Degradation of benzoic acid in an advanced oxidation process: The effects of reducing agents
[Display omitted] •Dosing reducing agents resulted in enhanced pollutant degradation and expansion of pH range.•Dosing manner of RA was a key factor governing its roles in Fenton system.•Catalytic mechanisms of the three reducing agents in Fenton system were proposed.•Electrical energy per order was...
Saved in:
Published in | Journal of hazardous materials Vol. 382; p. 121090 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Dosing reducing agents resulted in enhanced pollutant degradation and expansion of pH range.•Dosing manner of RA was a key factor governing its roles in Fenton system.•Catalytic mechanisms of the three reducing agents in Fenton system were proposed.•Electrical energy per order was used to estimate the costs of three reducing agents.
Fenton reaction is widely used for hazardous pollutant degradation. Reducing agents (RAs) have been proven to be efficient in promoting the generation of HO• in Fenton reaction by accelerating the redox cycle of Fe3+/Fe2+. However, the roles of different RAs in Fenton reaction remain unrevealed. In this work, the catalytic activity of three RAs, i.e., hydroxylamine (NH2OH), ascorbic acid (AA) and cysteine (Cys), on the degradation of benzoic acid (BA) and the hydroxyl radical formation in the Fenton-RAs system were investigated. Results show the catalytic performance of RAs in BA degradation by Fenton reaction followed an order of NH2OH > AA > Cys. Compared with the conventional Fenton system, the effective pH range in the Fenton-NH2OH system extended from 3.0 to 5.0, while the optimal pH in the Fenton-AA and Fenton-Cys systems ranged from 3.0 to 4.0. The Fenton-AA system exhibited a two-stage reaction toward BA degradation, which was different from the Fenton-NH2OH and Fenton-Cys systems. Furthermore, the dosing manner of AA was found to be a key factor governing its role in the Fenton-AA system. This observation suggests the different mechanisms behind the enhancement of the three RAs in Fenton system. Different from NH2OH and Cys, AA would inhibit the generation of HO•, especially at the fast stage of degradation process, where Fe3+ has not accumulated yet. In addition, the economic analysis using the electrical energy per order indicates Fenton-NH2OH system was economically feasible with the lowest energy input, compared to Fenton-AA and Fenton-Cys systems. These results are useful to better understand the roles of RAs in Fenton system, and also provide guidance about the selection and dosing manner of suitable RAs in the advanced oxidation processes. |
---|---|
AbstractList | Fenton reaction is widely used for hazardous pollutant degradation. Reducing agents (RAs) have been proven to be efficient in promoting the generation of HO• in Fenton reaction by accelerating the redox cycle of Fe
/Fe
. However, the roles of different RAs in Fenton reaction remain unrevealed. In this work, the catalytic activity of three RAs, i.e., hydroxylamine (NH
OH), ascorbic acid (AA) and cysteine (Cys), on the degradation of benzoic acid (BA) and the hydroxyl radical formation in the Fenton-RAs system were investigated. Results show the catalytic performance of RAs in BA degradation by Fenton reaction followed an order of NH
OH > AA > Cys. Compared with the conventional Fenton system, the effective pH range in the Fenton-NH
OH system extended from 3.0 to 5.0, while the optimal pH in the Fenton-AA and Fenton-Cys systems ranged from 3.0 to 4.0. The Fenton-AA system exhibited a two-stage reaction toward BA degradation, which was different from the Fenton-NH
OH and Fenton-Cys systems. Furthermore, the dosing manner of AA was found to be a key factor governing its role in the Fenton-AA system. This observation suggests the different mechanisms behind the enhancement of the three RAs in Fenton system. Different from NH
OH and Cys, AA would inhibit the generation of HO•, especially at the fast stage of degradation process, where Fe
has not accumulated yet. In addition, the economic analysis using the electrical energy per order indicates Fenton-NH
OH system was economically feasible with the lowest energy input, compared to Fenton-AA and Fenton-Cys systems. These results are useful to better understand the roles of RAs in Fenton system, and also provide guidance about the selection and dosing manner of suitable RAs in the advanced oxidation processes. [Display omitted] •Dosing reducing agents resulted in enhanced pollutant degradation and expansion of pH range.•Dosing manner of RA was a key factor governing its roles in Fenton system.•Catalytic mechanisms of the three reducing agents in Fenton system were proposed.•Electrical energy per order was used to estimate the costs of three reducing agents. Fenton reaction is widely used for hazardous pollutant degradation. Reducing agents (RAs) have been proven to be efficient in promoting the generation of HO• in Fenton reaction by accelerating the redox cycle of Fe3+/Fe2+. However, the roles of different RAs in Fenton reaction remain unrevealed. In this work, the catalytic activity of three RAs, i.e., hydroxylamine (NH2OH), ascorbic acid (AA) and cysteine (Cys), on the degradation of benzoic acid (BA) and the hydroxyl radical formation in the Fenton-RAs system were investigated. Results show the catalytic performance of RAs in BA degradation by Fenton reaction followed an order of NH2OH > AA > Cys. Compared with the conventional Fenton system, the effective pH range in the Fenton-NH2OH system extended from 3.0 to 5.0, while the optimal pH in the Fenton-AA and Fenton-Cys systems ranged from 3.0 to 4.0. The Fenton-AA system exhibited a two-stage reaction toward BA degradation, which was different from the Fenton-NH2OH and Fenton-Cys systems. Furthermore, the dosing manner of AA was found to be a key factor governing its role in the Fenton-AA system. This observation suggests the different mechanisms behind the enhancement of the three RAs in Fenton