10.1038/nmat2420 10.1038/ncomms5739 10.1126/science.aav6926 10.1038/nature10401 10.1016/j.commatsci.2016.12.040 10.1364/OPTICA.5.001128 10.1103/PhysRevLett.119.096402 10.1038/nphoton.2012.328 10.1038/s41467-018-04916-z 10.1002/smll.201000902 10.1021/acsami.6b09875 10.1557/mrs.2017.187 10.1088/1367-2630/aae93f 10.1126/science.1131871 10.1103/PhysRevB.90.075202 10.1021/nl404836p 10.1126/science.aad8022 10.1038/ncomms2034 10.1021/nl102066q 10.1038/ncomms12935 10.1088/0034-4885/77/5/056503 10.1063/1.5047808 10.1038/s41467-017-00056-y 10.1038/nphys2545 10.1103/PhysRevLett.92.076401 10.1103/PhysRevLett.118.037601 10.1073/pnas.1305920110 10.1073/pnas.1003052107 10.1088/0953-8984/26/1/015305 10.1126/science.1231364 10.1103/PhysRevB.80.155425 10.1103/PhysRevX.6.041035 10.1103/PhysRevLett.107.090401 10.1021/acsnano.7b00665 10.1021/acs.nanolett.7b04819 10.1063/1.4868128 10.1038/nature12385 10.1088/2053-1583/1/1/011002 10.1038/nature07127 10.1038/nature07278 10.1038/nature21042 10.1364/OPTICA.2.000347 10.1364/JOSAB.33.000B65 10.1016/j.physb.2009.09.023 10.1038/nnano.2015.60 10.1021/nl501841d 10.1126/science.1139831 10.1038/ncomms4328 10.1103/PhysRevB.42.8605 10.1103/PhysRevLett.121.183603 10.1038/s41563-017-0008-y 10.1126/science.aah6875 10.1103/PhysRevApplied.6.034005 10.1038/s41578-018-0008-9 10.1103/PhysRevLett.115.093602 10.1126/science.1074374 10.1364/OE.20.019956 10.1126/science.1253512 10.1016/j.cpc.2018.01.004 10.1126/science.aam8697 10.1038/ncomms1788 10.1038/nature07279 10.1103/PhysRevB.89.235101 10.1038/s41524-018-0132-5 10.1515/nanoph-2019-0154 10.1002/adma.201605092 10.1103/PhysRevB.97.214104 10.1103/PhysRevB.80.041201 10.1038/nature09256 10.1103/PhysRevB.94.241201 10.1063/1.4948245 10.1038/nature12373 10.1038/nphys1075 10.1126/science.aaa2253 10.1017/CBO9780511805769 10.1103/PhysRevB.86.041202 10.1038/s41566-018-0232-2 10.1126/science.1220513 10.1103/PhysRevLett.113.263602 10.1038/srep12882 10.1103/PhysRevB.94.125401 10.1038/nphys1716 10.1103/PhysRevB.86.035201 10.1364/OL.25.001294 10.1038/nphoton.2016.186 10.1103/PhysRevLett.111.120502 10.1103/RevModPhys.86.253 10.1146/annurev-physchem-042018-052628 10.1103/PhysRevLett.113.263601 10.1016/S0030-4018(97)00423-9 10.1103/RevModPhys.85.961 10.1038/ncomms11526 10.1021/acsnano.5b06515 10.1103/PhysRevB.99.184102 10.1038/ncomms1224 10.1063/1.2943282 10.1038/s41467-018-04798-1 10.1103/PhysRevLett.111.227602 10.1103/PhysRevLett.109.267401 10.1103/RevModPhys.83.33 10.1038/nnano.2015.188 10.1088/1367-2630/13/2/025012 10.1038/s41586-018-0200-5 10.1103/PhysRevB.88.075202 10.1126/science.1189075 10.1103/PhysRevLett.102.195505 10.1088/1367-2630/16/7/073026 10.1038/nature14025 10.1103/PhysRevLett.108.197601 10.1126/science.aac5523 10.1126/science.1196436 10.1126/science.273.5271.87 10.1103/PhysRevLett.103.186404 10.1016/j.jlumin.2010.12.015 10.1126/science.276.5321.2012 10.1088/2053-1583/aa878f 10.1038/nmat4144 10.1109/IIT.2016.7882858 10.1088/0034-4885/41/8/002 10.1103/PhysRevB.77.115118 |
ContentType | Journal Article |
Copyright | 2019. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.1515/nanoph-2019-0211 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Directory of open access journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Solid State and Superconductivity Abstracts ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of open access journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2192-8614 |
EndPage | 1888 |
ExternalDocumentID | oai_doaj_org_article_52a20b234c0d4a9d83e6118e032bb6d2 10_1515_nanoph_2019_0211 10_1515_nanoph_2019_02118111867 |
GroupedDBID | 0R~ 0~D 5VS 8FE 8FG AAFWJ ABFKT ACGFS ADBBV ADMLS AEJTT AENEX AFBDD AFKRA AFPKN AHGSO AIKXB ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ HZ~ O9- OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC QD8 SA. AAYXX CITATION 7SP 7U5 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c501t-bcf8b35a110b86f3c510df2b884272cc7c34f7c9c3ecefbbca45c84e714f8b363 |
IEDL.DBID | BENPR |
ISSN | 2192-8606 |
IngestDate | Wed Aug 27 01:31:47 EDT 2025 Fri Jul 25 07:30:32 EDT 2025 Thu Apr 24 23:00:06 EDT 2025 Tue Jul 01 00:41:48 EDT 2025 Thu Jul 10 10:38:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 Public License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-bcf8b35a110b86f3c510df2b884272cc7c34f7c9c3ecefbbca45c84e714f8b363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4228-6612 0000-0001-8729-1530 0000-0003-3026-7737 0000-0003-4775-8524 |
OpenAccessLink | https://www.proquest.com/docview/2314170848?pq-origsite=%requestingapplication% |
PQID | 2314170848 |
PQPubID | 2038884 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_52a20b234c0d4a9d83e6118e032bb6d2 proquest_journals_2314170848 crossref_primary_10_1515_nanoph_2019_0211 crossref_citationtrail_10_1515_nanoph_2019_0211 walterdegruyter_journals_10_1515_nanoph_2019_02118111867 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-04 |
PublicationDateYYYYMMDD | 2019-10-04 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Nanophotonics (Berlin, Germany) |
PublicationYear | 2019 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | Cramer, J; Kalb, N; Rol, MA (j_nanoph-2019-0211_ref_028) 2016; 7 Aslam, N; Pfender, M; Neumann, P (j_nanoph-2019-0211_ref_015) 2017; 357 Meijer, J; Burchard, B; Domhan, M (j_nanoph-2019-0211_ref_097) 2005; 87 Li, X; Shepard, GD; Cupo, A (j_nanoph-2019-0211_ref_190) 2017; 11 Steger, M; Saeedi, K; Thewalt, MLW (j_nanoph-2019-0211_ref_005) 2012; 336 Alkauskas, A; McCluskey, MD; Van de Walle, CG (j_nanoph-2019-0211_ref_164) 2016; 119 (j_nanoph-2019-0211_ref_006) 1968 Gurudev Dutt, MV; Childress, L; Jiang, L (j_nanoph-2019-0211_ref_019) 2007; 16 Liaugaudas, G; Collins, AT; Suhling, K; Davies, G; Heintzmann, R (j_nanoph-2019-0211_ref_196) 2009; 21 Fukui, T; Doi, Y; Miyazaki, T (j_nanoph-2019-0211_ref_181) 2014; 7 Xia, K; Kolesov, R; Wang, Y (j_nanoph-2019-0211_ref_051) 2015; 115 Kolesov, R; Xia, K; Reuter, R (j_nanoph-2019-0211_ref_049) 2013; 111 Schröder, T; Mouradian, SL; Zheng, J (j_nanoph-2019-0211_ref_080) 2016; 33 Bernien, H; Hensen, B; Pfaff, W (j_nanoph-2019-0211_ref_033) 2013; 497 Rogers, LJ; Jahnke, KD; Doherty, MW (j_nanoph-2019-0211_ref_195) 2014; 89 Siyushev, P; Nesladek, M; Bourgeois, E (j_nanoph-2019-0211_ref_111) 2019; 363 Zhong, T; Kindem, JM; Bartholomew, JG (j_nanoph-2019-0211_ref_171) 2018; 121 Awschalom, DD; Bassett, LC; Dzurak, AS; Hu, EL; Petta, JR (j_nanoph-2019-0211_ref_001) 2013; 339 Siyushev, P; Pinto, H; Vörös, M; Gali, A; Jelezko, F; Wrachtrup, J (j_nanoph-2019-0211_ref_103) 2013; 110 Gammon, D; Snow, ES; Shanabrook, BV; Katzer, DS; Park, D (j_nanoph-2019-0211_ref_170) 1996; 273 Müller, T; Hepp, C; Pingault, B (j_nanoph-2019-0211_ref_175) 2014; 5 Thiering, G; Gali, A (j_nanoph-2019-0211_ref_104) 2018; 98 Loubser, JHN; Van Wyk, JA (j_nanoph-2019-0211_ref_084) 1977; 9 Green, BL; Mottishaw, S; Breeze, BG (j_nanoph-2019-0211_ref_043) 2017; 119 Rose, BC; Huang, D; Zhang, Z-H (j_nanoph-2019-0211_ref_044) 2018; 361 Taminiau, TH; Cramer, J; van der Sar, T; Dobrovitski, V; Hanson, R (j_nanoph-2019-0211_ref_027) 2014; 9 Bourgeois, E; Londero, E; Buczak, K (j_nanoph-2019-0211_ref_108) 2017; 95 Grosso, G; Moon, H; Lienhard, B (j_nanoph-2019-0211_ref_135) 2017; 8 Neu, E; Agio, M; Becher, C (j_nanoph-2019-0211_ref_198) 2012; 20 Brouri, R; Beveratos, A; Poizat, J-P; Grangier, P (j_nanoph-2019-0211_ref_086) 2000; 25 Kaduk, B; Kowalczyk, T; Van Voorhis, T (j_nanoph-2019-0211_ref_159) 2012; 112 Bodrog, Z; Gali, A (j_nanoph-2019-0211_ref_145) 2013; 26 Ham, BS; Hemmer, PR; Shahriar, MS (j_nanoph-2019-0211_ref_077) 1997; 144 Andersen, TI; Dwyer, BL; Sanchez-Yamagishi, JD (j_nanoph-2019-0211_ref_011) 2019; 364 Susi, T; Kepaptsoglou, D; Lin, Y-C (j_nanoph-2019-0211_ref_186) 2017; 4 Weston, L; Wickramaratne, D; Mackoit, M; Alkauskas, A; Van de Walle, CG (j_nanoph-2019-0211_ref_131) 2018; 97 He, Y-M; Clark, G; Schaibley, JR (j_nanoph-2019-0211_ref_060) 2015; 10 Hrubesch, FM; Braunbeck, G; Stutzmann, M; Reinhard, F; Brandt, MS (j_nanoph-2019-0211_ref_110) 2017; 118 Kumar, S; Kaczmarczyk, A; Gerardot, BD (j_nanoph-2019-0211_ref_134) 2015; 15 Bassett, LC; Heremans, FJ; Christle, DJ (j_nanoph-2019-0211_ref_032) 2014; 345 Neu, E; Steinmetz, D; Riedrich-Möller, J (j_nanoph-2019-0211_ref_038) 2011; 13 Freysoldt, C; Grabowski, B; Hickel, T (j_nanoph-2019-0211_ref_140) 2014; 86 Balasubramanian, G; Neumann, P; Twitchen, D (j_nanoph-2019-0211_ref_094) 2009; 8 Rondin, L; Tetienne, J-P; Hingant, T; Roch, JF; Maletinsky, P; Jacques, V (j_nanoph-2019-0211_ref_079) 2014; 77 Gruber, A; Dräbenstedt, A; Tietz, C; Fleury, L; Wrachtrup, J; von Borczyskowski, C (j_nanoph-2019-0211_ref_081) 1997; 276 MacQuarrie, ER; Gosavi, TA; Jungwirth, NR; Bhave, SA; Fuchs, GD (j_nanoph-2019-0211_ref_124) 2013; 111 Iwasaki, T; Ishibashi, F; Miyamoto, Y (j_nanoph-2019-0211_ref_042) 2015; 5 Chakravarthi, S; Moore, C; Opsvig, A (j_nanoph-2019-0211_ref_182) 2019 von Barth, U (j_nanoph-2019-0211_ref_162) 1979; 20 Awschalom, DD; Hanson, R; Wrachtrup, J; Zhou, BB (j_nanoph-2019-0211_ref_037) 2018; 12 Robledo, L; Childress, L; Bernien, H; Hensen, B; Alkemade, PFA; Hanson, R (j_nanoph-2019-0211_ref_100) 2011; 477 Kagan, CR; Lifshitz, E; Sargent, EH; Talapin, DV (j_nanoph-2019-0211_ref_169) 2016; 353:aac5523 Dong, W; Doherty, MW; Economou, SE (j_nanoph-2019-0211_ref_123) 2019; 99 van Oort, E; Stroomer, P; Glasbeek, M (j_nanoph-2019-0211_ref_085) 1990; 42 Ma, Y; Rohlfing, M (j_nanoph-2019-0211_ref_154) 2008; 77 Shirasaki, Y; Supran, GJ; Bawendi, MG; Bulović, V (j_nanoph-2019-0211_ref_168) 2012; 7 Ivády, V; Abrikosov, IA; Gali, A (j_nanoph-2019-0211_ref_147) 2018; 4 Jarmola, A; Acosta, VM; Jensen, K; Chemerisov, S; Budker, D (j_nanoph-2019-0211_ref_129) 2012; 108 Mizuochi, N; Neumann, P; Rempp, F (j_nanoph-2019-0211_ref_113) 2009; 80 Fuchs, GD; Dobrovitski, VV; Toyli, DM (j_nanoph-2019-0211_ref_197) 2010; 6 Baranov, PG; Il’in, IV; Mokhov, EN; Muzafarova, MV; Orlinskii, SB; Schmidt, J (j_nanoph-2019-0211_ref_116) 2005; 82 Doherty, MW; Manson, NB; Delaney, P; Jelezko, F; Wrachtrup, J; Hollenberg, LCL (j_nanoph-2019-0211_ref_008) 2013; 528 Yang, Y; Chen, C-C; Scott, MC (j_nanoph-2019-0211_ref_208) 2017; 542 Tian, X; Kim, DS; Yang, S (j_nanoph-2019-0211_ref_209) 2019 Exarhos, AL; Hopper, DA; Grote, RR; Alkauskas, A; Bassett, LC (j_nanoph-2019-0211_ref_066) 2017; 11 Dreyer, CE; Alkauskas, A; Lyons, JL; Janotti, A; Van de Walle, CG (j_nanoph-2019-0211_ref_141) 2018; 48 Kucsko, G; Maurer, PC; Yao, NY (j_nanoph-2019-0211_ref_016) 2013; 500 Chakraborty, C; Kinnischtzke, L; Goodfellow, KM; Beams, R; Vamivakas, AN (j_nanoph-2019-0211_ref_058) 2015; 10 Noh, G; Choi, D; Kim, JH (j_nanoph-2019-0211_ref_189) 2018; 18 Epstein, RJ; Mendoza, FM; Kato, YK; Awschalom, DD (j_nanoph-2019-0211_ref_194) 2005; 1 Govyadinov, AA; Konečná, A; Chuvilin, A (j_nanoph-2019-0211_ref_210) 2017; 8 Taylor, JM; Cappellaro, P; Childress, L (j_nanoph-2019-0211_ref_090) 2008; 4 Weber, JR; Koehl, WF; Varley, JB (j_nanoph-2019-0211_ref_115) 2010; 107 Koperski, M; Nogajewski, K; Arora, A (j_nanoph-2019-0211_ref_059) 2015; 10 Castellanos-Gomez, A; Buscema, M; Molenaar, R (j_nanoph-2019-0211_ref_174) 2014; 1 Szász, K; Hornos, T; Marsman, M; Gali, A (j_nanoph-2019-0211_ref_149) 2013; 88 Cai, Z; Liu, B; Zou, X; Cheng, H-M (j_nanoph-2019-0211_ref_172) 2018; 118 Ahmadpour Monazam, MR; Ludacka, U; Komsa, H-P; Kotakoski, J (j_nanoph-2019-0211_ref_207) 2019; 115 Gangloff, DA; Éthier-Majcher, G; Lang, C (j_nanoph-2019-0211_ref_122) 2019; 364 Isberg, J; Hammersberg, J; Johansson, E (j_nanoph-2019-0211_ref_096) 2002; 297 Grumet, M; Liu, P; Kaltak, M; Klimeš, J; Kresse, G (j_nanoph-2019-0211_ref_156) 2018; 98 Wong, D; Velasco Jr, J; Ju, L (j_nanoph-2019-0211_ref_205) 2015; 10 Schirhagl, R; Chang, K; Loretz, M; Degen, CL (j_nanoph-2019-0211_ref_017) 2014; 65 Alkauskas, A; Yan, Q; Van de Walle, CG (j_nanoph-2019-0211_ref_166) 2014; 