Quantum defects by design

Optically active point defects in wide-bandgap crystals are leading building blocks for quantum information technologies including quantum processors, repeaters, simulators, and sensors. Although defects and impurities are ubiquitous in all materials, select defect configurations in certain material...

Full description

Saved in:
Bibliographic Details
Published inNanophotonics (Berlin, Germany) Vol. 8; no. 11; pp. 1867 - 1888
Main Authors Bassett, Lee C., Alkauskas, Audrius, Exarhos, Annemarie L., Fu, Kai-Mei C.
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 04.10.2019
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optically active point defects in wide-bandgap crystals are leading building blocks for quantum information technologies including quantum processors, repeaters, simulators, and sensors. Although defects and impurities are ubiquitous in all materials, select defect configurations in certain materials harbor coherent electronic and nuclear quantum states that can be optically and electronically addressed in solid-state devices, in some cases even at room temperature. Historically, the study of quantum point defects has been limited to a relatively small set of host materials and defect systems. In this article, we consider the potential for identifying defects in new materials, either to advance known applications in quantum science or to enable entirely new capabilities. We propose that, in principle, it should be possible to reverse the historical approach, which is partially based on accidental discovery, in order to quantum defects with desired properties suitable for specific applications. We discuss the biggest obstacles on the road towards this goal, in particular those related to theoretical prediction, materials growth and processing, and experimental characterization.
AbstractList Optically active point defects in wide-bandgap crystals are leading building blocks for quantum information technologies including quantum processors, repeaters, simulators, and sensors. Although defects and impurities are ubiquitous in all materials, select defect configurations in certain materials harbor coherent electronic and nuclear quantum states that can be optically and electronically addressed in solid-state devices, in some cases even at room temperature. Historically, the study of quantum point defects has been limited to a relatively small set of host materials and defect systems. In this article, we consider the potential for identifying defects in new materials, either to advance known applications in quantum science or to enable entirely new capabilities. We propose that, in principle, it should be possible to reverse the historical approach, which is partially based on accidental discovery, in order to design quantum defects with desired properties suitable for specific applications. We discuss the biggest obstacles on the road towards this goal, in particular those related to theoretical prediction, materials growth and processing, and experimental characterization.
Optically active point defects in wide-bandgap crystals are leading building blocks for quantum information technologies including quantum processors, repeaters, simulators, and sensors. Although defects and impurities are ubiquitous in all materials, select defect configurations in certain materials harbor coherent electronic and nuclear quantum states that can be optically and electronically addressed in solid-state devices, in some cases even at room temperature. Historically, the study of quantum point defects has been limited to a relatively small set of host materials and defect systems. In this article, we consider the potential for identifying defects in new materials, either to advance known applications in quantum science or to enable entirely new capabilities. We propose that, in principle, it should be possible to reverse the historical approach, which is partially based on accidental discovery, in order to design quantum defects with desired properties suitable for specific applications. We discuss the biggest obstacles on the road towards this goal, in particular those related to theoretical prediction, materials growth and processing, and experimental characterization.
Optically active point defects in wide-bandgap crystals are leading building blocks for quantum information technologies including quantum processors, repeaters, simulators, and sensors. Although defects and impurities are ubiquitous in all materials, select defect configurations in certain materials harbor coherent electronic and nuclear quantum states that can be optically and electronically addressed in solid-state devices, in some cases even at room temperature. Historically, the study of quantum point defects has been limited to a relatively small set of host materials and defect systems. In this article, we consider the potential for identifying defects in new materials, either to advance known applications in quantum science or to enable entirely new capabilities. We propose that, in principle, it should be possible to reverse the historical approach, which is partially based on accidental discovery, in order to quantum defects with desired properties suitable for specific applications. We discuss the biggest obstacles on the road towards this goal, in particular those related to theoretical prediction, materials growth and processing, and experimental characterization.
Author Bassett, Lee C.
Alkauskas, Audrius
Fu, Kai-Mei C.
Exarhos, Annemarie L.
Author_xml – sequence: 1
  givenname: Lee C.
  orcidid: 0000-0001-8729-1530
  surname: Bassett
  fullname: Bassett, Lee C.
  email: lbassett@seas.upenn.edu
  organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 2
  givenname: Audrius
  orcidid: 0000-0002-4228-6612
  surname: Alkauskas
  fullname: Alkauskas, Audrius
  organization: Center for Physical Sciences and Technology (FTMC), Vilnius LT-10257, Lithuania
– sequence: 3
  givenname: Annemarie L.
  orcidid: 0000-0003-3026-7737
  surname: Exarhos
  fullname: Exarhos, Annemarie L.
  organization: Department of Physics, Lafayette College, Easton, PA 18042, USA
– sequence: 4
  givenname: Kai-Mei C.
  orcidid: 0000-0003-4775-8524
  surname: Fu
  fullname: Fu, Kai-Mei C.
  organization: Department of Physics and Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
BookMark eNp9kM1LAzEQxYNUsNbe9VbwvJpJstnsSaT4USiIoOeQZJO6pd3UbBbpf2_WlQqCDoR5hPm9Gd4pGjW-sQidA76CHPLrRjV-95YRDGWGCcARGhMoSSY4sNFBY36Cpm27xqnKkkLJx-jiuVNN7LazyjprYjvT-yTbetWcoWOnNq2dfvcJer2_e5k_Zsunh8X8dpmZHEPMtHFC01wBYC24oyYHXDmihWCkIMYUhjJXmNJQa6zT2iiWG8FsAawHOZ2gxeBbebWWu1BvVdhLr2r59eHDSqoQa7OxMieKYE0oM7hiqqwEtRxAWEyJ1rwiyety8NoF_97ZNsq170KTzpeEAoMCCybSFB6mTPBtG6w7bAUs-zzlkKfs85R9ngnhvxBTRxVr38Sg6s1_4M0AfqhNtKGyq9Dtk_g57C9UQHq8oJ_ROZBt
CitedBy_id crossref_primary_10_1103_PRXQuantum_3_010343
crossref_primary_10_1515_nanoph_2020_0484
crossref_primary_10_1016_j_cpc_2021_108091
crossref_primary_10_1007_s41745_022_00336_7
crossref_primary_10_1063_5_0230736
crossref_primary_10_1021_acs_nanolett_4c04657
crossref_primary_10_1021_acsphotonics_2c00795
crossref_primary_10_1103_PhysRevB_108_L041201
crossref_primary_10_1103_PhysRevLett_133_130802
crossref_primary_10_1126_sciadv_adh8617
crossref_primary_10_1103_PhysRevMaterials_8_106201
crossref_primary_10_1063_5_0203366
crossref_primary_10_1088_2633_4356_ac7e9f
crossref_primary_10_1039_D3FD00178D
crossref_primary_10_1021_acsphotonics_9b01707
crossref_primary_10_1364_OPTICAQ_501568
crossref_primary_10_1063_5_0211707
crossref_primary_10_1103_PhysRevLett_125_193601
crossref_primary_10_1103_PhysRevResearch_6_L022055
crossref_primary_10_1021_acs_chemrev_0c00831
crossref_primary_10_1002_advs_202300190
crossref_primary_10_1021_acs_nanolett_2c04890
crossref_primary_10_1038_s41578_021_00306_y
crossref_primary_10_1103_PhysRevB_104_104105
crossref_primary_10_1021_acsnano_3c00191
crossref_primary_10_1021_acs_nanolett_2c04533
crossref_primary_10_1038_s42254_021_00283_9
crossref_primary_10_1103_PRXQuantum_4_010202
crossref_primary_10_1021_acs_jpca_2c06854
crossref_primary_10_2138_rmg_2022_88_12
crossref_primary_10_1021_acsami_1c16988
crossref_primary_10_1103_PRXQuantum_3_030331
crossref_primary_10_1515_nanoph_2019_0437
crossref_primary_10_1103_PhysRevA_110_032606
crossref_primary_10_1103_PhysRevB_108_075302
crossref_primary_10_1140_epjp_s13360_022_03065_z
crossref_primary_10_1093_mam_ozae044_775
crossref_primary_10_1109_TQE_2021_3057799
crossref_primary_10_1002_adma_202201064
crossref_primary_10_1557_s43577_023_00659_5
crossref_primary_10_1103_PhysRevB_103_014115
crossref_primary_10_1103_PhysRevB_110_125116
crossref_primary_10_1116_5_0025186
crossref_primary_10_1002_qute_202200044
crossref_primary_10_1016_j_commatsci_2020_109754
crossref_primary_10_1002_qute_202100003
crossref_primary_10_1063_5_0061330
crossref_primary_10_1103_PhysRevB_104_235301
crossref_primary_10_1063_5_0205525
crossref_primary_10_1109_TQE_2023_3322342
crossref_primary_10_1021_acsmaterialslett_1c00139
crossref_primary_10_1038_s41563_024_01887_z
crossref_primary_10_1002_adma_202303098
crossref_primary_10_1103_PhysRevMaterials_6_L053201
crossref_primary_10_1088_1674_1056_ad5a75
crossref_primary_10_1103_PhysRevB_104_045303
crossref_primary_10_1364_OPTICA_398628
crossref_primary_10_1038_s41467_022_28133_x
crossref_primary_10_1063_5_0156874
crossref_primary_10_1021_acs_nanolett_4c01333
crossref_primary_10_1021_acs_cgd_0c01417
crossref_primary_10_1021_acs_nanolett_4c05337
crossref_primary_10_1103_PhysRevMaterials_8_036201
crossref_primary_10_1557_s43577_023_00584_7
crossref_primary_10_1038_s41467_022_35048_0
crossref_primary_10_1038_s44310_024_00031_8
crossref_primary_10_1002_inf2_12128
crossref_primary_10_1103_PhysRevB_103_205203
crossref_primary_10_1088_2633_4356_ad1d38
crossref_primary_10_1002_adhm_202101181
crossref_primary_10_1088_2515_7647_ac1ef4
crossref_primary_10_1021_acs_nanolett_1c00685
crossref_primary_10_1038_s41567_022_01815_5
crossref_primary_10_1038_s41467_024_47876_3
Cites_doi 10.1021/acsnano.8b02001
10.1126/science.aav2789
10.1016/S0039-6028(03)00485-0
10.1038/s41467-017-00810-2
10.1146/annurev-matsci-070317-124453
10.1021/acs.nanolett.6b03268
10.1126/science.aaw2104
10.1126/sciadv.aar3580
10.1103/PhysRevApplied.10.064061
10.1063/1.2103389
10.1103/PhysRevLett.114.145502
10.1103/PhysRevB.77.035119
10.1126/science.1239584
10.1021/cr200148b
10.1088/1367-2630/18/2/023021
10.1098/rspa.1976.0039
10.1021/acs.nanolett.6b01987
10.1038/30156
10.1103/PhysRevX.5.031031
10.1038/nnano.2015.75
10.1103/PhysRevB.92.115206
10.1103/PhysRevLett.113.113602
10.1103/PhysRevB.97.115135
10.1103/PhysRevLett.120.213603
10.1103/PhysRevB.98.155143
10.1126/science.aao0290
10.1126/science.1255541
10.1103/PhysRevLett.113.197601
10.1021/acs.chemrev.7b00536
10.1126/science.aaw2906
10.1103/PhysRevB.98.085207
10.1063/1.5112375
10.1103/PhysRevLett.64.669
10.1103/PhysRevB.90.241203
10.1021/acsnano.7b00638
10.1038/nature12016
10.1103/PhysRevMaterials.4.023402
10.1038/s41467-018-03290-0
10.1038/nnano.2015.67
10.1103/PhysRevB.96.020101
10.1038/ncomms9577
10.1103/PhysRevLett.93.130501
10.1038/s41467-018-08185-8
10.1103/PhysRevLett.112.036405
10.1038/ncomms2771
10.1126/science.1157233
10.1103/PhysRevX.8.041027
10.1038/s41535-018-0103-6
10.1038/nnano.2014.2
10.1103/RevModPhys.74.601
10.1146/annurev-physchem-040513-103659
10.1126/science.aau4691
10.1103/RevModPhys.89.035002
10.1103/PhysRevLett.114.136402
10.1038/nnano.2010.172
10.1557/mrs.2015.266
10.1038/nnano.2015.79
10.1103/PhysRevLett.85.290
10.1103/PhysRevB.95.041402
10.1364/CLEO_QELS.2019.FM4A.5
10.1038/nature12919
10.1103/PhysRevX.8.021063
10.1038/nphys141
10.1103/PhysRevLett.103.256404
10.1021/acs.nanolett.8b01030
10.1088/0953-8984/21/36/364210
10.7567/APEX.7.055201
10.3390/mi9090437
10.1021/nl204010e
10.1103/PhysRevA.20.1693
10.1126/science.aau7392
10.1126/science.1217635
10.1134/1.2142873
10.1016/j.physrep.2013.02.001
10.1038/nmat4145
10.1126/science.aan0070
10.1038/nphoton.2015.58
10.1038/nature10562
10.1103/PhysRevLett.110.167402
10.1103/PhysRevB.97.165202
10.1103/PhysRevB.95.035207
10.1038/nnano.2015.242
10.1021/acs.chemmater.7b00183
10.1038/ncomms4895
10.1021/acs.nanolett.5b03312
10.1063/1.5001520
10.1038/nmat2420
10.1038/ncomms5739
10.1126/science.aav6926
10.1038/nature10401
10.1016/j.commatsci.2016.12.040
10.1364/OPTICA.5.001128
10.1103/PhysRevLett.119.096402
10.1038/nphoton.2012.328
10.1038/s41467-018-04916-z
10.1002/smll.201000902
10.1021/acsami.6b09875
10.1557/mrs.2017.187
10.1088/1367-2630/aae93f
10.1126/science.1131871
10.1103/PhysRevB.90.075202
10.1021/nl404836p
10.1126/science.aad8022
10.1038/ncomms2034
10.1021/nl102066q
10.1038/ncomms12935
10.1088/0034-4885/77/5/056503
10.1063/1.5047808
10.1038/s41467-017-00056-y
10.1038/nphys2545
10.1103/PhysRevLett.92.076401
10.1103/PhysRevLett.118.037601
10.1073/pnas.1305920110
10.1073/pnas.1003052107
10.1088/0953-8984/26/1/015305
10.1126/science.1231364
10.1103/PhysRevB.80.155425
10.1103/PhysRevX.6.041035
10.1103/PhysRevLett.107.090401
10.1021/acsnano.7b00665
10.1021/acs.nanolett.7b04819
10.1063/1.4868128
10.1038/nature12385
10.1088/2053-1583/1/1/011002
10.1038/nature07127
10.1038/nature07278
10.1038/nature21042
10.1364/OPTICA.2.000347
10.1364/JOSAB.33.000B65
10.1016/j.physb.2009.09.023
10.1038/nnano.2015.60
10.1021/nl501841d
10.1126/science.1139831
10.1038/ncomms4328
10.1103/PhysRevB.42.8605
10.1103/PhysRevLett.121.183603
10.1038/s41563-017-0008-y
10.1126/science.aah6875
10.1103/PhysRevApplied.6.034005
10.1038/s41578-018-0008-9
10.1103/PhysRevLett.115.093602
10.1126/science.1074374
10.1364/OE.20.019956
10.1126/science.1253512
10.1016/j.cpc.2018.01.004
10.1126/science.aam8697
10.1038/ncomms1788
10.1038/nature07279
10.1103/PhysRevB.89.235101
10.1038/s41524-018-0132-5
10.1515/nanoph-2019-0154
10.1002/adma.201605092
10.1103/PhysRevB.97.214104
10.1103/PhysRevB.80.041201
10.1038/nature09256
10.1103/PhysRevB.94.241201
10.1063/1.4948245
10.1038/nature12373
10.1038/nphys1075
10.1126/science.aaa2253
10.1017/CBO9780511805769
10.1103/PhysRevB.86.041202
10.1038/s41566-018-0232-2
10.1126/science.1220513
10.1103/PhysRevLett.113.263602
10.1038/srep12882
10.1103/PhysRevB.94.125401
10.1038/nphys1716
10.1103/PhysRevB.86.035201
10.1364/OL.25.001294
10.1038/nphoton.2016.186
10.1103/PhysRevLett.111.120502
10.1103/RevModPhys.86.253
10.1146/annurev-physchem-042018-052628
10.1103/PhysRevLett.113.263601
10.1016/S0030-4018(97)00423-9
10.1103/RevModPhys.85.961
10.1038/ncomms11526
10.1021/acsnano.5b06515
10.1103/PhysRevB.99.184102
10.1038/ncomms1224
10.1063/1.2943282
10.1038/s41467-018-04798-1
10.1103/PhysRevLett.111.227602
10.1103/PhysRevLett.109.267401
10.1103/RevModPhys.83.33
10.1038/nnano.2015.188
10.1088/1367-2630/13/2/025012
10.1038/s41586-018-0200-5
10.1103/PhysRevB.88.075202
10.1126/science.1189075
10.1103/PhysRevLett.102.195505
10.1088/1367-2630/16/7/073026
10.1038/nature14025
10.1103/PhysRevLett.108.197601
10.1126/science.aac5523
10.1126/science.1196436
10.1126/science.273.5271.87
10.1103/PhysRevLett.103.186404
10.1016/j.jlumin.2010.12.015
10.1126/science.276.5321.2012
10.1088/2053-1583/aa878f
10.1038/nmat4144
10.1109/IIT.2016.7882858
10.1088/0034-4885/41/8/002
10.1103/PhysRevB.77.115118
ContentType Journal Article
Copyright 2019. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.1515/nanoph-2019-0211
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Directory of open access journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Solid State and Superconductivity Abstracts
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of open access journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2192-8614
EndPage 1888
ExternalDocumentID oai_doaj_org_article_52a20b234c0d4a9d83e6118e032bb6d2
10_1515_nanoph_2019_0211
10_1515_nanoph_2019_02118111867
GroupedDBID 0R~
0~D
5VS
8FE
8FG
AAFWJ
ABFKT
ACGFS
ADBBV
ADMLS
AEJTT
AENEX
AFBDD
AFKRA
AFPKN
AHGSO
AIKXB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
HZ~
O9-
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
QD8
SA.