system. Different from NH2OH and Cys, AA would inhibit the generation of HO•, especially at the fast stage of degradation process, where Fe3+ has not accumulated yet. In addition, the economic analysis using the electrical energy per order indicates Fenton-NH2OH system was economically feasible with the lowest energy input, compared to Fenton-AA and Fenton-Cys systems. These results are useful to better understand the roles of RAs in Fenton system, and also provide guidance about the selection and dosing manner of suitable RAs in the advanced oxidation processes. Fenton reaction is widely used for hazardous pollutant degradation. Reducing agents (RAs) have been proven to be efficient in promoting the generation of HO• in Fenton reaction by accelerating the redox cycle of Fe3+/Fe2+. However, the roles of different RAs in Fenton reaction remain unrevealed. In this work, the catalytic activity of three RAs, i.e., hydroxylamine (NH2OH), ascorbic acid (AA) and cysteine (Cys), on the degradation of benzoic acid (BA) and the hydroxyl radical formation in the Fenton-RAs system were investigated. Results show the catalytic performance of RAs in BA degradation by Fenton reaction followed an order of NH2OH > AA > Cys. Compared with the conventional Fenton system, the effective pH range in the Fenton-NH2OH system extended from 3.0 to 5.0, while the optimal pH in the Fenton-AA and Fenton-Cys systems ranged from 3.0 to 4.0. The Fenton-AA system exhibited a two-stage reaction toward BA degradation, which was different from the Fenton-NH2OH and Fenton-Cys systems. Furthermore, the dosing manner of AA was found to be a key factor governing its role in the Fenton-AA system. This observation suggests the different mechanisms behind the enhancement of the three RAs in Fenton system. Different from NH2OH and Cys, AA would inhibit the generation of HO•, especially at the fast stage of degradation process, where Fe3+ has not accumulated yet. In addition, the economic analysis using the electrical energy per order indicates Fenton-NH2OH system was economically feasible with the lowest energy input, compared to Fenton-AA and Fenton-Cys systems. These results are useful to better understand the roles of RAs in Fenton system, and also provide guidance about the selection and dosing manner of suitable RAs in the advanced oxidation processes.Fenton reaction is widely used for hazardous pollutant degradation. Reducing agents (RAs) have been proven to be efficient in promoting the generation of HO• in Fenton reaction by accelerating the redox cycle of Fe3+/Fe2+. However, the roles of different RAs in Fenton reaction remain unrevealed. In this work, the catalytic activity of three RAs, i.e., hydroxylamine (NH2OH), ascorbic acid (AA) and cysteine (Cys), on the degradation of benzoic acid (BA) and the hydroxyl radical formation in the Fenton-RAs system were investigated. Results show the catalytic performance of RAs in BA degradation by Fenton reaction followed an order of NH2OH > AA > Cys. Compared with the conventional Fenton system, the effective pH range in the Fenton-NH2OH system extended from 3.0 to 5.0, while the optimal pH in the Fenton-AA and Fenton-Cys systems ranged from 3.0 to 4.0. The Fenton-AA system exhibited a two-stage reaction toward BA degradation, which was different from the Fenton-NH2OH and Fenton-Cys systems. Furthermore, the dosing manner of AA was found to be a key factor governing its role in the Fenton-AA system. This observation suggests the different mechanisms behind the enhancement of the three RAs in Fenton system. Different from NH2OH and Cys, AA would inhibit the generation of HO•, especially at the fast stage of degradation process, where Fe3+ has not accumulated yet. In addition, the economic analysis using the electrical energy per order indicates Fenton-NH2OH system was economically feasible with the lowest energy input, compared to Fenton-AA and Fenton-Cys systems. These results are useful to better understand the roles of RAs in Fenton system, and also provide guidance about the selection and dosing manner of suitable RAs in the advanced oxidation processes. Fenton reaction is widely used for hazardous pollutant degradation. Reducing agents (RAs) have been proven to be efficient in promoting the generation of HO• in Fenton reaction by accelerating the redox cycle of Fe3+/Fe2+. However, the roles of different RAs in Fenton reaction remain unrevealed. In this work, the catalytic activity of three RAs, i.e., hydroxylamine (NH2OH), ascorbic acid (AA) and cysteine (Cys), on the degradation of benzoic acid (BA) and the hydroxyl radical formation in the Fenton-RAs system were investigated. Results show the catalytic performance of RAs in BA degradation by Fenton reaction followed an order of NH2OH > AA > Cys. Compared with the conventional Fenton system, the effective pH range in the Fenton-NH2OH system extended from 3.0 to 5.0, while the optimal pH in the Fenton-AA and Fenton-Cys systems ranged from 3.0 to 4.0. The Fenton-AA system exhibited a two-stage reaction toward BA degradation, which was different from the Fenton-NH2OH and Fenton-Cys systems. Furthermore, the dosing manner of AA was found to be a key factor governing its role in the Fenton-AA system. This observation suggests the different mechanisms behind the enhancement of the three RAs in Fenton system. Different from NH2OH and Cys, AA would inhibit the generation of HO•, especially at the fast stage of degradation process, where Fe3+ has not accumulated yet. In addition, the economic analysis using the electrical energy per order indicates Fenton-NH2OH system was economically feasible with the lowest energy input, compared to Fenton-AA and Fenton-Cys systems. These results are useful to better understand the roles of RAs in Fenton system, and also provide guidance about the selection and dosing manner of suitable RAs in the advanced oxidation processes. |
ArticleNumber | 121090 |
Author | Li, Jun Zhang, Ying-Jie Yu, Han-Qing He, Dong-Qin Huang, Gui-Xiang Pei, Dan-Ni Liu, Chang |