90 Geim, AK; Grigorieva, IV (j_nanoph-2019-0211_ref_132) 2013; 499 Janzén, E; Gali, A; Carlsson, P; Gällström, A; Magnusson, B; Son, NT (j_nanoph-2019-0211_ref_117) 2009; 404 Jin, C; Lin, F; Suenaga, K; Iijima, S (j_nanoph-2019-0211_ref_204) 2009; 102 Waldherr, G; Wang, Y; Zaiser, S (j_nanoph-2019-0211_ref_026) 2014; 506 Goldman, ML; Sipahigil, A; Doherty, MW (j_nanoph-2019-0211_ref_102) 2015; 114 Degen, CL (j_nanoph-2019-0211_ref_091) 2008; 92 Astner, T; Gugler, J; Angerer, A (j_nanoph-2019-0211_ref_152) 2018; 17 Onida, G; Reining, L; Rubio, A (j_nanoph-2019-0211_ref_153) 2002; 74 Lovchinsky, I; Sushkov, AO; Urbach, E (j_nanoph-2019-0211_ref_014) 2016; 351 Plakhotnik, T; Doherty, MW; Cole, JH; Chapman, R; Manson, NB (j_nanoph-2019-0211_ref_112) 2014; 14 Jelezko, F; Gaebel, T; Popa, I; Domhan, M; Gruber, A; Wrachtrup, J (j_nanoph-2019-0211_ref_089) 2004; 93 Waldherr, G; Neumann, P; Huelga, SF; Jelezko, F; Wrachtrup, J (j_nanoph-2019-0211_ref_105) 2011; 107 Hopper, DA; Grote, RR; Exarhos, AL; Bassett, LC (j_nanoph-2019-0211_ref_107) 2016; 94 Utzat, H; Sun, W; Kaplan, AEK (j_nanoph-2019-0211_ref_137) 2019; 363 Kolesov, R; Xia, K; Reuter, R (j_nanoph-2019-0211_ref_048) 2012; 3 Neumann, P; Beck, J; Steiner, M (j_nanoph-2019-0211_ref_020) 2010; 329 Kane, BE (j_nanoph-2019-0211_ref_074) 1998; 393 Togan, E; Chu, Y; Trifonov, AS (j_nanoph-2019-0211_ref_030) 2010; 466 Rayson, MJ; Briddon, PR (j_nanoph-2019-0211_ref_144) 2008; 77 Srivastava, A; Sidler, M; Allain, AV; Lembke, DS; Kis, A; Imamoģlu, A (j_nanoph-2019-0211_ref_061) 2015; 10 Mishra, R; Ishikawa, R; Lupini, AR; Pennycook, SJ (j_nanoph-2019-0211_ref_187) 2017; 42 Degen, CL; Reinhard, F; Cappellaro, P (j_nanoph-2019-0211_ref_009) 2017; 89 Jungwirth, NR; Calderon, B; Ji, Y; Spencer, MG; Flatté, ME; Fuchs, GD (j_nanoph-2019-0211_ref_064) 2016; 16 Chejanovsky, N; Rezai, M; Paolucci, F (j_nanoph-2019-0211_ref_065) 2016; 16 Gali, A; Janzén, E; Deák, P; Kresse, G; Kaxiras, E (j_nanoph-2019-0211_ref_161) 2009; 103 Jamieson, DN; Lawrie, WIL; Hudson, FE (j_nanoph-2019-0211_ref_177) 2016 Hayee, F; Yu, L; Zhang, JL (j_nanoph-2019-0211_ref_213) 2019 Thiel, L; Wang, Z; Tschudin, MA (j_nanoph-2019-0211_ref_010) 2019; 364 Rogers, LJ; Jahnke, KD; Teraji, T (j_nanoph-2019-0211_ref_069) 2014; 5 Michl, J; Teraji, T; Zaiser, S (j_nanoph-2019-0211_ref_180) 2014; 104 Buckley, BB; Fuchs, GD; Bassett, LC; Awschalom, DD (j_nanoph-2019-0211_ref_029) 2010; 330 Balasubramanian, G; Chan, IY; Kolesov, R (j_nanoph-2019-0211_ref_093) 2008; 455 Choi, S; Jain, M; Louie, SG (j_nanoph-2019-0211_ref_157) 2012; 86 Morfa, AJ; Gibson, BC; Karg, M (j_nanoph-2019-0211_ref_052) 2012; 12 Kurtsiefer, C; Mayer, S; Zarda, P; Weinfurter, H (j_nanoph-2019-0211_ref_087) 2000; 85 Pfaff, W; Hensen, BJ; Bernien, H (j_nanoph-2019-0211_ref_025) 2014; 345 Choi, S; Tran, TT; Elbadawi, C (j_nanoph-2019-0211_ref_191) 2016; 8 Davies, G; Hamer, MF; Charles, PW (j_nanoph-2019-0211_ref_083) 1976; 348 Goyal, A; Gorai, P; Peng, H; Lany, S; Stevanovič, V (j_nanoph-2019-0211_ref_142) 2017; 130 Zhong, M; Hedges, MP; Ahlefeldt, RL (j_nanoph-2019-0211_ref_136) 2015; 517 Chen, W; Pasquarello, A (j_nanoph-2019-0211_ref_155) 2017; 96 Tonndorf, P; Schmidt, R; Schneider, R (j_nanoph-2019-0211_ref_062) 2015; 2 Exarhos, AL; Hopper, DA; Patel, RN; Doherty, MW; Bassett, LC (j_nanoph-2019-0211_ref_067) 2019; 10 Gao, WB; Imamoglu, A; Bernien, H 2023040101265043966_j_nanoph-2019-0211_ref_135_w2aab3b7c12b1b6b1ab1b8d135Aa 2023040101265043966_j_nanoph-2019-0211_ref_048_w2aab3b7c12b1b6b1ab1b8c48Aa 2023040101265043966_j_nanoph-2019-0211_ref_205_w2aab3b7c12b1b6b1ab1b8d205Aa 2023040101265043966_j_nanoph-2019-0211_ref_078_w2aab3b7c12b1b6b1ab1b8c78Aa 2023040101265043966_j_nanoph-2019-0211_ref_187_w2aab3b7c12b1b6b1ab1b8d187Aa 2023040101265043966_j_nanoph-2019-0211_ref_117_w2aab3b7c12b1b6b1ab1b8d117Aa 2023040101265043966_j_nanoph-2019-0211_ref_101_w2aab3b7c12b1b6b1ab1b8d101Aa 2023040101265043966_j_nanoph-2019-0211_ref_171_w2aab3b7c12b1b6b1ab1b8d171Aa 2023040101265043966_j_nanoph-2019-0211_ref_003_w2aab3b7c12b1b6b1ab1b8b3Aa 2023040101265043966_j_nanoph-2019-0211_ref_076_w2aab3b7c12b1b6b1ab1b8c76Aa 2023040101265043966_j_nanoph-2019-0211_ref_061_w2aab3b7c12b1b6b1ab1b8c61Aa 2023040101265043966_j_nanoph-2019-0211_ref_091_w2aab3b7c12b1b6b1ab1b8c91Aa 2023040101265043966_j_nanoph-2019-0211_ref_031_w2aab3b7c12b1b6b1ab1b8c31Aa 2023040101265043966_j_nanoph-2019-0211_ref_153_w2aab3b7c12b1b6b1ab1b8d153Aa 2023040101265043966_j_nanoph-2019-0211_ref_202_w2aab3b7c12b1b6b1ab1b8d202Aa 2023040101265043966_j_nanoph-2019-0211_ref_035_w2aab3b7c12b1b6b1ab1b8c35Aa 2023040101265043966_j_nanoph-2019-0211_ref_114_w2aab3b7c12b1b6b1ab1b8d114Aa 2023040101265043966_j_nanoph-2019-0211_ref_074_w2aab3b7c12b1b6b1ab1b8c74Aa 2023040101265043966_j_nanoph-2019-0211_ref_210_w2aab3b7c12b1b6b1ab1b8d210Aa 2023040101265043966_j_nanoph-2019-0211_ref_169_w2aab3b7c12b1b6b1ab1b8d169Aa 2023040101265043966_j_nanoph-2019-0211_ref_122_w2aab3b7c12b1b6b1ab1b8d122Aa 2023040101265043966_j_nanoph-2019-0211_ref_150_w2aab3b7c12b1b6b1ab1b8d150Aa 2023040101265043966_j_nanoph-2019-0211_ref_104_w2aab3b7c12b1b6b1ab1b8d104Aa 2023040101265043966_j_nanoph-2019-0211_ref_044_w2aab3b7c12b1b6b1ab1b8c44Aa 2023040101265043966_j_nanoph-2019-0211_ref_132_w2aab3b7c12b1b6b1ab1b8d132Aa 2023040101265043966_j_nanoph-2019-0211_ref_177_w2aab3b7c12b1b6b1ab1b8d177Aa 2023040101265043966_j_nanoph-2019-0211_ref_095_w2aab3b7c12b1b6b1ab1b8c95Aa 2023040101265043966_j_nanoph-2019-0211_ref_059_w2aab3b7c12b1b6b1ab1b8c59Aa 2023040101265043966_j_nanoph-2019-0211_ref_089_w2aab3b7c12b1b6b1ab1b8c89Aa 2023040101265043966_j_nanoph-2019-0211_ref_159_w2aab3b7c12b1b6b1ab1b8d159Aa 2023040101265043966_j_nanoph-2019-0211_ref_140_w2aab3b7c12b1b6b1ab1b8d140Aa 2023040101265043966_j_nanoph-2019-0211_ref_065_w2aab3b7c12b1b6b1ab1b8c65Aa 2023040101265043966_j_nanoph-2019-0211_ref_195_w2aab3b7c12b1b6b1ab1b8d195Aa 2023040101265043966_j_nanoph-2019-0211_ref_042_w2aab3b7c12b1b6b1ab1b8c42Aa 2023040101265043966_j_nanoph-2019-0211_ref_072_w2aab3b7c12b1b6b1ab1b8c72Aa 2023040101265043966_j_nanoph-2019-0211_ref_156_w2aab3b7c12b1b6b1ab1b8d156Aa 2023040101265043966_j_nanoph-2019-0211_ref_093_w2aab3b7c12b1b6b1ab1b8c93Aa 2023040101265043966_j_nanoph-2019-0211_ref_008_w2aab3b7c12b1b6b1ab1b8b8Aa 2023040101265043966_j_nanoph-2019-0211_ref_138_w2aab3b7c12b1b6b1ab1b8d138Aa 2023040101265043966_j_nanoph-2019-0211_ref_024_w2aab3b7c12b1b6b1ab1b8c24Aa 2023040101265043966_j_nanoph-2019-0211_ref_208_w2aab3b7c12b1b6b1ab1b8d208Aa 2023040101265043966_j_nanoph-2019-0211_ref_040_w2aab3b7c12b1b6b1ab1b8c40Aa 2023040101265043966_j_nanoph-2019-0211_ref_063_w2aab3b7c12b1b6b1ab1b8c63Aa 2023040101265043966_j_nanoph-2019-0211_ref_192_w2aab3b7c12b1b6b1ab1b8d192Aa 2023040101265043966_j_nanoph-2019-0211_ref_009_w2aab3b7c12b1b6b1ab1b8b9Aa 2023040101265043966_j_nanoph-2019-0211_ref_033_w2aab3b7c12b1b6b1ab1b8c33Aa 2023040101265043966_j_nanoph-2019-0211_ref_070_w2aab3b7c12b1b6b1ab1b8c70Aa 2023040101265043966_j_nanoph-2019-0211_ref_174_w2aab3b7c12b1b6b1ab1b8d174Aa 2023040101265043966_j_nanoph-2019-0211_ref_149_w2aab3b7c12b1b6b1ab1b8d149Aa 2023040101265043966_j_nanoph-2019-0211_ref_130_w2aab3b7c12b1b6b1ab1b8d130Aa 2023040101265043966_j_nanoph-2019-0211_ref_054_w2aab3b7c12b1b6b1ab1b8c54Aa 2023040101265043966_j_nanoph-2019-0211_ref_182_w2aab3b7c12b1b6b1ab1b8d182Aa 2023040101265043966_j_nanoph-2019-0211_ref_084_w2aab3b7c12b1b6b1ab1b8c84Aa 2023040101265043966_j_nanoph-2019-0211_ref_026_w2aab3b7c12b1b6b1ab1b8c26Aa 2023040101265043966_j_nanoph-2019-0211_ref_056_w2aab3b7c12b1b6b1ab1b8c56Aa 2023040101265043966_j_nanoph-2019-0211_ref_194_w2aab3b7c12b1b6b1ab1b8d194Aa 2023040101265043966_j_nanoph-2019-0211_ref_185_w2aab3b7c12b1b6b1ab1b8d185Aa 2023040101265043966_j_nanoph-2019-0211_ref_106_w2aab3b7c12b1b6b1ab1b8d106Aa 2023040101265043966_j_nanoph-2019-0211_ref_158_w2aab3b7c12b1b6b1ab1b8d158Aa 2023040101265043966_j_nanoph-2019-0211_ref_198_w2aab3b7c12b1b6b1ab1b8d198Aa 2023040101265043966_j_nanoph-2019-0211_ref_004_w2aab3b7c12b1b6b1ab1b8b4Aa 2023040101265043966_j_nanoph-2019-0211_ref_189_w2aab3b7c12b1b6b1ab1b8d189Aa 2023040101265043966_j_nanoph-2019-0211_ref_142_w2aab3b7c12b1b6b1ab1b8d142Aa 2023040101265043966_j_nanoph-2019-0211_ref_170_w2aab3b7c12b1b6b1ab1b8d170Aa 2023040101265043966_j_nanoph-2019-0211_ref_133_w2aab3b7c12b1b6b1ab1b8d133Aa 2023040101265043966_j_nanoph-2019-0211_ref_013_w2aab3b7c12b1b6b1ab1b8c13Aa 2023040101265043966_j_nanoph-2019-0211_ref_097_w2aab3b7c12b1b6b1ab1b8c97Aa 2023040101265043966_j_nanoph-2019-0211_ref_103_w2aab3b7c12b1b6b1ab1b8d103Aa 2023040101265043966_j_nanoph-2019-0211_ref_005_w2aab3b7c12b1b6b1ab1b8b5Aa 2023040101265043966_j_nanoph-2019-0211_ref_029_w2aab3b7c12b1b6b1ab1b8c29Aa 2023040101265043966_j_nanoph-2019-0211_ref_051_w2aab3b7c12b1b6b1ab1b8c51Aa 2023040101265043966_j_nanoph-2019-0211_ref_197_w2aab3b7c12b1b6b1ab1b8d197Aa 2023040101265043966_j_nanoph-2019-0211_ref_014_w2aab3b7c12b1b6b1ab1b8c14Aa 2023040101265043966_j_nanoph-2019-0211_ref_081_w2aab3b7c12b1b6b1ab1b8c81Aa 2023040101265043966_j_nanoph-2019-0211_ref_188_w2aab3b7c12b1b6b1ab1b8d188Aa 2023040101265043966_j_nanoph-2019-0211_ref_096_w2aab3b7c12b1b6b1ab1b8c96Aa 2023040101265043966_j_nanoph-2019-0211_ref_002_w2aab3b7c12b1b6b1ab1b8b2Aa 2023040101265043966_j_nanoph-2019-0211_ref_037_w2aab3b7c12b1b6b1ab1b8c37Aa 2023040101265043966_j_nanoph-2019-0211_ref_181_w2aab3b7c12b1b6b1ab1b8d181Aa 2023040101265043966_j_nanoph-2019-0211_ref_186_w2aab3b7c12b1b6b1ab1b8d186Aa 2023040101265043966_j_nanoph-2019-0211_ref_107_w2aab3b7c12b1b6b1ab1b8d107Aa 2023040101265043966_j_nanoph-2019-0211_ref_066_w2aab3b7c12b1b6b1ab1b8c66Aa 2023040101265043966_j_nanoph-2019-0211_ref_050_w2aab3b7c12b1b6b1ab1b8c50Aa 2023040101265043966_j_nanoph-2019-0211_ref_067_w2aab3b7c12b1b6b1ab1b8c67Aa 2023040101265043966_j_nanoph-2019-0211_ref_073_w2aab3b7c12b1b6b1ab1b8c73Aa 2023040101265043966_j_nanoph-2019-0211_ref_043_w2aab3b7c12b1b6b1ab1b8c43Aa 2023040101265043966_j_nanoph-2019-0211_ref_145_w2aab3b7c12b1b6b1ab1b8d145Aa 2023040101265043966_j_nanoph-2019-0211_ref_020_w2aab3b7c12b1b6b1ab1b8c20Aa 2023040101265043966_j_nanoph-2019-0211_ref_143_w2aab3b7c12b1b6b1ab1b8d143Aa 2023040101265043966_j_nanoph-2019-0211_ref_148_w2aab3b7c12b1b6b1ab1b8d148Aa 2023040101265043966_j_nanoph-2019-0211_ref_080_w2aab3b7c12b1b6b1ab1b8c80Aa 2023040101265043966_j_nanoph-2019-0211_ref_184_w2aab3b7c12b1b6b1ab1b8d184Aa 2023040101265043966_j_nanoph-2019-0211_ref_147_w2aab3b7c12b1b6b1ab1b8d147Aa 2023040101265043966_j_nanoph-2019-0211_ref_018_w2aab3b7c12b1b6b1ab1b8c18Aa 2023040101265043966_j_nanoph-2019-0211_ref_085_w2aab3b7c12b1b6b1ab1b8c85Aa 2023040101265043966_j_nanoph-2019-0211_ref_001_w2aab3b7c12b1b6b1ab1b8b1Aa 2023040101265043966_j_nanoph-2019-0211_ref_092_w2aab3b7c12b1b6b1ab1b8c92Aa 2023040101265043966_j_nanoph-2019-0211_ref_146_w2aab3b7c12b1b6b1ab1b8d146Aa 2023040101265043966_j_nanoph-2019-0211_ref_183_w2aab3b7c12b1b6b1ab1b8d183Aa 2023040101265043966_j_nanoph-2019-0211_ref_025_w2aab3b7c12b1b6b1ab1b8c25Aa 2023040101265043966_j_nanoph-2019-0211_ref_109_w2aab3b7c12b1b6b1ab1b8d109Aa 2023040101265043966_j_nanoph-2019-0211_ref_055_w2aab3b7c12b1b6b1ab1b8c55Aa 2023040101265043966_j_nanoph-2019-0211_ref_019_w2aab3b7c12b1b6b1ab1b8c19Aa 2023040101265043966_j_nanoph-2019-0211_ref_144_w2aab3b7c12b1b6b1ab1b8d144Aa 2023040101265043966_j_nanoph-2019-0211_ref_006_w2aab3b7c12b1b6b1ab1b8b6Aa 2023040101265043966_j_nanoph-2019-0211_ref_077_w2aab3b7c12b1b6b1ab1b8c77Aa 2023040101265043966_j_nanoph-2019-0211_ref_214_w2aab3b7c12b1b6b1ab1b8d214Aa 2023040101265043966_j_nanoph-2019-0211_ref_062_w2aab3b7c12b1b6b1ab1b8c62Aa 2023040101265043966_j_nanoph-2019-0211_ref_126_w2aab3b7c12b1b6b1ab1b8d126Aa 2023040101265043966_j_nanoph-2019-0211_ref_196_w2aab3b7c12b1b6b1ab1b8d196Aa 2023040101265043966_j_nanoph-2019-0211_ref_090_w2aab3b7c12b1b6b1ab1b8c90Aa 2023040101265043966_j_nanoph-2019-0211_ref_032_w2aab3b7c12b1b6b1ab1b8c32Aa 2023040101265043966_j_nanoph-2019-0211_ref_108_w2aab3b7c12b1b6b1ab1b8d108Aa 2023040101265043966_j_nanoph-2019-0211_ref_110_w2aab3b7c12b1b6b1ab1b8d110Aa 2023040101265043966_j_nanoph-2019-0211_ref_180_w2aab3b7c12b1b6b1ab1b8d180Aa 2023040101265043966_j_nanoph-2019-0211_ref_034_w2aab3b7c12b1b6b1ab1b8c34Aa 2023040101265043966_j_nanoph-2019-0211_ref_079_w2aab3b7c12b1b6b1ab1b8c79Aa 2023040101265043966_j_nanoph-2019-0211_ref_162_w2aab3b7c12b1b6b1ab1b8d162Aa 2023040101265043966_j_nanoph-2019-0211_ref_049_w2aab3b7c12b1b6b1ab1b8c49Aa 2023040101265043966_j_nanoph-2019-0211_ref_075_w2aab3b7c12b1b6b1ab1b8c75Aa 2023040101265043966_j_nanoph-2019-0211_ref_123_w2aab3b7c12b1b6b1ab1b8d123Aa 2023040101265043966_j_nanoph-2019-0211_ref_105_w2aab3b7c12b1b6b1ab1b8d105Aa 2023040101265043966_j_nanoph-2019-0211_ref_060_w2aab3b7c12b1b6b1ab1b8c60Aa 2023040101265043966_j_nanoph-2019-0211_ref_199_w2aab3b7c12b1b6b1ab1b8d199Aa 2023040101265043966_j_nanoph-2019-0211_ref_030_w2aab3b7c12b1b6b1ab1b8c30Aa 2023040101265043966_j_nanoph-2019-0211_ref_178_w2aab3b7c12b1b6b1ab1b8d178Aa 2023040101265043966_j_nanoph-2019-0211_ref_036_w2aab3b7c12b1b6b1ab1b8c36Aa 2023040101265043966_j_nanoph-2019-0211_ref_131_w2aab3b7c12b1b6b1ab1b8d131Aa 2023040101265043966_j_nanoph-2019-0211_ref_201_w2aab3b7c12b1b6b1ab1b8d201Aa 2023040101265043966_j_nanoph-2019-0211_ref_113_w2aab3b7c12b1b6b1ab1b8d113Aa 2023040101265043966_j_nanoph-2019-0211_ref_141_w2aab3b7c12b1b6b1ab1b8d141Aa 2023040101265043966_j_nanoph-2019-0211_ref_211_w2aab3b7c12b1b6b1ab1b8d211Aa 2023040101265043966_j_nanoph-2019-0211_ref_102_w2aab3b7c12b1b6b1ab1b8d102Aa 2023040101265043966_j_nanoph-2019-0211_ref_021_w2aab3b7c12b1b6b1ab1b8c21Aa 2023040101265043966_j_na |