AAYXX
CITATION
7SP
7U5
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c501t-bcf8b35a110b86f3c510df2b884272cc7c34f7c9c3ecefbbca45c84e714f8b363
IEDL.DBID BENPR
ISSN 2192-8606
IngestDate Wed Aug 27 01:31:47 EDT 2025
Fri Jul 25 07:30:32 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Tue Jul 01 00:41:48 EDT 2025
Thu Jul 10 10:38:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This work is licensed under the Creative Commons Attribution 4.0 Public License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-bcf8b35a110b86f3c510df2b884272cc7c34f7c9c3ecefbbca45c84e714f8b363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4228-6612
0000-0001-8729-1530
0000-0003-3026-7737
0000-0003-4775-8524
OpenAccessLink https://www.proquest.com/docview/2314170848?pq-origsite=%requestingapplication%
PQID 2314170848
PQPubID 2038884
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_52a20b234c0d4a9d83e6118e032bb6d2
proquest_journals_2314170848
crossref_primary_10_1515_nanoph_2019_0211
crossref_citationtrail_10_1515_nanoph_2019_0211
walterdegruyter_journals_10_1515_nanoph_2019_02118111867
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-04
PublicationDateYYYYMMDD 2019-10-04
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-04
  day: 04
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Nanophotonics (Berlin, Germany)
PublicationYear 2019
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References Cramer, J; Kalb, N; Rol, MA (j_nanoph-2019-0211_ref_028) 2016; 7
Aslam, N; Pfender, M; Neumann, P (j_nanoph-2019-0211_ref_015) 2017; 357
Meijer, J; Burchard, B; Domhan, M (j_nanoph-2019-0211_ref_097) 2005; 87
Li, X; Shepard, GD; Cupo, A (j_nanoph-2019-0211_ref_190) 2017; 11
Steger, M; Saeedi, K; Thewalt, MLW (j_nanoph-2019-0211_ref_005) 2012; 336
Alkauskas, A; McCluskey, MD; Van de Walle, CG (j_nanoph-2019-0211_ref_164) 2016; 119
(j_nanoph-2019-0211_ref_006) 1968
Gurudev Dutt, MV; Childress, L; Jiang, L (j_nanoph-2019-0211_ref_019) 2007; 16
Liaugaudas, G; Collins, AT; Suhling, K; Davies, G; Heintzmann, R (j_nanoph-2019-0211_ref_196) 2009; 21
Fukui, T; Doi, Y; Miyazaki, T (j_nanoph-2019-0211_ref_181) 2014; 7
Xia, K; Kolesov, R; Wang, Y (j_nanoph-2019-0211_ref_051) 2015; 115
Kolesov, R; Xia, K; Reuter, R (j_nanoph-2019-0211_ref_049) 2013; 111
Schröder, T; Mouradian, SL; Zheng, J (j_nanoph-2019-0211_ref_080) 2016; 33
Bernien, H; Hensen, B; Pfaff, W (j_nanoph-2019-0211_ref_033) 2013; 497
Rogers, LJ; Jahnke, KD; Doherty, MW (j_nanoph-2019-0211_ref_195) 2014; 89
Siyushev, P; Nesladek, M; Bourgeois, E (j_nanoph-2019-0211_ref_111) 2019; 363
Zhong, T; Kindem, JM; Bartholomew, JG (j_nanoph-2019-0211_ref_171) 2018; 121
Awschalom, DD; Bassett, LC; Dzurak, AS; Hu, EL; Petta, JR (j_nanoph-2019-0211_ref_001) 2013; 339
Siyushev, P; Pinto, H; Vörös, M; Gali, A; Jelezko, F; Wrachtrup, J (j_nanoph-2019-0211_ref_103) 2013; 110
Gammon, D; Snow, ES; Shanabrook, BV; Katzer, DS; Park, D (j_nanoph-2019-0211_ref_170) 1996; 273
Müller, T; Hepp, C; Pingault, B (j_nanoph-2019-0211_ref_175) 2014; 5
Thiering, G; Gali, A (j_nanoph-2019-0211_ref_104) 2018; 98
Loubser, JHN; Van Wyk, JA (j_nanoph-2019-0211_ref_084) 1977; 9
Green, BL; Mottishaw, S; Breeze, BG (j_nanoph-2019-0211_ref_043) 2017; 119
Rose, BC; Huang, D; Zhang, Z-H (j_nanoph-2019-0211_ref_044) 2018; 361
Taminiau, TH; Cramer, J; van der Sar, T; Dobrovitski, V; Hanson, R (j_nanoph-2019-0211_ref_027) 2014; 9
Bourgeois, E; Londero, E; Buczak, K (j_nanoph-2019-0211_ref_108) 2017; 95
Grosso, G; Moon, H; Lienhard, B (j_nanoph-2019-0211_ref_135) 2017; 8
Neu, E; Agio, M; Becher, C (j_nanoph-2019-0211_ref_198) 2012; 20
Brouri, R; Beveratos, A; Poizat, J-P; Grangier, P (j_nanoph-2019-0211_ref_086) 2000; 25
Kaduk, B; Kowalczyk, T; Van Voorhis, T (j_nanoph-2019-0211_ref_159) 2012; 112
Bodrog, Z; Gali, A (j_nanoph-2019-0211_ref_145) 2013; 26
Ham, BS; Hemmer, PR; Shahriar, MS (j_nanoph-2019-0211_ref_077) 1997; 144
Andersen, TI; Dwyer, BL; Sanchez-Yamagishi, JD (j_nanoph-2019-0211_ref_011) 2019; 364
Susi, T; Kepaptsoglou, D; Lin, Y-C (j_nanoph-2019-0211_ref_186) 2017; 4
Weston, L; Wickramaratne, D; Mackoit, M; Alkauskas, A; Van de Walle, CG (j_nanoph-2019-0211_ref_131) 2018; 97
He, Y-M; Clark, G; Schaibley, JR (j_nanoph-2019-0211_ref_060) 2015; 10
Hrubesch, FM; Braunbeck, G; Stutzmann, M; Reinhard, F; Brandt, MS (j_nanoph-2019-0211_ref_110) 2017; 118
Kumar, S; Kaczmarczyk, A; Gerardot, BD (j_nanoph-2019-0211_ref_134) 2015; 15
Bassett, LC; Heremans, FJ; Christle, DJ (j_nanoph-2019-0211_ref_032) 2014; 345
Neu, E; Steinmetz, D; Riedrich-Möller, J (j_nanoph-2019-0211_ref_038) 2011; 13
Freysoldt, C; Grabowski, B; Hickel, T (j_nanoph-2019-0211_ref_140) 2014; 86
Balasubramanian, G; Neumann, P; Twitchen, D (j_nanoph-2019-0211_ref_094) 2009; 8
Rondin, L; Tetienne, J-P; Hingant, T; Roch, JF; Maletinsky, P; Jacques, V (j_nanoph-2019-0211_ref_079) 2014; 77
Gruber, A; Dräbenstedt, A; Tietz, C; Fleury, L; Wrachtrup, J; von Borczyskowski, C (j_nanoph-2019-0211_ref_081) 1997; 276
MacQuarrie, ER; Gosavi, TA; Jungwirth, NR; Bhave, SA; Fuchs, GD (j_nanoph-2019-0211_ref_124) 2013; 111
Iwasaki, T; Ishibashi, F; Miyamoto, Y (j_nanoph-2019-0211_ref_042) 2015; 5
Chakravarthi, S; Moore, C; Opsvig, A (j_nanoph-2019-0211_ref_182) 2019
von Barth, U (j_nanoph-2019-0211_ref_162) 1979; 20
Awschalom, DD; Hanson, R; Wrachtrup, J; Zhou, BB (j_nanoph-2019-0211_ref_037) 2018; 12
Robledo, L; Childress, L; Bernien, H; Hensen, B; Alkemade, PFA; Hanson, R (j_nanoph-2019-0211_ref_100) 2011; 477
Kagan, CR; Lifshitz, E; Sargent, EH; Talapin, DV (j_nanoph-2019-0211_ref_169) 2016; 353:aac5523
Dong, W; Doherty, MW; Economou, SE (j_nanoph-2019-0211_ref_123) 2019; 99
van Oort, E; Stroomer, P; Glasbeek, M (j_nanoph-2019-0211_ref_085) 1990; 42
Ma, Y; Rohlfing, M (j_nanoph-2019-0211_ref_154) 2008; 77
Shirasaki, Y; Supran, GJ; Bawendi, MG; Bulović, V (j_nanoph-2019-0211_ref_168) 2012; 7
Ivády, V; Abrikosov, IA; Gali, A (j_nanoph-2019-0211_ref_147) 2018; 4
Jarmola, A; Acosta, VM; Jensen, K; Chemerisov, S; Budker, D (j_nanoph-2019-0211_ref_129) 2012; 108
Mizuochi, N; Neumann, P; Rempp, F (j_nanoph-2019-0211_ref_113) 2009; 80
Fuchs, GD; Dobrovitski, VV; Toyli, DM (j_nanoph-2019-0211_ref_197) 2010; 6
Baranov, PG; Il’in, IV; Mokhov, EN; Muzafarova, MV; Orlinskii, SB; Schmidt, J (j_nanoph-2019-0211_ref_116) 2005; 82
Doherty, MW; Manson, NB; Delaney, P; Jelezko, F; Wrachtrup, J; Hollenberg, LCL (j_nanoph-2019-0211_ref_008) 2013; 528
Yang, Y; Chen, C-C; Scott, MC (j_nanoph-2019-0211_ref_208) 2017; 542
Tian, X; Kim, DS; Yang, S (j_nanoph-2019-0211_ref_209) 2019
Exarhos, AL; Hopper, DA; Grote, RR; Alkauskas, A; Bassett, LC (j_nanoph-2019-0211_ref_066) 2017; 11
Dreyer, CE; Alkauskas, A; Lyons, JL; Janotti, A; Van de Walle, CG (j_nanoph-2019-0211_ref_141) 2018; 48
Kucsko, G; Maurer, PC; Yao, NY (j_nanoph-2019-0211_ref_016) 2013; 500
Chakraborty, C; Kinnischtzke, L; Goodfellow, KM; Beams, R; Vamivakas, AN (j_nanoph-2019-0211_ref_058) 2015; 10
Noh, G; Choi, D; Kim, JH (j_nanoph-2019-0211_ref_189) 2018; 18
Epstein, RJ; Mendoza, FM; Kato, YK; Awschalom, DD (j_nanoph-2019-0211_ref_194) 2005; 1
Govyadinov, AA; Konečná, A; Chuvilin, A (j_nanoph-2019-0211_ref_210) 2017; 8
Taylor, JM; Cappellaro, P; Childress, L (j_nanoph-2019-0211_ref_090) 2008; 4
Weber, JR; Koehl, WF; Varley, JB (j_nanoph-2019-0211_ref_115) 2010; 107
Koperski, M; Nogajewski, K; Arora, A (j_nanoph-2019-0211_ref_059) 2015; 10
Castellanos-Gomez, A; Buscema, M; Molenaar, R (j_nanoph-2019-0211_ref_174) 2014; 1
Szász, K; Hornos, T; Marsman, M; Gali, A (j_nanoph-2019-0211_ref_149) 2013; 88
Cai, Z; Liu, B; Zou, X; Cheng, H-M (j_nanoph-2019-0211_ref_172) 2018; 118
Ahmadpour Monazam, MR; Ludacka, U; Komsa, H-P; Kotakoski, J (j_nanoph-2019-0211_ref_207) 2019; 115
Gangloff, DA; Éthier-Majcher, G; Lang, C (j_nanoph-2019-0211_ref_122) 2019; 364
Isberg, J; Hammersberg, J; Johansson, E (j_nanoph-2019-0211_ref_096) 2002; 297
Grumet, M; Liu, P; Kaltak, M; Klimeš, J; Kresse, G (j_nanoph-2019-0211_ref_156) 2018; 98
Wong, D; Velasco Jr, J; Ju, L (j_nanoph-2019-0211_ref_205) 2015; 10
Schirhagl, R; Chang, K; Loretz, M; Degen, CL (j_nanoph-2019-0211_ref_017) 2014; 65
Alkauskas, A; Yan, Q; Van de Walle, CG (j_nanoph-2019-0211_ref_166) 2014; 90
Geim, AK; Grigorieva, IV (j_nanoph-2019-0211_ref_132) 2013; 499
Janzén, E; Gali, A; Carlsson, P; Gällström, A; Magnusson, B; Son, NT (j_nanoph-2019-0211_ref_117) 2009; 404
Jin, C; Lin, F; Suenaga, K; Iijima, S (j_nanoph-2019-0211_ref_204) 2009; 102
Waldherr, G; Wang, Y; Zaiser, S (j_nanoph-2019-0211_ref_026) 2014; 506
Goldman, ML; Sipahigil, A; Doherty, MW (j_nanoph-2019-0211_ref_102) 2015; 114
Degen, CL (j_nanoph-2019-0211_ref_091) 2008; 92
Astner, T; Gugler, J; Angerer, A (j_nanoph-2019-0211_ref_152) 2018; 17
Onida, G; Reining, L; Rubio, A (j_nanoph-2019-0211_ref_153) 2002; 74
Lovchinsky, I; Sushkov, AO; Urbach, E (j_nanoph-2019-0211_ref_014) 2016; 351
Plakhotnik, T; Doherty, MW; Cole, JH; Chapman, R; Manson, NB (j_nanoph-2019-0211_ref_112) 2014; 14
Jelezko, F; Gaebel, T; Popa, I; Domhan, M; Gruber, A; Wrachtrup, J (j_nanoph-2019-0211_ref_089) 2004; 93
Waldherr, G; Neumann, P; Huelga, SF; Jelezko, F; Wrachtrup, J (j_nanoph-2019-0211_ref_105) 2011; 107
Hopper, DA; Grote, RR; Exarhos, AL; Bassett, LC (j_nanoph-2019-0211_ref_107) 2016; 94
Utzat, H; Sun, W; Kaplan, AEK (j_nanoph-2019-0211_ref_137) 2019; 363
Kolesov, R; Xia, K; Reuter, R (j_nanoph-2019-0211_ref_048) 2012; 3
Neumann, P; Beck, J; Steiner, M (j_nanoph-2019-0211_ref_020) 2010; 329
Kane, BE (j_nanoph-2019-0211_ref_074) 1998; 393
Togan, E; Chu, Y; Trifonov, AS (j_nanoph-2019-0211_ref_030) 2010; 466
Rayson, MJ; Briddon, PR (j_nanoph-2019-0211_ref_144) 2008; 77
Srivastava, A; Sidler, M; Allain, AV; Lembke, DS; Kis, A; Imamoģlu, A (j_nanoph-2019-0211_ref_061) 2015; 10
Mishra, R; Ishikawa, R; Lupini, AR; Pennycook, SJ (j_nanoph-2019-0211_ref_187) 2017; 42
Degen, CL; Reinhard, F; Cappellaro, P (j_nanoph-2019-0211_ref_009) 2017; 89
Jungwirth, NR; Calderon, B; Ji, Y; Spencer, MG; Flatté, ME; Fuchs, GD (j_nanoph-2019-0211_ref_064) 2016; 16
Chejanovsky, N; Rezai, M; Paolucci, F (j_nanoph-2019-0211_ref_065) 2016; 16
Gali, A; Janzén, E; Deák, P; Kresse, G; Kaxiras, E (j_nanoph-2019-0211_ref_161) 2009; 103
Jamieson, DN; Lawrie, WIL; Hudson, FE (j_nanoph-2019-0211_ref_177) 2016
Hayee, F; Yu, L; Zhang, JL (j_nanoph-2019-0211_ref_213) 2019
Thiel, L; Wang, Z; Tschudin, MA (j_nanoph-2019-0211_ref_010) 2019; 364
Rogers, LJ; Jahnke, KD; Teraji, T (j_nanoph-2019-0211_ref_069) 2014; 5
Michl, J; Teraji, T; Zaiser, S (j_nanoph-2019-0211_ref_180) 2014; 104
Buckley, BB; Fuchs, GD; Bassett, LC; Awschalom, DD (j_nanoph-2019-0211_ref_029) 2010; 330
Balasubramanian, G; Chan, IY; Kolesov, R (j_nanoph-2019-0211_ref_093) 2008; 455
Choi, S; Jain, M; Louie, SG (j_nanoph-2019-0211_ref_157) 2012; 86
Morfa, AJ; Gibson, BC; Karg, M (j_nanoph-2019-0211_ref_052) 2012; 12
Kurtsiefer, C; Mayer, S; Zarda, P; Weinfurter, H (j_nanoph-2019-0211_ref_087) 2000; 85
Pfaff, W; Hensen, BJ; Bernien, H (j_nanoph-2019-0211_ref_025) 2014; 345
Choi, S; Tran, TT; Elbadawi, C (j_nanoph-2019-0211_ref_191) 2016; 8
Davies, G; Hamer, MF; Charles, PW (j_nanoph-2019-0211_ref_083) 1976; 348
Goyal, A; Gorai, P; Peng, H; Lany, S; Stevanovič, V (j_nanoph-2019-0211_ref_142) 2017; 130
Zhong, M; Hedges, MP; Ahlefeldt, RL (j_nanoph-2019-0211_ref_136) 2015; 517
Chen, W; Pasquarello, A (j_nanoph-2019-0211_ref_155) 2017; 96
Tonndorf, P; Schmidt, R; Schneider, R (j_nanoph-2019-0211_ref_062) 2015; 2
Exarhos, AL; Hopper, DA; Patel, RN; Doherty, MW; Bassett, LC (j_nanoph-2019-0211_ref_067) 2019; 10
Gao, WB; Imamoglu, A; Bernien, H
2023040101265043966_j_nanoph-2019-0211_ref_135_w2aab3b7c12b1b6b1ab1b8d135Aa
2023040101265043966_j_nanoph-2019-0211_ref_048_w2aab3b7c12b1b6b1ab1b8c48Aa
2023040101265043966_j_nanoph-2019-0211_ref_205_w2aab3b7c12b1b6b1ab1b8d205Aa
2023040101265043966_j_nanoph-2019-0211_ref_078_w2aab3b7c12b1b6b1ab1b8c78Aa
2023040101265043966_j_nanoph-2019-0211_ref_187_w2aab3b7c12b1b6b1ab1b8d187Aa
2023040101265043966_j_nanoph-2019-0211_ref_117_w2aab3b7c12b1b6b1ab1b8d117Aa
2023040101265043966_j_nanoph-2019-0211_ref_101_w2aab3b7c12b1b6b1ab1b8d101Aa
2023040101265043966_j_nanoph-2019-0211_ref_171_w2aab3b7c12b1b6b1ab1b8d171Aa
2023040101265043966_j_nanoph-2019-0211_ref_003_w2aab3b7c12b1b6b1ab1b8b3Aa
2023040101265043966_j_nanoph-2019-0211_ref_076_w2aab3b7c12b1b6b1ab1b8c76Aa
2023040101265043966_j_nanoph-2019-0211_ref_061_w2aab3b7c12b1b6b1ab1b8c61Aa
2023040101265043966_j_nanoph-2019-0211_ref_091_w2aab3b7c12b1b6b1ab1b8c91Aa
2023040101265043966_j_nanoph-2019-0211_ref_031_w2aab3b7c12b1b6b1ab1b8c31Aa
2023040101265043966_j_nanoph-2019-0211_ref_153_w2aab3b7c12b1b6b1ab1b8d153Aa
2023040101265043966_j_nanoph-2019-0211_ref_202_w2aab3b7c12b1b6b1ab1b8d202Aa
2023040101265043966_j_nanoph-2019-0211_ref_035_w2aab3b7c12b1b6b1ab1b8c35Aa
2023040101265043966_j_nanoph-2019-0211_ref_114_w2aab3b7c12b1b6b1ab1b8d114Aa
2023040101265043966_j_nanoph-2019-0211_ref_074_w2aab3b7c12b1b6b1ab1b8c74Aa
2023040101265043966_j_nanoph-2019-0211_ref_210_w2aab3b7c12b1b6b1ab1b8d210Aa
2023040101265043966_j_nanoph-2019-0211_ref_169_w2aab3b7c12b1b6b1ab1b8d169Aa
2023040101265043966_j_nanoph-2019-0211_ref_122_w2aab3b7c12b1b6b1ab1b8d122Aa
2023040101265043966_j_nanoph-2019-0211_ref_150_w2aab3b7c12b1b6b1ab1b8d150Aa
2023040101265043966_j_nanoph-2019-0211_ref_104_w2aab3b7c12b1b6b1ab1b8d104Aa
2023040101265043966_j_nanoph-2019-0211_ref_044_w2aab3b7c12b1b6b1ab1b8c44Aa
2023040101265043966_j_nanoph-2019-0211_ref_132_w2aab3b7c12b1b6b1ab1b8d132Aa