Author_xml | – sequence: 1 givenname: Dong-Qin surname: He fullname: He, Dong-Qin organization: Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China – sequence: 2 givenname: Ying-Jie surname: Zhang fullname: Zhang, Ying-Jie organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China – sequence: 3 givenname: Dan-Ni surname: Pei fullname: Pei, Dan-Ni organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China – sequence: 4 givenname: Gui-Xiang surname: Huang fullname: Huang, Gui-Xiang organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China – sequence: 5 givenname: Chang surname: Liu fullname: Liu, Chang organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China – sequence: 6 givenname: Jun surname: Li fullname: Li, Jun organization: Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China – sequence: 7 givenname: Han-Qing orcidid: 0000-0001-5247-6244 surname: Yu fullname: Yu, Han-Qing email: hqyu@ustc.edu.cn organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31476718$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQQC1URNPCTwD5yGXDjD9213BAqHxKlbiUG5Lltcepo2Rd7E0F_fVsSHrhEsmSL--NrXkX7GzMIzH2EmGJgO2b9XJ96x62bloKQLNEgWDgCVtg38lGStmesQVIUI3sjTpnF7WuAQA7rZ6xc4mqazvsF-znR1oVF9yU8shz5AONDzl57nwKPI3czSfcu9FT4Pl3OoJ3JXuq9S2_uSVOMZKf6t4uFHY-jSvuVjRO9Tl7Gt2m0ovjfcl-fP50c_W1uf7-5dvVh-vGa8CpMV5jHLA1Ig5C9aiCjMYDaGcgat12qhtMH7QP0Ts9RNcCRudmqxMOEOUle32YO__r147qZLepetps3Eh5V62QWihlemlOo6JXAEqLbkZfHdHdsKVg70rauvLHPi5vBt4dAF9yrYWi9Wn6t6CpuLSxCHafyq7tMZXdp7KHVLOt_7MfHzjlvT94NG_0PlGx1SfaB0pl7mBDTicm_AW0oK_H |
CitedBy_id | crossref_primary_10_1016_j_seppur_2022_121279 crossref_primary_10_3390_ijms23031247 crossref_primary_10_1016_j_chemosphere_2021_132627 crossref_primary_10_1016_j_jhazmat_2021_125342 crossref_primary_10_1016_j_envres_2022_114233 crossref_primary_10_1016_j_jhazmat_2020_124333 crossref_primary_10_1016_j_jtice_2023_105096 crossref_primary_10_1016_j_psep_2024_09_003 crossref_primary_10_1016_j_ultsonch_2022_106255 crossref_primary_10_1016_j_cej_2021_130486 crossref_primary_10_1016_j_jece_2024_113225 crossref_primary_10_1016_j_cej_2022_135265 crossref_primary_10_1039_D3GC03155A crossref_primary_10_1016_j_jenvman_2022_115295 crossref_primary_10_1016_j_seppur_2024_127056 crossref_primary_10_3390_ijms21113967 crossref_primary_10_1007_s11356_024_32558_w crossref_primary_10_1016_j_cej_2020_127191 crossref_primary_10_1016_j_jenvman_2022_114831 crossref_primary_10_1016_j_jece_2022_108551 crossref_primary_10_1021_acs_est_2c07447 crossref_primary_10_1021_acs_langmuir_2c02755 crossref_primary_10_1021_acsomega_0c03404 crossref_primary_10_1007_s11356_022_19087_0 crossref_primary_10_1016_j_chemosphere_2024_141938 crossref_primary_10_1016_j_envres_2021_110957 crossref_primary_10_1016_j_cej_2024_150506 crossref_primary_10_1007_s11244_020_01390_0 crossref_primary_10_1016_j_cej_2023_144962 crossref_primary_10_1016_j_surfin_2025_106105 crossref_primary_10_1016_j_xcrp_2020_100149 crossref_primary_10_1016_j_scitotenv_2019_136312 crossref_primary_10_3390_medicines7080045 crossref_primary_10_1007_s11270_021_05086_3 crossref_primary_10_1007_s13762_023_05015_3 crossref_primary_10_1016_j_seppur_2024_130855 crossref_primary_10_1016_j_jwpe_2022_102739 crossref_primary_10_1016_j_scitotenv_2019_135468 crossref_primary_10_1007_s11356_021_18345_x crossref_primary_10_1016_j_cej_2022_136806 crossref_primary_10_1016_j_cej_2020_128196 crossref_primary_10_1016_j_apcatb_2022_121523 crossref_primary_10_1016_j_chemosphere_2023_138765 crossref_primary_10_1016_j_seppur_2024_129426 crossref_primary_10_1016_j_apcatb_2022_121908 crossref_primary_10_1016_j_xcrp_2024_101966 crossref_primary_10_1007_s11243_024_00581_y crossref_primary_10_1016_j_scitotenv_2021_150520 crossref_primary_10_1021_acs_est_0c08018 crossref_primary_10_1007_s11356_022_23868_y crossref_primary_10_1016_j_cej_2022_135480 crossref_primary_10_1016_j_jcis_2020_08_036 crossref_primary_10_1016_j_jcis_2022_12_012 crossref_primary_10_1016_j_seppur_2021_118804 crossref_primary_10_2166_wst_2021_135 crossref_primary_10_1016_j_apcatb_2023_122884 crossref_primary_10_1016_j_jhazmat_2022_128590 crossref_primary_10_1039_D3RA07316E crossref_primary_10_1016_j_scitotenv_2020_139335 crossref_primary_10_3390_antiox11020376 crossref_primary_10_1016_j_scitotenv_2023_162151 crossref_primary_10_1080_09593330_2022_2064237 crossref_primary_10_1016_j_scitotenv_2020_136862 crossref_primary_10_3390_molecules26071993 crossref_primary_10_1016_j_jclepro_2023_136354 crossref_primary_10_1016_j_chemgeo_2024_121962 crossref_primary_10_1016_j_cej_2023_144387 crossref_primary_10_1016_j_envres_2023_116441 crossref_primary_10_1016_j_seppur_2020_117023 crossref_primary_10_1016_j_watres_2022_118412 crossref_primary_10_1016_j_chemosphere_2019_124979 crossref_primary_10_1016_j_apsusc_2024_159473 crossref_primary_10_1016_j_scitotenv_2019_135365 crossref_primary_10_1016_j_jece_2025_116209 crossref_primary_10_1002_slct_202300067 crossref_primary_10_1039_D3EN00001J crossref_primary_10_1590_s1413_415220190251 crossref_primary_10_1016_j_cej_2021_133851 crossref_primary_10_1016_j_cej_2023_147170 crossref_primary_10_1016_j_scitotenv_2020_137540 crossref_primary_10_1016_j_scitotenv_2023_165333 crossref_primary_10_3390_w14182913 crossref_primary_10_1016_j_envpol_2019_113475 crossref_primary_10_1016_j_ceja_2021_100165 crossref_primary_10_1016_j_chemosphere_2022_137278 crossref_primary_10_1016_j_seppur_2023_125821 |