References_xml | – volume: 111 start-page: 227602 year: 2013 ident: j_nanoph-2019-0211_ref_124 article-title: Mechanical spin control of nitrogen-vacancy centers in diamond publication-title: Phys Rev Lett – volume: 528 start-page: 1 year: 2013 end-page: 45 ident: j_nanoph-2019-0211_ref_008 article-title: The nitrogen-vacancy colour centre in diamond publication-title: Phys Rep – volume: 351 start-page: 836 year: 2016 end-page: 41 ident: j_nanoph-2019-0211_ref_014 article-title: Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic publication-title: Science – volume: 95 start-page: 041402 year: 2017 ident: j_nanoph-2019-0211_ref_108 article-title: Enhanced photoelectric detection of NV magnetic resonances in diamond under dual-beam excitation publication-title: Phys Rev B – volume: 33 start-page: B65 year: 2016 end-page: 83 ident: j_nanoph-2019-0211_ref_080 article-title: Quantum nanophotonics in diamond publication-title: J Opt Soc Am B – volume: 362 start-page: 662 year: 2018 end-page: 5 ident: j_nanoph-2019-0211_ref_071 article-title: Photon-mediated interactions between quantum emitters in a diamond nanocavity publication-title: Science – volume: 6 start-page: 668 year: 2010 end-page: 72 ident: j_nanoph-2019-0211_ref_197 article-title: Excited-state spin coherence of a single nitrogen-vacancy centre in diamond publication-title: Nature Phys – volume: 108 start-page: 197601 year: 2012 ident: j_nanoph-2019-0211_ref_129 article-title: Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond publication-title: Phys Rev Lett – volume: 3 start-page: 1029 year: 2012 ident: j_nanoph-2019-0211_ref_048 article-title: Optical detection of a single rare-earth ion in a crystal publication-title: Nat Commun – start-page: 1 year: 2016 end-page: 6 ident: j_nanoph-2019-0211_ref_177 article-title: Deterministic atom placement by ion implantation: few and single atom devices for quantum computer technology publication-title: In 2016 21st International Conference on Ion Implantation Technology (IIT). Tainan, Taiwan, IEEE, – volume: 97 start-page: 165202 year: 2018 ident: j_nanoph-2019-0211_ref_199 article-title: Photophysics of GaN single-photon emitters in the visible spectral range publication-title: Phys Rev B – volume: 9 start-page: 171 year: 2014 end-page: 6 ident: j_nanoph-2019-0211_ref_027 article-title: Universal control and error correction in multi-qubit spin registers in diamond publication-title: Nat Nanotechnol – volume: 6 start-page: 041035 year: 2016 ident: j_nanoph-2019-0211_ref_114 article-title: Towards a room-temperature spin quantum bus in diamond via electron photoionization, transport, and capture publication-title: Phys Rev X – volume: 14 start-page: 4989 year: 2014 end-page: 96 ident: j_nanoph-2019-0211_ref_112 article-title: All-optical thermometry and thermal properties of the optically detected spin resonances of the NV-center in nanodiamond publication-title: Nano Lett – volume: 89 start-page: 235101 year: 2014 ident: j_nanoph-2019-0211_ref_195 article-title: Electronic structure of the negatively charged silicon-vacancy center in diamond publication-title: Phys Rev B – volume: 8 start-page: 705 year: 2017 ident: j_nanoph-2019-0211_ref_135 article-title: Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride publication-title: Nat Commun – volume: 113 start-page: 192106 year: 2018 ident: j_nanoph-2019-0211_ref_151 article-title: Defect identification based on first-principles calculations for deep level transient spectroscopy publication-title: Appl Phys Lett – volume: 16 start-page: 7037 year: 2016 end-page: 45 ident: j_nanoph-2019-0211_ref_065 article-title: Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride publication-title: Nano Lett – volume: 111 start-page: 120502 year: 2013 ident: j_nanoph-2019-0211_ref_049 article-title: Mapping spin coherence of a single rare-earth ion in a crystal onto a single photon polarization state publication-title: Phys Rev Lett – volume: 477 start-page: 574 year: 2011 end-page: 8 ident: j_nanoph-2019-0211_ref_100 article-title: High-fidelity projective read-out of a solid-state spin quantum register publication-title: Nature – volume: 21 start-page: 364210 year: 2009 ident: j_nanoph-2019-0211_ref_196 article-title: Luminescence-lifetime mapping in diamond publication-title: J Phys: Condens Matter – volume: 7 start-page: 11526 year: 2016 ident: j_nanoph-2019-0211_ref_028 article-title: Repeated quantum error correction on a continuously encoded qubit by real-time feedback publication-title: Nat Commun – volume: 115 start-page: 093602 year: 2015 ident: j_nanoph-2019-0211_ref_051 article-title: All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal publication-title: Phys Rev Lett – volume: 5 start-page: 4739 year: 2014 ident: j_nanoph-2019-0211_ref_069 article-title: Multiple intrinsically identical single-photon emitters in the solid state publication-title: Nat Commun – volume: 499 start-page: 419 year: 2013 end-page: 25 ident: j_nanoph-2019-0211_ref_132 article-title: Van der Waals heterostructures publication-title: Nature – volume: 10 start-page: 1210 year: 2016 end-page: 5 ident: j_nanoph-2019-0211_ref_053 article-title: Polarization spectroscopy of defect-based single photon sources in ZnO publication-title: ACS Nano – volume: 10 start-page: 497 year: 2015 ident: j_nanoph-2019-0211_ref_060 article-title: Single quantum emitters in monolayer semiconductors publication-title: Nat Nanotechnol – volume: 5 start-page: 3895 year: 2014 ident: j_nanoph-2019-0211_ref_050 article-title: Coherent properties of single rare-earth spin qubits publication-title: Nat Commun – volume: 64 start-page: 669 year: 1990 end-page: 72 ident: j_nanoph-2019-0211_ref_148 article-title: Structural identification of hydrogen and muonium centers in silicon: first-principles calculations of hyperfine parameters publication-title: Phys Rev Lett – volume: 16 start-page: 6052 year: 2016 end-page: 7 ident: j_nanoph-2019-0211_ref_064 article-title: Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride publication-title: Nano Lett – volume: 20 start-page: 115002 year: 2018 ident: j_nanoph-2019-0211_ref_167 article-title: Strongly inhomogeneous distribution of spectral properties of silicon-vacancy color centers in nanodiamonds publication-title: New J Phys – volume: 12 start-page: 5873 year: 2018 end-page: 9 ident: j_nanoph-2019-0211_ref_188 article-title: Directed atom-by-atom assembly of dopants in silicon publication-title: ACS Nano – volume: 77 start-page: 035119 year: 2008 ident: j_nanoph-2019-0211_ref_144 article-title: First principles method for the calculation of zero-field splitting tensors in periodic systems publication-title: Phys Rev B – volume: 347 start-page: 1135 year: 2015 end-page: 8 ident: j_nanoph-2019-0211_ref_013 article-title: Single-protein spin resonance spectroscopy under ambient conditions publication-title: Science – volume: 10 start-page: 507 year: 2015 ident: j_nanoph-2019-0211_ref_058 article-title: Voltage-controlled quantum light from an atomically thin semiconductor publication-title: Nat Nanotechnol – volume: 88 start-page: 123301 year: 2017 ident: j_nanoph-2019-0211_ref_178 article-title: Ion implantation for deterministic single atom devices publication-title: Rev Sci Instrum – volume: 121 start-page: 183603 year: 2018 ident: j_nanoph-2019-0211_ref_171 article-title: Optically addressing single rare-earth ions in a nanophotonic cavity publication-title: Phys Rev Lett – volume: 500 start-page: 54 year: 2013 end-page: 8 ident: j_nanoph-2019-0211_ref_016 article-title: Nanometre-scale thermometry in a living cell publication-title: Nature – volume: 90 start-page: 075202 year: 2014 ident: j_nanoph-2019-0211_ref_166 article-title: First-principles theory of nonradiative carrier capture via multiphonon emission publication-title: Phys Rev B – volume: 320 start-page: 1326 year: 2008 end-page: 9 ident: j_nanoph-2019-0211_ref_021 article-title: Multipartite entanglement among single spins in diamond publication-title: Science – volume: 363 start-page: 1068 year: 2019 end-page: 72 ident: j_nanoph-2019-0211_ref_137 article-title: Coherent single-photon emission from colloidal lead halide perovskite quantum dots publication-title: Science – volume: 95 start-page: 035207 year: 2017 ident: j_nanoph-2019-0211_ref_055 article-title: Resonant optical spectroscopy and coherent control of Cr4+ spin ensembles in SiC and GaN publication-title: Phys Rev B – volume: 542 start-page: 75 year: 2017 ident: j_nanoph-2019-0211_ref_208 article-title: Deciphering chemical order/disorder and material properties at the single-atom level publication-title: Nature – volume: 90 start-page: 241203 year: 2014 ident: j_nanoph-2019-0211_ref_120 article-title: Electron spin decoherence in silicon carbide nuclear spin bath publication-title: Phys Rev B – volume: 40 start-page: 1146 year: 2015 end-page: 53 ident: j_nanoph-2019-0211_ref_072 article-title: Designing defect spins for wafer-scale quantum technologies publication-title: MRS Bull – volume: 345 start-page: 1333 year: 2014 end-page: 7 ident: j_nanoph-2019-0211_ref_032 article-title: Ultrafast optical control of orbital and spin dynamics in a solid-state defect publication-title: Science – volume: 4 start-page: 042004 year: 2017 ident: j_nanoph-2019-0211_ref_186 article-title: Towards atomically precise manipulation of 2D nanostructures in the electron microscope publication-title: 2D Mater – volume: 119 start-page: 096402 year: 2017 ident: j_nanoph-2019-0211_ref_043 article-title: Neutral silicon-vacancy center in diamond: spin polarization and lifetimes publication-title: Phys Rev Lett – volume: 393 start-page: 133 year: 1998 end-page: 7 ident: j_nanoph-2019-0211_ref_074 article-title: A silicon-based nuclear spin quantum computer publication-title: Nature – volume: 74 start-page: 601 year: 2002 end-page: 59 ident: j_nanoph-2019-0211_ref_153 article-title: Electronic excitations: density-functional versus many-body Green’s-function approaches publication-title: Rev Mod Phys – volume: 16 start-page: 073026 year: 2014 ident: j_nanoph-2019-0211_ref_165 article-title: First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres publication-title: N J Phys – volume: 7 start-page: 12935 year: 2016 ident: j_nanoph-2019-0211_ref_121 article-title: Quantum decoherence dynamics of divacancy spins in silicon carbide publication-title: Nat Commun – volume: 120 start-page: 213603 year: 2018 ident: j_nanoph-2019-0211_ref_127 article-title: Phonon networks with silicon-vacancy centers in diamond waveguides publication-title: Phys Rev Lett – volume: 345 start-page: 532 year: 2014 end-page: 5 ident: j_nanoph-2019-0211_ref_025 article-title: Unconditional quantum teleportation between distant solid-state quantum bits publication-title: Science – volume: 113 start-page: 113602 year: 2014 ident: j_nanoph-2019-0211_ref_068 article-title: Indistinguishable photons from separated silicon-vacancy centers in diamond publication-title: Phys Rev Lett – volume: 26 start-page: 015305 year: 2013 ident: j_nanoph-2019-0211_ref_145 article-title: The spin-spin zero-field splitting tensor in the projector-augmented-wave method publication-title: J Phys: Condens Matter – volume: 102 start-page: 195505 year: 2009 ident: j_nanoph-2019-0211_ref_204 article-title: Fabrication of a freestanding boron nitride single layer and its defect assignments publication-title: Phys Rev Lett – volume: 226 start-page: 165 year: 2018 end-page: 79 ident: j_nanoph-2019-0211_ref_143 article-title: PyCDT: a python toolkit for modeling point defects in semiconductors and insulators publication-title: Comp Phys Commun – volume: 10 start-page: 503 year: 2015 ident: j_nanoph-2019-0211_ref_059 article-title: Single photon emitters in exfoliated WSe2 structures publication-title: Nat Nanotechnol – volume: 112 start-page: 321 year: 2012 end-page: 70 ident: j_nanoph-2019-0211_ref_159 article-title: Constrained density functional theory publication-title: Chem Rev – volume: 42 start-page: 644 year: 2017 end-page: 52 ident: j_nanoph-2019-0211_ref_187 article-title: Single-atom dynamics in scanning transmission electron microscopy publication-title: MRS Bull – volume: 14 start-page: 160 year: 2015 end-page: 3 ident: j_nanoph-2019-0211_ref_046 article-title: Isolated electron spins in silicon carbide with millisecond coherence times publication-title: Nat Mater – volume: 8 start-page: 021063 year: 2018 ident: j_nanoph-2019-0211_ref_118 article-title: Ab initio magneto-optical spectrum of group-IV vacancy color centers in diamond publication-title: Phys Rev X – volume: 532–535 start-page: 1209 year: 2003 end-page: 18 ident: j_nanoph-2019-0211_ref_183 article-title: Towards the atomic-scale fabrication of a silicon-based solid state quantum computer publication-title: Surf Sci – volume: 336 start-page: 1283 year: 2012 end-page: 6 ident: j_nanoph-2019-0211_ref_023 article-title: Room-temperature quantum bit memory exceeding one second publication-title: Science – year: 2019 ident: j_nanoph-2019-0211_ref_182 publication-title: A window into NV center kinetics via repeated annealing and spatial tracking of thousands of individual NV centers. arXiv e-prints – volume: 8 start-page: 95 year: 2017 ident: j_nanoph-2019-0211_ref_210 article-title: Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope publication-title: Nat Commun – volume: 15 start-page: 7567 year: 2015 ident: j_nanoph-2019-0211_ref_134 article-title: Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2 publication-title: Nano Letters – volume: 9 start-page: 11 year: 1977 ident: j_nanoph-2019-0211_ref_084 article-title: Optical spin-polarisation in a triplet state in irrdiated and annealed type 1b diamonds publication-title: Diamond Res – volume: 110 start-page: 167402 year: 2013 ident: j_nanoph-2019-0211_ref_103 article-title: Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures publication-title: Phys Rev Lett – volume: 330 start-page: 1212 year: 2010 end-page: 5 ident: j_nanoph-2019-0211_ref_029 article-title: Spin-light coherence for single-spin measurement and control in diamond publication-title: Science – volume: 273 start-page: 87 year: 1996 ident: j_nanoph-2019-0211_ref_170 article-title: Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot publication-title: Science – volume: 9 start-page: 139 year: 2013 end-page: 43 ident: j_nanoph-2019-0211_ref_022 article-title: Room-temperature entanglement between single defect spins in diamond publication-title: Nat Phys – volume: 110 start-page: 7595 year: 2013 end-page: 600 ident: j_nanoph-2019-0211_ref_031 article-title: All-optical control of a solid-state spin using coherent dark states publication-title: Proc Natl Acad Sci U S A – volume: 8 start-page: 29642 year: 2016 end-page: 8 ident: j_nanoph-2019-0211_ref_191 article-title: Engineering and localization of quantum emitters in large hexagonal boron nitride layers publication-title: ACS Appl Mater Interfaces – volume: 8 start-page: 041027 year: 2018 ident: j_nanoph-2019-0211_ref_128 article-title: Scaling phononic quantum networks of solid-state spins with closed mechanical subsystems publication-title: Phys Rev X – volume: 103 start-page: 186404 year: 2009 ident: j_nanoph-2019-0211_ref_161 article-title: Theory of spin-conserving excitation of the NV− center in diamond publication-title: Phys Rev Lett – volume: 364 start-page: 62 year: 2019 end-page: 6 ident: j_nanoph-2019-0211_ref_122 article-title: Quantum interface of an electron and a nuclear ensemble publication-title: Science – volume: 85 start-page: 961 year: 2013 end-page: 1019 ident: j_nanoph-2019-0211_ref_073 article-title: Silicon quantum electronics publication-title: Rev Mod Phys – volume: 10 start-page: 949 year: 2015 ident: j_nanoph-2019-0211_ref_205 article-title: Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy publication-title: Nat Nanotechnol – volume: 5 start-page: 1128 year: 2018 end-page: 34 ident: j_nanoph-2019-0211_ref_192 article-title: Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride publication-title: Optica – volume: 113 start-page: 263601 year: 2014 ident: j_nanoph-2019-0211_ref_039 article-title: All-optical formation of coherent dark states of silicon-vacancy spins in diamond publication-title: Phys Rev Lett – volume: 113 start-page: 197601 year: 2014 ident: j_nanoph-2019-0211_ref_214 article-title: Magnetic resonance detection of individual proton spins using quantum reporters publication-title: Phys Rev Lett – volume: 14 start-page: 1982 year: 2014 end-page: 6 ident: j_nanoph-2019-0211_ref_099 article-title: Coherent optical transitions in implanted nitrogen vacancy centers publication-title: Nano Lett – volume: 112 start-page: 036405 year: 2014 ident: j_nanoph-2019-0211_ref_040 article-title: Electronic structure of the silicon vacancy color center in diamond publication-title: Phys Rev Lett – volume: 356 start-page: 928 year: 2017 end-page: 32 ident: j_nanoph-2019-0211_ref_034 article-title: Entanglement distillation between solid-state quantum network nodes publication-title: Science – volume: 10 start-page: 064061 year: 2018 ident: j_nanoph-2019-0211_ref_054 article-title: Coherence properties of shallow donor qubits in ZnO publication-title: Phys Rev Appl – volume: 96 start-page: 020101 year: 2017 ident: j_nanoph-2019-0211_ref_155 article-title: Accuracy of GW for calculating defect energy levels in solids publication-title: Phys Rev B – volume: 9 start-page: 363 year: 2015 end-page: 73 ident: j_nanoph-2019-0211_ref_002 article-title: Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields publication-title: Nat Photonics – year: 1975 ident: j_nanoph-2019-0211_ref_007 publication-title: Theory of defects in solids – volume: 11 start-page: 6652 year: 2017 end-page: 60 ident: j_nanoph-2019-0211_ref_190 article-title: Nonmagnetic quantum emitters in boron nitride with ultranarrow and sideband-free emission spectra publication-title: ACS Nano – volume: 329 start-page: 542 year: 2010 end-page: 4 ident: j_nanoph-2019-0211_ref_020 article-title: Single-shot readout of a single nuclear spin publication-title: Science – volume: 497 start-page: 86 year: 2013 end-page: 90 ident: j_nanoph-2019-0211_ref_033 article-title: Heralded entanglement between solid-state qubits separated by three metres publication-title: Nature – volume: 354 start-page: 847 year: 2016 end-page: 50 ident: j_nanoph-2019-0211_ref_070 article-title: An integrated diamond nanophotonics platform for quantum-optical networks publication-title: Science – volume: 1 start-page: 94 year: 2005 ident: j_nanoph-2019-0211_ref_194 article-title: Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond publication-title: Nature Phys – volume: 404 start-page: 4354 year: 2009 end-page: 4358 ident: j_nanoph-2019-0211_ref_117 article-title: The silicon vacancy in SiC publication-title: Phys B – volume: 18 start-page: 4710 year: 2018 end-page: 5 ident: j_nanoph-2019-0211_ref_189 article-title: Stark tuning of single-photon emitters in hexagonal boron nitride publication-title: Nano Lett – volume: 48 start-page: 1 year: 2018 end-page: 26 ident: j_nanoph-2019-0211_ref_141 article-title: First-principles calculations of point defects for quantum technologies publication-title: Annu Rev Mater Res – volume: 92 start-page: 243111 year: 2008 ident: j_nanoph-2019-0211_ref_091 article-title: Scanning magnetic field microscope with a diamond single-spin sensor publication-title: Appl Phys Lett – volume: 14 start-page: 164 year: 2015 end-page: 8 ident: j_nanoph-2019-0211_ref_047 article-title: Coherent control of single spins in silicon carbide at room temperature publication-title: Nat Mater – volume: 479 start-page: 84 year: 2011 end-page: 7 ident: j_nanoph-2019-0211_ref_045 article-title: Room temperature coherent control of defect spin qubits in silicon carbide publication-title: Nature – volume: 7 start-page: 13 year: 2012 end-page: 23 ident: j_nanoph-2019-0211_ref_168 article-title: Emergence of colloidal quantum-dot light-emitting technologies publication-title: Nat Photonics – volume: 353:aac5523 year: 2016 ident: j_nanoph-2019-0211_ref_169 article-title: Building devices from colloidal quantum dots publication-title: Science – volume: 29 start-page: 1605092 year: 2019 ident: j_nanoph-2019-0211_ref_057 article-title: Bright room-temperature single-photon emission from defects in gallium nitride publication-title: Adv Mater – volume: 70 start-page: 123 year: 2019 end-page: 42 ident: j_nanoph-2019-0211_ref_193 article-title: Single photon sources in atomically thin materials publication-title: Annu Rev Phys Chem – volume: 89 start-page: 035002 year: 2017 ident: j_nanoph-2019-0211_ref_009 article-title: Quantum sensing publication-title: Rev Mod Phys – volume: 4 start-page: 76 year: 2018 ident: j_nanoph-2019-0211_ref_147 article-title: First principles calculation of spin-related quantities for point defect qubit research publication-title: npj Comput Mater – volume: 2 start-page: 213 year: 2011 ident: j_nanoph-2019-0211_ref_185 article-title: Identification of active atomic defects in a monolayered tungsten disulphide nanoribbon publication-title: Nat Commun – volume: 98 start-page: 155143 year: 2018 ident: j_nanoph-2019-0211_ref_156 article-title: Beyond the quasiparticle approximation: fully self-consistent GW calculations publication-title: Phys Rev B – volume: 65 start-page: 83 year: 2014 end-page: 105 ident: j_nanoph-2019-0211_ref_017 article-title: Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology publication-title: Annu Rev Phys Chem – volume: 42 start-page: 8605 year: 1990 end-page: 8 ident: j_nanoph-2019-0211_ref_085 article-title: Low-field optically detected magnetic resonance of a coupled triplet-doublet defect pair in diamond publication-title: Phys Rev B – volume: 119 start-page: 181101 year: 2016 ident: j_nanoph-2019-0211_ref_164 article-title: Tutorial: defects in semiconductors – combining experiment and theory publication-title: J Appl Phys – volume: 357 start-page: 67 year: 2017 end-page: 71 ident: j_nanoph-2019-0211_ref_015 article-title: Nanoscale nuclear magnetic resonance with chemical resolution publication-title: Science – volume: 80 start-page: 155425 year: 2009 ident: j_nanoph-2019-0211_ref_203 article-title: Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy publication-title: Phys Rev B – volume: 9:437 year: 2018 ident: j_nanoph-2019-0211_ref_101 article-title: Spin readout techniques of the nitrogen-vacancy center in diamond publication-title: Micromachines – volume: 97 start-page: 115135 year: 2018 ident: j_nanoph-2019-0211_ref_146 article-title: Calculation of spin-spin zero-field splitting within periodic boundary conditions: towards all-electron accuracy publication-title: Phys Rev B – volume: 2 start-page: 347 year: 2015 end-page: 52 ident: j_nanoph-2019-0211_ref_062 article-title: Single-photon emission from localized excitons in an atomically thin semiconductor publication-title: Optica – volume: 1 start-page: 011002 year: 2014 ident: j_nanoph-2019-0211_ref_174 article-title: Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping publication-title: 2D Mater – volume: 11 start-page: 37 year: 2016 end-page: 41 ident: j_nanoph-2019-0211_ref_063 article-title: Quantum emission from hexagonal boron nitride monolayers publication-title: Nat Nanotechnol – volume: 5 start-page: 722 year: 2010 ident: j_nanoph-2019-0211_ref_173 article-title: Boron nitride substrates for high-quality graphene electronics publication-title: Nat Nanotechnol – volume: 131 start-page: 353 year: 2011 end-page: 61 ident: j_nanoph-2019-0211_ref_076 article-title: Rare-earth-doped materials for applications in quantum information storage and signal processing publication-title: J Lumin – volume: 20 start-page: 19956 year: 2012 ident: j_nanoph-2019-0211_ref_198 article-title: Photophysics of single silicon vacancy centers in diamond: implications for single photon emission publication-title: Opt Express – volume: 10 start-page: 631 year: 2016 end-page: 41 ident: j_nanoph-2019-0211_ref_003 article-title: Solid-state single-photon emitters publication-title: Nat Photonics – volume: 99 start-page: 184102 year: 2019 ident: j_nanoph-2019-0211_ref_123 article-title: Spin polarization through intersystem crossing in the silicon vacancy of silicon carbide publication-title: Phys Rev B – volume: 558 start-page: 268 year: 2018 end-page: 73 ident: j_nanoph-2019-0211_ref_035 article-title: Deterministic delivery of remote entanglement on a quantum network publication-title: Nature – volume: 8 start-page: 383 year: 2009 end-page: 7 ident: j_nanoph-2019-0211_ref_094 article-title: Ultralong spin coherence time in isotopically engineered diamond publication-title: Nat Mater – volume: 364 start-page: 973 year: 2019 end-page: 6 ident: j_nanoph-2019-0211_ref_010 article-title: Probing magnetism in 2D materials at the nanoscale with single-spin microscopy publication-title: Science – volume: 7 start-page: 055201 year: 2014 ident: j_nanoph-2019-0211_ref_181 article-title: Perfect selective alignment of nitrogen-vacancy centers in diamond publication-title: Appl Phys Exp – volume: 6 start-page: 034005 year: 2016 ident: j_nanoph-2019-0211_ref_125 article-title: Strain coupling of a mechanical resonator to a single quantum emitter in diamond publication-title: Phys Rev Appl – volume: 94 start-page: 125401 year: 2016 ident: j_nanoph-2019-0211_ref_119 article-title: Longitudinal spin relaxation of donor-bound electrons in direct band-gap semiconductors publication-title: Phys Rev B – year: 1968 ident: j_nanoph-2019-0211_ref_006 publication-title: Physics of color centers – volume: 6 start-page: 8577 year: 2015 ident: j_nanoph-2019-0211_ref_109 article-title: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond publication-title: Nat Commun – volume: 517 start-page: 177 year: 2015 ident: j_nanoph-2019-0211_ref_136 article-title: Optically addressable nuclear spins in a solid with a six-hour coherence time publication-title: Nature – volume: 103 start-page: 256404 year: 2009 ident: j_nanoph-2019-0211_ref_095 article-title: Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond publication-title: Phys Rev Lett – volume: 9 start-page: 874 year: 2018 ident: j_nanoph-2019-0211_ref_212 article-title: All-optical control and super-resolution imaging of quantum emitters in layered materials publication-title: Nat Commun – volume: 297 start-page: 1670 year: 2002 end-page: 2 ident: j_nanoph-2019-0211_ref_096 article-title: High carrier mobility in single-crystal plasma-deposited diamond publication-title: Science – volume: 94 start-page: 241201 year: 2016 ident: j_nanoph-2019-0211_ref_107 article-title: Near-infrared-assisted charge control and spin readout of the nitrogen-vacancy center in diamond publication-title: Phys Rev B – volume: 4:eaar3580 year: 2018 ident: j_nanoph-2019-0211_ref_056 article-title: Room temperature solid-state quantum emitters in the telecom range publication-title: Sci Adv – volume: 348 start-page: 285 year: 1976 ident: j_nanoph-2019-0211_ref_083 article-title: Optical studies of the 1.945 eV vibronic band in diamond publication-title: Proc R Soc London Ser A – volume: X 5 start-page: 031031 year: 2015 ident: j_nanoph-2019-0211_ref_126 article-title: Universal quantum transducers based on surface acoustic waves publication-title: Phys Rev – volume: 364 start-page: 154 year: 2019 end-page: 7 ident: j_nanoph-2019-0211_ref_011 article-title: Electron-phonon instability in graphene revealed by global and local noise probes publication-title: Science – volume: 5 start-page: 3328 year: 2014 ident: j_nanoph-2019-0211_ref_175 article-title: Optical signatures of silicon-vacancy spins in diamond publication-title: Nat Commun – volume: 336 start-page: 1280 year: 2012 end-page: 3 ident: j_nanoph-2019-0211_ref_005 article-title: Quantum information storage for over 180 s using donor spins in a 28Si “semiconductor vacuum” publication-title: Science – volume: 506 start-page: 204 year: 2014 end-page: 7 ident: j_nanoph-2019-0211_ref_026 article-title: Quantum error correction in a solid-state hybrid spin register publication-title: Nature – volume: 97 start-page: 214104 year: 2018 ident: j_nanoph-2019-0211_ref_131 article-title: Native point defects and impurities in hexagonal boron nitride publication-title: Phys Rev B – year: 2019 ident: j_nanoph-2019-0211_ref_209 publication-title: Correlating 3D atomic defects and electronic properties of 2D materials with picometer precision. arXiv e-prints – volume: 109 start-page: 267401 year: 2012 ident: j_nanoph-2019-0211_ref_163 article-title: First-principles calculations of luminescence spectrum line shapes for defects in semiconductors: the example of GaN and ZnO publication-title: Phys Rev Lett – volume: 85 start-page: 290 year: 2000 end-page: 3 ident: j_nanoph-2019-0211_ref_087 article-title: Stable solid-state source of single photons publication-title: Phys Rev Lett – volume: 339 start-page: 1174 year: 2013 end-page: 9 ident: j_nanoph-2019-0211_ref_001 article-title: Quantum spintronics: engineering and manipulating atom-like spins in semiconductors publication-title: Science – volume: 466 start-page: 730 year: 2010 end-page: 4 ident: j_nanoph-2019-0211_ref_030 article-title: Quantum entanglement between an optical photon and a solid-state spin qubit publication-title: Nature – volume: 5 start-page: 12882 year: 2015 ident: j_nanoph-2019-0211_ref_042 article-title: Germanium-vacancy single color centers in diamond publication-title: Sci Rep – volume: 9 start-page: 2406 year: 2018 ident: j_nanoph-2019-0211_ref_012 article-title: Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond publication-title: Nat Commun – volume: 18 start-page: 023021 year: 2016 ident: j_nanoph-2019-0211_ref_184 article-title: 29Si nuclear spins as a resource for donor spin qubits in silicon publication-title: N J Phys – volume: 83 start-page: 33 year: 2011 end-page: 80 ident: j_nanoph-2019-0211_ref_075 article-title: Quantum repeaters based on atomic ensembles and linear optics publication-title: Rev Mod Phys – volume: 113 start-page: 263602 year: 2014 ident: j_nanoph-2019-0211_ref_041 article-title: All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond publication-title: Phys Rev Lett – volume: 82 start-page: 441 year: 2005 end-page: 3 ident: j_nanoph-2019-0211_ref_116 article-title: EPR identification of the triplet ground state and photoinduced population inversion for a Si-C divacancy in silicon carbide publication-title: Jetp Lett – volume: 18 start-page: 1739 year: 2018 end-page: 44 ident: j_nanoph-2019-0211_ref_211 article-title: Imaging of optically active defects with nanometer resolution publication-title: Nano Lett – volume: 3 start-page: 38 year: 2018 end-page: 51 ident: j_nanoph-2019-0211_ref_004 article-title: Material platforms for spin-based photonic quantum technologies publication-title: Nat Rev Mater – volume: 114 start-page: 145502 year: 2015 ident: j_nanoph-2019-0211_ref_102 article-title: Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers publication-title: Phys Rev Lett – volume: 41 start-page: 1201 year: 1978 ident: j_nanoph-2019-0211_ref_200 article-title: Electron spin resonance in the study of diamond publication-title: Rep Prog Phys – volume: 455 start-page: 648 year: 2008 end-page: 651 ident: j_nanoph-2019-0211_ref_093 article-title: Nanoscale imaging magnetometry with diamond spins under ambient conditions publication-title: Nature – volume: 77 start-page: 056503 year: 2014 ident: j_nanoph-2019-0211_ref_079 article-title: Magnetometry with nitrogen-vacancy defects in diamond publication-title: Rep Prog Phys – volume: 86 start-page: 035201 year: 2012 ident: j_nanoph-2019-0211_ref_179 article-title: Production of oriented nitrogen-vacancy color centers in synthetic diamond publication-title: Phys Rev B – volume: 3 start-page: 800 year: 2012 ident: j_nanoph-2019-0211_ref_202 article-title: Scalable architecture for a room temperature solid-state quantum information processor publication-title: Nat Commun – volume: 104 start-page: 102407 year: 2014 ident: j_nanoph-2019-0211_ref_180 article-title: Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces publication-title: Appl Phys Lett – volume: 86 start-page: 041202 year: 2012 ident: j_nanoph-2019-0211_ref_157 article-title: Mechanism for optical initialization of spin in NV− center in diamond publication-title: Phys Rev B – volume: 12 start-page: 949 year: 2012 end-page: 54 ident: j_nanoph-2019-0211_ref_052 article-title: Single-photon emission and quantum characterization of zinc oxide defects publication-title: Nano Lett – volume: 363 start-page: 728 year: 2019 end-page: 31 ident: j_nanoph-2019-0211_ref_111 article-title: Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond publication-title: Science – volume: 130 start-page: 1 year: 2017 end-page: 9 ident: j_nanoph-2019-0211_ref_142 article-title: A computational framework for automation of point defect calculations publication-title: Comp Mater Sci – volume: 88 start-page: 075202 year: 2013 ident: j_nanoph-2019-0211_ref_149 article-title: Hyperfine coupling of point defects in semiconductors by hybrid density functional calculations: the role of core spin polarization publication-title: Phys Rev B – volume: 361 start-page: 60 year: 2018 end-page: 3 ident: j_nanoph-2019-0211_ref_044 article-title: Observation of an environmentally insensitive solid-state spin defect in diamond publication-title: Science – volume: 118 start-page: 6091 year: 2018 end-page: 133 ident: j_nanoph-2019-0211_ref_172 article-title: Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures publication-title: Chem Rev – volume: 80 start-page: 041201 year: 2009 ident: j_nanoph-2019-0211_ref_113 article-title: Coherence of single spins coupled to a nuclear spin bath of varying density publication-title: Phys Rev B – volume: 11 