2023040101265043966_j_nanoph-2019-0211_ref_177_w2aab3b7c12b1b6b1ab1b8d177Aa
2023040101265043966_j_nanoph-2019-0211_ref_095_w2aab3b7c12b1b6b1ab1b8c95Aa
2023040101265043966_j_nanoph-2019-0211_ref_059_w2aab3b7c12b1b6b1ab1b8c59Aa
2023040101265043966_j_nanoph-2019-0211_ref_089_w2aab3b7c12b1b6b1ab1b8c89Aa
2023040101265043966_j_nanoph-2019-0211_ref_159_w2aab3b7c12b1b6b1ab1b8d159Aa
2023040101265043966_j_nanoph-2019-0211_ref_140_w2aab3b7c12b1b6b1ab1b8d140Aa
2023040101265043966_j_nanoph-2019-0211_ref_065_w2aab3b7c12b1b6b1ab1b8c65Aa
2023040101265043966_j_nanoph-2019-0211_ref_195_w2aab3b7c12b1b6b1ab1b8d195Aa
2023040101265043966_j_nanoph-2019-0211_ref_042_w2aab3b7c12b1b6b1ab1b8c42Aa
2023040101265043966_j_nanoph-2019-0211_ref_072_w2aab3b7c12b1b6b1ab1b8c72Aa
2023040101265043966_j_nanoph-2019-0211_ref_156_w2aab3b7c12b1b6b1ab1b8d156Aa
2023040101265043966_j_nanoph-2019-0211_ref_093_w2aab3b7c12b1b6b1ab1b8c93Aa
2023040101265043966_j_nanoph-2019-0211_ref_008_w2aab3b7c12b1b6b1ab1b8b8Aa
2023040101265043966_j_nanoph-2019-0211_ref_138_w2aab3b7c12b1b6b1ab1b8d138Aa
2023040101265043966_j_nanoph-2019-0211_ref_024_w2aab3b7c12b1b6b1ab1b8c24Aa
2023040101265043966_j_nanoph-2019-0211_ref_208_w2aab3b7c12b1b6b1ab1b8d208Aa
2023040101265043966_j_nanoph-2019-0211_ref_040_w2aab3b7c12b1b6b1ab1b8c40Aa
2023040101265043966_j_nanoph-2019-0211_ref_063_w2aab3b7c12b1b6b1ab1b8c63Aa
2023040101265043966_j_nanoph-2019-0211_ref_192_w2aab3b7c12b1b6b1ab1b8d192Aa
2023040101265043966_j_nanoph-2019-0211_ref_009_w2aab3b7c12b1b6b1ab1b8b9Aa
2023040101265043966_j_nanoph-2019-0211_ref_033_w2aab3b7c12b1b6b1ab1b8c33Aa
2023040101265043966_j_nanoph-2019-0211_ref_070_w2aab3b7c12b1b6b1ab1b8c70Aa
2023040101265043966_j_nanoph-2019-0211_ref_174_w2aab3b7c12b1b6b1ab1b8d174Aa
2023040101265043966_j_nanoph-2019-0211_ref_149_w2aab3b7c12b1b6b1ab1b8d149Aa
2023040101265043966_j_nanoph-2019-0211_ref_130_w2aab3b7c12b1b6b1ab1b8d130Aa
2023040101265043966_j_nanoph-2019-0211_ref_054_w2aab3b7c12b1b6b1ab1b8c54Aa
2023040101265043966_j_nanoph-2019-0211_ref_182_w2aab3b7c12b1b6b1ab1b8d182Aa
2023040101265043966_j_nanoph-2019-0211_ref_084_w2aab3b7c12b1b6b1ab1b8c84Aa
2023040101265043966_j_nanoph-2019-0211_ref_026_w2aab3b7c12b1b6b1ab1b8c26Aa
2023040101265043966_j_nanoph-2019-0211_ref_056_w2aab3b7c12b1b6b1ab1b8c56Aa
2023040101265043966_j_nanoph-2019-0211_ref_194_w2aab3b7c12b1b6b1ab1b8d194Aa
2023040101265043966_j_nanoph-2019-0211_ref_185_w2aab3b7c12b1b6b1ab1b8d185Aa
2023040101265043966_j_nanoph-2019-0211_ref_106_w2aab3b7c12b1b6b1ab1b8d106Aa
2023040101265043966_j_nanoph-2019-0211_ref_158_w2aab3b7c12b1b6b1ab1b8d158Aa
2023040101265043966_j_nanoph-2019-0211_ref_198_w2aab3b7c12b1b6b1ab1b8d198Aa
2023040101265043966_j_nanoph-2019-0211_ref_004_w2aab3b7c12b1b6b1ab1b8b4Aa
2023040101265043966_j_nanoph-2019-0211_ref_189_w2aab3b7c12b1b6b1ab1b8d189Aa
2023040101265043966_j_nanoph-2019-0211_ref_142_w2aab3b7c12b1b6b1ab1b8d142Aa
2023040101265043966_j_nanoph-2019-0211_ref_170_w2aab3b7c12b1b6b1ab1b8d170Aa
2023040101265043966_j_nanoph-2019-0211_ref_133_w2aab3b7c12b1b6b1ab1b8d133Aa
2023040101265043966_j_nanoph-2019-0211_ref_013_w2aab3b7c12b1b6b1ab1b8c13Aa
2023040101265043966_j_nanoph-2019-0211_ref_097_w2aab3b7c12b1b6b1ab1b8c97Aa
2023040101265043966_j_nanoph-2019-0211_ref_103_w2aab3b7c12b1b6b1ab1b8d103Aa
2023040101265043966_j_nanoph-2019-0211_ref_005_w2aab3b7c12b1b6b1ab1b8b5Aa
2023040101265043966_j_nanoph-2019-0211_ref_029_w2aab3b7c12b1b6b1ab1b8c29Aa
2023040101265043966_j_nanoph-2019-0211_ref_051_w2aab3b7c12b1b6b1ab1b8c51Aa
2023040101265043966_j_nanoph-2019-0211_ref_197_w2aab3b7c12b1b6b1ab1b8d197Aa
2023040101265043966_j_nanoph-2019-0211_ref_014_w2aab3b7c12b1b6b1ab1b8c14Aa
2023040101265043966_j_nanoph-2019-0211_ref_081_w2aab3b7c12b1b6b1ab1b8c81Aa
2023040101265043966_j_nanoph-2019-0211_ref_188_w2aab3b7c12b1b6b1ab1b8d188Aa
2023040101265043966_j_nanoph-2019-0211_ref_096_w2aab3b7c12b1b6b1ab1b8c96Aa
2023040101265043966_j_nanoph-2019-0211_ref_002_w2aab3b7c12b1b6b1ab1b8b2Aa
2023040101265043966_j_nanoph-2019-0211_ref_037_w2aab3b7c12b1b6b1ab1b8c37Aa
2023040101265043966_j_nanoph-2019-0211_ref_181_w2aab3b7c12b1b6b1ab1b8d181Aa
2023040101265043966_j_nanoph-2019-0211_ref_186_w2aab3b7c12b1b6b1ab1b8d186Aa
2023040101265043966_j_nanoph-2019-0211_ref_107_w2aab3b7c12b1b6b1ab1b8d107Aa
2023040101265043966_j_nanoph-2019-0211_ref_066_w2aab3b7c12b1b6b1ab1b8c66Aa
2023040101265043966_j_nanoph-2019-0211_ref_050_w2aab3b7c12b1b6b1ab1b8c50Aa
2023040101265043966_j_nanoph-2019-0211_ref_067_w2aab3b7c12b1b6b1ab1b8c67Aa
2023040101265043966_j_nanoph-2019-0211_ref_073_w2aab3b7c12b1b6b1ab1b8c73Aa
2023040101265043966_j_nanoph-2019-0211_ref_043_w2aab3b7c12b1b6b1ab1b8c43Aa
2023040101265043966_j_nanoph-2019-0211_ref_145_w2aab3b7c12b1b6b1ab1b8d145Aa
2023040101265043966_j_nanoph-2019-0211_ref_020_w2aab3b7c12b1b6b1ab1b8c20Aa
2023040101265043966_j_nanoph-2019-0211_ref_143_w2aab3b7c12b1b6b1ab1b8d143Aa
2023040101265043966_j_nanoph-2019-0211_ref_148_w2aab3b7c12b1b6b1ab1b8d148Aa
2023040101265043966_j_nanoph-2019-0211_ref_080_w2aab3b7c12b1b6b1ab1b8c80Aa
2023040101265043966_j_nanoph-2019-0211_ref_184_w2aab3b7c12b1b6b1ab1b8d184Aa
2023040101265043966_j_nanoph-2019-0211_ref_147_w2aab3b7c12b1b6b1ab1b8d147Aa
2023040101265043966_j_nanoph-2019-0211_ref_018_w2aab3b7c12b1b6b1ab1b8c18Aa
2023040101265043966_j_nanoph-2019-0211_ref_085_w2aab3b7c12b1b6b1ab1b8c85Aa
2023040101265043966_j_nanoph-2019-0211_ref_001_w2aab3b7c12b1b6b1ab1b8b1Aa
2023040101265043966_j_nanoph-2019-0211_ref_092_w2aab3b7c12b1b6b1ab1b8c92Aa
2023040101265043966_j_nanoph-2019-0211_ref_146_w2aab3b7c12b1b6b1ab1b8d146Aa
2023040101265043966_j_nanoph-2019-0211_ref_183_w2aab3b7c12b1b6b1ab1b8d183Aa
2023040101265043966_j_nanoph-2019-0211_ref_025_w2aab3b7c12b1b6b1ab1b8c25Aa
2023040101265043966_j_nanoph-2019-0211_ref_109_w2aab3b7c12b1b6b1ab1b8d109Aa
2023040101265043966_j_nanoph-2019-0211_ref_055_w2aab3b7c12b1b6b1ab1b8c55Aa
2023040101265043966_j_nanoph-2019-0211_ref_019_w2aab3b7c12b1b6b1ab1b8c19Aa
2023040101265043966_j_nanoph-2019-0211_ref_144_w2aab3b7c12b1b6b1ab1b8d144Aa
2023040101265043966_j_nanoph-2019-0211_ref_006_w2aab3b7c12b1b6b1ab1b8b6Aa
2023040101265043966_j_nanoph-2019-0211_ref_077_w2aab3b7c12b1b6b1ab1b8c77Aa
2023040101265043966_j_nanoph-2019-0211_ref_214_w2aab3b7c12b1b6b1ab1b8d214Aa
2023040101265043966_j_nanoph-2019-0211_ref_062_w2aab3b7c12b1b6b1ab1b8c62Aa
2023040101265043966_j_nanoph-2019-0211_ref_126_w2aab3b7c12b1b6b1ab1b8d126Aa
2023040101265043966_j_nanoph-2019-0211_ref_196_w2aab3b7c12b1b6b1ab1b8d196Aa
2023040101265043966_j_nanoph-2019-0211_ref_090_w2aab3b7c12b1b6b1ab1b8c90Aa
2023040101265043966_j_nanoph-2019-0211_ref_032_w2aab3b7c12b1b6b1ab1b8c32Aa
2023040101265043966_j_nanoph-2019-0211_ref_108_w2aab3b7c12b1b6b1ab1b8d108Aa
2023040101265043966_j_nanoph-2019-0211_ref_110_w2aab3b7c12b1b6b1ab1b8d110Aa
2023040101265043966_j_nanoph-2019-0211_ref_180_w2aab3b7c12b1b6b1ab1b8d180Aa
2023040101265043966_j_nanoph-2019-0211_ref_034_w2aab3b7c12b1b6b1ab1b8c34Aa
2023040101265043966_j_nanoph-2019-0211_ref_079_w2aab3b7c12b1b6b1ab1b8c79Aa
2023040101265043966_j_nanoph-2019-0211_ref_162_w2aab3b7c12b1b6b1ab1b8d162Aa
2023040101265043966_j_nanoph-2019-0211_ref_049_w2aab3b7c12b1b6b1ab1b8c49Aa
2023040101265043966_j_nanoph-2019-0211_ref_075_w2aab3b7c12b1b6b1ab1b8c75Aa
2023040101265043966_j_nanoph-2019-0211_ref_123_w2aab3b7c12b1b6b1ab1b8d123Aa
2023040101265043966_j_nanoph-2019-0211_ref_105_w2aab3b7c12b1b6b1ab1b8d105Aa
2023040101265043966_j_nanoph-2019-0211_ref_060_w2aab3b7c12b1b6b1ab1b8c60Aa
2023040101265043966_j_nanoph-2019-0211_ref_199_w2aab3b7c12b1b6b1ab1b8d199Aa
2023040101265043966_j_nanoph-2019-0211_ref_030_w2aab3b7c12b1b6b1ab1b8c30Aa
2023040101265043966_j_nanoph-2019-0211_ref_178_w2aab3b7c12b1b6b1ab1b8d178Aa
2023040101265043966_j_nanoph-2019-0211_ref_036_w2aab3b7c12b1b6b1ab1b8c36Aa
2023040101265043966_j_nanoph-2019-0211_ref_131_w2aab3b7c12b1b6b1ab1b8d131Aa
2023040101265043966_j_nanoph-2019-0211_ref_201_w2aab3b7c12b1b6b1ab1b8d201Aa
2023040101265043966_j_nanoph-2019-0211_ref_113_w2aab3b7c12b1b6b1ab1b8d113Aa
2023040101265043966_j_nanoph-2019-0211_ref_141_w2aab3b7c12b1b6b1ab1b8d141Aa
2023040101265043966_j_nanoph-2019-0211_ref_211_w2aab3b7c12b1b6b1ab1b8d211Aa
2023040101265043966_j_nanoph-2019-0211_ref_102_w2aab3b7c12b1b6b1ab1b8d102Aa
2023040101265043966_j_nanoph-2019-0211_ref_021_w2aab3b7c12b1b6b1ab1b8c21Aa
2023040101265043966_j_na
References_xml – volume: 111
  start-page: 227602
  year: 2013
  ident: j_nanoph-2019-0211_ref_124
  article-title: Mechanical spin control of nitrogen-vacancy centers in diamond
  publication-title: Phys Rev Lett
– volume: 528
  start-page: 1
  year: 2013
  end-page: 45
  ident: j_nanoph-2019-0211_ref_008
  article-title: The nitrogen-vacancy colour centre in diamond
  publication-title: Phys Rep
– volume: 351
  start-page: 836
  year: 2016
  end-page: 41
  ident: j_nanoph-2019-0211_ref_014
  article-title: Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic
  publication-title: Science
– volume: 95
  start-page: 041402
  year: 2017
  ident: j_nanoph-2019-0211_ref_108
  article-title: Enhanced photoelectric detection of NV magnetic resonances in diamond under dual-beam excitation
  publication-title: Phys Rev B
– volume: 33
  start-page: B65
  year: 2016
  end-page: 83
  ident: j_nanoph-2019-0211_ref_080
  article-title: Quantum nanophotonics in diamond
  publication-title: J Opt Soc Am B
– volume: 362
  start-page: 662
  year: 2018
  end-page: 5
  ident: j_nanoph-2019-0211_ref_071
  article-title: Photon-mediated interactions between quantum emitters in a diamond nanocavity
  publication-title: Science
– volume: 6
  start-page: 668
  year: 2010
  end-page: 72
  ident: j_nanoph-2019-0211_ref_197
  article-title: Excited-state spin coherence of a single nitrogen-vacancy centre in diamond
  publication-title: Nature Phys
– volume: 108
  start-page: 197601
  year: 2012
  ident: j_nanoph-2019-0211_ref_129
  article-title: Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond
  publication-title: Phys Rev Lett
– volume: 3
  start-page: 1029
  year: 2012
  ident: j_nanoph-2019-0211_ref_048
  article-title: Optical detection of a single rare-earth ion in a crystal
  publication-title: Nat Commun
– start-page: 1
  year: 2016
  end-page: 6
  ident: j_nanoph-2019-0211_ref_177
  article-title: Deterministic atom placement by ion implantation: few and single atom devices for quantum computer technology
  publication-title: In 2016 21st International Conference on Ion Implantation Technology (IIT). Tainan, Taiwan, IEEE,
– volume: 97
  start-page: 165202
  year: 2018
  ident: j_nanoph-2019-0211_ref_199
  article-title: Photophysics of GaN single-photon emitters in the visible spectral range
  publication-title: Phys Rev B
– volume: 9
  start-page: 171
  year: 2014
  end-page: 6
  ident: j_nanoph-2019-0211_ref_027
  article-title: Universal control and error correction in multi-qubit spin registers in diamond
  publication-title: Nat Nanotechnol
– volume: 6
  start-page: 041035
  year: 2016
  ident: j_nanoph-2019-0211_ref_114
  article-title: Towards a room-temperature spin quantum bus in diamond via electron photoionization, transport, and capture
  publication-title: Phys Rev X
– volume: 14
  start-page: 4989
  year: 2014
  end-page: 96
  ident: j_nanoph-2019-0211_ref_112
  article-title: All-optical thermometry and thermal properties of the optically detected spin resonances of the NV-center in nanodiamond
  publication-title: Nano Lett
– volume: 89
  start-page: 235101
  year: 2014
  ident: j_nanoph-2019-0211_ref_195
  article-title: Electronic structure of the negatively charged silicon-vacancy center in diamond
  publication-title: Phys Rev B
– volume: 8
  start-page: 705
  year: 2017
  ident: j_nanoph-2019-0211_ref_135
  article-title: Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride
  publication-title: Nat Commun
– volume: 113
  start-page: 192106
  year: 2018
  ident: j_nanoph-2019-0211_ref_151
  article-title: Defect identification based on first-principles calculations for deep level transient spectroscopy
  publication-title: Appl Phys Lett
– volume: 16
  start-page: 7037
  year: 2016
  end-page: 45
  ident: j_nanoph-2019-0211_ref_065
  article-title: Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride
  publication-title: Nano Lett
– volume: 111
  start-page: 120502
  year: 2013
  ident: j_nanoph-2019-0211_ref_049
  article-title: Mapping spin coherence of a single rare-earth ion in a crystal onto a single photon polarization state
  publication-title: Phys Rev Lett
– volume: 477
  start-page: 574
  year: 2011
  end-page: 8
  ident: j_nanoph-2019-0211_ref_100
  article-title: High-fidelity projective read-out of a solid-state spin quantum register
  publication-title: Nature
– volume: 21
  start-page: 364210
  year: 2009
  ident: j_nanoph-2019-0211_ref_196
  article-title: Luminescence-lifetime mapping in diamond
  publication-title: J Phys: Condens Matter
– volume: 7
  start-page: 11526
  year: 2016
  ident: j_nanoph-2019-0211_ref_028
  article-title: Repeated quantum error correction on a continuously encoded qubit by real-time feedback
  publication-title: Nat Commun
– volume: 115
  start-page: 093602
  year: 2015
  ident: j_nanoph-2019-0211_ref_051
  article-title: All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal
  publication-title: Phys Rev Lett
– volume: 5
  start-page: 4739
  year: 2014
  ident: j_nanoph-2019-0211_ref_069
  article-title: Multiple intrinsically identical single-photon emitters in the solid state