Cites_doi | 10.1039/C6RA07091D 10.1016/j.cej.2013.12.009 10.1016/j.watres.2006.09.008 10.1007/s00604-017-2110-x 10.1016/j.jhazmat.2019.01.057 10.1016/j.jhazmat.2016.01.020 10.1016/j.jhazmat.2018.06.012 10.1021/jf00014a031 10.1016/S0043-1354(00)00074-9 10.1007/s11095-015-1807-y 10.1039/j19710003485 10.1016/j.watres.2008.10.045 10.1021/acs.est.7b06560 10.1016/j.watres.2016.09.019 10.1039/C7EN00767A 10.1016/j.chemosphere.2018.05.114 10.1021/es2002748 10.1016/S0304-3894(02)00282-0 10.1021/acs.est.5b03715 10.1021/acs.est.8b00231 10.1039/TF9514700462 10.1039/CT8946500899 10.1021/es070174h 10.1021/j100825a508 10.1021/es900721x 10.1016/j.seppur.2018.03.017 10.1016/j.molliq.2019.02.136 10.1016/j.apcatb.2015.05.025 10.1016/S0043-1354(98)00428-X 10.1016/j.jhazmat.2019.01.109 10.1021/es802274h 10.1016/j.apcatb.2018.03.016 10.1021/es0102235 10.1021/ja00535a029 10.1016/j.apcatb.2017.03.011 10.1016/j.apcatb.2014.06.046 10.1021/es4019145 10.1016/j.cej.2015.06.115 10.1016/j.apcatb.2013.09.032 10.1080/10643380500326564 10.1021/es050001x 10.1021/ic00128a012 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2019.121090 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 31476718 10_1016_j_jhazmat_2019_121090 S0304389419310441 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SEW SSH T9H TAE VH1 WUQ NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c501t-9c51fb1692fb24814d3f9c005a90f556747b98d5cdfca5bfa601faac5172a0113 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Fri Jul 11 09:22:16 EDT 2025 Fri Jul 11 12:05:06 EDT 2025 Wed Feb 19 02:30:38 EST 2025 Thu Apr 24 23:00:45 EDT 2025 Tue Jul 01 00:49:21 EDT 2025 Fri Feb 23 02:50:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fenton reaction Iron redox cycle Reducing agents (RAs) Benzoic acid (BA) Pollutant degradation |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-9c51fb1692fb24814d3f9c005a90f556747b98d5cdfca5bfa601faac5172a0113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5247-6244 |
PMID | 31476718 |
PQID | 2284004527 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2352449839 proquest_miscellaneous_2284004527 pubmed_primary_31476718 crossref_citationtrail_10_1016_j_jhazmat_2019_121090 crossref_primary_10_1016_j_jhazmat_2019_121090 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2019_121090 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-15 |
PublicationDateYYYYMMDD | 2020-01-15 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Luo, Yao, Gong, Huang, Lu, Chen, Zhang (bib0120) 2016; 6 Luo, Zhao, He, Ji, Cheng, Zhang, Pan (bib0130) 2019; 282 Stefansson (bib0195) 2007; 41 Sun, Pignatello (bib0205) 1992; 40 Clarizia, Russo, Di Somma, Marotta, Andreozzi (bib0025) 2017; 209 Ren, Zhou, Su, Yang, Lu, Zhang (bib0175) 2019; 368 Vermilyea, Voelker (bib0215) 2009; 43 Neyens, Baeyens (bib0145) 2003; 98 De luca, Dantas, Esplugas (bib0040) 2015; 179 Qian, Ren, Fang, Kan, Yue, Bian, Li, Jia, Zhao (bib0155) 2018; 231 Li, Zhao, Wang, Xie, Ma (bib0115) 2016; 105 Zou, Ma, Chen, Li, Guan, Xie, Pan (bib0225) 2013; 47 Kaur, Kushwaha, Sangal (bib0095) 2018; 207 Crittenden, Trussell, Hand, Howe, Tchobanoglous (bib0030) 2012 Ma, Song, Chen, Ma, Zhao, Tang (bib0135) 2005; 39 Barb, Baxendale, George, Hargrave (bib0005) 1951; 47 Cui, Qin, Zhou, Du (bib0035) 2017; 184 Jiang, Tang, Lyu, Brusseau, Xue, Zhang, Qiu, Sui (bib0090) 2019; 368 Kortum, Vogel, Andrussow (bib0100) 1961 Fukuchi, Nishimoto, Fukushima, Zhu (bib0060) 2014; 147 Doong, Schink (bib0045) 2002; 36 Bolobajev, Marina, Anna (bib0010) 2015; 281 Hou, Huang, Ai, Zhao, Zhang (bib0075) 2016; 310 Rastogi, Al-Abed, Dionysiou (bib0165) 2009; 43 Gallard, De Laat (bib0065) 2000; 34 Rosenfeldt, Linden, Canonica, Von Gunten (bib0185) 2006; 40 Zhou, Yu, Zhang, Meng, Luo, Deng, Shi, Crittenden (bib0220) 2018; 52 Hughes, Nicklin, Shrimanker (bib0085) 1971 Rehman, Sayed, Khan, Shah, Khan, Dionysiou (bib0170) 2018; 357 Sun, Yao, Wang, Mao, Huang, Yao, Lu, Chen (bib0210) 2014; 240 Pignatello, Oliveros, MacKay (bib0150) 2006; 36 Kwon, Lee, Kang, Yoon (bib0110) 1999; 33 Masomboon, Ratanatamskul, Lu (bib0140) 2009; 43 Gao, Song, Hao, Zhu, Yang, Yang (bib0070) 2018; 201 Su, Jassby, Song, Zhou, Zhao, Filip, Petala, Zhang (bib0200) 2018; 52 Qian, Guo, Zhang, Peng, Sun, Huang, Niu, Zhou, Crittenden (bib0160) 2016; 50 Bolton, Bircher (bib0015) 1996; 1 Luo, Zhang, Chen, Yu, Sheng (bib0125) 2017; 4 Sisley, Jordan (bib0190) 1995; 34 Kryndushkin, Rao (bib0105) 2016; 33 Fenton (bib0050) 1894; 65 Huang, Cao, Ai, Zhang (bib0080) 2015; 162 Chen, Ma, Li, Zhang, Fang, Guan, Xie (bib0020) 2011; 45 Finkelstein, Rosen, Rauckman (bib0055) 1980; 102 Robinson, Bower (bib0180) 1961; 65 Bolobajev (10.1016/j.jhazmat.2019.121090_bib0010) 2015; 281 Luo (10.1016/j.jhazmat.2019.121090_bib0125) 2017; 4 Su (10.1016/j.jhazmat.2019.121090_bib0200) 2018; 52 Qian (10.1016/j.jhazmat.2019.121090_bib0160) 2016; 50 Gao (10.1016/j.jhazmat.2019.121090_bib0070) 2018; 201 Vermilyea (10.1016/j.jhazmat.2019.121090_bib0215) 2009; 43 Luo (10.1016/j.jhazmat.2019.121090_bib0120) 2016; 6 Kortum (10.1016/j.jhazmat.2019.121090_bib0100) 1961 Robinson (10.1016/j.jhazmat.2019.121090_bib0180) 1961; 65 Ren (10.1016/j.jhazmat.2019.121090_bib0175) 2019; 368 Jiang (10.1016/j.jhazmat.2019.121090_bib0090) 2019; 368 Qian (10.1016/j.jhazmat.2019.121090_bib0155) 2018; 231 Zou (10.1016/j.jhazmat.2019.121090_bib0225) 2013; 47 Masomboon (10.1016/j.jhazmat.2019.121090_bib0140) 2009; 43 Zhou (10.1016/j.jhazmat.2019.121090_bib0220) 2018; 52 Sun (10.1016/j.jhazmat.2019.121090_bib0210) 2014; 240 Kaur (10.1016/j.jhazmat.2019.121090_bib0095) 2018; 207 Ma (10.1016/j.jhazmat.2019.121090_bib0135) 2005; 39 Fukuchi (10.1016/j.jhazmat.2019.121090_bib0060) 2014; 147 Kwon (10.1016/j.jhazmat.2019.121090_bib0110) 1999; 33 Hou (10.1016/j.jhazmat.2019.121090_bib0075) 2016; 310 Finkelstein (10.1016/j.jhazmat.2019.121090_bib0055) 1980; 102 Crittenden (10.1016/j.jhazmat.2019.121090_bib0030) 2012 Neyens (10.1016/j.jhazmat.2019.121090_bib0145) 2003; 98 Gallard (10.1016/j.jhazmat.2019.121090_bib0065) 2000; 34 Pignatello (10.1016/j.jhazmat.2019.121090_bib0150) 2006; 36 Rastogi (10.1016/j.jhazmat.2019.121090_bib0165) 2009; 43 Bolton (10.1016/j.jhazmat.2019.121090_bib0015) 1996; 1 Hughes (10.1016/j.jhazmat.2019.121090_bib0085) 1971 Rosenfeldt (10.1016/j.jhazmat.2019.121090_bib0185) 2006; 40 Sisley (10.1016/j.jhazmat.2019.121090_bib0190) 1995; 34 Cui (10.1016/j.jhazmat.2019.121090_bib0035) 2017; 184 Chen (10.1016/j.jhazmat.2019.121090_bib0020) 2011; 45 Li (10.1016/j.jhazmat.2019.121090_bib0115) 2016; 105 Clarizia (10.1016/j.jhazmat.2019.121090_bib0025) 2017; 209 Rehman (10.1016/j.jhazmat.2019.121090_bib0170) 2018; 357 De luca (10.1016/j.jhazmat.2019.121090_bib0040) 2015; 179 Stefansson (10.1016/j.jhazmat.2019.121090_bib0195) 2007; 41 Kryndushkin (10.1016/j.jhazmat.2019.121090_bib0105) 2016; 33 Huang (10.1016/j.jhazmat.2019.121090_bib0080) 2015; 162 Luo (10.1016/j.jhazmat.2019.121090_bib0130) 2019; 282 Barb (10.1016/j.jhazmat.2019.121090_bib0005) 1951; 47 Fenton (10.1016/j.jhazmat.2019.121090_bib0050) 1894; 65 Doong (10.1016/j.jhazmat.2019.121090_bib0045) 2002; 36 Sun (10.1016/j.jhazmat.2019.121090_bib0205) 1992; 40 |