start-page: 3328 year: 2017 end-page: 36 ident: j_nanoph-2019-0211_ref_066 article-title: Optical signatures of quantum emitters in suspended hexagonal boron nitride publication-title: ACS Nano – volume: 13 start-page: 025012 year: 2011 ident: j_nanoph-2019-0211_ref_038 article-title: Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium publication-title: New J Phys – volume: 29 start-page: 4700 year: 2017 end-page: 7 ident: j_nanoph-2019-0211_ref_206 article-title: Atomic-scale structural and chemical characterization of hexagonal boron nitride layers synthesized at the wafer-scale with monolayer thickness control publication-title: Chem Mater – volume: 93 start-page: 130501 year: 2004 ident: j_nanoph-2019-0211_ref_089 article-title: Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate publication-title: Phys Rev Lett – volume: 342 start-page: 830 year: 2013 ident: j_nanoph-2019-0211_ref_201 article-title: Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28 publication-title: Science – volume: 276 start-page: 2012 year: 1997 end-page: 4 ident: j_nanoph-2019-0211_ref_081 article-title: Scanning confocal optical microscopy and magnetic resonance on single defect centers publication-title: Science – volume: 92 start-page: 076401 year: 2004 ident: j_nanoph-2019-0211_ref_088 article-title: Observation of coherent oscillations in a single electron spin publication-title: Phys Rev Lett – volume: 16 start-page: 1312 year: 2007 end-page: 6 ident: j_nanoph-2019-0211_ref_019 article-title: Quantum register based on individual electronic and nuclear spin qubits in diamond publication-title: Science – volume: 10 start-page: 491 year: 2015 ident: j_nanoph-2019-0211_ref_061 article-title: Optically active quantum dots in monolayer WSe2 publication-title: Nat Nanotechnol – volume: 455 start-page: 644 year: 2008 end-page: 7 ident: j_nanoph-2019-0211_ref_092 article-title: Nanoscale magnetic sensing with an individual electronic spin in diamond publication-title: Nature – volume: 107 start-page: 090401 year: 2011 ident: j_nanoph-2019-0211_ref_105 article-title: Violation of a temporal Bell inequality for single spins in a diamond defect center publication-title: Phys Rev Lett – volume: 118 start-page: 037601 year: 2017 ident: j_nanoph-2019-0211_ref_110 article-title: Efficient electrical spin readout of NV− centers in diamond publication-title: Phys Rev Lett – year: 2019 ident: j_nanoph-2019-0211_ref_213 publication-title: Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated cathodoluminescence, photoluminescence, and strain mapping. arXiv e-prints – volume: 92 start-page: 115206 year: 2015 ident: j_nanoph-2019-0211_ref_150 article-title: Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide publication-title: Phys Rev B – volume: 4 start-page: 1743 year: 2013 ident: j_nanoph-2019-0211_ref_130 article-title: Solid-state electronic spin coherence time approaching one second publication-title: Nat Commun – volume: 144 start-page: 227 year: 1997 end-page: 30 ident: j_nanoph-2019-0211_ref_077 article-title: Efficient electromagnetically induced transparency in a rare-earth doped crystal publication-title: Opt Commun – volume: 4 start-page: 810 year: 2008 end-page: 6 ident: j_nanoph-2019-0211_ref_090 article-title: High-sensitivity diamond magnetometer with nanoscale resolution publication-title: Nat Phys – volume: 107 start-page: 8513 year: 2010 end-page: 8 ident: j_nanoph-2019-0211_ref_115 article-title: Quantum computing with defects publication-title: Proc Natl Acad Sci U S A – volume: 453 start-page: 1023 year: 2008 end-page: 30 ident: j_nanoph-2019-0211_ref_036 article-title: The quantum internet publication-title: Nature – volume: 86 start-page: 253 year: 2014 ident: j_nanoph-2019-0211_ref_140 article-title: First-principles calculations for point defects in solids publication-title: Rev Mod Phys – volume: 114 start-page: 136402 year: 2015 ident: j_nanoph-2019-0211_ref_106 article-title: Efficient readout of a single spin state in diamond via spin-to-charge conversion publication-title: Phys Rev Lett – volume: 17 start-page: 313 year: 2018 end-page: 7 ident: j_nanoph-2019-0211_ref_152 article-title: Solid-state electron spin lifetime limited by phononic vacuum modes publication-title: Nat Mater – volume: 87 start-page: 261909 year: 2005 ident: j_nanoph-2019-0211_ref_097 article-title: Generation of single color centers by focused nitrogen implantation publication-title: Appl Phys Lett – volume: 6 start-page: 2117 year: 2010 end-page: 21 ident: j_nanoph-2019-0211_ref_176 article-title: Nanoscale engineering and optical addressing of single spins in diamond publication-title: Small – volume: 115 start-page: 071604 year: 2019 ident: j_nanoph-2019-0211_ref_207 article-title: Substitutional Si impurities in monolayer hexagonal boron nitride publication-title: Appl Phys Lett – volume: 25 start-page: 1294 year: 2000 end-page: 6 ident: j_nanoph-2019-0211_ref_086 article-title: Photon antibunching in the fluorescence of individual color centers in diamond publication-title: Opt Lett – volume: 10 start-page: 222 year: 2019 ident: j_nanoph-2019-0211_ref_067 article-title: Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature publication-title: Nat Commun – volume: 77 start-page: 115118 year: 2008 ident: j_nanoph-2019-0211_ref_154 article-title: Optical excitation of deep defect levels in insulators within many-body perturbation theory: the F center in calcium fluoride publication-title: Phys Rev B – volume: 314 start-page: 281 year: 2006 end-page: 5 ident: j_nanoph-2019-0211_ref_018 article-title: Coherent dynamics of coupled electron and nuclear spin qubits in diamond publication-title: Science – volume: 98 start-page: 085207 year: 2018 ident: j_nanoph-2019-0211_ref_104 article-title: Theory of the optical spin-polarization loop of the nitrogen-vacancy center in diamond publication-title: Phys Rev B – volume: 10 start-page: 3168 year: 2010 end-page: 72 ident: j_nanoph-2019-0211_ref_098 article-title: Chip-scale nanofabrication of single spins and spin arrays in diamond publication-title: Nano Lett – volume: 3 start-page: 31 year: 2018 ident: j_nanoph-2019-0211_ref_158 article-title: Ab initio description of highly correlated states in defects for realizing quantum bits publication-title: Npj Quantum Mater – volume: 9 start-page: 2552 year: 2018 ident: j_nanoph-2019-0211_ref_024 article-title: One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment publication-title: Nat Commun – volume: 12 start-page: 516 year: 2018 end-page: 27 ident: j_nanoph-2019-0211_ref_037 article-title: Quantum technologies with optically interfaced solid-state spins publication-title: Nat Photonics – volume: 20 start-page: 1693 year: 1979 end-page: 703 ident: j_nanoph-2019-0211_ref_162 article-title: Local-density theory of multiplet structure publication-title: Phys Rev A – ident: 2023040101265043966_j_nanoph-2019-0211_ref_188_w2aab3b7c12b1b6b1ab1b8d188Aa doi: 10.1021/acsnano.8b02001 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_111_w2aab3b7c12b1b6b1ab1b8d111Aa doi: 10.1126/science.aav2789 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_183_w2aab3b7c12b1b6b1ab1b8d183Aa doi: 10.1016/S0039-6028(03)00485-0 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_135_w2aab3b7c12b1b6b1ab1b8d135Aa doi: 10.1038/s41467-017-00810-2 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_141_w2aab3b7c12b1b6b1ab1b8d141Aa doi: 10.1146/annurev-matsci-070317-124453 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_065_w2aab3b7c12b1b6b1ab1b8c65Aa doi: 10.1021/acs.nanolett.6b03268 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_011_w2aab3b7c12b1b6b1ab1b8c11Aa doi: 10.1126/science.aaw2104 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_056_w2aab3b7c12b1b6b1ab1b8c56Aa doi: 10.1126/sciadv.aar3580 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_054_w2aab3b7c12b1b6b1ab1b8c54Aa doi: 10.1103/PhysRevApplied.10.064061 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_097_w2aab3b7c12b1b6b1ab1b8c97Aa doi: 10.1063/1.2103389 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_102_w2aab3b7c12b1b6b1ab1b8d102Aa doi: 10.1103/PhysRevLett.114.145502 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_144_w2aab3b7c12b1b6b1ab1b8d144Aa doi: 10.1103/PhysRevB.77.035119 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_201_w2aab3b7c12b1b6b1ab1b8d201Aa doi: 10.1126/science.1239584 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_159_w2aab3b7c12b1b6b1ab1b8d159Aa doi: 10.1021/cr200148b – ident: 2023040101265043966_j_nanoph-2019-0211_ref_184_w2aab3b7c12b1b6b1ab1b8d184Aa doi: 10.1088/1367-2630/18/2/023021 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_083_w2aab3b7c12b1b6b1ab1b8c83Aa doi: 10.1098/rspa.1976.0039 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_064_w2aab3b7c12b1b6b1ab1b8c64Aa doi: 10.1021/acs.nanolett.6b01987 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_074_w2aab3b7c12b1b6b1ab1b8c74Aa doi: 10.1038/30156 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_126_w2aab3b7c12b1b6b1ab1b8d126Aa doi: 10.1103/PhysRevX.5.031031 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_060_w2aab3b7c12b1b6b1ab1b8c60Aa doi: 10.1038/nnano.2015.75 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_150_w2aab3b7c12b1b6b1ab1b8d150Aa doi: 10.1103/PhysRevB.92.115206 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_068_w2aab3b7c12b1b6b1ab1b8c68Aa doi: 10.1103/PhysRevLett.113.113602 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_146_w2aab3b7c12b1b6b1ab1b8d146Aa doi: 10.1103/PhysRevB.97.115135 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_127_w2aab3b7c12b1b6b1ab1b8d127Aa doi: 10.1103/PhysRevLett.120.213603 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_156_w2aab3b7c12b1b6b1ab1b8d156Aa doi: 10.1103/PhysRevB.98.155143 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_209_w2aab3b7c12b1b6b1ab1b8d209Aa – ident: 2023040101265043966_j_nanoph-2019-0211_ref_044_w2aab3b7c12b1b6b1ab1b8c44Aa doi: 10.1126/science.aao0290 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_032_w2aab3b7c12b1b6b1ab1b8c32Aa doi: 10.1126/science.1255541 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_214_w2aab3b7c12b1b6b1ab1b8d214Aa doi: 10.1103/PhysRevLett.113.197601 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_172_w2aab3b7c12b1b6b1ab1b8d172Aa doi: 10.1021/acs.chemrev.7b00536 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_122_w2aab3b7c12b1b6b1ab1b8d122Aa doi: 10.1126/science.aaw2906 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_084_w2aab3b7c12b1b6b1ab1b8c84Aa – ident: 2023040101265043966_j_nanoph-2019-0211_ref_104_w2aab3b7c12b1b6b1ab1b8d104Aa doi: 10.1103/PhysRevB.98.085207 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_207_w2aab3b7c12b1b6b1ab1b8d207Aa doi: 10.1063/1.5112375 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_148_w2aab3b7c12b1b6b1ab1b8d148Aa doi: 10.1103/PhysRevLett.64.669 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_120_w2aab3b7c12b1b6b1ab1b8d120Aa doi: 10.1103/PhysRevB.90.241203 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_190_w2aab3b7c12b1b6b1ab1b8d190Aa doi: 10.1021/acsnano.7b00638 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_033_w2aab3b7c12b1b6b1ab1b8c33Aa doi: 10.1038/nature12016 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_182_w2aab3b7c12b1b6b1ab1b8d182Aa doi: 10.1103/PhysRevMaterials.4.023402 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_212_w2aab3b7c12b1b6b1ab1b8d212Aa doi: 10.1038/s41467-018-03290-0 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_059_w2aab3b7c12b1b6b1ab1b8c59Aa doi: 10.1038/nnano.2015.67 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_155_w2aab3b7c12b1b6b1ab1b8d155Aa doi: 10.1103/PhysRevB.96.020101 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_109_w2aab3b7c12b1b6b1ab1b8d109Aa doi: 10.1038/ncomms9577 