  publication-title: Nat Commun
– volume: 499
  start-page: 419
  year: 2013
  end-page: 25
  ident: j_nanoph-2019-0211_ref_132
  article-title: Van der Waals heterostructures
  publication-title: Nature
– volume: 10
  start-page: 1210
  year: 2016
  end-page: 5
  ident: j_nanoph-2019-0211_ref_053
  article-title: Polarization spectroscopy of defect-based single photon sources in ZnO
  publication-title: ACS Nano
– volume: 10
  start-page: 497
  year: 2015
  ident: j_nanoph-2019-0211_ref_060
  article-title: Single quantum emitters in monolayer semiconductors
  publication-title: Nat Nanotechnol
– volume: 5
  start-page: 3895
  year: 2014
  ident: j_nanoph-2019-0211_ref_050
  article-title: Coherent properties of single rare-earth spin qubits
  publication-title: Nat Commun
– volume: 64
  start-page: 669
  year: 1990
  end-page: 72
  ident: j_nanoph-2019-0211_ref_148
  article-title: Structural identification of hydrogen and muonium centers in silicon: first-principles calculations of hyperfine parameters
  publication-title: Phys Rev Lett
– volume: 16
  start-page: 6052
  year: 2016
  end-page: 7
  ident: j_nanoph-2019-0211_ref_064
  article-title: Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride
  publication-title: Nano Lett
– volume: 20
  start-page: 115002
  year: 2018
  ident: j_nanoph-2019-0211_ref_167
  article-title: Strongly inhomogeneous distribution of spectral properties of silicon-vacancy color centers in nanodiamonds
  publication-title: New J Phys
– volume: 12
  start-page: 5873
  year: 2018
  end-page: 9
  ident: j_nanoph-2019-0211_ref_188
  article-title: Directed atom-by-atom assembly of dopants in silicon
  publication-title: ACS Nano
– volume: 77
  start-page: 035119
  year: 2008
  ident: j_nanoph-2019-0211_ref_144
  article-title: First principles method for the calculation of zero-field splitting tensors in periodic systems
  publication-title: Phys Rev B
– volume: 347
  start-page: 1135
  year: 2015
  end-page: 8
  ident: j_nanoph-2019-0211_ref_013
  article-title: Single-protein spin resonance spectroscopy under ambient conditions
  publication-title: Science
– volume: 10
  start-page: 507
  year: 2015
  ident: j_nanoph-2019-0211_ref_058
  article-title: Voltage-controlled quantum light from an atomically thin semiconductor
  publication-title: Nat Nanotechnol
– volume: 88
  start-page: 123301
  year: 2017
  ident: j_nanoph-2019-0211_ref_178
  article-title: Ion implantation for deterministic single atom devices
  publication-title: Rev Sci Instrum
– volume: 121
  start-page: 183603
  year: 2018
  ident: j_nanoph-2019-0211_ref_171
  article-title: Optically addressing single rare-earth ions in a nanophotonic cavity
  publication-title: Phys Rev Lett
– volume: 500
  start-page: 54
  year: 2013
  end-page: 8
  ident: j_nanoph-2019-0211_ref_016
  article-title: Nanometre-scale thermometry in a living cell
  publication-title: Nature
– volume: 90
  start-page: 075202
  year: 2014
  ident: j_nanoph-2019-0211_ref_166
  article-title: First-principles theory of nonradiative carrier capture via multiphonon emission
  publication-title: Phys Rev B
– volume: 320
  start-page: 1326
  year: 2008
  end-page: 9
  ident: j_nanoph-2019-0211_ref_021
  article-title: Multipartite entanglement among single spins in diamond
  publication-title: Science
– volume: 363
  start-page: 1068
  year: 2019
  end-page: 72
  ident: j_nanoph-2019-0211_ref_137
  article-title: Coherent single-photon emission from colloidal lead halide perovskite quantum dots
  publication-title: Science
– volume: 95
  start-page: 035207
  year: 2017
  ident: j_nanoph-2019-0211_ref_055
  article-title: Resonant optical spectroscopy and coherent control of Cr4+ spin ensembles in SiC and GaN
  publication-title: Phys Rev B
– volume: 542
  start-page: 75
  year: 2017
  ident: j_nanoph-2019-0211_ref_208
  article-title: Deciphering chemical order/disorder and material properties at the single-atom level
  publication-title: Nature
– volume: 90
  start-page: 241203
  year: 2014
  ident: j_nanoph-2019-0211_ref_120
  article-title: Electron spin decoherence in silicon carbide nuclear spin bath
  publication-title: Phys Rev B
– volume: 40
  start-page: 1146
  year: 2015
  end-page: 53
  ident: j_nanoph-2019-0211_ref_072
  article-title: Designing defect spins for wafer-scale quantum technologies
  publication-title: MRS Bull
– volume: 345
  start-page: 1333
  year: 2014
  end-page: 7
  ident: j_nanoph-2019-0211_ref_032
  article-title: Ultrafast optical control of orbital and spin dynamics in a solid-state defect
  publication-title: Science
– volume: 4
  start-page: 042004
  year: 2017
  ident: j_nanoph-2019-0211_ref_186
  article-title: Towards atomically precise manipulation of 2D nanostructures in the electron microscope
  publication-title: 2D Mater
– volume: 119
  start-page: 096402
  year: 2017
  ident: j_nanoph-2019-0211_ref_043
  article-title: Neutral silicon-vacancy center in diamond: spin polarization and lifetimes
  publication-title: Phys Rev Lett
– volume: 393
  start-page: 133
  year: 1998
  end-page: 7
  ident: j_nanoph-2019-0211_ref_074
  article-title: A silicon-based nuclear spin quantum computer
  publication-title: Nature
– volume: 74
  start-page: 601
  year: 2002
  end-page: 59
  ident: j_nanoph-2019-0211_ref_153
  article-title: Electronic excitations: density-functional versus many-body Green’s-function approaches
  publication-title: Rev Mod Phys
– volume: 16
  start-page: 073026
  year: 2014
  ident: j_nanoph-2019-0211_ref_165
  article-title: First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres
  publication-title: N J Phys
– volume: 7
  start-page: 12935
  year: 2016
  ident: j_nanoph-2019-0211_ref_121
  article-title: Quantum decoherence dynamics of divacancy spins in silicon carbide
  publication-title: Nat Commun
– volume: 120
  start-page: 213603
  year: 2018
  ident: j_nanoph-2019-0211_ref_127
  article-title: Phonon networks with silicon-vacancy centers in diamond waveguides
  publication-title: Phys Rev Lett
– volume: 345
  start-page: 532
  year: 2014
  end-page: 5
  ident: j_nanoph-2019-0211_ref_025
  article-title: Unconditional quantum teleportation between distant solid-state quantum bits
  publication-title: Science
– volume: 113
  start-page: 113602
  year: 2014
  ident: j_nanoph-2019-0211_ref_068
  article-title: Indistinguishable photons from separated silicon-vacancy centers in diamond
  publication-title: Phys Rev Lett
– volume: 26
  start-page: 015305
  year: 2013
  ident: j_nanoph-2019-0211_ref_145
  article-title: The spin-spin zero-field splitting tensor in the projector-augmented-wave method
  publication-title: J Phys: Condens Matter
– volume: 102
  start-page: 195505
  year: 2009
  ident: j_nanoph-2019-0211_ref_204
  article-title: Fabrication of a freestanding boron nitride single layer and its defect assignments
  publication-title: Phys Rev Lett
– volume: 226
  start-page: 165
  year: 2018
  end-page: 79
  ident: j_nanoph-2019-0211_ref_143
  article-title: PyCDT: a python toolkit for modeling point defects in semiconductors and insulators
  publication-title: Comp Phys Commun
– volume: 10
  start-page: 503
  year: 2015
  ident: j_nanoph-2019-0211_ref_059
  article-title: Single photon emitters in exfoliated WSe2 structures
  publication-title: Nat Nanotechnol
– volume: 112
  start-page: 321
  year: 2012
  end-page: 70
  ident: j_nanoph-2019-0211_ref_159
  article-title: Constrained density functional theory
  publication-title: Chem Rev
– volume: 42
  start-page: 644
  year: 2017
  end-page: 52
  ident: j_nanoph-2019-0211_ref_187
  article-title: Single-atom dynamics in scanning transmission electron microscopy
  publication-title: MRS Bull
– volume: 14
  start-page: 160
  year: 2015
  end-page: 3
  ident: j_nanoph-2019-0211_ref_046
  article-title: Isolated electron spins in silicon carbide with millisecond coherence times
  publication-title: Nat Mater
– volume: 8
  start-page: 021063
  year: 2018
  ident: j_nanoph-2019-0211_ref_118
  article-title: Ab initio magneto-optical spectrum of group-IV vacancy color centers in diamond
  publication-title: Phys Rev X
– volume: 532–535
  start-page: 1209
  year: 2003
  end-page: 18
  ident: j_nanoph-2019-0211_ref_183
  article-title: Towards the atomic-scale fabrication of a silicon-based solid state quantum computer
  publication-title: Surf Sci
– volume: 336
  start-page: 1283
  year: 2012
  end-page: 6
  ident: j_nanoph-2019-0211_ref_023
  article-title: Room-temperature quantum bit memory exceeding one second
  publication-title: Science
– year: 2019
  ident: j_nanoph-2019-0211_ref_182
  publication-title: A window into NV center kinetics via repeated annealing and spatial tracking of thousands of individual NV centers. arXiv e-prints
– volume: 8
  start-page: 95
  year: 2017
  ident: j_nanoph-2019-0211_ref_210
  article-title: Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope
  publication-title: Nat Commun
– volume: 15
  start-page: 7567
  year: 2015
  ident: j_nanoph-2019-0211_ref_134
  article-title: Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2
  publication-title: Nano Letters
– volume: 9
  start-page: 11
  year: 1977
  ident: j_nanoph-2019-0211_ref_084
  article-title: Optical spin-polarisation in a triplet state in irrdiated and annealed type 1b diamonds
  publication-title: Diamond Res
– volume: 110
  start-page: 167402
  year: 2013
  ident: j_nanoph-2019-0211_ref_103
  article-title: Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures
  publication-title: Phys Rev Lett
– volume: 330
  start-page: 1212
  year: 2010
  end-page: 5
  ident: j_nanoph-2019-0211_ref_029
  article-title: Spin-light coherence for single-spin measurement and control in diamond
  publication-title: Science
– volume: 273
  start-page: 87
  year: 1996
  ident: j_nanoph-2019-0211_ref_170
  article-title: Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot
  publication-title: Science
– volume: 9
  start-page: 139
  year: 2013
  end-page: 43
  ident: j_nanoph-2019-0211_ref_022
  article-title: Room-temperature entanglement between single defect spins in diamond
  publication-title: Nat Phys
– volume: 110
  start-page: 7595
  year: 2013
  end-page: 600
  ident: j_nanoph-2019-0211_ref_031
  article-title: All-optical control of a solid-state spin using coherent dark states
  publication-title: Proc Natl Acad Sci U S A
– volume: 8
  start-page: 29642
  year: 2016
  end-page: 8
  ident: j_nanoph-2019-0211_ref_191
  article-title: Engineering and localization of quantum emitters in large hexagonal boron nitride layers
  publication-title: ACS Appl Mater Interfaces
– volume: 8
  start-page: 041027
  year: 2018
  ident: j_nanoph-2019-0211_ref_128
  article-title: Scaling phononic quantum networks of solid-state spins with closed mechanical subsystems
  publication-title: Phys Rev X
– volume: 103
  start-page: 186404
  year: 2009
  ident: j_nanoph-2019-0211_ref_161
  article-title: Theory of spin-conserving excitation of the NV− center in diamond
  publication-title: Phys Rev Lett
– volume: 364
  start-page: 62
  year: 2019
  end-page: 6
  ident: j_nanoph-2019-0211_ref_122
  article-title: Quantum interface of an electron and a nuclear ensemble
  publication-title: Science
– volume: 85
  start-page: 961
  year: 2013
  end-page: 1019
  ident: j_nanoph-2019-0211_ref_073
  article-title: Silicon quantum electronics
  publication-title: Rev Mod Phys
– volume: 10
  start-page: 949
  year: 2015
  ident: j_nanoph-2019-0211_ref_205
  article-title: Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy
  publication-title: Nat Nanotechnol
– volume: 5
  start-page: 1128
  year: 2018
  end-page: 34
  ident: j_nanoph-2019-0211_ref_192
  article-title: Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride
  publication-title: Optica
– volume: 113
  start-page: 263601
  year: 2014
  ident: j_nanoph-2019-0211_ref_039
  article-title: All-optical formation of coherent dark states of silicon-vacancy spins in diamond
  publication-title: Phys Rev Lett
– volume: 113
  start-page: 197601
  year: 2014
  ident: j_nanoph-2019-0211_ref_214
  article-title: Magnetic resonance detection of individual proton spins using quantum reporters
  publication-title: Phys Rev Lett
– volume: 14
  start-page: 1982
  year: 2014
  end-page: 6
  ident: j_nanoph-2019-0211_ref_099
  article-title: Coherent optical transitions in implanted nitrogen vacancy centers
  publication-title: Nano Lett
– volume: 112
  start-page: 036405
  year: 2014
  ident: j_nanoph-2019-0211_ref_040
  article-title: Electronic structure of the silicon vacancy color center in diamond
  publication-title: Phys Rev Lett
– volume: 356
  start-page: 928
  year: 2017
  end-page: 32
  ident: j_nanoph-2019-0211_ref_034
  article-title: Entanglement distillation between solid-state quantum network nodes
  publication-title: Science
– volume: 10
  start-page: 064061
  year: 2018
  ident: j_nanoph-2019-0211_ref_054
  article-title: Coherence properties of shallow donor qubits in ZnO
  publication-title: Phys Rev Appl
– volume: 96
  start-page: 020101
  year: 2017
  ident: j_nanoph-2019-0211_ref_155
  article-title: Accuracy of GW for calculating defect energy levels in solids
  publication-title: Phys Rev B
– volume: 9
  start-page: 363
  year: 2015
  end-page: 73
  ident: j_nanoph-2019-0211_ref_002
  article-title: Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields
  publication-title: Nat Photonics
– year: 1975
  ident: j_nanoph-2019-0211_ref_007
  publication-title: Theory of defects in solids
– volume: 11
  start-page: 6652
  year: 2017
  end-page: 60
  ident: j_nanoph-2019-0211_ref_190
  article-title: Nonmagnetic quantum emitters in boron nitride with ultranarrow and sideband-free emission spectra
  publication-title: ACS Nano
– volume: 329
  start-page: 542
  year: 2010
  end-page: 4
  ident: j_nanoph-2019-0211_ref_020
  article-title: Single-shot readout of a single nuclear spin
  publication-title: Science
– volume: 497
  start-page: 86
  year: 2013
  end-page: 90
  ident: j_nanoph-2019-0211_ref_033
  article-title: Heralded entanglement between solid-state qubits separated by three metres
  publication-title: Nature
– volume: 354
  start-page: 847
  year: 2016
  end-page: 50
  ident: j_nanoph-2019-0211_ref_070
  article-title: An integrated diamond nanophotonics platform for quantum-optical networks
  publication-title: Science
– volume: 1
  start-page: 94
  year: 2005
  ident: j_nanoph-2019-0211_ref_194
  article-title: Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond
  publication-title: Nature Phys
– volume: 404
  start-page: 4354
  year: 2009
  end-page: 4358
  ident: j_nanoph-2019-0211_ref_117
  article-title: The silicon vacancy in SiC
  publication-title: Phys B
– volume: 18
  start-page: 4710
  year: 2018
  end-page: 5
  ident: j_nanoph-2019-0211_ref_189
  article-title: Stark tuning of single-photon emitters in hexagonal boron nitride
  publication-title: Nano Lett
– volume: 48
  start-page: 1
  year: 2018
  end-page: 26
  ident: j_nanoph-2019-0211_ref_141
  article-title: First-principles calculations of point defects for quantum technologies
  publication-title: Annu Rev Mater Res
– volume: 92
  start-page: 243111
  year: 2008
  ident: j_nanoph-2019-0211_ref_091
  article-title: Scanning magnetic field microscope with a diamond single-spin sensor
  publication-title: Appl Phys Lett
– volume: 14
  start-page: 164
  year: 2015
  end-page: 8
  ident: j_nanoph-2019-0211_ref_047
  article-title: Coherent control of single spins in silicon carbide at room temperature
  publication-title: Nat Mater
– volume: 479
  start-page: 84
  year: 2011
  end-page: 7
  ident: j_nanoph-2019-0211_ref_045
  article-title: Room temperature coherent control of defect spin qubits in silicon carbide
  publication-title: Nature
– volume: 7
  start-page: 13
  year: 2012
  end-page: 23
  ident: j_nanoph-2019-0211_ref_168
  article-title: Emergence of colloidal quantum-dot light-emitting technologies
  publication-title: Nat Photonics
– volume: 353:aac5523
  year: 2016
  ident: j_nanoph-2019-0211_ref_169
  article-title: Building devices from colloidal quantum dots
  publication-title: Science
– volume: 29
  start-page: 1605092
  year: 2019
  ident: j_nanoph-2019-0211_ref_057
  article-title: Bright room-temperature single-photon emission from defects in gallium nitride
  publication-title: Adv Mater
– volume: 70
  start-page: 123
  year: 2019
  end-page: 42
  ident: j_nanoph-2019-0211_ref_193
  article-title: Single photon sources in atomically thin materials
  publication-title: Annu Rev Phys Chem
– volume: 89
  start-page: 035002
  year: 2017
  ident: j_nanoph-2019-0211_ref_009
  article-title: Quantum sensing
  publication-title: Rev Mod Phys
– volume: 4
  start-page: 76
  year: 2018
  ident: j_nanoph-2019-0211_ref_147
  article-title: First principles calculation of spin-related quantities for point defect qubit research
  publication-title: npj Comput Mater
– volume: 2
  start-page: 213
  year: 2011
  ident: j_nanoph-2019-0211_ref_185
  article-title: Identification of active atomic defects in a monolayered tungsten disulphide nanoribbon
  publication-title: Nat Commun
– volume: 98
  start-page: 155143
  year: 2018
  ident: j_nanoph-2019-0211_ref_156
  article-title: Beyond the quasiparticle approximation: fully self-consistent GW calculations
  publication-title: Phys Rev B
– volume: 65
  start-page: 83
  year: 2014
  end-page: 105
  ident: j_nanoph-2019-0211_ref_017
  article-title: Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology
  publication-title: Annu Rev Phys Chem
– volume: 42
  start-page: 8605
  year: 1990
  end-page: 8
  ident: j_nanoph-2019-0211_ref_085
  article-title: Low-field optically detected magnetic resonance of a coupled triplet-doublet defect pair in diamond
  publication-title: Phys Rev B
– volume: 119
  start-page: 181101
  year: 2016
  ident: j_nanoph-2019-0211_ref_164
  article-title: Tutorial: defects in semiconductors – combining experiment and theory
  publication-title: J Appl Phys
– volume: 357
  start-page: 67
  year: 2017
  end-page: 71
  ident: j_nanoph-2019-0211_ref_015
  article-title: Nanoscale nuclear magnetic resonance with chemical resolution
  publication-title: Science
– volume: 80
  start-page: 155425
  year: 2009
  ident: j_nanoph-2019-0211_ref_203
  article-title: Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy
  publication-title: Phys Rev B
– volume: 9:437
  year: 2018
  ident: j_nanoph-2019-0211_ref_101
  article-title: Spin readout techniques of the nitrogen-vacancy center in diamond
  publication-title: Micromachines
– volume: 97
  start-page: 115135
  year: 2018
  ident: j_nanoph-2019-0211_ref_146
  article-title: Calculation of spin-spin zero-field splitting within periodic boundary conditions: towards all-electron accuracy
  publication-title: Phys Rev B
– volume: 2
  start-page: 347
  year: 2015
  end-page: 52
  ident: j_nanoph-2019-0211_ref_062
  article-title: Single-photon emission from localized excitons in an atomically thin semiconductor
  publication-title: Optica
– volume: 1
  start-page: 011002
  year: 2014
  ident: j_nanoph-2019-0211_ref_174
  article-title: Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping
  publication-title: 2D Mater
– volume: 11
  start-page: 37
  year: 2016
  end-page: 41
  ident: j_nanoph-2019-0211_ref_063
  article-title: Quantum emission from hexagonal boron nitride monolayers
  publication-title: Nat Nanotechnol
– volume: 5
  start-page: 722
  year: 2010
  ident: j_nanoph-2019-0211_ref_173
  article-title: Boron nitride substrates for high-quality graphene electronics
  publication-title: Nat Nanotechnol
– volume: 131
  start-page: 353
  year: 2011
  end-page: 61
  ident: j_nanoph-2019-0211_ref_076
  article-title: Rare-earth-doped materials for applications in quantum information storage and signal processing
  publication-title: J Lumin
– volume: 20
  start-page: 19956
  year: 2012
  ident: j_nanoph-2019-0211_ref_198
  article-title: Photophysics of single silicon vacancy centers in diamond: implications for single photon emission
  publication-title: Opt Express
– volume: 10
  start-page: 631
  year: 2016
  end-page: 41
  ident: j_nanoph-2019-0211_ref_003
  article-title: Solid-state single-photon emitters
  publication-title: Nat Photonics
– volume: 99
  start-page: 184102
  year: 2019
  ident: j_nanoph-2019-0211_ref_123
  article-title: Spin polarization through intersystem crossing in the silicon vacancy of silicon carbide
  publication-title: Phys Rev B
– volume: 558
  start-page: 268
  year: 2018
  end-page: 73
  ident: j_nanoph-2019-0211_ref_035
  article-title: Deterministic delivery of remote entanglement on a quantum network
  publication-title: Nature
– volume: 8
  start-page: 383
  year: 2009
  end-page: 7
  ident: j_nanoph-2019-0211_ref_094
  article-title: Ultralong spin coherence time in isotopically engineered diamond
  publication-title: Nat Mater
– volume: 364
  start-page: 973
  year: 2019
  end-page: 6
  ident: j_nanoph-2019-0211_ref_010
  article-title: Probing magnetism in 2D materials at the nanoscale with single-spin microscopy
  publication-title: Science
– volume: 7
  start-page: 055201
  year: 2014
  ident: j_nanoph-2019-0211_ref_181
  article-title: Perfect selective alignment of nitrogen-vacancy centers in diamond
  publication-title: Appl Phys Exp
– volume: 6
  start-page: 034005
  year: 2016
  ident: j_nanoph-2019-0211_ref_125
  article-title: Strain coupling of a mechanical resonator to a single quantum emitter in diamond
  publication-title: Phys Rev Appl
– volume: 94
  start-page: 125401
  year: 2016
  ident: j_nanoph-2019-0211_ref_119
  article-title: Longitudinal spin relaxation of donor-bound electrons in direct band-gap semiconductors
  publication-title: Phys Rev B
– year: 1968
  ident: j_nanoph-2019-0211_ref_006
  publication-title: Physics of color centers
– volume: 6
  start-page: 8577
  year: 2015
  ident: j_nanoph-2019-0211_ref_109
  article-title: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond
  publication-title: Nat Commun
– volume: 517
  start-page: 177
  year: 2015
  ident: j_nanoph-2019-0211_ref_136
  article-title: Optically addressable nuclear spins in a solid with a six-hour coherence time
  publication-title: Nature
– volume: 103
  start-page: 256404
  year: 2009
  ident: j_nanoph-2019-0211_ref_095
  article-title: Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond
  publication-title: Phys Rev Lett
– volume: 9
  start-page: 874
  year: 2018
  ident: j_nanoph-2019-0211_ref_212
  article-title: All-optical control and super-resolution imaging of quantum emitters in layered materials
  publication-title: Nat Commun
– volume: 297
  start-page: 1670
  year: 2002
  end-page: 2
  ident: j_nanoph-2019-0211_ref_096
  article-title: High carrier mobility in single-crystal plasma-deposited diamond
  publication-title: Science
– volume: 94
  start-page: 241201
  year: 2016
  ident: j_nanoph-2019-0211_ref_107
  article-title: Near-infrared-assisted charge control and spin readout of the nitrogen-vacancy center in diamond
  publication-title: Phys Rev B
– volume: 4:eaar3580
  year: 2018
  ident: j_nanoph-2019-0211_ref_056
  article-title: Room temperature solid-state quantum emitters in the telecom range
  publication-title: Sci Adv
– volume: 348
  start-page: 285
  year: 1976
  ident: j_nanoph-2019-0211_ref_083
  article-title: Optical studies of the 1.945 eV vibronic band in diamond
  publication-title: Proc R Soc London Ser A
– volume: X 5
  start-page: 031031
  year: 2015
  ident: j_nanoph-2019-0211_ref_126
  article-title: Universal quantum transducers based on surface acoustic waves
  publication-title: Phys Rev
– volume: 364
  start-page: 154
  year: 2019
  end-page: 7
  ident: j_nanoph-2019-0211_ref_011
  article-title: Electron-phonon instability in graphene revealed by global and local noise probes
  publication-title: Science
– volume: 5
  start-page: 3328
  year: 2014
  ident: j_nanoph-2019-0211_ref_175
  article-title: Optical signatures of silicon-vacancy spins in diamond
  publication-title: Nat Commun
– volume: 336
  start-page: 1280
  year: 2012
  end-page: 3
  ident: j_nanoph-2019-0211_ref_005
  article-title: Quantum information storage for over 180 s using donor spins in a 28Si “semiconductor vacuum”
  publication-title: Science
– volume: 506
  start-page: 204
  year: 2014
  end-page: 7
  ident: j_nanoph-2019-0211_ref_026
  article-title: Quantum error correction in a solid-state hybrid spin register
  publication-title: Nature
– volume: 97
  start-page: 214104
  year: 2018
  ident: j_nanoph-2019-0211_ref_131
  article-title: Native point defects and impurities in hexagonal boron nitride
  publication-title: Phys Rev B
– year: 2019
  ident: j_nanoph-2019-0211_ref_209
  publication-title: Correlating 3D atomic defects and electronic properties of 2D materials with picometer precision. arXiv e-prints
– volume: 109
  start-page: 267401
  year: 2012
  ident: j_nanoph-2019-0211_ref_163
  article-title: First-principles calculations of luminescence spectrum line shapes for defects in semiconductors: the example of GaN and ZnO
  publication-title: Phys Rev Lett
– volume: 85
  start-page: 290
  year: 2000
  end-page: 3
  ident: j_nanoph-2019-0211_ref_087
  article-title: Stable solid-state source of single photons
  publication-title: Phys Rev Lett
– volume: 339
  start-page: 1174
  year: 2013
  end-page: 9
  ident: j_nanoph-2019-0211_ref_001
  article-title: Quantum spintronics: engineering and manipulating atom-like spins in semiconductors
  publication-title: Science
– volume: 466
  start-page: 730
  year: 2010
  end-page: 4
  ident: j_nanoph-2019-0211_ref_030
  article-title: Quantum entanglement between an optical photon and a solid-state spin qubit
  publication-title: Nature
– volume: 5
  start-page: 12882
  year: 2015
  ident: j_nanoph-2019-0211_ref_042
  article-title: Germanium-vacancy single color centers in diamond
  publication-title: Sci Rep
– volume: 9
  start-page: 2406
  year: 2018
  ident: j_nanoph-2019-0211_ref_012
  article-title: Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond
  publication-title: Nat Commun
– volume: 18
  start-page: 023021
  year: 2016
  ident: j_nanoph-2019-0211_ref_184
  article-title: 29Si nuclear spins as a resource for donor spin qubits in silicon
  publication-title: N J Phys
– volume: 83
  start-page: 33
  year: 2011
  end-page: 80
  ident: j_nanoph-2019-0211_ref_075
  article-title: Quantum repeaters based on atomic ensembles and linear optics
  publication-title: Rev Mod Phys
– volume: 113
  start-page: 263602
  year: 2014
  ident: j_nanoph-2019-0211_ref_041
  article-title: All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond
  publication-title: Phys Rev Lett
– volume: 82
  start-page: 441
  year: 2005
  end-page: 3
  ident: j_nanoph-2019-0211_ref_116
  article-title: EPR identification of the triplet ground state and photoinduced population inversion for a Si-C divacancy in silicon carbide
  publication-title: Jetp Lett
– volume: 18
  start-page: 1739
  year: 2018
  end-page: 44
  ident: j_nanoph-2019-0211_ref_211
  article-title: Imaging of optically active defects with nanometer resolution
  publication-title: Nano Lett
– volume: 3
  start-page: 38
  year: 2018
  end-page: 51
  ident: j_nanoph-2019-0211_ref_004
  article-title: Material platforms for spin-based photonic quantum technologies
  publication-title: Nat Rev Mater
– volume: 114
  start-page: 145502
  year: 2015
  ident: j_nanoph-2019-0211_ref_102
  article-title: Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers
  publication-title: Phys Rev Lett
– volume: 41
  start-page: 1201
  year: 1978
  ident: j_nanoph-2019-0211_ref_200
  article-title: Electron spin resonance in the study of diamond
  publication-title: Rep Prog Phys
– volume: 455
  start-page: 648
  year: 2008
  end-page: 651
  ident: j_nanoph-2019-0211_ref_093
  article-title: Nanoscale imaging magnetometry with diamond spins under ambient conditions
  publication-title: Nature
– volume: 77
  start-page: 056503
  year: 2014
  ident: j_nanoph-2019-0211_ref_079
  article-title: Magnetometry with nitrogen-vacancy defects in diamond
  publication-title: Rep Prog Phys
– volume: 86
  start-page: 035201
  year: 2012
  ident: j_nanoph-2019-0211_ref_179
  article-title: Production of oriented nitrogen-vacancy color centers in synthetic diamond
  publication-title: Phys Rev B
– volume: 3
  start-page: 800
  year: 2012
  ident: j_nanoph-2019-0211_ref_202
  article-title: Scalable architecture for a room temperature solid-state quantum information processor
  publication-title: Nat Commun
– volume: 104
  start-page: 102407
  year: 2014
  ident: j_nanoph-2019-0211_ref_180
  article-title: Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces
  publication-title: Appl Phys Lett
– volume: 86
  start-page: 041202
  year: 2012
  ident: j_nanoph-2019-0211_ref_157
  article-title: Mechanism for optical initialization of spin in NV− center in diamond
  publication-title: Phys Rev B
– volume: 12
  start-page: 949
  year: 2012
  end-page: 54
  ident: j_nanoph-2019-0211_ref_052
  article-title: Single-photon emission and quantum characterization of zinc oxide defects
  publication-title: Nano Lett
– volume: 363
  start-page: 728
  year: 2019
  end-page: 31
  ident: j_nanoph-2019-0211_ref_111
  article-title: Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond
  publication-title: Science
– volume: 130
  start-page: 1
  year: 2017
  end-page: 9
  ident: j_nanoph-2019-0211_ref_142
  article-title: A computational framework for automation of point defect calculations
  publication-title: Comp Mater Sci
– volume: 88
  start-page: 075202
  year: 2013
  ident: j_nanoph-2019-0211_ref_149
  article-title: Hyperfine coupling of point defects in semiconductors by hybrid density functional calculations: the role of core spin polarization
  publication-title: Phys Rev B
– volume: 361
  start-page: 60
  year: 2018
  end-page: 3
  ident: j_nanoph-2019-0211_ref_044
  article-title: Observation of an environmentally insensitive solid-state spin defect in diamond
  publication-title: Science
– volume: 118
  start-page: 6091
  year: 2018
  end-page: 133
  ident: j_nanoph-2019-0211_ref_172
  article-title: Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures
  publication-title: Chem Rev
– volume: 80
  start-page: 041201
  year: 2009
  ident: j_nanoph-2019-0211_ref_113
  article-title: Coherence of single spins coupled to a nuclear spin bath of varying density
  publication-title: Phys Rev B
– volume: 11
  start-page: 3328
  year: 2017
  end-page: 36
  ident: j_nanoph-2019-0211_ref_066
  article-title: Optical signatures of quantum emitters in suspended hexagonal boron nitride
  publication-title: ACS Nano
– volume: 13
  start-page: 025012
  year: 2011
  ident: j_nanoph-2019-0211_ref_038
  article-title: Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium
  publication-title: New J Phys
– volume: 29
  start-page: 4700
  year: 2017
  end-page: 7
  ident: j_nanoph-2019-0211_ref_206
  article-title: Atomic-scale structural and chemical characterization of hexagonal boron nitride layers synthesized at the wafer-scale with monolayer thickness control
  publication-title: Chem Mater
– volume: 93
  start-page: 130501
  year: 2004
  ident: j_nanoph-2019-0211_ref_089
  article-title: Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate
  publication-title: Phys Rev Lett
– volume: 342
  start-page: 830
  year: 2013
  ident: j_nanoph-2019-0211_ref_201
  article-title: Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28
  publication-title: Science
– volume: 276
  start-page: 2012
  year: 1997
  end-page: 4
  ident: j_nanoph-2019-0211_ref_081
  article-title: Scanning confocal optical microscopy and magnetic resonance on single defect centers
  publication-title: Science
– volume: 92
  start-page: 076401
  year: 2004
  ident: j_nanoph-2019-0211_ref_088
  article-title: Observation of coherent oscillations in a single electron spin
  publication-title: Phys Rev Lett
– volume: 16
  start-page: 1312
  year: 2007
  end-page: 6
  ident: j_nanoph-2019-0211_ref_019
  article-title: Quantum register based on individual electronic and nuclear spin qubits in diamond
  publication-title: Science
– volume: 10
  start-page: 491
  year: 2015
  ident: j_nanoph-2019-0211_ref_061
  article-title: Optically active quantum dots in monolayer WSe2
  publication-title: Nat Nanotechnol
– volume: 455
  start-page: 644
  year: 2008
  end-page: 7
  ident: j_nanoph-2019-0211_ref_092
  article-title: Nanoscale magnetic sensing with an individual electronic spin in diamond
  publication-title: Nature
– volume: 107
  start-page: 090401
  year: 2011
  ident: j_nanoph-2019-0211_ref_105
  article-title: Violation of a temporal Bell inequality for single spins in a diamond defect center
  publication-title: Phys Rev Lett
– volume: 118
  start-page: 037601
  year: 2017
  ident: j_nanoph-2019-0211_ref_110
  article-title: Efficient electrical spin readout of NV− centers in diamond
  publication-title: Phys Rev Lett
– year: 2019
  ident: j_nanoph-2019-0211_ref_213
  publication-title: Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated cathodoluminescence, photoluminescence, and strain mapping. arXiv e-prints
– volume: 92
  start-page: 115206
  year: 2015
  ident: j_nanoph-2019-0211_ref_150
  article-title: Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide
  publication-title: Phys Rev B
– volume: 4
  start-page: 1743
  year: 2013
  ident: j_nanoph-2019-0211_ref_130
  article-title: Solid-state electronic spin coherence time approaching one second
  publication-title: Nat Commun
– volume: 144
  start-page: 227
  year: 1997
  end-page: 30
  ident: j_nanoph-2019-0211_ref_077
  article-title: Efficient electromagnetically induced transparency in a rare-earth doped crystal
  publication-title: Opt Commun
– volume: 4
  start-page: 810
  year: 2008
  end-page: 6
  ident: j_nanoph-2019-0211_ref_090
  article-title: High-sensitivity diamond magnetometer with nanoscale resolution
  publication-title: Nat Phys
– volume: 107
  start-page: 8513
  year: 2010
  end-page: 8
  ident: j_nanoph-2019-0211_ref_115
  article-title: Quantum computing with defects
  publication-title: Proc Natl Acad Sci U S A
– volume: 453
  start-page: 1023
  year: 2008
  end-page: 30
  ident: j_nanoph-2019-0211_ref_036
  article-title: The quantum internet
  publication-title: Nature
– volume: 86
  start-page: 253
  year: 2014
  ident: j_nanoph-2019-0211_ref_140
  article-title: First-principles calculations for point defects in solids
  publication-title: Rev Mod Phys
– volume: 114
  start-page: 136402
  year: 2015
  ident: j_nanoph-2019-0211_ref_106
  article-title: Efficient readout of a single spin state in diamond via spin-to-charge conversion
  publication-title: Phys Rev Lett
– volume: 17
  start-page: 313
  year: 2018
  end-page: 7
  ident: j_nanoph-2019-0211_ref_152
  article-title: Solid-state electron spin lifetime limited by phononic vacuum modes
  publication-title: Nat Mater
– volume: 87
  start-page: 261909
  year: 2005
  ident: j_nanoph-2019-0211_ref_097
  article-title: Generation of single color centers by focused nitrogen implantation
  publication-title: Appl Phys Lett
– volume: 6
  start-page: 2117
  year: 2010
  end-page: 21
  ident: j_nanoph-2019-0211_ref_176
  article-title: Nanoscale engineering and optical addressing of single spins in diamond
  publication-title: Small
– volume: 115
  start-page: 071604
  year: 2019
  ident: j_nanoph-2019-0211_ref_207
  article-title: Substitutional Si impurities in monolayer hexagonal boron nitride
  publication-title: Appl Phys Lett
– volume: 25
  start-page: 1294
  year: 2000
  end-page: 6
  ident: j_nanoph-2019-0211_ref_086
  article-title: Photon antibunching in the fluorescence of individual color centers in diamond
  publication-title: Opt Lett
– volume: 10
  start-page: 222
  year: 2019
  ident: j_nanoph-2019-0211_ref_067
  article-title: Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature
  publication-title: Nat Commun
– volume: 77
  start-page: 115118
  year: 2008
  ident: j_nanoph-2019-0211_ref_154
  article-title: Optical excitation of deep defect levels in insulators within many-body perturbation theory: the F center in calcium fluoride
  publication-title: Phys Rev B
– volume: 314
  start-page: 281
  year: 2006
  end-page: 5
  ident: j_nanoph-2019-0211_ref_018
  article-title: Coherent dynamics of coupled electron and nuclear spin qubits in diamond
  publication-title: Science
– volume: 98
  start-page: 085207
  year: 2018
  ident: j_nanoph-2019-0211_ref_104
  article-title: Theory of the optical spin-polarization loop of the nitrogen-vacancy center in diamond
  publication-title: Phys Rev B
– volume: 10
  start-page: 3168
  year: 2010
  end-page: 72
  ident: j_nanoph-2019-0211_ref_098
  article-title: Chip-scale nanofabrication of single spins and spin arrays in diamond
  publication-title: Nano Lett
– volume: 3
  start-page: 31
  year: 2018
  ident: j_nanoph-2019-0211_ref_158
  article-title: Ab initio description of highly correlated states in defects for realizing quantum bits
  publication-title: Npj Quantum Mater
– volume: 9
  start-page: 2552
  year: 2018
  ident: j_nanoph-2019-0211_ref_024
  article-title: One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment
  publication-title: Nat Commun
– volume: 12
  start-page: 516
  year: 2018
  end-page: 27
  ident: j_nanoph-2019-0211_ref_037
  article-title: Quantum technologies with optically interfaced solid-state spins
  publication-title: Nat Photonics
– volume: 20
  start-page: 1693
  year: 1979
  end-page: 703
  ident: j_nanoph-2019-0211_ref_162
  article-title: Local-density theory of multiplet structure
  publication-title: Phys Rev A
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_188_w2aab3b7c12b1b6b1ab1b8d188Aa
  doi: 10.1021/acsnano.8b02001
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_111_w2aab3b7c12b1b6b1ab1b8d111Aa
  doi: 10.1126/science.aav2789
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_183_w2aab3b7c12b1b6b1ab1b8d183Aa
  doi: 10.1016/S0039-6028(03)00485-0
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_135_w2aab3b7c12b1b6b1ab1b8d135Aa
  doi: 10.1038/s41467-017-00810-2
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_141_w2aab3b7c12b1b6b1ab1b8d141Aa
  doi: 10.1146/annurev-matsci-070317-124453
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_065_w2aab3b7c12b1b6b1ab1b8c65Aa
  doi: 10.1021/acs.nanolett.6b03268
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_011_w2aab3b7c12b1b6b1ab1b8c11Aa
  doi: 10.1126/science.aaw2104
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_056_w2aab3b7c12b1b6b1ab1b8c56Aa
  doi: 10.1126/sciadv.aar3580
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_054_w2aab3b7c12b1b6b1ab1b8c54Aa
  doi: 10.1103/PhysRevApplied.10.064061
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_097_w2aab3b7c12b1b6b1ab1b8c97Aa
  doi: 10.1063/1.2103389
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_102_w2aab3b7c12b1b6b1ab1b8d102Aa
  doi: 10.1103/PhysRevLett.114.145502
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_144_w2aab3b7c12b1b6b1ab1b8d144Aa
  doi: 10.1103/PhysRevB.77.035119
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_201_w2aab3b7c12b1b6b1ab1b8d201Aa
  doi: 10.1126/science.1239584
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_159_w2aab3b7c12b1b6b1ab1b8d159Aa
  doi: 10.1021/cr200148b
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_184_w2aab3b7c12b1b6b1ab1b8d184Aa
  doi: 10.1088/1367-2630/18/2/023021
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_083_w2aab3b7c12b1b6b1ab1b8c83Aa
  doi: 10.1098/rspa.1976.0039
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_064_w2aab3b7c12b1b6b1ab1b8c64Aa
  doi: 10.1021/acs.nanolett.6b01987
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_074_w2aab3b7c12b1b6b1ab1b8c74Aa
  doi: 10.1038/30156
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_126_w2aab3b7c12b1b6b1ab1b8d126Aa
  doi: 10.1103/PhysRevX.5.031031
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_060_w2aab3b7c12b1b6b1ab1b8c60Aa