References_xml | – year: 1961 ident: bib0100 article-title: Dissociation Constants of Organic Acids – volume: 4 start-page: 2395 year: 2017 end-page: 2404 ident: bib0125 article-title: Probing the biotransformation of hematite nanoparticles and magnetite formation mediated by publication-title: Environ. Sci. Nano – volume: 65 start-page: 1279 year: 1961 end-page: 1280 ident: bib0180 article-title: The ionization constant of hydroxylamine publication-title: J. Phys. Chem. – volume: 43 start-page: 684 year: 2009 end-page: 694 ident: bib0165 article-title: Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols publication-title: Water Res. – volume: 52 start-page: 6466 year: 2018 end-page: 6475 ident: bib0200 article-title: Enhanced oxidative and adsorptive removal of diclofenac in heterogeneous Fenton-like reaction with sulfide modified nanoscale zero valent iron publication-title: Environ. Sci. Technol. – volume: 47 start-page: 11685 year: 2013 end-page: 11691 ident: bib0225 article-title: Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine publication-title: Environ. Sci. Technol. – volume: 231 start-page: 108 year: 2018 end-page: 114 ident: bib0155 article-title: Hydrophilic mesoporous carbon as iron(III)/(II) electron shuttle for visible light enhanced Fenton-like degradation of organic pollutants publication-title: Appl. Catal. B-Environ. – volume: 184 start-page: 1103 year: 2017 end-page: 1108 ident: bib0035 article-title: Determination of the activity of hydrogen peroxide scavenging by using blue-emitting glucose oxidase–stabilized gold nanoclusters as fluorescent nanoprobes and a Fenton reaction that induces fluorescence quenching publication-title: Microchim Acta. – volume: 50 start-page: 772 year: 2016 end-page: 781 ident: bib0160 article-title: Perfluorooctanoic acid degradation using UV-persulfate process: modeling of the degradation and chlorate formation publication-title: Environ. Sci. Technol. – volume: 368 start-page: 830 year: 2019 end-page: 839 ident: bib0175 article-title: Simultaneous sulfadiazines degradation and disinfection from municipal secondary effluent by a flow-through electro-Fenton process with graphene-modified cathode publication-title: J. Hazard. Mater. – volume: 45 start-page: 3925 year: 2011 end-page: 3930 ident: bib0020 article-title: Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles publication-title: Environ. Sci. Technol. – volume: 33 start-page: 526 year: 2016 end-page: 539 ident: bib0105 article-title: Comparative effects of metal-catalyzed oxidizing systems on carbonylation and integrity of therapeutic proteins publication-title: Pharm. Res. – volume: 36 start-page: 1 year: 2006 end-page: 84 ident: bib0150 article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 281 start-page: 566 year: 2015 end-page: 574 ident: bib0010 article-title: Improvement in iron activation ability of alachlor Fenton-like oxidation by ascorbic acid publication-title: Chem. Eng. J. – year: 2012 ident: bib0030 article-title: MWH’s Water Treatment: Principles and Design – volume: 65 start-page: 899 year: 1894 end-page: 910 ident: bib0050 article-title: Oxidation of tartaric acid in presence of iron publication-title: J. Chem. Soc. Perkin Trans. I – volume: 207 start-page: 690 year: 2018 end-page: 698 ident: bib0095 article-title: Transformation products and degradation pathway of textile industry wastewater pollutants in Electro-Fenton process publication-title: Chemosphere. – volume: 40 start-page: 3695 year: 2006 end-page: 3704 ident: bib0185 article-title: Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O publication-title: Water Res. – volume: 41 start-page: 6117 year: 2007 end-page: 6123 ident: bib0195 article-title: Iron (III) hydrolysis and solubility at 25 °C publication-title: Environ. Sci. Technol. – volume: 39 start-page: 5810 year: 2005 end-page: 5815 ident: bib0135 article-title: Fenton degradation of organic compounds promoted by dyes under visible irradiation publication-title: Environ. Sci. Technol. – volume: 43 start-page: 6927 year: 2009 end-page: 6933 ident: bib0215 article-title: Photo-Fenton reaction at near neutral pH publication-title: Environ. Sci. Technol. – volume: 102 start-page: 4994 year: 1980 end-page: 4999 ident: bib0055 article-title: Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 3107 year: 2000 end-page: 3116 ident: bib0065 article-title: Kinetic modeling of Fe (III)/H publication-title: Water Res. – volume: 282 start-page: 13 year: 2019 end-page: 22 ident: bib0130 article-title: Hydroxylamine-facilitated degradation of rhodamine B (RhB) and p-nitrophenol (PNP) as catalyzed by Fe@Fe publication-title: J. Mol. Liq. – volume: 47 start-page: 462 year: 1951 end-page: 500 ident: bib0005 article-title: Reactions of ferrous and ferric ions with hydrogen peroxide. Part I.