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_089_w2aab3b7c12b1b6b1ab1b8c89Aa doi: 10.1103/PhysRevLett.93.130501 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_067_w2aab3b7c12b1b6b1ab1b8c67Aa doi: 10.1038/s41467-018-08185-8 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_040_w2aab3b7c12b1b6b1ab1b8c40Aa doi: 10.1103/PhysRevLett.112.036405 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_130_w2aab3b7c12b1b6b1ab1b8d130Aa doi: 10.1038/ncomms2771 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_021_w2aab3b7c12b1b6b1ab1b8c21Aa doi: 10.1126/science.1157233 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_128_w2aab3b7c12b1b6b1ab1b8d128Aa doi: 10.1103/PhysRevX.8.041027 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_158_w2aab3b7c12b1b6b1ab1b8d158Aa doi: 10.1038/s41535-018-0103-6 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_027_w2aab3b7c12b1b6b1ab1b8c27Aa doi: 10.1038/nnano.2014.2 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_153_w2aab3b7c12b1b6b1ab1b8d153Aa doi: 10.1103/RevModPhys.74.601 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_017_w2aab3b7c12b1b6b1ab1b8c17Aa doi: 10.1146/annurev-physchem-040513-103659 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_071_w2aab3b7c12b1b6b1ab1b8c71Aa doi: 10.1126/science.aau4691 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_009_w2aab3b7c12b1b6b1ab1b8b9Aa doi: 10.1103/RevModPhys.89.035002 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_106_w2aab3b7c12b1b6b1ab1b8d106Aa doi: 10.1103/PhysRevLett.114.136402 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_173_w2aab3b7c12b1b6b1ab1b8d173Aa doi: 10.1038/nnano.2010.172 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_072_w2aab3b7c12b1b6b1ab1b8c72Aa doi: 10.1557/mrs.2015.266 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_058_w2aab3b7c12b1b6b1ab1b8c58Aa doi: 10.1038/nnano.2015.79 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_087_w2aab3b7c12b1b6b1ab1b8c87Aa doi: 10.1103/PhysRevLett.85.290 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_108_w2aab3b7c12b1b6b1ab1b8d108Aa doi: 10.1103/PhysRevB.95.041402 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_133_w2aab3b7c12b1b6b1ab1b8d133Aa doi: 10.1364/CLEO_QELS.2019.FM4A.5 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_026_w2aab3b7c12b1b6b1ab1b8c26Aa doi: 10.1038/nature12919 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_118_w2aab3b7c12b1b6b1ab1b8d118Aa doi: 10.1103/PhysRevX.8.021063 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_194_w2aab3b7c12b1b6b1ab1b8d194Aa doi: 10.1038/nphys141 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_095_w2aab3b7c12b1b6b1ab1b8c95Aa doi: 10.1103/PhysRevLett.103.256404 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_189_w2aab3b7c12b1b6b1ab1b8d189Aa doi: 10.1021/acs.nanolett.8b01030 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_196_w2aab3b7c12b1b6b1ab1b8d196Aa doi: 10.1088/0953-8984/21/36/364210 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_181_w2aab3b7c12b1b6b1ab1b8d181Aa doi: 10.7567/APEX.7.055201 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_101_w2aab3b7c12b1b6b1ab1b8d101Aa doi: 10.3390/mi9090437 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_052_w2aab3b7c12b1b6b1ab1b8c52Aa doi: 10.1021/nl204010e – ident: 2023040101265043966_j_nanoph-2019-0211_ref_162_w2aab3b7c12b1b6b1ab1b8d162Aa doi: 10.1103/PhysRevA.20.1693 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_006_w2aab3b7c12b1b6b1ab1b8b6Aa – ident: 2023040101265043966_j_nanoph-2019-0211_ref_007_w2aab3b7c12b1b6b1ab1b8b7Aa – ident: 2023040101265043966_j_nanoph-2019-0211_ref_137_w2aab3b7c12b1b6b1ab1b8d137Aa doi: 10.1126/science.aau7392 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_005_w2aab3b7c12b1b6b1ab1b8b5Aa doi: 10.1126/science.1217635 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_116_w2aab3b7c12b1b6b1ab1b8d116Aa doi: 10.1134/1.2142873 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_008_w2aab3b7c12b1b6b1ab1b8b8Aa doi: 10.1016/j.physrep.2013.02.001 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_047_w2aab3b7c12b1b6b1ab1b8c47Aa doi: 10.1038/nmat4145 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_034_w2aab3b7c12b1b6b1ab1b8c34Aa doi: 10.1126/science.aan0070 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_002_w2aab3b7c12b1b6b1ab1b8b2Aa doi: 10.1038/nphoton.2015.58 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_045_w2aab3b7c12b1b6b1ab1b8c45Aa doi: 10.1038/nature10562 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_103_w2aab3b7c12b1b6b1ab1b8d103Aa doi: 10.1103/PhysRevLett.110.167402 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_199_w2aab3b7c12b1b6b1ab1b8d199Aa doi: 10.1103/PhysRevB.97.165202 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_055_w2aab3b7c12b1b6b1ab1b8c55Aa doi: 10.1103/PhysRevB.95.035207 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_063_w2aab3b7c12b1b6b1ab1b8c63Aa doi: 10.1038/nnano.2015.242 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_206_w2aab3b7c12b1b6b1ab1b8d206Aa doi: 10.1021/acs.chemmater.7b00183 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_050_w2aab3b7c12b1b6b1ab1b8c50Aa doi: 10.1038/ncomms4895 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_134_w2aab3b7c12b1b6b1ab1b8d134Aa doi: 10.1021/acs.nanolett.5b03312 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_178_w2aab3b7c12b1b6b1ab1b8d178Aa doi: 10.1063/1.5001520 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_094_w2aab3b7c12b1b6b1ab1b8c94Aa doi: 10.1038/nmat2420 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_069_w2aab3b7c12b1b6b1ab1b8c69Aa doi: 10.1038/ncomms5739 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_010_w2aab3b7c12b1b6b1ab1b8c10Aa doi: 10.1126/science.aav6926 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_100_w2aab3b7c12b1b6b1ab1b8d100Aa doi: 10.1038/nature10401 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_142_w2aab3b7c12b1b6b1ab1b8d142Aa doi: 10.1016/j.commatsci.2016.12.040 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_192_w2aab3b7c12b1b6b1ab1b8d192Aa doi: 10.1364/OPTICA.5.001128 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_043_w2aab3b7c12b1b6b1ab1b8c43Aa doi: 10.1103/PhysRevLett.119.096402 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_168_w2aab3b7c12b1b6b1ab1b8d168Aa doi: 10.1038/nphoton.2012.328 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_024_w2aab3b7c12b1b6b1ab1b8c24Aa doi: 10.1038/s41467-018-04916-z – ident: 2023040101265043966_j_nanoph-2019-0211_ref_176_w2aab3b7c12b1b6b1ab1b8d176Aa doi: 10.1002/smll.201000902 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_191_w2aab3b7c12b1b6b1ab1b8d191Aa doi: 10.1021/acsami.6b09875 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_187_w2aab3b7c12b1b6b1ab1b8d187Aa doi: 10.1557/mrs.2017.187 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_138_w2aab3b7c12b1b6b1ab1b8d138Aa – ident: 2023040101265043966_j_nanoph-2019-0211_ref_167_w2aab3b7c12b1b6b1ab1b8d167Aa doi: 10.1088/1367-2630/aae93f – ident: 2023040101265043966_j_nanoph-2019-0211_ref_018_w2aab3b7c12b1b6b1ab1b8c18Aa doi: 10.1126/science.1131871 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_166_w2aab3b7c12b1b6b1ab1b8d166Aa doi: 10.1103/PhysRevB.90.075202 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_099_w2aab3b7c12b1b6b1ab1b8c99Aa doi: 10.1021/nl404836p – ident: 2023040101265043966_j_nanoph-2019-0211_ref_014_w2aab3b7c12b1b6b1ab1b8c14Aa doi: 10.1126/science.aad8022 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_048_w2aab3b7c12b1b6b1ab1b8c48Aa doi: 10.1038/ncomms2034 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_098_w2aab3b7c12b1b6b1ab1b8c98Aa doi: 10.1021/nl102066q – ident: 2023040101265043966_j_nanoph-2019-0211_ref_121_w2aab3b7c12b1b6b1ab1b8d121Aa doi: 10.1038/ncomms12935 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_079_w2aab3b7c12b1b6b1ab1b8c79Aa doi: 10.1088/0034-4885/77/5/056503 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_151_w2aab3b7c12b1b6b1ab1b8d151Aa doi: 10.1063/1.5047808 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_210_w2aab3b7c12b1b6b1ab1b8d210Aa doi: 10.1038/s41467-017-00056-y – ident: 2023040101265043966_j_nanoph-2019-0211_ref_082_w2aab3b7c12b1b6b1ab1b8c82Aa – ident: 2023040101265043966_j_nanoph-2019-0211_ref_022_w2aab3b7c12b1b6b1ab1b8c22Aa doi: 10.1038/nphys2545 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_213_w2aab3b7c12b1b6b1ab1b8d213Aa – ident: 2023040101265043966_j_nanoph-2019-0211_ref_088_w2aab3b7c12b1b6b1ab1b8c88Aa doi: 10.1103/PhysRevLett.92.076401 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_110_w2aab3b7c12b1b6b1ab1b8d110Aa doi: 10.1103/PhysRevLett.118.037601 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_031_w2aab3b7c12b1b6b1ab1b8c31Aa doi: 10.1073/pnas.1305920110 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_115_w2aab3b7c12b1b6b1ab1b8d115Aa doi: 10.1073/pnas.1003052107 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_145_w2aab3b7c12b1b6b1ab1b8d145Aa doi: 10.1088/0953-8984/26/1/015305 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_001_w2aab3b7c12b1b6b1ab1b8b1Aa doi: 10.1126/science.1231364 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_203_w2aab3b7c12b1b6b1ab1b8d203Aa doi: 10.1103/PhysRevB.80.155425 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_114_w2aab3b7c12b1b6b1ab1b8d114Aa doi: 10.1103/PhysRevX.6.041035 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_105_w2aab3b7c12b1b6b1ab1b8d105Aa doi: 10.1103/PhysRevLett.107.090401 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_066_w2aab3b7c12b1b6b1ab1b8c66Aa doi: 10.1021/acsnano.7b00665 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_211_w2aab3b7c12b1b6b1ab1b8d211Aa doi: 10.1021/acs.nanolett.7b04819 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_180_w2aab3b7c12b1b6b1ab1b8d180Aa doi: 10.1063/1.4868128 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_132_w2aab3b7c12b1b6b1ab1b8d132Aa doi: 10.1038/nature12385 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_174_w2aab3b7c12b1b6b1ab1b8d174Aa doi: 10.1088/2053-1583/1/1/011002 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_036_w2aab3b7c12b1b6b1ab1b8c36Aa doi: 10.1038/nature07127 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_093_w2aab3b7c12b1b6b1ab1b8c93Aa doi: 10.1038/nature07278 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_208_w2aab3b7c12b1b6b1ab1b8d208Aa doi: 10.1038/nature21042 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_062_w2aab3b7c12b1b6b1ab1b8c62Aa doi: 10.1364/OPTICA.2.000347 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_080_w2aab3b7c12b1b6b1ab1b8c80Aa doi: 10.1364/JOSAB.33.000B65 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_117_w2aab3b7c12b1b6b1ab1b8d117Aa doi: 10.1016/j.physb.2009.09.023 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_061_w2aab3b7c12b1b6b1ab1b8c61Aa doi: 10.1038/nnano.2015.60 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_112_w2aab3b7c12b1b6b1ab1b8d112Aa doi: 10.1021/nl501841d – ident: 2023040101265043966_j_nanoph-2019-0211_ref_019_w2aab3b7c12b1b6b1ab1b8c19Aa doi: 10.1126/science.1139831 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_175_w2aab3b7c12b1b6b1ab1b8d175Aa doi: 10.1038/ncomms4328 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_085_w2aab3b7c12b1b6b1ab1b8c85Aa doi: 10.1103/PhysRevB.42.8605 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_171_w2aab3b7c12b1b6b1ab1b8d171Aa doi: 10.1103/PhysRevLett.121.183603 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_152_w2aab3b7c12b1b6b1ab1b8d152Aa doi: 10.1038/s41563-017-0008-y – ident: 2023040101265043966_j_nanoph-2019-0211_ref_070_w2aab3b7c12b1b6b1ab1b8c70Aa doi: 10.1126/science.aah6875 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_125_w2aab3b7c12b1b6b1ab1b8d125Aa doi: 10.1103/PhysRevApplied.6.034005 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_004_w2aab3b7c12b1b6b1ab1b8b4Aa doi: 10.1038/s41578-018-0008-9 