  doi: 10.1038/nnano.2015.75
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_150_w2aab3b7c12b1b6b1ab1b8d150Aa
  doi: 10.1103/PhysRevB.92.115206
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_068_w2aab3b7c12b1b6b1ab1b8c68Aa
  doi: 10.1103/PhysRevLett.113.113602
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_146_w2aab3b7c12b1b6b1ab1b8d146Aa
  doi: 10.1103/PhysRevB.97.115135
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_127_w2aab3b7c12b1b6b1ab1b8d127Aa
  doi: 10.1103/PhysRevLett.120.213603
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_156_w2aab3b7c12b1b6b1ab1b8d156Aa
  doi: 10.1103/PhysRevB.98.155143
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_209_w2aab3b7c12b1b6b1ab1b8d209Aa
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_044_w2aab3b7c12b1b6b1ab1b8c44Aa
  doi: 10.1126/science.aao0290
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_032_w2aab3b7c12b1b6b1ab1b8c32Aa
  doi: 10.1126/science.1255541
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_214_w2aab3b7c12b1b6b1ab1b8d214Aa
  doi: 10.1103/PhysRevLett.113.197601
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_172_w2aab3b7c12b1b6b1ab1b8d172Aa
  doi: 10.1021/acs.chemrev.7b00536
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_122_w2aab3b7c12b1b6b1ab1b8d122Aa
  doi: 10.1126/science.aaw2906
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_084_w2aab3b7c12b1b6b1ab1b8c84Aa
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_104_w2aab3b7c12b1b6b1ab1b8d104Aa
  doi: 10.1103/PhysRevB.98.085207
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_207_w2aab3b7c12b1b6b1ab1b8d207Aa
  doi: 10.1063/1.5112375
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_148_w2aab3b7c12b1b6b1ab1b8d148Aa
  doi: 10.1103/PhysRevLett.64.669
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_120_w2aab3b7c12b1b6b1ab1b8d120Aa
  doi: 10.1103/PhysRevB.90.241203
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_190_w2aab3b7c12b1b6b1ab1b8d190Aa
  doi: 10.1021/acsnano.7b00638
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_033_w2aab3b7c12b1b6b1ab1b8c33Aa
  doi: 10.1038/nature12016
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_182_w2aab3b7c12b1b6b1ab1b8d182Aa
  doi: 10.1103/PhysRevMaterials.4.023402
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_212_w2aab3b7c12b1b6b1ab1b8d212Aa
  doi: 10.1038/s41467-018-03290-0
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_059_w2aab3b7c12b1b6b1ab1b8c59Aa
  doi: 10.1038/nnano.2015.67
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_155_w2aab3b7c12b1b6b1ab1b8d155Aa
  doi: 10.1103/PhysRevB.96.020101
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_109_w2aab3b7c12b1b6b1ab1b8d109Aa
  doi: 10.1038/ncomms9577
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_089_w2aab3b7c12b1b6b1ab1b8c89Aa
  doi: 10.1103/PhysRevLett.93.130501
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_067_w2aab3b7c12b1b6b1ab1b8c67Aa
  doi: 10.1038/s41467-018-08185-8
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_040_w2aab3b7c12b1b6b1ab1b8c40Aa
  doi: 10.1103/PhysRevLett.112.036405
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_130_w2aab3b7c12b1b6b1ab1b8d130Aa
  doi: 10.1038/ncomms2771
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_021_w2aab3b7c12b1b6b1ab1b8c21Aa
  doi: 10.1126/science.1157233
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_128_w2aab3b7c12b1b6b1ab1b8d128Aa
  doi: 10.1103/PhysRevX.8.041027
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_158_w2aab3b7c12b1b6b1ab1b8d158Aa
  doi: 10.1038/s41535-018-0103-6
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_027_w2aab3b7c12b1b6b1ab1b8c27Aa
  doi: 10.1038/nnano.2014.2
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_153_w2aab3b7c12b1b6b1ab1b8d153Aa
  doi: 10.1103/RevModPhys.74.601
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_017_w2aab3b7c12b1b6b1ab1b8c17Aa
  doi: 10.1146/annurev-physchem-040513-103659
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_071_w2aab3b7c12b1b6b1ab1b8c71Aa
  doi: 10.1126/science.aau4691
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_009_w2aab3b7c12b1b6b1ab1b8b9Aa
  doi: 10.1103/RevModPhys.89.035002
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_106_w2aab3b7c12b1b6b1ab1b8d106Aa
  doi: 10.1103/PhysRevLett.114.136402
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_173_w2aab3b7c12b1b6b1ab1b8d173Aa
  doi: 10.1038/nnano.2010.172
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_072_w2aab3b7c12b1b6b1ab1b8c72Aa
  doi: 10.1557/mrs.2015.266
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_058_w2aab3b7c12b1b6b1ab1b8c58Aa
  doi: 10.1038/nnano.2015.79
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_087_w2aab3b7c12b1b6b1ab1b8c87Aa
  doi: 10.1103/PhysRevLett.85.290
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_108_w2aab3b7c12b1b6b1ab1b8d108Aa
  doi: 10.1103/PhysRevB.95.041402
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_133_w2aab3b7c12b1b6b1ab1b8d133Aa
  doi: 10.1364/CLEO_QELS.2019.FM4A.5
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_026_w2aab3b7c12b1b6b1ab1b8c26Aa
  doi: 10.1038/nature12919
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_118_w2aab3b7c12b1b6b1ab1b8d118Aa
  doi: 10.1103/PhysRevX.8.021063
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_194_w2aab3b7c12b1b6b1ab1b8d194Aa
  doi: 10.1038/nphys141
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_095_w2aab3b7c12b1b6b1ab1b8c95Aa
  doi: 10.1103/PhysRevLett.103.256404
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_189_w2aab3b7c12b1b6b1ab1b8d189Aa
  doi: 10.1021/acs.nanolett.8b01030
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_196_w2aab3b7c12b1b6b1ab1b8d196Aa
  doi: 10.1088/0953-8984/21/36/364210
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_181_w2aab3b7c12b1b6b1ab1b8d181Aa
  doi: 10.7567/APEX.7.055201
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_101_w2aab3b7c12b1b6b1ab1b8d101Aa
  doi: 10.3390/mi9090437
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_052_w2aab3b7c12b1b6b1ab1b8c52Aa
  doi: 10.1021/nl204010e
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_162_w2aab3b7c12b1b6b1ab1b8d162Aa
  doi: 10.1103/PhysRevA.20.1693
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_006_w2aab3b7c12b1b6b1ab1b8b6Aa
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_007_w2aab3b7c12b1b6b1ab1b8b7Aa
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_137_w2aab3b7c12b1b6b1ab1b8d137Aa
  doi: 10.1126/science.aau7392
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_005_w2aab3b7c12b1b6b1ab1b8b5Aa
  doi: 10.1126/science.1217635
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_116_w2aab3b7c12b1b6b1ab1b8d116Aa
  doi: 10.1134/1.2142873
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_008_w2aab3b7c12b1b6b1ab1b8b8Aa
  doi: 10.1016/j.physrep.2013.02.001
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_047_w2aab3b7c12b1b6b1ab1b8c47Aa
  doi: 10.1038/nmat4145
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_034_w2aab3b7c12b1b6b1ab1b8c34Aa
  doi: 10.1126/science.aan0070
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_002_w2aab3b7c12b1b6b1ab1b8b2Aa
  doi: 10.1038/nphoton.2015.58
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_045_w2aab3b7c12b1b6b1ab1b8c45Aa
  doi: 10.1038/nature10562
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_103_w2aab3b7c12b1b6b1ab1b8d103Aa
  doi: 10.1103/PhysRevLett.110.167402
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_199_w2aab3b7c12b1b6b1ab1b8d199Aa
  doi: 10.1103/PhysRevB.97.165202
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_055_w2aab3b7c12b1b6b1ab1b8c55Aa
  doi: 10.1103/PhysRevB.95.035207
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_063_w2aab3b7c12b1b6b1ab1b8c63Aa
  doi: 10.1038/nnano.2015.242
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_206_w2aab3b7c12b1b6b1ab1b8d206Aa
  doi: 10.1021/acs.chemmater.7b00183
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_050_w2aab3b7c12b1b6b1ab1b8c50Aa
  doi: 10.1038/ncomms4895
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_134_w2aab3b7c12b1b6b1ab1b8d134Aa
  doi: 10.1021/acs.nanolett.5b03312
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_178_w2aab3b7c12b1b6b1ab1b8d178Aa
  doi: 10.1063/1.5001520
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_094_w2aab3b7c12b1b6b1ab1b8c94Aa
  doi: 10.1038/nmat2420
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_069_w2aab3b7c12b1b6b1ab1b8c69Aa
  doi: 10.1038/ncomms5739
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_010_w2aab3b7c12b1b6b1ab1b8c10Aa
  doi: 10.1126/science.aav6926
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_100_w2aab3b7c12b1b6b1ab1b8d100Aa
  doi: 10.1038/nature10401
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_142_w2aab3b7c12b1b6b1ab1b8d142Aa
  doi: 10.1016/j.commatsci.2016.12.040
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_192_w2aab3b7c12b1b6b1ab1b8d192Aa
  doi: 10.1364/OPTICA.5.001128
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_043_w2aab3b7c12b1b6b1ab1b8c43Aa
  doi: 10.1103/PhysRevLett.119.096402
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_168_w2aab3b7c12b1b6b1ab1b8d168Aa
  doi: 10.1038/nphoton.2012.328
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_024_w2aab3b7c12b1b6b1ab1b8c24Aa
  doi: 10.1038/s41467-018-04916-z
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_176_w2aab3b7c12b1b6b1ab1b8d176Aa
  doi: 10.1002/smll.201000902
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_191_w2aab3b7c12b1b6b1ab1b8d191Aa
  doi: 10.1021/acsami.6b09875
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_187_w2aab3b7c12b1b6b1ab1b8d187Aa
  doi: 10.1557/mrs.2017.187
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_138_w2aab3b7c12b1b6b1ab1b8d138Aa
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_167_w2aab3b7c12b1b6b1ab1b8d167Aa
  doi: 10.1088/1367-2630/aae93f
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_018_w2aab3b7c12b1b6b1ab1b8c18Aa
  doi: 10.1126/science.1131871
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_166_w2aab3b7c12b1b6b1ab1b8d166Aa
  doi: 10.1103/PhysRevB.90.075202
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_099_w2aab3b7c12b1b6b1ab1b8c99Aa
  doi: 10.1021/nl404836p
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_014_w2aab3b7c12b1b6b1ab1b8c14Aa
  doi: 10.1126/science.aad8022
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_048_w2aab3b7c12b1b6b1ab1b8c48Aa
  doi: 10.1038/ncomms2034
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_098_w2aab3b7c12b1b6b1ab1b8c98Aa
  doi: 10.1021/nl102066q
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_121_w2aab3b7c12b1b6b1ab1b8d121Aa
  doi: 10.1038/ncomms12935
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_079_w2aab3b7c12b1b6b1ab1b8c79Aa
  doi: 10.1088/0034-4885/77/5/056503
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_151_w2aab3b7c12b1b6b1ab1b8d151Aa
  doi: 10.1063/1.5047808
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_210_w2aab3b7c12b1b6b1ab1b8d210Aa
  doi: 10.1038/s41467-017-00056-y
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_082_w2aab3b7c12b1b6b1ab1b8c82Aa
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_022_w2aab3b7c12b1b6b1ab1b8c22Aa
  doi: 10.1038/nphys2545
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_213_w2aab3b7c12b1b6b1ab1b8d213Aa
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_088_w2aab3b7c12b1b6b1ab1b8c88Aa
  doi: 10.1103/PhysRevLett.92.076401
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_110_w2aab3b7c12b1b6b1ab1b8d110Aa
  doi: 10.1103/PhysRevLett.118.037601
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_031_w2aab3b7c12b1b6b1ab1b8c31Aa
  doi: 10.1073/pnas.1305920110
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_115_w2aab3b7c12b1b6b1ab1b8d115Aa
  doi: 10.1073/pnas.1003052107
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_145_w2aab3b7c12b1b6b1ab1b8d145Aa
  doi: 10.1088/0953-8984/26/1/015305
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_001_w2aab3b7c12b1b6b1ab1b8b1Aa
  doi: 10.1126/science.1231364
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_203_w2aab3b7c12b1b6b1ab1b8d203Aa
  doi: 10.1103/PhysRevB.80.155425
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_114_w2aab3b7c12b1b6b1ab1b8d114Aa
  doi: 10.1103/PhysRevX.6.041035
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_105_w2aab3b7c12b1b6b1ab1b8d105Aa
  doi: 10.1103/PhysRevLett.107.090401
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_066_w2aab3b7c12b1b6b1ab1b8c66Aa
  doi: 10.1021/acsnano.7b00665
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_211_w2aab3b7c12b1b6b1ab1b8d211Aa
  doi: 10.1021/acs.nanolett.7b04819
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_180_w2aab3b7c12b1b6b1ab1b8d180Aa
  doi: 10.1063/1.4868128
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_132_w2aab3b7c12b1b6b1ab1b8d132Aa
  doi: 10.1038/nature12385
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_174_w2aab3b7c12b1b6b1ab1b8d174Aa
  doi: 10.1088/2053-1583/1/1/011002
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_036_w2aab3b7c12b1b6b1ab1b8c36Aa
  doi: 10.1038/nature07127
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_093_w2aab3b7c12b1b6b1ab1b8c93Aa
  doi: 10.1038/nature07278
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_208_w2aab3b7c12b1b6b1ab1b8d208Aa
  doi: 10.1038/nature21042
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_062_w2aab3b7c12b1b6b1ab1b8c62Aa