-The ferrous ion reaction publication-title: Trans. Faraday Soc. – volume: 33 start-page: 2110 year: 1999 end-page: 2118 ident: bib0110 article-title: Characteristics of p-chlorophenol oxidation by Fenton’s reagent publication-title: Water Res. – volume: 310 start-page: 170 year: 2016 end-page: 178 ident: bib0075 article-title: Ascorbic acid/Fe@Fe publication-title: J. Hazard. Mater. – volume: 6 start-page: 47661 year: 2016 end-page: 47668 ident: bib0120 article-title: Drastic enhancement on Fenton oxidation of organic contaminants by accelerating Fe(III)/Fe(II) cycle with L-cysteine publication-title: RSC Adv. – volume: 1 start-page: 13 year: 1996 end-page: 17 ident: bib0015 article-title: Figures-of-merit for the technical development and application of advanced oxidation processes publication-title: J. Adv. Oxidat. Technol. – volume: 201 start-page: 238 year: 2018 end-page: 243 ident: bib0070 article-title: An effective and magnetic Fe publication-title: Sep. Purif. Technol. – volume: 98 start-page: 33 year: 2003 end-page: 50 ident: bib0145 article-title: A review of classic Fenton’s peroxidation as an advanced oxidation technique publication-title: J. Hazard. Mater. – volume: 105 start-page: 479 year: 2016 end-page: 486 ident: bib0115 article-title: Strongly enhanced Fenton degradation of organic pollutants by cysteine: an aliphatic amino acid accelerator outweighs hydroquinone analogues publication-title: Water Res. – volume: 240 start-page: 413 year: 2014 end-page: 419 ident: bib0210 article-title: Efficient removal of dyes using activated carbon fibers coupled with 8-hydroxyquinoline ferric as a reusable Fenton-like catalyst publication-title: Chem. Eng. J. – volume: 179 start-page: 372 year: 2015 end-page: 379 ident: bib0040 article-title: Study of Fe (III)-NTA chelates stability for applicability in photo-Fenton at neutral pH publication-title: Appl. Catal. B-Environ. – volume: 209 start-page: 358 year: 2017 end-page: 371 ident: bib0025 article-title: Homogeneous photo-Fenton processes at near neutral pH: a review publication-title: Appl. Catal. B-Environ. – volume: 43 start-page: 8629 year: 2009 end-page: 8634 ident: bib0140 article-title: Chemical oxidation of 2,6-dimethylaniline in the Fenton process publication-title: Environ. Sci. Technol. – volume: 357 start-page: 506 year: 2018 end-page: 514 ident: bib0170 article-title: Oxidative removal of brilliant green by UV/S publication-title: J. Hazard. Mater. – volume: 162 start-page: 319 year: 2015 end-page: 326 ident: bib0080 article-title: Reactive oxygen species dependent degradation pathway of 4-chlorophenol with Fe@Fe publication-title: Appl. Catal. B-Environ. – volume: 52 start-page: 4305 year: 2018 end-page: 4312 ident: bib0220 article-title: Oxidation of microcystin-LR via activation of peroxymonosulfate using ascorbic acid: kinetic modeling and toxicity assessment publication-title: Environ. Sci. Technol. – volume: 368 start-page: 506 year: 2019 end-page: 513 ident: bib0090 article-title: Enhanced redox degradation of chlorinated hydrocarbons by the Fe(II)-catalyzed calcium peroxide system in the presence of formic acid and citric acid publication-title: J. Hazard. Mater. – volume: 147 start-page: 411 year: 2014 end-page: 419 ident: bib0060 article-title: Effects of reducing agents on the degradation of 2,4,6-tribromophenol in a heterogeneous Fenton-like system with an iron-loaded natural zeolite publication-title: Appl. Catal. B-Environ. – start-page: 3485 year: 1971 end-page: 3487 ident: bib0085 article-title: Autoxidation of hydroxylamine in alkaline solutions. Part II. Kinetics. The acid dissociation constant of hydroxylamine publication-title: J. Chem. Soc. Part A. – volume: 40 start-page: 322 year: 1992 end-page: 327 ident: bib0205 article-title: Chemical treatment of pesticide wastes-evaluation of iron(III) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circumneutral pH publication-title: J. Agric. Food Chem. – volume: 34 start-page: 6015 year: 1995 end-page: 6023 ident: bib0190 article-title: Kinetic and equilibrium studies of the reactions of cysteine and penicillamine with aqueous iron (III) publication-title: Inorg. Chem. – volume: 36 start-page: 2939 year: 2002 end-page: 2945 ident: bib0045 article-title: Cysteine-mediated reductive dissolution of poorly crystalline iron (III) oxides by Geobacter sulfurreducens publication-title: Environ. Sci. Technol. – year: 2012 ident: 10.1016/j.jhazmat.2019.121090_bib0030 – volume: 6 start-page: 47661 year: 2016 ident: 10.1016/j.jhazmat.2019.121090_bib0120 article-title: Drastic enhancement on Fenton oxidation of organic contaminants by accelerating Fe(III)/Fe(II) cycle with L-cysteine publication-title: RSC Adv. doi: 10.1039/C6RA07091D – volume: 240 start-page: 413 year: 2014 ident: 10.1016/j.jhazmat.2019.121090_bib0210 article-title: Efficient removal of dyes using activated carbon fibers coupled with 8-hydroxyquinoline ferric as a reusable Fenton-like catalyst publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.12.009 – volume: 40 start-page: 3695 year: 2006 ident: 10.1016/j.jhazmat.2019.121090_bib0185 article-title: Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/ H2O2 publication-title: Water Res. doi: 10.1016/j.watres.2006.09.008 – volume: 184 start-page: 1103 year: 2017 ident: 10.1016/j.jhazmat.2019.121090_bib0035 article-title: Determination of the activity of hydrogen peroxide scavenging by using blue-emitting glucose oxidase–stabilized gold nanoclusters as fluorescent nanoprobes and a Fenton reaction that induces fluorescence quenching publication-title: Microchim Acta. doi: 10.1007/s00604-017-2110-x – volume: 368 start-page: 506 year: 2019 ident: 10.1016/j.jhazmat.2019.121090_bib0090 article-title: Enhanced redox degradation of chlorinated hydrocarbons by the Fe(II)-catalyzed calcium peroxide system in the presence of formic acid and citric acid publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.01.057 – volume: 310 start-page: 170 year: 2016 ident: 10.1016/j.jhazmat.2019.121090_bib0075 article-title: Ascorbic acid/Fe@Fe2O3: a highly efficient combined Fenton reagent to remove organic contaminants publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.01.020 – volume: 1 start-page: 13 year: 1996 ident: 10.1016/j.jhazmat.2019.121090_bib0015 article-title: Figures-of-merit for the technical development and application of advanced oxidation processes publication-title: J. Adv. Oxidat. Technol. – volume: 357 start-page: 506 year: 2018 ident: 10.1016/j.jhazmat.2019.121090_bib0170 article-title: Oxidative removal of brilliant green by UV/S2O82−, UV/HSO5‒ and UV/H2O2 processes in aqueous media: A comparative study publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.06.012 – volume: 40 start-page: 322 year: 1992 ident: 10.1016/j.jhazmat.2019.121090_bib0205 article-title: Chemical treatment of pesticide wastes-evaluation of iron(III) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circumneutral pH publication-title: J. Agric. Food Chem. doi: 10.1021/jf00014a031 – volume: 34 start-page: 3107 year: 2000 ident: 10.1016/j.jhazmat.2019.121090_bib0065 article-title: Kinetic modeling of Fe (III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound publication-title: Water Res. doi: 10.1016/S0043-1354(00)00074-9 – volume: 33 start-page: 526 year: 2016 ident: 10.1016/j.jhazmat.2019.121090_bib0105 article-title: Comparative effects of metal-catalyzed oxidizing systems on carbonylation and integrity of therapeutic proteins publication-title: Pharm. Res. doi: 10.1007/s11095-015-1807-y – start-page: 3485 year: 1971 ident: 10.1016/j.jhazmat.2019.121090_bib0085 article-title: Autoxidation of hydroxylamine in alkaline solutions. Part II. Kinetics. The acid dissociation constant of hydroxylamine publication-title: J. Chem. Soc. Part A. doi: 10.1039/j19710003485 – volume: 43 start-page: 684 year: 2009 ident: 10.1016/j.jhazmat.2019.121090_bib0165 article-title: Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols publication-title: Water Res. doi: 10.1016/j.watres.2008.10.045 – volume: 52 start-page: 4305 year: 2018 ident: 10.1016/j.jhazmat.2019.121090_bib0220 article-title: Oxidation of microcystin-LR via activation of peroxymonosulfate using ascorbic acid: kinetic modeling and toxicity assessment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b06560 – volume: 105 start-page: 479 year: 2016 ident: 10.1016/j.jhazmat.2019.121090_bib0115 article-title: Strongly enhanced Fenton degradation of organic pollutants by cysteine: an aliphatic amino acid accelerator outweighs hydroquinone analogues publication-title: Water Res. doi: 10.1016/j.watres.2016.09.019 – volume: 4 start-page: 2395 year: 2017 ident: 10.1016/j.jhazmat.2019.121090_bib0125 article-title: Probing the biotransformation of hematite nanoparticles and magnetite formation mediated by Shewanella oneidensis MR-1 at the molecular scale publication-title: Environ. Sci. Nano doi: 10.1039/C7EN00767A – volume: 207 start-page: 690 year: 2018 ident: 10.1016/j.jhazmat.2019.121090_bib0095 article-title: Transformation products and degradation pathway of textile industry wastewater pollutants in Electro-Fenton process publication-title: Chemosphere. doi: 10.1016/j.chemosphere.2018.05.114 – volume: 45 start-page: 3925 year: 2011 ident: 10.1016/j.jhazmat.2019.121090_bib0020 article-title: Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles publication-title: Environ. Sci. Technol. doi: 10.1021/es2002748 – volume: 98 start-page: 33 year: 2003 ident: 10.1016/j.jhazmat.2019.121090_bib0145 article-title: A review of classic Fenton’s peroxidation as an advanced oxidation technique publication-title: J. Hazard. Mater. doi: 10.1016/S0304-3894(02)00282-0 – volume: 50 start-page: 772 year: 2016 ident: 10.1016/j.jhazmat.2019.121090_bib0160 article-title: Perfluorooctanoic acid degradation using UV-persulfate process: modeling of the degradation and chlorate formation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03715 – volume: 52 start-page: 6466 year: 2018 ident: 10.1016/j.jhazmat.2019.121090_bib0200 article-title: Enhanced oxidative and adsorptive removal of diclofenac in heterogeneous Fenton-like reaction with sulfide modified nanoscale zero valent iron publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00231 – volume: 47 start-page: 462 year: 1951 ident: 10.1016/j.jhazmat.2019.121090_bib0005 article-title: Reactions of ferrous and ferric ions with hydrogen peroxide. Part I.-The ferrous ion reaction publication-title: Trans. Faraday Soc. doi: 10.1039/TF9514700462 – volume: 65 start-page: 899 year: 1894 ident: 10.1016/j.jhazmat.2019.121090_bib0050 article-title: Oxidation of tartaric acid in presence of iron publication-title: J. Chem. Soc. Perkin Trans. I doi: 10.1039/CT8946500899 – volume: 41 start-page: 6117 year: 2007 ident: 10.1016/j.jhazmat.2019.121090_bib0195 article-title: Iron (III) hydrolysis and solubility at 25 °C publication-title: Environ. Sci. Technol. doi: 10.1021/es070174h – volume: 65 start-page: 1279 year: 1961 ident: 10.1016/j.jhazmat.2019.121090_bib0180 article-title: The ionization constant of hydroxylamine publication-title: J. Phys. Chem. doi: 10.1021/j100825a508 – volume: 43 start-page: 6927 year: 2009 ident: 10.1016/j.jhazmat.2019.121090_bib0215 article-title: Photo-Fenton reaction at near neutral pH publication-title: Environ. Sci. Technol. doi: 10.1021/es900721x – volume: 201 start-page: 238 year: 2018 ident: 10.1016/j.jhazmat.2019.121090_bib0070 article-title: An effective and magnetic Fe2O3-ZrO2 catalyst for phenol degradation under neutral pH in the heterogeneous Fenton-like reaction publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.03.017 – year: 1961 ident: 10.1016/j.jhazmat.2019.121090_bib0100 – volume: 282 start-page: 13 year: 2019 ident: 10.1016/j.jhazmat.2019.121090_bib0130 article-title: Hydroxylamine-facilitated degradation of rhodamine B (RhB) and p-nitrophenol (PNP) as catalyzed by Fe@Fe2O3 core-shell nanowires publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.02.136 – volume: 179 start-page: 372 year: 2015 ident: 10.1016/j.jhazmat.2019.121090_bib0040 article-title: Study of Fe (III)-NTA chelates stability for applicability in photo-Fenton at neutral pH publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2015.05.025 – volume: 33 start-page: 2110 year: 1999 ident: 10.1016/j.jhazmat.2019.121090_bib0110 article-title: Characteristics of p-chlorophenol oxidation by Fenton’s reagent publication-title: Water Res. doi: 10.1016/S0043-1354(98)00428-X – volume: 368 start-page: 830 year: 2019 ident: 10.1016/j.jhazmat.2019.121090_bib0175 article-title: Simultaneous sulfadiazines degradation and disinfection from municipal