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_051_w2aab3b7c12b1b6b1ab1b8c51Aa doi: 10.1103/PhysRevLett.115.093602 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_096_w2aab3b7c12b1b6b1ab1b8c96Aa doi: 10.1126/science.1074374 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_198_w2aab3b7c12b1b6b1ab1b8d198Aa doi: 10.1364/OE.20.019956 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_025_w2aab3b7c12b1b6b1ab1b8c25Aa doi: 10.1126/science.1253512 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_143_w2aab3b7c12b1b6b1ab1b8d143Aa doi: 10.1016/j.cpc.2018.01.004 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_015_w2aab3b7c12b1b6b1ab1b8c15Aa doi: 10.1126/science.aam8697 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_202_w2aab3b7c12b1b6b1ab1b8d202Aa doi: 10.1038/ncomms1788 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_092_w2aab3b7c12b1b6b1ab1b8c92Aa doi: 10.1038/nature07279 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_195_w2aab3b7c12b1b6b1ab1b8d195Aa doi: 10.1103/PhysRevB.89.235101 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_147_w2aab3b7c12b1b6b1ab1b8d147Aa doi: 10.1038/s41524-018-0132-5 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_078_w2aab3b7c12b1b6b1ab1b8c78Aa doi: 10.1515/nanoph-2019-0154 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_057_w2aab3b7c12b1b6b1ab1b8c57Aa doi: 10.1002/adma.201605092 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_131_w2aab3b7c12b1b6b1ab1b8d131Aa doi: 10.1103/PhysRevB.97.214104 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_113_w2aab3b7c12b1b6b1ab1b8d113Aa doi: 10.1103/PhysRevB.80.041201 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_030_w2aab3b7c12b1b6b1ab1b8c30Aa doi: 10.1038/nature09256 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_107_w2aab3b7c12b1b6b1ab1b8d107Aa doi: 10.1103/PhysRevB.94.241201 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_164_w2aab3b7c12b1b6b1ab1b8d164Aa doi: 10.1063/1.4948245 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_016_w2aab3b7c12b1b6b1ab1b8c16Aa doi: 10.1038/nature12373 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_090_w2aab3b7c12b1b6b1ab1b8c90Aa doi: 10.1038/nphys1075 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_013_w2aab3b7c12b1b6b1ab1b8c13Aa doi: 10.1126/science.aaa2253 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_139_w2aab3b7c12b1b6b1ab1b8d139Aa doi: 10.1017/CBO9780511805769 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_157_w2aab3b7c12b1b6b1ab1b8d157Aa doi: 10.1103/PhysRevB.86.041202 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_037_w2aab3b7c12b1b6b1ab1b8c37Aa doi: 10.1038/s41566-018-0232-2 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_023_w2aab3b7c12b1b6b1ab1b8c23Aa doi: 10.1126/science.1220513 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_041_w2aab3b7c12b1b6b1ab1b8c41Aa doi: 10.1103/PhysRevLett.113.263602 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_042_w2aab3b7c12b1b6b1ab1b8c42Aa doi: 10.1038/srep12882 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_119_w2aab3b7c12b1b6b1ab1b8d119Aa doi: 10.1103/PhysRevB.94.125401 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_197_w2aab3b7c12b1b6b1ab1b8d197Aa doi: 10.1038/nphys1716 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_179_w2aab3b7c12b1b6b1ab1b8d179Aa doi: 10.1103/PhysRevB.86.035201 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_086_w2aab3b7c12b1b6b1ab1b8c86Aa doi: 10.1364/OL.25.001294 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_003_w2aab3b7c12b1b6b1ab1b8b3Aa doi: 10.1038/nphoton.2016.186 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_049_w2aab3b7c12b1b6b1ab1b8c49Aa doi: 10.1103/PhysRevLett.111.120502 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_140_w2aab3b7c12b1b6b1ab1b8d140Aa doi: 10.1103/RevModPhys.86.253 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_193_w2aab3b7c12b1b6b1ab1b8d193Aa doi: 10.1146/annurev-physchem-042018-052628 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_039_w2aab3b7c12b1b6b1ab1b8c39Aa doi: 10.1103/PhysRevLett.113.263601 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_077_w2aab3b7c12b1b6b1ab1b8c77Aa doi: 10.1016/S0030-4018(97)00423-9 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_073_w2aab3b7c12b1b6b1ab1b8c73Aa doi: 10.1103/RevModPhys.85.961 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_028_w2aab3b7c12b1b6b1ab1b8c28Aa doi: 10.1038/ncomms11526 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_053_w2aab3b7c12b1b6b1ab1b8c53Aa doi: 10.1021/acsnano.5b06515 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_123_w2aab3b7c12b1b6b1ab1b8d123Aa doi: 10.1103/PhysRevB.99.184102 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_185_w2aab3b7c12b1b6b1ab1b8d185Aa doi: 10.1038/ncomms1224 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_091_w2aab3b7c12b1b6b1ab1b8c91Aa doi: 10.1063/1.2943282 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_012_w2aab3b7c12b1b6b1ab1b8c12Aa doi: 10.1038/s41467-018-04798-1 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_124_w2aab3b7c12b1b6b1ab1b8d124Aa doi: 10.1103/PhysRevLett.111.227602 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_160_w2aab3b7c12b1b6b1ab1b8d160Aa – ident: 2023040101265043966_j_nanoph-2019-0211_ref_163_w2aab3b7c12b1b6b1ab1b8d163Aa doi: 10.1103/PhysRevLett.109.267401 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_075_w2aab3b7c12b1b6b1ab1b8c75Aa doi: 10.1103/RevModPhys.83.33 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_205_w2aab3b7c12b1b6b1ab1b8d205Aa doi: 10.1038/nnano.2015.188 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_038_w2aab3b7c12b1b6b1ab1b8c38Aa doi: 10.1088/1367-2630/13/2/025012 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_035_w2aab3b7c12b1b6b1ab1b8c35Aa doi: 10.1038/s41586-018-0200-5 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_149_w2aab3b7c12b1b6b1ab1b8d149Aa doi: 10.1103/PhysRevB.88.075202 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_020_w2aab3b7c12b1b6b1ab1b8c20Aa doi: 10.1126/science.1189075 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_204_w2aab3b7c12b1b6b1ab1b8d204Aa doi: 10.1103/PhysRevLett.102.195505 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_165_w2aab3b7c12b1b6b1ab1b8d165Aa doi: 10.1088/1367-2630/16/7/073026 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_136_w2aab3b7c12b1b6b1ab1b8d136Aa doi: 10.1038/nature14025 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_129_w2aab3b7c12b1b6b1ab1b8d129Aa doi: 10.1103/PhysRevLett.108.197601 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_169_w2aab3b7c12b1b6b1ab1b8d169Aa doi: 10.1126/science.aac5523 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_029_w2aab3b7c12b1b6b1ab1b8c29Aa doi: 10.1126/science.1196436 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_170_w2aab3b7c12b1b6b1ab1b8d170Aa doi: 10.1126/science.273.5271.87 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_161_w2aab3b7c12b1b6b1ab1b8d161Aa doi: 10.1103/PhysRevLett.103.186404 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_076_w2aab3b7c12b1b6b1ab1b8c76Aa doi: 10.1016/j.jlumin.2010.12.015 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_081_w2aab3b7c12b1b6b1ab1b8c81Aa doi: 10.1126/science.276.5321.2012 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_186_w2aab3b7c12b1b6b1ab1b8d186Aa doi: 10.1088/2053-1583/aa878f – ident: 2023040101265043966_j_nanoph-2019-0211_ref_046_w2aab3b7c12b1b6b1ab1b8c46Aa doi: 10.1038/nmat4144 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_177_w2aab3b7c12b1b6b1ab1b8d177Aa doi: 10.1109/IIT.2016.7882858 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_200_w2aab3b7c12b1b6b1ab1b8d200Aa doi: 10.1088/0034-4885/41/8/002 – ident: 2023040101265043966_j_nanoph-2019-0211_ref_154_w2aab3b7c12b1b6b1ab1b8d154Aa doi: 10.1103/PhysRevB.77.115118 |
SSID | ssj0000993196 |
Score | 2.467626 |
Snippet | Optically active point defects in wide-bandgap crystals are leading building blocks for quantum information technologies including quantum processors,... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1867 |
SubjectTerms | Crystal defects Design defects inverse engineering materials discovery Materials selection NV center Optical activity photonics Point defects quantum emitters quantum information processing Quantum phenomena quantum sensing Repeaters Room temperature semiconductors Simulators Solid state devices |
SummonAdditionalLinks | – databaseName: Directory of open access journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Sk5f6xtUqe_DiYenuJptkjyqW4kEQLPQWNi9FdFvaLtJ_7ySb1iqoF2_LksDwzUzmGzKZQegCKH0hZQaeVkiWEE1dEYDFic4osBGLIX_z3T7v6XBE7sbFeGPUl6sJa9sDt8D1i7zKU5ljolJNqlJzbCiQYpPiXEqq_ekLMW8jmXppeY-zLTdZDihMwoGmhztKiN_9uqon02cwEPeAJ8-yLzHJt-7_wje77_7mWpunWbNcrG5KfQAa7KJuYI7xVSvxHtoy9T7aCSwyDj46P0DRQwNoNW-xNr5UI5ZL-HR1GodoNLh9vBkmYQBCooo0WyRSWS5xUUGIlpxarMCBtM0l5yRnuVJMYWKZKhU2ylgpVUUKxYlhGXEbKT5CnXpSm2MUq8KWlNu01AwT8LmKlDLNeAnagRyRywj1VxAIFbqDuyEVr8JlCQCaaEETDjThQIvQ5XrHtO2M8cvaa4fqep3rae1_gKZF0LT4S9MR6q10IoKjzQXQU5IxNxQgQvybnj5X_SQXh5OeU3byH-Kdom1vUK64gPRQZzFrzBkQloU897b5ATJc44c priority: 102 providerName: Directory of Open Access Journals |
Title | Quantum defects by design |
URI | https://www.degruyter.com/doi/10.1515/nanoph-2019-0211 https://www.proquest.com/docview/2314170848 https://doaj.org/article/52a20b234c0d4a9d83e6118e032bb6d2 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VuPRCaSkilK5y6IVDtIntOM4JFcQW9YBaBBI3K37BAbLLPlTx75nxeheBVG5RZEfRPL_xjGcAfiCkr42pUNNq0xTCSSoCCLxwlUQ0EjjGb7Hb54U8vxa_b-qbdOA2S2WVK5sYDbUbWzojHyIOEVVD3d-PJ48FTY2i7GoaobEBW2iCFQZfWydnF38u16csiH9IxmjCHEKZQiFcT7lK9OPDvuvHkzsUFLrIw6rqlW-KLfxf4c7tfzGD7fztdPE0X2VMoyMa7cB2QpD5zyXLP8MH33-BTwlN5klXZ7uQ_V0g1RYPufOxZCM3T_hI9Rpf4Xp0dnV6XqRBCIWty2peGBuU4XWHrtooGbhFRXKBGaUEa5i1jeUiNLa13FsfjLGdqK0SvqkEbZR8Dzb7ce_3Ibd1aKUKZesaLlD3OtGaslItcgljRWUyGK5IoG3qEk7DKu41RQtINL0kmiaiaSJaBkfrHZNlh4x31p4QVdfrqLd1fDGe3uqkKrpmHSsN48KWTnStU9xLDIN8yZkx0rEMDlc80UnhZvpFPDJQb_j0sup__6XQ4ivZHLz_5W_wMYoKlQ-IQ9icTxf-O0KSuRnAhhr9GiTpG8TA_hmVmt67 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoBLKS-R0kIOcOAQbWI7jnNAiNeypaUSUiv1ZuJXObTZ7T5U7Z_iNzLjTbYqEr31FkW2Fc18Y3-TGc8AvEFKXxpToKWVpsqEk5QEEHjmColsJHD032K1zyM5OhHfT8vTDfjT34WhtMp-T4wbtRtb-kc-QB4iioqqv3-YXGbUNYqiq30LjRUsDvzyCl222fv9L6jft4wNvx5_HmVdV4HMlnkxz4wNyvCywXPPKBm4RVS6wIxSglXM2spyESpbW-6tD8bYRpRWCV8VgiZKjuveg_uC85osSg2_rf_pINsiRFM_OyROmULnoIuMImsYtE07nvxGWNK1IVYUN07C2DDgBsvduorxcufPpovlvI_PxmNvuA1bHV9NP64A9hg2fPsEHnXcNe12htlTSH4uUEeLi9T5mCCSmiU-UnbIMzi5EwE9h8123PoXkNoy1FKFvHYVF2jpjahNXqgaMYGeqTIJDHoRaNvVJKfWGOeafBMUml4JTZPQNAktgXfrGZNVPY5bxn4iqa7HUSXt-GI8PdOdYeqSNSw3jAubO9HUTnEv0enyOWfGSMcS2O11ojvznulrMCag_tHT9aj_fZfC80XJauf2lV_Dg9Hxj0N9uH908BIeRthQ4oLYhc35dOH3kAzNzauIwBR-3TXk_wKlRhoD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RXanqZctTpOWRA5ceok1ix3GOvJaFVrRVWYmbFb-WA82ulo0Q_55x1psCKhy4RZFHsr7xZL5xxp8BDpDSZ1ImGGmZzCOqmWsCsCTSCUM2YgnWb43a5yUbjujFdXa9AsfLszCurVKb8ax-mC8UUvt6omq3UdZqDWAG7ldlNZneoIvdERysYfpTbT9Al7GC0A50D4dnf362Wy1IgtxC8z8p_2f-LCk12v3PCGfvvvl13c7rSQYarELPU8fwcOHrNVgx1Tp89jQy9EF6twHB7xrhqv-G2jS9GqF8wEfXqLEJo8Hp1fEw8jcgRCqLk3kkleWSZCXmaMmZJQojSNtUck7TPFUqV4TaXBWKGGWslKqkmeLU5Al1hoxsQaeaVGYbQpXZgnEbFzonFIOupIWME16ge7BI5DKA_hICobw8uLul4la4MgFBEwvQhANNONAC-NZaTBfSGG-MPXKotuOcqHXzYjIbCx8jIkvLNJYpoSrWtCw0J4Zh_WNikkrJdBrAztInwkfanUB-SpPc3QoQAH_hp3-jXpsXx089Z_mX95vuw8dfJwPx4_zy-1f41Kwo115Ad6Azn9VmFynLXO75JfkImwDmug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+defects+by+design&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Bassett%2C+Lee+C&rft.au=Alkauskas%2C+Audrius&rft.au=Exarhos%2C+Annemarie+L&rft.au=Fu%2C+Kai-Mei+C&rft.date=2019-10-04&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=2192-8606&rft.eissn=2192-8614&rft.volume=8&rft.issue=11&rft.spage=1867&rft.epage=1888&rft_id=info:doi/10.1515%2Fnanoph-2019-0211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8606&client=summon |