  doi: 10.1364/OPTICA.2.000347
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_080_w2aab3b7c12b1b6b1ab1b8c80Aa
  doi: 10.1364/JOSAB.33.000B65
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_117_w2aab3b7c12b1b6b1ab1b8d117Aa
  doi: 10.1016/j.physb.2009.09.023
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_061_w2aab3b7c12b1b6b1ab1b8c61Aa
  doi: 10.1038/nnano.2015.60
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_112_w2aab3b7c12b1b6b1ab1b8d112Aa
  doi: 10.1021/nl501841d
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_019_w2aab3b7c12b1b6b1ab1b8c19Aa
  doi: 10.1126/science.1139831
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_175_w2aab3b7c12b1b6b1ab1b8d175Aa
  doi: 10.1038/ncomms4328
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_085_w2aab3b7c12b1b6b1ab1b8c85Aa
  doi: 10.1103/PhysRevB.42.8605
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_171_w2aab3b7c12b1b6b1ab1b8d171Aa
  doi: 10.1103/PhysRevLett.121.183603
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_152_w2aab3b7c12b1b6b1ab1b8d152Aa
  doi: 10.1038/s41563-017-0008-y
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_070_w2aab3b7c12b1b6b1ab1b8c70Aa
  doi: 10.1126/science.aah6875
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_125_w2aab3b7c12b1b6b1ab1b8d125Aa
  doi: 10.1103/PhysRevApplied.6.034005
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_004_w2aab3b7c12b1b6b1ab1b8b4Aa
  doi: 10.1038/s41578-018-0008-9
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_051_w2aab3b7c12b1b6b1ab1b8c51Aa
  doi: 10.1103/PhysRevLett.115.093602
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_096_w2aab3b7c12b1b6b1ab1b8c96Aa
  doi: 10.1126/science.1074374
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_198_w2aab3b7c12b1b6b1ab1b8d198Aa
  doi: 10.1364/OE.20.019956
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_025_w2aab3b7c12b1b6b1ab1b8c25Aa
  doi: 10.1126/science.1253512
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_143_w2aab3b7c12b1b6b1ab1b8d143Aa
  doi: 10.1016/j.cpc.2018.01.004
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_015_w2aab3b7c12b1b6b1ab1b8c15Aa
  doi: 10.1126/science.aam8697
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_202_w2aab3b7c12b1b6b1ab1b8d202Aa
  doi: 10.1038/ncomms1788
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_092_w2aab3b7c12b1b6b1ab1b8c92Aa
  doi: 10.1038/nature07279
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_195_w2aab3b7c12b1b6b1ab1b8d195Aa
  doi: 10.1103/PhysRevB.89.235101
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_147_w2aab3b7c12b1b6b1ab1b8d147Aa
  doi: 10.1038/s41524-018-0132-5
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_078_w2aab3b7c12b1b6b1ab1b8c78Aa
  doi: 10.1515/nanoph-2019-0154
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_057_w2aab3b7c12b1b6b1ab1b8c57Aa
  doi: 10.1002/adma.201605092
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_131_w2aab3b7c12b1b6b1ab1b8d131Aa
  doi: 10.1103/PhysRevB.97.214104
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_113_w2aab3b7c12b1b6b1ab1b8d113Aa
  doi: 10.1103/PhysRevB.80.041201
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_030_w2aab3b7c12b1b6b1ab1b8c30Aa
  doi: 10.1038/nature09256
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_107_w2aab3b7c12b1b6b1ab1b8d107Aa
  doi: 10.1103/PhysRevB.94.241201
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_164_w2aab3b7c12b1b6b1ab1b8d164Aa
  doi: 10.1063/1.4948245
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_016_w2aab3b7c12b1b6b1ab1b8c16Aa
  doi: 10.1038/nature12373
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_090_w2aab3b7c12b1b6b1ab1b8c90Aa
  doi: 10.1038/nphys1075
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_013_w2aab3b7c12b1b6b1ab1b8c13Aa
  doi: 10.1126/science.aaa2253
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_139_w2aab3b7c12b1b6b1ab1b8d139Aa
  doi: 10.1017/CBO9780511805769
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_157_w2aab3b7c12b1b6b1ab1b8d157Aa
  doi: 10.1103/PhysRevB.86.041202
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_037_w2aab3b7c12b1b6b1ab1b8c37Aa
  doi: 10.1038/s41566-018-0232-2
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_023_w2aab3b7c12b1b6b1ab1b8c23Aa
  doi: 10.1126/science.1220513
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_041_w2aab3b7c12b1b6b1ab1b8c41Aa
  doi: 10.1103/PhysRevLett.113.263602
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_042_w2aab3b7c12b1b6b1ab1b8c42Aa
  doi: 10.1038/srep12882
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_119_w2aab3b7c12b1b6b1ab1b8d119Aa
  doi: 10.1103/PhysRevB.94.125401
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_197_w2aab3b7c12b1b6b1ab1b8d197Aa
  doi: 10.1038/nphys1716
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_179_w2aab3b7c12b1b6b1ab1b8d179Aa
  doi: 10.1103/PhysRevB.86.035201
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_086_w2aab3b7c12b1b6b1ab1b8c86Aa
  doi: 10.1364/OL.25.001294
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_003_w2aab3b7c12b1b6b1ab1b8b3Aa
  doi: 10.1038/nphoton.2016.186
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_049_w2aab3b7c12b1b6b1ab1b8c49Aa
  doi: 10.1103/PhysRevLett.111.120502
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_140_w2aab3b7c12b1b6b1ab1b8d140Aa
  doi: 10.1103/RevModPhys.86.253
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_193_w2aab3b7c12b1b6b1ab1b8d193Aa
  doi: 10.1146/annurev-physchem-042018-052628
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_039_w2aab3b7c12b1b6b1ab1b8c39Aa
  doi: 10.1103/PhysRevLett.113.263601
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_077_w2aab3b7c12b1b6b1ab1b8c77Aa
  doi: 10.1016/S0030-4018(97)00423-9
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_073_w2aab3b7c12b1b6b1ab1b8c73Aa
  doi: 10.1103/RevModPhys.85.961
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_028_w2aab3b7c12b1b6b1ab1b8c28Aa
  doi: 10.1038/ncomms11526
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_053_w2aab3b7c12b1b6b1ab1b8c53Aa
  doi: 10.1021/acsnano.5b06515
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_123_w2aab3b7c12b1b6b1ab1b8d123Aa
  doi: 10.1103/PhysRevB.99.184102
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_185_w2aab3b7c12b1b6b1ab1b8d185Aa
  doi: 10.1038/ncomms1224
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_091_w2aab3b7c12b1b6b1ab1b8c91Aa
  doi: 10.1063/1.2943282
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_012_w2aab3b7c12b1b6b1ab1b8c12Aa
  doi: 10.1038/s41467-018-04798-1
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_124_w2aab3b7c12b1b6b1ab1b8d124Aa
  doi: 10.1103/PhysRevLett.111.227602
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_160_w2aab3b7c12b1b6b1ab1b8d160Aa
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_163_w2aab3b7c12b1b6b1ab1b8d163Aa
  doi: 10.1103/PhysRevLett.109.267401
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_075_w2aab3b7c12b1b6b1ab1b8c75Aa
  doi: 10.1103/RevModPhys.83.33
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_205_w2aab3b7c12b1b6b1ab1b8d205Aa
  doi: 10.1038/nnano.2015.188
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_038_w2aab3b7c12b1b6b1ab1b8c38Aa
  doi: 10.1088/1367-2630/13/2/025012
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_035_w2aab3b7c12b1b6b1ab1b8c35Aa
  doi: 10.1038/s41586-018-0200-5
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_149_w2aab3b7c12b1b6b1ab1b8d149Aa
  doi: 10.1103/PhysRevB.88.075202
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_020_w2aab3b7c12b1b6b1ab1b8c20Aa
  doi: 10.1126/science.1189075
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_204_w2aab3b7c12b1b6b1ab1b8d204Aa
  doi: 10.1103/PhysRevLett.102.195505
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_165_w2aab3b7c12b1b6b1ab1b8d165Aa
  doi: 10.1088/1367-2630/16/7/073026
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_136_w2aab3b7c12b1b6b1ab1b8d136Aa
  doi: 10.1038/nature14025
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_129_w2aab3b7c12b1b6b1ab1b8d129Aa
  doi: 10.1103/PhysRevLett.108.197601
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_169_w2aab3b7c12b1b6b1ab1b8d169Aa
  doi: 10.1126/science.aac5523
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_029_w2aab3b7c12b1b6b1ab1b8c29Aa
  doi: 10.1126/science.1196436
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_170_w2aab3b7c12b1b6b1ab1b8d170Aa
  doi: 10.1126/science.273.5271.87
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_161_w2aab3b7c12b1b6b1ab1b8d161Aa
  doi: 10.1103/PhysRevLett.103.186404
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_076_w2aab3b7c12b1b6b1ab1b8c76Aa
  doi: 10.1016/j.jlumin.2010.12.015
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_081_w2aab3b7c12b1b6b1ab1b8c81Aa
  doi: 10.1126/science.276.5321.2012
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_186_w2aab3b7c12b1b6b1ab1b8d186Aa
  doi: 10.1088/2053-1583/aa878f
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_046_w2aab3b7c12b1b6b1ab1b8c46Aa
  doi: 10.1038/nmat4144
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_177_w2aab3b7c12b1b6b1ab1b8d177Aa
  doi: 10.1109/IIT.2016.7882858
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_200_w2aab3b7c12b1b6b1ab1b8d200Aa
  doi: 10.1088/0034-4885/41/8/002
– ident: 2023040101265043966_j_nanoph-2019-0211_ref_154_w2aab3b7c12b1b6b1ab1b8d154Aa
  doi: 10.1103/PhysRevB.77.115118
SSID ssj0000993196
Score 2.467626
Snippet Optically active point defects in wide-bandgap crystals are leading building blocks for quantum information technologies including quantum processors,...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1867
SubjectTerms Crystal defects
Design defects
inverse engineering
materials discovery
Materials selection
NV center
Optical activity
photonics
Point defects
quantum emitters
quantum information processing
Quantum phenomena
quantum sensing
Repeaters
Room temperature
semiconductors
Simulators
Solid state devices
SummonAdditionalLinks – databaseName: Directory of open access journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Sk5f6xtUqe_DiYenuJptkjyqW4kEQLPQWNi9FdFvaLtJ_7ySb1iqoF2_LksDwzUzmGzKZQegCKH0hZQaeVkiWEE1dEYDFic4osBGLIX_z3T7v6XBE7sbFeGPUl6sJa9sDt8D1i7zKU5ljolJNqlJzbCiQYpPiXEqq_ekLMW8jmXppeY-zLTdZDihMwoGmhztKiN_9uqon02cwEPeAJ8-yLzHJt-7_wje77_7mWpunWbNcrG5KfQAa7KJuYI7xVSvxHtoy9T7aCSwyDj46P0DRQwNoNW-xNr5UI5ZL-HR1GodoNLh9vBkmYQBCooo0WyRSWS5xUUGIlpxarMCBtM0l5yRnuVJMYWKZKhU2ylgpVUUKxYlhGXEbKT5CnXpSm2MUq8KWlNu01AwT8LmKlDLNeAnagRyRywj1VxAIFbqDuyEVr8JlCQCaaEETDjThQIvQ5XrHtO2M8cvaa4fqep3rae1_gKZF0LT4S9MR6q10IoKjzQXQU5IxNxQgQvybnj5X_SQXh5OeU3byH-Kdom1vUK64gPRQZzFrzBkQloU897b5ATJc44c
  priority: 102
  providerName: Directory of Open Access Journals
Title Quantum defects by design
URI https://www.degruyter.com/doi/10.1515/nanoph-2019-0211
https://www.proquest.com/docview/2314170848
https://doaj.org/article/52a20b234c0d4a9d83e6118e032bb6d2
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VuPRCaSkilK5y6IVDtIntOM4JFcQW9YBaBBI3K37BAbLLPlTx75nxeheBVG5RZEfRPL_xjGcAfiCkr42pUNNq0xTCSSoCCLxwlUQ0EjjGb7Hb54U8vxa_b-qbdOA2S2WVK5sYDbUbWzojHyIOEVVD3d-PJ48FTY2i7GoaobEBW2iCFQZfWydnF38u16csiH9IxmjCHEKZQiFcT7lK9OPDvuvHkzsUFLrIw6rqlW-KLfxf4c7tfzGD7fztdPE0X2VMoyMa7cB2QpD5zyXLP8MH33-BTwlN5klXZ7uQ_V0g1RYPufOxZCM3T_hI9Rpf4Xp0dnV6XqRBCIWty2peGBuU4XWHrtooGbhFRXKBGaUEa5i1jeUiNLa13FsfjLGdqK0SvqkEbZR8Dzb7ce_3Ibd1aKUKZesaLlD3OtGaslItcgljRWUyGK5IoG3qEk7DKu41RQtINL0kmiaiaSJaBkfrHZNlh4x31p4QVdfrqLd1fDGe3uqkKrpmHSsN48KWTnStU9xLDIN8yZkx0rEMDlc80UnhZvpFPDJQb_j0sup__6XQ4ivZHLz_5W_wMYoKlQ-IQ9icTxf-O0KSuRnAhhr9GiTpG8TA_hmVmt67
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoBLKS-R0kIOcOAQbWI7jnNAiNeypaUSUiv1ZuJXObTZ7T5U7Z_iNzLjTbYqEr31FkW2Fc18Y3-TGc8AvEFKXxpToKWVpsqEk5QEEHjmColsJHD032K1zyM5OhHfT8vTDfjT34WhtMp-T4wbtRtb-kc-QB4iioqqv3-YXGbUNYqiq30LjRUsDvzyCl222fv9L6jft4wNvx5_HmVdV4HMlnkxz4wNyvCywXPPKBm4RVS6wIxSglXM2spyESpbW-6tD8bYRpRWCV8VgiZKjuveg_uC85osSg2_rf_pINsiRFM_OyROmULnoIuMImsYtE07nvxGWNK1IVYUN07C2DDgBsvduorxcufPpovlvI_PxmNvuA1bHV9NP64A9hg2fPsEHnXcNe12htlTSH4uUEeLi9T5mCCSmiU-UnbIMzi5EwE9h8123PoXkNoy1FKFvHYVF2jpjahNXqgaMYGeqTIJDHoRaNvVJKfWGOeafBMUml4JTZPQNAktgXfrGZNVPY5bxn4iqa7HUSXt-GI8PdOdYeqSNSw3jAubO9HUTnEv0enyOWfGSMcS2O11ojvznulrMCag_tHT9aj_fZfC80XJauf2lV_Dg9Hxj0N9uH908BIeRthQ4oLYhc35dOH3kAzNzauIwBR-3TXk_wKlRhoD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RXanqZctTpOWRA5ceok1ix3GOvJaFVrRVWYmbFb-WA82ulo0Q_55x1psCKhy4RZFHsr7xZL5xxp8BDpDSZ1ImGGmZzCOqmWsCsCTSCUM2YgnWb43a5yUbjujFdXa9AsfLszCurVKb8ax-mC8UUvt6omq3UdZqDWAG7ldlNZneoIvdERysYfpTbT9Al7GC0A50D4dnf362Wy1IgtxC8z8p_2f-LCk12v3PCGfvvvl13c7rSQYarELPU8fwcOHrNVgx1Tp89jQy9EF6twHB7xrhqv-G2jS9GqF8wEfXqLEJo8Hp1fEw8jcgRCqLk3kkleWSZCXmaMmZJQojSNtUck7TPFUqV4TaXBWKGGWslKqkmeLU5Al1hoxsQaeaVGYbQpXZgnEbFzonFIOupIWME16ge7BI5DKA_hICobw8uLul4la4MgFBEwvQhANNONAC-NZaTBfSGG-MPXKotuOcqHXzYjIbCx8jIkvLNJYpoSrWtCw0J4Zh_WNikkrJdBrAztInwkfanUB-SpPc3QoQAH_hp3-jXpsXx089Z_mX95vuw8dfJwPx4_zy-1f41Kwo115Ad6Azn9VmFynLXO75JfkImwDmug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+defects+by+design&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Bassett%2C+Lee+C&rft.au=Alkauskas%2C+Audrius&rft.au=Exarhos%2C+Annemarie+L&rft.au=Fu%2C+Kai-Mei+C&rft.date=2019-10-04&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=2192-8606&rft.eissn=2192-8614&rft.volume=8&rft.issue=11&rft.spage=1867&rft.epage=1888&rft_id=info:doi/10.1515%2Fnanoph-2019-0211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8606&client=summon