secondary effluent by a flow-through electro-Fenton process with graphene-modified cathode publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.01.109 – volume: 43 start-page: 8629 year: 2009 ident: 10.1016/j.jhazmat.2019.121090_bib0140 article-title: Chemical oxidation of 2,6-dimethylaniline in the Fenton process publication-title: Environ. Sci. Technol. doi: 10.1021/es802274h – volume: 231 start-page: 108 year: 2018 ident: 10.1016/j.jhazmat.2019.121090_bib0155 article-title: Hydrophilic mesoporous carbon as iron(III)/(II) electron shuttle for visible light enhanced Fenton-like degradation of organic pollutants publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.03.016 – volume: 36 start-page: 2939 year: 2002 ident: 10.1016/j.jhazmat.2019.121090_bib0045 article-title: Cysteine-mediated reductive dissolution of poorly crystalline iron (III) oxides by Geobacter sulfurreducens publication-title: Environ. Sci. Technol. doi: 10.1021/es0102235 – volume: 102 start-page: 4994 year: 1980 ident: 10.1016/j.jhazmat.2019.121090_bib0055 article-title: Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00535a029 – volume: 209 start-page: 358 year: 2017 ident: 10.1016/j.jhazmat.2019.121090_bib0025 article-title: Homogeneous photo-Fenton processes at near neutral pH: a review publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2017.03.011 – volume: 162 start-page: 319 year: 2015 ident: 10.1016/j.jhazmat.2019.121090_bib0080 article-title: Reactive oxygen species dependent degradation pathway of 4-chlorophenol with Fe@Fe2O3 core-shell nanowires publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2014.06.046 – volume: 47 start-page: 11685 year: 2013 ident: 10.1016/j.jhazmat.2019.121090_bib0225 article-title: Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine publication-title: Environ. Sci. Technol. doi: 10.1021/es4019145 – volume: 281 start-page: 566 year: 2015 ident: 10.1016/j.jhazmat.2019.121090_bib0010 article-title: Improvement in iron activation ability of alachlor Fenton-like oxidation by ascorbic acid publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.06.115 – volume: 147 start-page: 411 year: 2014 ident: 10.1016/j.jhazmat.2019.121090_bib0060 article-title: Effects of reducing agents on the degradation of 2,4,6-tribromophenol in a heterogeneous Fenton-like system with an iron-loaded natural zeolite publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2013.09.032 – volume: 36 start-page: 1 year: 2006 ident: 10.1016/j.jhazmat.2019.121090_bib0150 article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380500326564 – volume: 39 start-page: 5810 year: 2005 ident: 10.1016/j.jhazmat.2019.121090_bib0135 article-title: Fenton degradation of organic compounds promoted by dyes under visible irradiation publication-title: Environ. Sci. Technol. doi: 10.1021/es050001x – volume: 34 start-page: 6015 year: 1995 ident: 10.1016/j.jhazmat.2019.121090_bib0190 article-title: Kinetic and equilibrium studies of the reactions of cysteine and penicillamine with aqueous iron (III) publication-title: Inorg. Chem. doi: 10.1021/ic00128a012 |
SSID | ssj0001754 |
Score | 2.5956776 |
Snippet | [Display omitted]
•Dosing reducing agents resulted in enhanced pollutant degradation and expansion of pH range.•Dosing manner of RA was a key factor governing... Fenton reaction is widely used for hazardous pollutant degradation. Reducing agents (RAs) have been proven to be efficient in promoting the generation of HO•... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 121090 |
SubjectTerms | ascorbic acid benzoic acid Benzoic acid (BA) catalytic activity cysteine economic feasibility electric power energy Fenton reaction hydroxyl radicals hydroxylamine iron Iron redox cycle oxidation Pollutant degradation pollutants reducing agents Reducing agents (RAs) |
Title | Degradation of benzoic acid in an advanced oxidation process: The effects of reducing agents |
URI | https://dx.doi.org/10.1016/j.jhazmat.2019.121090 https://www.ncbi.nlm.nih.gov/pubmed/31476718 https://www.proquest.com/docview/2284004527 https://www.proquest.com/docview/2352449839 |
Volume | 382 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6V8QIPiI1fBTYZidc0cWInDW_ToOrY6AtU6gOSZTuOlgolVdsJtAf-du4SZwOJrdKkPEW-yDqf77uL7z4DvHeYVRiZJoEuYiLV5mlAMBxInaaR45nL2l_ZX2bpdC4-L-RiACd9LwyVVXrf3_n01lv7N6HXZriqqvArHeoh3AoMQTCnaJvXhcjIyke_b8o8EB47Cik6AcDRN1084XK0vNBXGBhShVdOPAsRueb_49Nt8WeLQ5On8MQHkOy4m-M-DFx9AI__ohU8gAfn-ucz-P6ReCC6K5NYUzLj6qumskzbqmBVzTQ-vgCANb8qP3DVNQ58YGg_zBd7kPSaKF7x60xTL9bmOcwnn76dTAN_l0JgZcS3QW4lLw1P87g0sRhzUSRlbnEL6jwqpUwxqzD5uJC2KK2WptSYqJVao1QWa_QByQvYq5vavQJWGFlIqg4VhRWuTZmsdDpysYtTk0dDEL0GlfVE43TfxQ_VV5QtlVe8IsWrTvFDGF2LrTqmjV0C43551D8moxANdom-65dT4XaiMxJdu-Zyo2KE65ZmPrtjDAatQuRo00N42dnC9YwTjiaIeP_6_pN7A49iSuojHnD5Fva260t3iJHP1hy1pn0ED49Pz6azP_alAIk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RTxQxEJ4APqgPBlHxFLUm-rh32167e0vCgxHJIQcvQsKDSW273bgXs3vhjqA8-Kf4g8zsdkETlcSEZJ82naaZTjvftDNfAd54jCqsSoaRyQWRavMkIjccKZMkseepT5uj7P2DZHwkPx6r4yW46GphKK0y7P3tnt7s1uHPIGhzMCvLwSe61EN3KxGCYEwhecis3PM_zjBum2_tbuMkvxVi58Ph-3EUnhaInIr5Isqc4oXlSSYKK-SIy3xYZA4t0mRxoVSCINtmo1y5vHBG2cJg3FIYg1KpMLgkhtjvMtyRuF3Qswn9n9d5JeiPW84qunLA4V2XDQ2m_elXc45IlFLKMiJ2iMkX_Nkh_g3wNo5vZxUeBMTK3rVKeQhLvlqD-7_wGK7B8sScPYLP20Q80b7RxOqCWV-d16VjxpU5Kytm8AsZB6z-XoaGs7ZSYZOhwbKQXULSJ8Qpi70zQ8Vf88dwdCsafgIrVV35p8Byq3JF6agyd9I3MZpT3sReeJHYLO6B7DSoXWA2pwc2vukuhW2qg-I1KV63iu9B_0ps1lJ73CQw6qZH_2ajGt3PTaKvu-nUuH7pUsZUvj6da4H4oOG1T__RBlGylBkuoh6st7ZwNeIhl2mCAOPZ_w_uFdwdH-5P9GT3YO853BN0ohDziKsNWFmcnPoXCLsW9mVj5gy-3Pa6ugSXKTwl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+of+benzoic+acid+in+an+advanced+oxidation+process%3A+The+effects+of+reducing+agents&rft.jtitle=Journal+of+hazardous+materials&rft.au=He%2C+Dong-Qin&rft.au=Zhang%2C+Ying-Jie&rft.au=Pei%2C+Dan-Ni&rft.au=Huang%2C+Gui-Xiang&rft.date=2020-01-15&rft.issn=1873-3336&rft.eissn=1873-3336&rft.volume=382&rft.spage=121090&rft_id=info:doi/10.1016%2Fj.jhazmat.2019.121090&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |