Degradation of benzoic acid in an advanced oxidation process: The effects of reducing agents

[Display omitted] •Dosing reducing agents resulted in enhanced pollutant degradation and expansion of pH range.•Dosing manner of RA was a key factor governing its roles in Fenton system.•Catalytic mechanisms of the three reducing agents in Fenton system were proposed.•Electrical energy per order was...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 382; p. 121090
Main Authors He, Dong-Qin, Zhang, Ying-Jie, Pei, Dan-Ni, Huang, Gui-Xiang, Liu, Chang, Li, Jun, Yu, Han-Qing
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Dosing reducing agents resulted in enhanced pollutant degradation and expansion of pH range.•Dosing manner of RA was a key factor governing its roles in Fenton system.•Catalytic mechanisms of the three reducing agents in Fenton system were proposed.•Electrical energy per order was used to estimate the costs of three reducing agents. Fenton reaction is widely used for hazardous pollutant degradation. Reducing agents (RAs) have been proven to be efficient in promoting the generation of HO• in Fenton reaction by accelerating the redox cycle of Fe3+/Fe2+. However, the roles of different RAs in Fenton reaction remain unrevealed. In this work, the catalytic activity of three RAs, i.e., hydroxylamine (NH2OH), ascorbic acid (AA) and cysteine (Cys), on the degradation of benzoic acid (BA) and the hydroxyl radical formation in the Fenton-RAs system were investigated. Results show the catalytic performance of RAs in BA degradation by Fenton reaction followed an order of NH2OH > AA > Cys. Compared with the conventional Fenton system, the effective pH range in the Fenton-NH2OH system extended from 3.0 to 5.0, while the optimal pH in the Fenton-AA and Fenton-Cys systems ranged from 3.0 to 4.0. The Fenton-AA system exhibited a two-stage reaction toward BA degradation, which was different from the Fenton-NH2OH and Fenton-Cys systems. Furthermore, the dosing manner of AA was found to be a key factor governing its role in the Fenton-AA system. This observation suggests the different mechanisms behind the enhancement of the three RAs in Fenton system. Different from NH2OH and Cys, AA would inhibit the generation of HO•, especially at the fast stage of degradation process, where Fe3+ has not accumulated yet. In addition, the economic analysis using the electrical energy per order indicates Fenton-NH2OH system was economically feasible with the lowest energy input, compared to Fenton-AA and Fenton-Cys systems. These results are useful to better understand the roles of RAs in Fenton system, and also provide guidance about the selection and dosing manner of suitable RAs in the advanced oxidation processes.
AbstractList Fenton reaction is widely used for hazardous pollutant degradation. Reducing agents (RAs) have been proven to be efficient in promoting the generation of HO• in Fenton reaction by accelerating the redox cycle of Fe /Fe . However, the roles of different RAs in Fenton reaction remain unrevealed. In this work, the catalytic activity of three RAs, i.e., hydroxylamine (NH OH), ascorbic acid (AA) and cysteine (Cys), on the degradation of benzoic acid (BA) and the hydroxyl radical formation in the Fenton-RAs system were investigated. Results show the catalytic performance of RAs in BA degradation by Fenton reaction followed an order of NH OH > AA > Cys. Compared with the conventional Fenton system, the effective pH range in the Fenton-NH OH system extended from 3.0 to 5.0, while the optimal pH in the Fenton-AA and Fenton-Cys systems ranged from 3.0 to 4.0. The Fenton-AA system exhibited a two-stage reaction toward BA degradation, which was different from the Fenton-NH OH and Fenton-Cys systems. Furthermore, the dosing manner of AA was found to be a key factor governing its role in the Fenton-AA system. This observation suggests the different mechanisms behind the enhancement of the three RAs in Fenton system. Different from NH OH and Cys, AA would inhibit the generation of HO•, especially at the fast stage of degradation process, where Fe has not accumulated yet. In addition, the economic analysis using the electrical energy per order indicates Fenton-NH OH system was economically feasible with the lowest energy input, compared to Fenton-AA and Fenton-Cys systems. These results are useful to better understand the roles of RAs in Fenton system, and also provide guidance about the selection and dosing manner of suitable RAs in the advanced oxidation processes.
[Display omitted] •Dosing reducing agents resulted in enhanced pollutant degradation and expansion of pH range.•Dosing manner of RA was a key factor governing its roles in Fenton system.•Catalytic mechanisms of the three reducing agents in Fenton system were proposed.•Electrical energy per order was used to estimate the costs of three reducing agents. Fenton reaction is widely used for hazardous pollutant degradation. Reducing agents (RAs) have been proven to be efficient in promoting the generation of HO• in Fenton reaction by accelerating the redox cycle of Fe3+/Fe2+. However, the roles of different RAs in Fenton reaction remain unrevealed. In this work, the catalytic activity of three RAs, i.e., hydroxylamine (NH2OH), ascorbic acid (AA) and cysteine (Cys), on the degradation of benzoic acid (BA) and the hydroxyl radical formation in the Fenton-RAs system were investigated. Results show the catalytic performance of RAs in BA degradation by Fenton reaction followed an order of NH2OH > AA > Cys. Compared with the conventional Fenton system, the effective pH range in the Fenton-NH2OH system extended from 3.0 to 5.0, while the optimal pH in the Fenton-AA and Fenton-Cys systems ranged from 3.0 to 4.0. The Fenton-AA system exhibited a two-stage reaction toward BA degradation, which was different from the Fenton-NH2OH and Fenton-Cys systems. Furthermore, the dosing manner of AA was found to be a key factor governing its role in the Fenton-AA system. This observation suggests the different mechanisms behind the enhancement of the three RAs in Fenton system. Different from NH2OH and Cys, AA would inhibit the generation of HO•, especially at the fast stage of degradation process, where Fe3+ has not accumulated yet. In addition, the economic analysis using the electrical energy per order indicates Fenton-NH2OH system was economically feasible with the lowest energy input, compared to Fenton-AA and Fenton-Cys systems. These results are useful to better understand the roles of RAs in Fenton system, and also provide guidance about the selection and dosing manner of suitable RAs in the advanced oxidation processes.
Fenton reaction is widely used for hazardous pollutant degradation. Reducing agents (RAs) have been proven to be efficient in promoting the generation of HO• in Fenton reaction by accelerating the redox cycle of Fe3+/Fe2+. However, the roles of different RAs in Fenton reaction remain unrevealed. In this work, the catalytic activity of three RAs, i.e., hydroxylamine (NH2OH), ascorbic acid (AA) and cysteine (Cys), on the degradation of benzoic acid (BA) and the hydroxyl radical formation in the Fenton-RAs system were investigated. Results show the catalytic performance of RAs in BA degradation by Fenton reaction followed an order of NH2OH > AA > Cys. Compared with the conventional Fenton system, the effective pH range in the Fenton-NH2OH system extended from 3.0 to 5.0, while the optimal pH in the Fenton-AA and Fenton-Cys systems ranged from 3.0 to 4.0. The Fenton-AA system exhibited a two-stage reaction toward BA degradation, which was different from the Fenton-NH2OH and Fenton-Cys systems. Furthermore, the dosing manner of AA was found to be a key factor governing its role in the Fenton-AA system. This observation suggests the different mechanisms behind the enhancement of the three RAs in Fenton system. Different from NH2OH and Cys, AA would inhibit the generation of HO•, especially at the fast stage of degradation process, where Fe3+ has not accumulated yet. In addition, the economic analysis using the electrical energy per order indicates Fenton-NH2OH system was economically feasible with the lowest energy input, compared to Fenton-AA and Fenton-Cys systems. These results are useful to better understand the roles of RAs in Fenton system, and also provide guidance about the selection and dosing manner of suitable RAs in the advanced oxidation processes.Fenton reaction is widely used for hazardous pollutant degradation. Reducing agents (RAs) have been proven to be efficient in promoting the generation of HO• in Fenton reaction by accelerating the redox cycle of Fe3+/Fe2+. However, the roles of different RAs in Fenton reaction remain unrevealed. In this work, the catalytic activity of three RAs, i.e., hydroxylamine (NH2OH), ascorbic acid (AA) and cysteine (Cys), on the degradation of benzoic acid (BA) and the hydroxyl radical formation in the Fenton-RAs system were investigated. Results show the catalytic performance of RAs in BA degradation by Fenton reaction followed an order of NH2OH > AA > Cys. Compared with the conventional Fenton system, the effective pH range in the Fenton-NH2OH system extended from 3.0 to 5.0, while the optimal pH in the Fenton-AA and Fenton-Cys systems ranged from 3.0 to 4.0. The Fenton-AA system exhibited a two-stage reaction toward BA degradation, which was different from the Fenton-NH2OH and Fenton-Cys systems. Furthermore, the dosing manner of AA was found to be a key factor governing its role in the Fenton-AA system. This observation suggests the different mechanisms behind the enhancement of the three RAs in Fenton system. Different from NH2OH and Cys, AA would inhibit the generation of HO•, especially at the fast stage of degradation process, where Fe3+ has not accumulated yet. In addition, the economic analysis using the electrical energy per order indicates Fenton-NH2OH system was economically feasible with the lowest energy input, compared to Fenton-AA and Fenton-Cys systems. These results are useful to better understand the roles of RAs in Fenton system, and also provide guidance about the selection and dosing manner of suitable RAs in the advanced oxidation processes.
Fenton reaction is widely used for hazardous pollutant degradation. Reducing agents (RAs) have been proven to be efficient in promoting the generation of HO• in Fenton reaction by accelerating the redox cycle of Fe3+/Fe2+. However, the roles of different RAs in Fenton reaction remain unrevealed. In this work, the catalytic activity of three RAs, i.e., hydroxylamine (NH2OH), ascorbic acid (AA) and cysteine (Cys), on the degradation of benzoic acid (BA) and the hydroxyl radical formation in the Fenton-RAs system were investigated. Results show the catalytic performance of RAs in BA degradation by Fenton reaction followed an order of NH2OH > AA > Cys. Compared with the conventional Fenton system, the effective pH range in the Fenton-NH2OH system extended from 3.0 to 5.0, while the optimal pH in the Fenton-AA and Fenton-Cys systems ranged from 3.0 to 4.0. The Fenton-AA system exhibited a two-stage reaction toward BA degradation, which was different from the Fenton-NH2OH and Fenton-Cys systems. Furthermore, the dosing manner of AA was found to be a key factor governing its role in the Fenton-AA system. This observation suggests the different mechanisms behind the enhancement of the three RAs in Fenton system. Different from NH2OH and Cys, AA would inhibit the generation of HO•, especially at the fast stage of degradation process, where Fe3+ has not accumulated yet. In addition, the economic analysis using the electrical energy per order indicates Fenton-NH2OH system was economically feasible with the lowest energy input, compared to Fenton-AA and Fenton-Cys systems. These results are useful to better understand the roles of RAs in Fenton system, and also provide guidance about the selection and dosing manner of suitable RAs in the advanced oxidation processes.
ArticleNumber 121090
Author Li, Jun
Zhang, Ying-Jie
Yu, Han-Qing
He, Dong-Qin
Huang, Gui-Xiang
Pei, Dan-Ni
Liu, Chang
Author_xml – sequence: 1
  givenname: Dong-Qin
  surname: He
  fullname: He, Dong-Qin
  organization: Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
– sequence: 2
  givenname: Ying-Jie
  surname: Zhang
  fullname: Zhang, Ying-Jie
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China
– sequence: 3
  givenname: Dan-Ni
  surname: Pei
  fullname: Pei, Dan-Ni
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China
– sequence: 4
  givenname: Gui-Xiang
  surname: Huang
  fullname: Huang, Gui-Xiang
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China
– sequence: 5
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China
– sequence: 6
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  organization: Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
– sequence: 7
  givenname: Han-Qing
  orcidid: 0000-0001-5247-6244
  surname: Yu
  fullname: Yu, Han-Qing
  email: hqyu@ustc.edu.cn
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31476718$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQQC1URNPCTwD5yGXDjD9213BAqHxKlbiUG5Lltcepo2Rd7E0F_fVsSHrhEsmSL--NrXkX7GzMIzH2EmGJgO2b9XJ96x62bloKQLNEgWDgCVtg38lGStmesQVIUI3sjTpnF7WuAQA7rZ6xc4mqazvsF-znR1oVF9yU8shz5AONDzl57nwKPI3czSfcu9FT4Pl3OoJ3JXuq9S2_uSVOMZKf6t4uFHY-jSvuVjRO9Tl7Gt2m0ovjfcl-fP50c_W1uf7-5dvVh-vGa8CpMV5jHLA1Ig5C9aiCjMYDaGcgat12qhtMH7QP0Ts9RNcCRudmqxMOEOUle32YO__r147qZLepetps3Eh5V62QWihlemlOo6JXAEqLbkZfHdHdsKVg70rauvLHPi5vBt4dAF9yrYWi9Wn6t6CpuLSxCHafyq7tMZXdp7KHVLOt_7MfHzjlvT94NG_0PlGx1SfaB0pl7mBDTicm_AW0oK_H
CitedBy_id crossref_primary_10_1016_j_seppur_2022_121279
crossref_primary_10_3390_ijms23031247
crossref_primary_10_1016_j_chemosphere_2021_132627
crossref_primary_10_1016_j_jhazmat_2021_125342
crossref_primary_10_1016_j_envres_2022_114233
crossref_primary_10_1016_j_jhazmat_2020_124333
crossref_primary_10_1016_j_jtice_2023_105096
crossref_primary_10_1016_j_psep_2024_09_003
crossref_primary_10_1016_j_ultsonch_2022_106255
crossref_primary_10_1016_j_cej_2021_130486
crossref_primary_10_1016_j_jece_2024_113225
crossref_primary_10_1016_j_cej_2022_135265
crossref_primary_10_1039_D3GC03155A
crossref_primary_10_1016_j_jenvman_2022_115295
crossref_primary_10_1016_j_seppur_2024_127056
crossref_primary_10_3390_ijms21113967
crossref_primary_10_1007_s11356_024_32558_w
crossref_primary_10_1016_j_cej_2020_127191
crossref_primary_10_1016_j_jenvman_2022_114831
crossref_primary_10_1016_j_jece_2022_108551
crossref_primary_10_1021_acs_est_2c07447
crossref_primary_10_1021_acs_langmuir_2c02755
crossref_primary_10_1021_acsomega_0c03404
crossref_primary_10_1007_s11356_022_19087_0
crossref_primary_10_1016_j_chemosphere_2024_141938
crossref_primary_10_1016_j_envres_2021_110957
crossref_primary_10_1016_j_cej_2024_150506
crossref_primary_10_1007_s11244_020_01390_0
crossref_primary_10_1016_j_cej_2023_144962
crossref_primary_10_1016_j_surfin_2025_106105
crossref_primary_10_1016_j_xcrp_2020_100149
crossref_primary_10_1016_j_scitotenv_2019_136312
crossref_primary_10_3390_medicines7080045
crossref_primary_10_1007_s11270_021_05086_3
crossref_primary_10_1007_s13762_023_05015_3
crossref_primary_10_1016_j_seppur_2024_130855
crossref_primary_10_1016_j_jwpe_2022_102739
crossref_primary_10_1016_j_scitotenv_2019_135468
crossref_primary_10_1007_s11356_021_18345_x
crossref_primary_10_1016_j_cej_2022_136806
crossref_primary_10_1016_j_cej_2020_128196
crossref_primary_10_1016_j_apcatb_2022_121523
crossref_primary_10_1016_j_chemosphere_2023_138765
crossref_primary_10_1016_j_seppur_2024_129426
crossref_primary_10_1016_j_apcatb_2022_121908
crossref_primary_10_1016_j_xcrp_2024_101966
crossref_primary_10_1007_s11243_024_00581_y
crossref_primary_10_1016_j_scitotenv_2021_150520
crossref_primary_10_1021_acs_est_0c08018
crossref_primary_10_1007_s11356_022_23868_y
crossref_primary_10_1016_j_cej_2022_135480
crossref_primary_10_1016_j_jcis_2020_08_036
crossref_primary_10_1016_j_jcis_2022_12_012
crossref_primary_10_1016_j_seppur_2021_118804
crossref_primary_10_2166_wst_2021_135
crossref_primary_10_1016_j_apcatb_2023_122884
crossref_primary_10_1016_j_jhazmat_2022_128590
crossref_primary_10_1039_D3RA07316E
crossref_primary_10_1016_j_scitotenv_2020_139335
crossref_primary_10_3390_antiox11020376
crossref_primary_10_1016_j_scitotenv_2023_162151
crossref_primary_10_1080_09593330_2022_2064237
crossref_primary_10_1016_j_scitotenv_2020_136862
crossref_primary_10_3390_molecules26071993
crossref_primary_10_1016_j_jclepro_2023_136354
crossref_primary_10_1016_j_chemgeo_2024_121962
crossref_primary_10_1016_j_cej_2023_144387
crossref_primary_10_1016_j_envres_2023_116441
crossref_primary_10_1016_j_seppur_2020_117023
crossref_primary_10_1016_j_watres_2022_118412
crossref_primary_10_1016_j_chemosphere_2019_124979
crossref_primary_10_1016_j_apsusc_2024_159473
crossref_primary_10_1016_j_scitotenv_2019_135365
crossref_primary_10_1016_j_jece_2025_116209
crossref_primary_10_1002_slct_202300067
crossref_primary_10_1039_D3EN00001J
crossref_primary_10_1590_s1413_415220190251
crossref_primary_10_1016_j_cej_2021_133851
crossref_primary_10_1016_j_cej_2023_147170
crossref_primary_10_1016_j_scitotenv_2020_137540
crossref_primary_10_1016_j_scitotenv_2023_165333
crossref_primary_10_3390_w14182913
crossref_primary_10_1016_j_envpol_2019_113475
crossref_primary_10_1016_j_ceja_2021_100165
crossref_primary_10_1016_j_chemosphere_2022_137278
crossref_primary_10_1016_j_seppur_2023_125821
Cites_doi 10.1039/C6RA07091D
10.1016/j.cej.2013.12.009
10.1016/j.watres.2006.09.008
10.1007/s00604-017-2110-x
10.1016/j.jhazmat.2019.01.057
10.1016/j.jhazmat.2016.01.020
10.1016/j.jhazmat.2018.06.012
10.1021/jf00014a031
10.1016/S0043-1354(00)00074-9
10.1007/s11095-015-1807-y
10.1039/j19710003485
10.1016/j.watres.2008.10.045
10.1021/acs.est.7b06560
10.1016/j.watres.2016.09.019
10.1039/C7EN00767A
10.1016/j.chemosphere.2018.05.114
10.1021/es2002748
10.1016/S0304-3894(02)00282-0
10.1021/acs.est.5b03715
10.1021/acs.est.8b00231
10.1039/TF9514700462
10.1039/CT8946500899
10.1021/es070174h
10.1021/j100825a508
10.1021/es900721x
10.1016/j.seppur.2018.03.017
10.1016/j.molliq.2019.02.136
10.1016/j.apcatb.2015.05.025
10.1016/S0043-1354(98)00428-X
10.1016/j.jhazmat.2019.01.109
10.1021/es802274h
10.1016/j.apcatb.2018.03.016
10.1021/es0102235
10.1021/ja00535a029
10.1016/j.apcatb.2017.03.011
10.1016/j.apcatb.2014.06.046
10.1021/es4019145
10.1016/j.cej.2015.06.115
10.1016/j.apcatb.2013.09.032
10.1080/10643380500326564
10.1021/es050001x
10.1021/ic00128a012
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jhazmat.2019.121090
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
EISSN 1873-3336
ExternalDocumentID 31476718
10_1016_j_jhazmat_2019_121090
S0304389419310441
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
..I
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
XPP
ZMT
~02
~G-
.HR
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
FEDTE
FGOYB
G-2
HLY
HMC
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SEN
SEW
SSH
T9H
TAE
VH1
WUQ
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c501t-9c51fb1692fb24814d3f9c005a90f556747b98d5cdfca5bfa601faac5172a0113
IEDL.DBID .~1
ISSN 0304-3894
1873-3336
IngestDate Fri Jul 11 09:22:16 EDT 2025
Fri Jul 11 12:05:06 EDT 2025
Wed Feb 19 02:30:38 EST 2025
Thu Apr 24 23:00:45 EDT 2025
Tue Jul 01 00:49:21 EDT 2025
Fri Feb 23 02:50:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fenton reaction
Iron redox cycle
Reducing agents (RAs)
Benzoic acid (BA)
Pollutant degradation
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-9c51fb1692fb24814d3f9c005a90f556747b98d5cdfca5bfa601faac5172a0113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5247-6244
PMID 31476718
PQID 2284004527
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2352449839
proquest_miscellaneous_2284004527
pubmed_primary_31476718
crossref_citationtrail_10_1016_j_jhazmat_2019_121090
crossref_primary_10_1016_j_jhazmat_2019_121090
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2019_121090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-15
PublicationDateYYYYMMDD 2020-01-15
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Luo, Yao, Gong, Huang, Lu, Chen, Zhang (bib0120) 2016; 6
Luo, Zhao, He, Ji, Cheng, Zhang, Pan (bib0130) 2019; 282
Stefansson (bib0195) 2007; 41
Sun, Pignatello (bib0205) 1992; 40
Clarizia, Russo, Di Somma, Marotta, Andreozzi (bib0025) 2017; 209
Ren, Zhou, Su, Yang, Lu, Zhang (bib0175) 2019; 368
Vermilyea, Voelker (bib0215) 2009; 43
Neyens, Baeyens (bib0145) 2003; 98
De luca, Dantas, Esplugas (bib0040) 2015; 179
Qian, Ren, Fang, Kan, Yue, Bian, Li, Jia, Zhao (bib0155) 2018; 231
Li, Zhao, Wang, Xie, Ma (bib0115) 2016; 105
Zou, Ma, Chen, Li, Guan, Xie, Pan (bib0225) 2013; 47
Kaur, Kushwaha, Sangal (bib0095) 2018; 207
Crittenden, Trussell, Hand, Howe, Tchobanoglous (bib0030) 2012
Ma, Song, Chen, Ma, Zhao, Tang (bib0135) 2005; 39
Barb, Baxendale, George, Hargrave (bib0005) 1951; 47
Cui, Qin, Zhou, Du (bib0035) 2017; 184
Jiang, Tang, Lyu, Brusseau, Xue, Zhang, Qiu, Sui (bib0090) 2019; 368
Kortum, Vogel, Andrussow (bib0100) 1961
Fukuchi, Nishimoto, Fukushima, Zhu (bib0060) 2014; 147
Doong, Schink (bib0045) 2002; 36
Bolobajev, Marina, Anna (bib0010) 2015; 281
Hou, Huang, Ai, Zhao, Zhang (bib0075) 2016; 310
Rastogi, Al-Abed, Dionysiou (bib0165) 2009; 43
Gallard, De Laat (bib0065) 2000; 34
Rosenfeldt, Linden, Canonica, Von Gunten (bib0185) 2006; 40
Zhou, Yu, Zhang, Meng, Luo, Deng, Shi, Crittenden (bib0220) 2018; 52
Hughes, Nicklin, Shrimanker (bib0085) 1971
Rehman, Sayed, Khan, Shah, Khan, Dionysiou (bib0170) 2018; 357
Sun, Yao, Wang, Mao, Huang, Yao, Lu, Chen (bib0210) 2014; 240
Pignatello, Oliveros, MacKay (bib0150) 2006; 36
Kwon, Lee, Kang, Yoon (bib0110) 1999; 33
Masomboon, Ratanatamskul, Lu (bib0140) 2009; 43
Gao, Song, Hao, Zhu, Yang, Yang (bib0070) 2018; 201
Su, Jassby, Song, Zhou, Zhao, Filip, Petala, Zhang (bib0200) 2018; 52
Qian, Guo, Zhang, Peng, Sun, Huang, Niu, Zhou, Crittenden (bib0160) 2016; 50
Bolton, Bircher (bib0015) 1996; 1
Luo, Zhang, Chen, Yu, Sheng (bib0125) 2017; 4
Sisley, Jordan (bib0190) 1995; 34
Kryndushkin, Rao (bib0105) 2016; 33
Fenton (bib0050) 1894; 65
Huang, Cao, Ai, Zhang (bib0080) 2015; 162
Chen, Ma, Li, Zhang, Fang, Guan, Xie (bib0020) 2011; 45
Finkelstein, Rosen, Rauckman (bib0055) 1980; 102
Robinson, Bower (bib0180) 1961; 65
Bolobajev (10.1016/j.jhazmat.2019.121090_bib0010) 2015; 281
Luo (10.1016/j.jhazmat.2019.121090_bib0125) 2017; 4
Su (10.1016/j.jhazmat.2019.121090_bib0200) 2018; 52
Qian (10.1016/j.jhazmat.2019.121090_bib0160) 2016; 50
Gao (10.1016/j.jhazmat.2019.121090_bib0070) 2018; 201
Vermilyea (10.1016/j.jhazmat.2019.121090_bib0215) 2009; 43
Luo (10.1016/j.jhazmat.2019.121090_bib0120) 2016; 6
Kortum (10.1016/j.jhazmat.2019.121090_bib0100) 1961
Robinson (10.1016/j.jhazmat.2019.121090_bib0180) 1961; 65
Ren (10.1016/j.jhazmat.2019.121090_bib0175) 2019; 368
Jiang (10.1016/j.jhazmat.2019.121090_bib0090) 2019; 368
Qian (10.1016/j.jhazmat.2019.121090_bib0155) 2018; 231
Zou (10.1016/j.jhazmat.2019.121090_bib0225) 2013; 47
Masomboon (10.1016/j.jhazmat.2019.121090_bib0140) 2009; 43
Zhou (10.1016/j.jhazmat.2019.121090_bib0220) 2018; 52
Sun (10.1016/j.jhazmat.2019.121090_bib0210) 2014; 240
Kaur (10.1016/j.jhazmat.2019.121090_bib0095) 2018; 207
Ma (10.1016/j.jhazmat.2019.121090_bib0135) 2005; 39
Fukuchi (10.1016/j.jhazmat.2019.121090_bib0060) 2014; 147
Kwon (10.1016/j.jhazmat.2019.121090_bib0110) 1999; 33
Hou (10.1016/j.jhazmat.2019.121090_bib0075) 2016; 310
Finkelstein (10.1016/j.jhazmat.2019.121090_bib0055) 1980; 102
Crittenden (10.1016/j.jhazmat.2019.121090_bib0030) 2012
Neyens (10.1016/j.jhazmat.2019.121090_bib0145) 2003; 98
Gallard (10.1016/j.jhazmat.2019.121090_bib0065) 2000; 34
Pignatello (10.1016/j.jhazmat.2019.121090_bib0150) 2006; 36
Rastogi (10.1016/j.jhazmat.2019.121090_bib0165) 2009; 43
Bolton (10.1016/j.jhazmat.2019.121090_bib0015) 1996; 1
Hughes (10.1016/j.jhazmat.2019.121090_bib0085) 1971
Rosenfeldt (10.1016/j.jhazmat.2019.121090_bib0185) 2006; 40
Sisley (10.1016/j.jhazmat.2019.121090_bib0190) 1995; 34
Cui (10.1016/j.jhazmat.2019.121090_bib0035) 2017; 184
Chen (10.1016/j.jhazmat.2019.121090_bib0020) 2011; 45
Li (10.1016/j.jhazmat.2019.121090_bib0115) 2016; 105
Clarizia (10.1016/j.jhazmat.2019.121090_bib0025) 2017; 209
Rehman (10.1016/j.jhazmat.2019.121090_bib0170) 2018; 357
De luca (10.1016/j.jhazmat.2019.121090_bib0040) 2015; 179
Stefansson (10.1016/j.jhazmat.2019.121090_bib0195) 2007; 41
Kryndushkin (10.1016/j.jhazmat.2019.121090_bib0105) 2016; 33
Huang (10.1016/j.jhazmat.2019.121090_bib0080) 2015; 162
Luo (10.1016/j.jhazmat.2019.121090_bib0130) 2019; 282
Barb (10.1016/j.jhazmat.2019.121090_bib0005) 1951; 47
Fenton (10.1016/j.jhazmat.2019.121090_bib0050) 1894; 65
Doong (10.1016/j.jhazmat.2019.121090_bib0045) 2002; 36
Sun (10.1016/j.jhazmat.2019.121090_bib0205) 1992; 40
References_xml – year: 1961
  ident: bib0100
  article-title: Dissociation Constants of Organic Acids
– volume: 4
  start-page: 2395
  year: 2017
  end-page: 2404
  ident: bib0125
  article-title: Probing the biotransformation of hematite nanoparticles and magnetite formation mediated by
  publication-title: Environ. Sci. Nano
– volume: 65
  start-page: 1279
  year: 1961
  end-page: 1280
  ident: bib0180
  article-title: The ionization constant of hydroxylamine
  publication-title: J. Phys. Chem.
– volume: 43
  start-page: 684
  year: 2009
  end-page: 694
  ident: bib0165
  article-title: Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols
  publication-title: Water Res.
– volume: 52
  start-page: 6466
  year: 2018
  end-page: 6475
  ident: bib0200
  article-title: Enhanced oxidative and adsorptive removal of diclofenac in heterogeneous Fenton-like reaction with sulfide modified nanoscale zero valent iron
  publication-title: Environ. Sci. Technol.
– volume: 47
  start-page: 11685
  year: 2013
  end-page: 11691
  ident: bib0225
  article-title: Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine
  publication-title: Environ. Sci. Technol.
– volume: 231
  start-page: 108
  year: 2018
  end-page: 114
  ident: bib0155
  article-title: Hydrophilic mesoporous carbon as iron(III)/(II) electron shuttle for visible light enhanced Fenton-like degradation of organic pollutants
  publication-title: Appl. Catal. B-Environ.
– volume: 184
  start-page: 1103
  year: 2017
  end-page: 1108
  ident: bib0035
  article-title: Determination of the activity of hydrogen peroxide scavenging by using blue-emitting glucose oxidase–stabilized gold nanoclusters as fluorescent nanoprobes and a Fenton reaction that induces fluorescence quenching
  publication-title: Microchim Acta.
– volume: 50
  start-page: 772
  year: 2016
  end-page: 781
  ident: bib0160
  article-title: Perfluorooctanoic acid degradation using UV-persulfate process: modeling of the degradation and chlorate formation
  publication-title: Environ. Sci. Technol.
– volume: 368
  start-page: 830
  year: 2019
  end-page: 839
  ident: bib0175
  article-title: Simultaneous sulfadiazines degradation and disinfection from municipal secondary effluent by a flow-through electro-Fenton process with graphene-modified cathode
  publication-title: J. Hazard. Mater.
– volume: 45
  start-page: 3925
  year: 2011
  end-page: 3930
  ident: bib0020
  article-title: Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles
  publication-title: Environ. Sci. Technol.
– volume: 33
  start-page: 526
  year: 2016
  end-page: 539
  ident: bib0105
  article-title: Comparative effects of metal-catalyzed oxidizing systems on carbonylation and integrity of therapeutic proteins
  publication-title: Pharm. Res.
– volume: 36
  start-page: 1
  year: 2006
  end-page: 84
  ident: bib0150
  article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 281
  start-page: 566
  year: 2015
  end-page: 574
  ident: bib0010
  article-title: Improvement in iron activation ability of alachlor Fenton-like oxidation by ascorbic acid
  publication-title: Chem. Eng. J.
– year: 2012
  ident: bib0030
  article-title: MWH’s Water Treatment: Principles and Design
– volume: 65
  start-page: 899
  year: 1894
  end-page: 910
  ident: bib0050
  article-title: Oxidation of tartaric acid in presence of iron
  publication-title: J. Chem. Soc. Perkin Trans. I
– volume: 207
  start-page: 690
  year: 2018
  end-page: 698
  ident: bib0095
  article-title: Transformation products and degradation pathway of textile industry wastewater pollutants in Electro-Fenton process
  publication-title: Chemosphere.
– volume: 40
  start-page: 3695
  year: 2006
  end-page: 3704
  ident: bib0185
  article-title: Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O
  publication-title: Water Res.
– volume: 41
  start-page: 6117
  year: 2007
  end-page: 6123
  ident: bib0195
  article-title: Iron (III) hydrolysis and solubility at 25 °C
  publication-title: Environ. Sci. Technol.
– volume: 39
  start-page: 5810
  year: 2005
  end-page: 5815
  ident: bib0135
  article-title: Fenton degradation of organic compounds promoted by dyes under visible irradiation
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 6927
  year: 2009
  end-page: 6933
  ident: bib0215
  article-title: Photo-Fenton reaction at near neutral pH
  publication-title: Environ. Sci. Technol.
– volume: 102
  start-page: 4994
  year: 1980
  end-page: 4999
  ident: bib0055
  article-title: Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 3107
  year: 2000
  end-page: 3116
  ident: bib0065
  article-title: Kinetic modeling of Fe (III)/H
  publication-title: Water Res.
– volume: 282
  start-page: 13
  year: 2019
  end-page: 22
  ident: bib0130
  article-title: Hydroxylamine-facilitated degradation of rhodamine B (RhB) and p-nitrophenol (PNP) as catalyzed by Fe@Fe
  publication-title: J. Mol. Liq.
– volume: 47
  start-page: 462
  year: 1951
  end-page: 500
  ident: bib0005
  article-title: Reactions of ferrous and ferric ions with hydrogen peroxide. Part I.-The ferrous ion reaction
  publication-title: Trans. Faraday Soc.
– volume: 33
  start-page: 2110
  year: 1999
  end-page: 2118
  ident: bib0110
  article-title: Characteristics of p-chlorophenol oxidation by Fenton’s reagent
  publication-title: Water Res.
– volume: 310
  start-page: 170
  year: 2016
  end-page: 178
  ident: bib0075
  article-title: Ascorbic acid/Fe@Fe
  publication-title: J. Hazard. Mater.
– volume: 6
  start-page: 47661
  year: 2016
  end-page: 47668
  ident: bib0120
  article-title: Drastic enhancement on Fenton oxidation of organic contaminants by accelerating Fe(III)/Fe(II) cycle with L-cysteine
  publication-title: RSC Adv.
– volume: 1
  start-page: 13
  year: 1996
  end-page: 17
  ident: bib0015
  article-title: Figures-of-merit for the technical development and application of advanced oxidation processes
  publication-title: J. Adv. Oxidat. Technol.
– volume: 201
  start-page: 238
  year: 2018
  end-page: 243
  ident: bib0070
  article-title: An effective and magnetic Fe
  publication-title: Sep. Purif. Technol.
– volume: 98
  start-page: 33
  year: 2003
  end-page: 50
  ident: bib0145
  article-title: A review of classic Fenton’s peroxidation as an advanced oxidation technique
  publication-title: J. Hazard. Mater.
– volume: 105
  start-page: 479
  year: 2016
  end-page: 486
  ident: bib0115
  article-title: Strongly enhanced Fenton degradation of organic pollutants by cysteine: an aliphatic amino acid accelerator outweighs hydroquinone analogues
  publication-title: Water Res.
– volume: 240
  start-page: 413
  year: 2014
  end-page: 419
  ident: bib0210
  article-title: Efficient removal of dyes using activated carbon fibers coupled with 8-hydroxyquinoline ferric as a reusable Fenton-like catalyst
  publication-title: Chem. Eng. J.
– volume: 179
  start-page: 372
  year: 2015
  end-page: 379
  ident: bib0040
  article-title: Study of Fe (III)-NTA chelates stability for applicability in photo-Fenton at neutral pH
  publication-title: Appl. Catal. B-Environ.
– volume: 209
  start-page: 358
  year: 2017
  end-page: 371
  ident: bib0025
  article-title: Homogeneous photo-Fenton processes at near neutral pH: a review
  publication-title: Appl. Catal. B-Environ.
– volume: 43
  start-page: 8629
  year: 2009
  end-page: 8634
  ident: bib0140
  article-title: Chemical oxidation of 2,6-dimethylaniline in the Fenton process
  publication-title: Environ. Sci. Technol.
– volume: 357
  start-page: 506
  year: 2018
  end-page: 514
  ident: bib0170
  article-title: Oxidative removal of brilliant green by UV/S
  publication-title: J. Hazard. Mater.
– volume: 162
  start-page: 319
  year: 2015
  end-page: 326
  ident: bib0080
  article-title: Reactive oxygen species dependent degradation pathway of 4-chlorophenol with Fe@Fe
  publication-title: Appl. Catal. B-Environ.
– volume: 52
  start-page: 4305
  year: 2018
  end-page: 4312
  ident: bib0220
  article-title: Oxidation of microcystin-LR via activation of peroxymonosulfate using ascorbic acid: kinetic modeling and toxicity assessment
  publication-title: Environ. Sci. Technol.
– volume: 368
  start-page: 506
  year: 2019
  end-page: 513
  ident: bib0090
  article-title: Enhanced redox degradation of chlorinated hydrocarbons by the Fe(II)-catalyzed calcium peroxide system in the presence of formic acid and citric acid
  publication-title: J. Hazard. Mater.
– volume: 147
  start-page: 411
  year: 2014
  end-page: 419
  ident: bib0060
  article-title: Effects of reducing agents on the degradation of 2,4,6-tribromophenol in a heterogeneous Fenton-like system with an iron-loaded natural zeolite
  publication-title: Appl. Catal. B-Environ.
– start-page: 3485
  year: 1971
  end-page: 3487
  ident: bib0085
  article-title: Autoxidation of hydroxylamine in alkaline solutions. Part II. Kinetics. The acid dissociation constant of hydroxylamine
  publication-title: J. Chem. Soc. Part A.
– volume: 40
  start-page: 322
  year: 1992
  end-page: 327
  ident: bib0205
  article-title: Chemical treatment of pesticide wastes-evaluation of iron(III) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circumneutral pH
  publication-title: J. Agric. Food Chem.
– volume: 34
  start-page: 6015
  year: 1995
  end-page: 6023
  ident: bib0190
  article-title: Kinetic and equilibrium studies of the reactions of cysteine and penicillamine with aqueous iron (III)
  publication-title: Inorg. Chem.
– volume: 36
  start-page: 2939
  year: 2002
  end-page: 2945
  ident: bib0045
  article-title: Cysteine-mediated reductive dissolution of poorly crystalline iron (III) oxides by Geobacter sulfurreducens
  publication-title: Environ. Sci. Technol.
– year: 2012
  ident: 10.1016/j.jhazmat.2019.121090_bib0030
– volume: 6
  start-page: 47661
  year: 2016
  ident: 10.1016/j.jhazmat.2019.121090_bib0120
  article-title: Drastic enhancement on Fenton oxidation of organic contaminants by accelerating Fe(III)/Fe(II) cycle with L-cysteine
  publication-title: RSC Adv.
  doi: 10.1039/C6RA07091D
– volume: 240
  start-page: 413
  year: 2014
  ident: 10.1016/j.jhazmat.2019.121090_bib0210
  article-title: Efficient removal of dyes using activated carbon fibers coupled with 8-hydroxyquinoline ferric as a reusable Fenton-like catalyst
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.12.009
– volume: 40
  start-page: 3695
  year: 2006
  ident: 10.1016/j.jhazmat.2019.121090_bib0185
  article-title: Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/ H2O2
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.09.008
– volume: 184
  start-page: 1103
  year: 2017
  ident: 10.1016/j.jhazmat.2019.121090_bib0035
  article-title: Determination of the activity of hydrogen peroxide scavenging by using blue-emitting glucose oxidase–stabilized gold nanoclusters as fluorescent nanoprobes and a Fenton reaction that induces fluorescence quenching
  publication-title: Microchim Acta.
  doi: 10.1007/s00604-017-2110-x
– volume: 368
  start-page: 506
  year: 2019
  ident: 10.1016/j.jhazmat.2019.121090_bib0090
  article-title: Enhanced redox degradation of chlorinated hydrocarbons by the Fe(II)-catalyzed calcium peroxide system in the presence of formic acid and citric acid
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.01.057
– volume: 310
  start-page: 170
  year: 2016
  ident: 10.1016/j.jhazmat.2019.121090_bib0075
  article-title: Ascorbic acid/Fe@Fe2O3: a highly efficient combined Fenton reagent to remove organic contaminants
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.01.020
– volume: 1
  start-page: 13
  year: 1996
  ident: 10.1016/j.jhazmat.2019.121090_bib0015
  article-title: Figures-of-merit for the technical development and application of advanced oxidation processes
  publication-title: J. Adv. Oxidat. Technol.
– volume: 357
  start-page: 506
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121090_bib0170
  article-title: Oxidative removal of brilliant green by UV/S2O82−, UV/HSO5‒ and UV/H2O2 processes in aqueous media: A comparative study
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.06.012
– volume: 40
  start-page: 322
  year: 1992
  ident: 10.1016/j.jhazmat.2019.121090_bib0205
  article-title: Chemical treatment of pesticide wastes-evaluation of iron(III) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circumneutral pH
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf00014a031
– volume: 34
  start-page: 3107
  year: 2000
  ident: 10.1016/j.jhazmat.2019.121090_bib0065
  article-title: Kinetic modeling of Fe (III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(00)00074-9
– volume: 33
  start-page: 526
  year: 2016
  ident: 10.1016/j.jhazmat.2019.121090_bib0105
  article-title: Comparative effects of metal-catalyzed oxidizing systems on carbonylation and integrity of therapeutic proteins
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-015-1807-y
– start-page: 3485
  year: 1971
  ident: 10.1016/j.jhazmat.2019.121090_bib0085
  article-title: Autoxidation of hydroxylamine in alkaline solutions. Part II. Kinetics. The acid dissociation constant of hydroxylamine
  publication-title: J. Chem. Soc. Part A.
  doi: 10.1039/j19710003485
– volume: 43
  start-page: 684
  year: 2009
  ident: 10.1016/j.jhazmat.2019.121090_bib0165
  article-title: Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.10.045
– volume: 52
  start-page: 4305
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121090_bib0220
  article-title: Oxidation of microcystin-LR via activation of peroxymonosulfate using ascorbic acid: kinetic modeling and toxicity assessment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b06560
– volume: 105
  start-page: 479
  year: 2016
  ident: 10.1016/j.jhazmat.2019.121090_bib0115
  article-title: Strongly enhanced Fenton degradation of organic pollutants by cysteine: an aliphatic amino acid accelerator outweighs hydroquinone analogues
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.09.019
– volume: 4
  start-page: 2395
  year: 2017
  ident: 10.1016/j.jhazmat.2019.121090_bib0125
  article-title: Probing the biotransformation of hematite nanoparticles and magnetite formation mediated by Shewanella oneidensis MR-1 at the molecular scale
  publication-title: Environ. Sci. Nano
  doi: 10.1039/C7EN00767A
– volume: 207
  start-page: 690
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121090_bib0095
  article-title: Transformation products and degradation pathway of textile industry wastewater pollutants in Electro-Fenton process
  publication-title: Chemosphere.
  doi: 10.1016/j.chemosphere.2018.05.114
– volume: 45
  start-page: 3925
  year: 2011
  ident: 10.1016/j.jhazmat.2019.121090_bib0020
  article-title: Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2002748
– volume: 98
  start-page: 33
  year: 2003
  ident: 10.1016/j.jhazmat.2019.121090_bib0145
  article-title: A review of classic Fenton’s peroxidation as an advanced oxidation technique
  publication-title: J. Hazard. Mater.
  doi: 10.1016/S0304-3894(02)00282-0
– volume: 50
  start-page: 772
  year: 2016
  ident: 10.1016/j.jhazmat.2019.121090_bib0160
  article-title: Perfluorooctanoic acid degradation using UV-persulfate process: modeling of the degradation and chlorate formation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03715
– volume: 52
  start-page: 6466
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121090_bib0200
  article-title: Enhanced oxidative and adsorptive removal of diclofenac in heterogeneous Fenton-like reaction with sulfide modified nanoscale zero valent iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00231
– volume: 47
  start-page: 462
  year: 1951
  ident: 10.1016/j.jhazmat.2019.121090_bib0005
  article-title: Reactions of ferrous and ferric ions with hydrogen peroxide. Part I.-The ferrous ion reaction
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/TF9514700462
– volume: 65
  start-page: 899
  year: 1894
  ident: 10.1016/j.jhazmat.2019.121090_bib0050
  article-title: Oxidation of tartaric acid in presence of iron
  publication-title: J. Chem. Soc. Perkin Trans. I
  doi: 10.1039/CT8946500899
– volume: 41
  start-page: 6117
  year: 2007
  ident: 10.1016/j.jhazmat.2019.121090_bib0195
  article-title: Iron (III) hydrolysis and solubility at 25 °C
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es070174h
– volume: 65
  start-page: 1279
  year: 1961
  ident: 10.1016/j.jhazmat.2019.121090_bib0180
  article-title: The ionization constant of hydroxylamine
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100825a508
– volume: 43
  start-page: 6927
  year: 2009
  ident: 10.1016/j.jhazmat.2019.121090_bib0215
  article-title: Photo-Fenton reaction at near neutral pH
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es900721x
– volume: 201
  start-page: 238
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121090_bib0070
  article-title: An effective and magnetic Fe2O3-ZrO2 catalyst for phenol degradation under neutral pH in the heterogeneous Fenton-like reaction
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.03.017
– year: 1961
  ident: 10.1016/j.jhazmat.2019.121090_bib0100
– volume: 282
  start-page: 13
  year: 2019
  ident: 10.1016/j.jhazmat.2019.121090_bib0130
  article-title: Hydroxylamine-facilitated degradation of rhodamine B (RhB) and p-nitrophenol (PNP) as catalyzed by Fe@Fe2O3 core-shell nanowires
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.02.136
– volume: 179
  start-page: 372
  year: 2015
  ident: 10.1016/j.jhazmat.2019.121090_bib0040
  article-title: Study of Fe (III)-NTA chelates stability for applicability in photo-Fenton at neutral pH
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2015.05.025
– volume: 33
  start-page: 2110
  year: 1999
  ident: 10.1016/j.jhazmat.2019.121090_bib0110
  article-title: Characteristics of p-chlorophenol oxidation by Fenton’s reagent
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(98)00428-X
– volume: 368
  start-page: 830
  year: 2019
  ident: 10.1016/j.jhazmat.2019.121090_bib0175
  article-title: Simultaneous sulfadiazines degradation and disinfection from municipal secondary effluent by a flow-through electro-Fenton process with graphene-modified cathode
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.01.109
– volume: 43
  start-page: 8629
  year: 2009
  ident: 10.1016/j.jhazmat.2019.121090_bib0140
  article-title: Chemical oxidation of 2,6-dimethylaniline in the Fenton process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802274h
– volume: 231
  start-page: 108
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121090_bib0155
  article-title: Hydrophilic mesoporous carbon as iron(III)/(II) electron shuttle for visible light enhanced Fenton-like degradation of organic pollutants
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.03.016
– volume: 36
  start-page: 2939
  year: 2002
  ident: 10.1016/j.jhazmat.2019.121090_bib0045
  article-title: Cysteine-mediated reductive dissolution of poorly crystalline iron (III) oxides by Geobacter sulfurreducens
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0102235
– volume: 102
  start-page: 4994
  year: 1980
  ident: 10.1016/j.jhazmat.2019.121090_bib0055
  article-title: Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00535a029
– volume: 209
  start-page: 358
  year: 2017
  ident: 10.1016/j.jhazmat.2019.121090_bib0025
  article-title: Homogeneous photo-Fenton processes at near neutral pH: a review
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2017.03.011
– volume: 162
  start-page: 319
  year: 2015
  ident: 10.1016/j.jhazmat.2019.121090_bib0080
  article-title: Reactive oxygen species dependent degradation pathway of 4-chlorophenol with Fe@Fe2O3 core-shell nanowires
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2014.06.046
– volume: 47
  start-page: 11685
  year: 2013
  ident: 10.1016/j.jhazmat.2019.121090_bib0225
  article-title: Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4019145
– volume: 281
  start-page: 566
  year: 2015
  ident: 10.1016/j.jhazmat.2019.121090_bib0010
  article-title: Improvement in iron activation ability of alachlor Fenton-like oxidation by ascorbic acid
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.06.115
– volume: 147
  start-page: 411
  year: 2014
  ident: 10.1016/j.jhazmat.2019.121090_bib0060
  article-title: Effects of reducing agents on the degradation of 2,4,6-tribromophenol in a heterogeneous Fenton-like system with an iron-loaded natural zeolite
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2013.09.032
– volume: 36
  start-page: 1
  year: 2006
  ident: 10.1016/j.jhazmat.2019.121090_bib0150
  article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380500326564
– volume: 39
  start-page: 5810
  year: 2005
  ident: 10.1016/j.jhazmat.2019.121090_bib0135
  article-title: Fenton degradation of organic compounds promoted by dyes under visible irradiation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050001x
– volume: 34
  start-page: 6015
  year: 1995
  ident: 10.1016/j.jhazmat.2019.121090_bib0190
  article-title: Kinetic and equilibrium studies of the reactions of cysteine and penicillamine with aqueous iron (III)
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00128a012
SSID ssj0001754
Score 2.5956776
Snippet [Display omitted] •Dosing reducing agents resulted in enhanced pollutant degradation and expansion of pH range.•Dosing manner of RA was a key factor governing...
Fenton reaction is widely used for hazardous pollutant degradation. Reducing agents (RAs) have been proven to be efficient in promoting the generation of HO•...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121090
SubjectTerms ascorbic acid
benzoic acid
Benzoic acid (BA)
catalytic activity
cysteine
economic feasibility
electric power
energy
Fenton reaction
hydroxyl radicals
hydroxylamine
iron
Iron redox cycle
oxidation
Pollutant degradation
pollutants
reducing agents
Reducing agents (RAs)
Title Degradation of benzoic acid in an advanced oxidation process: The effects of reducing agents
URI https://dx.doi.org/10.1016/j.jhazmat.2019.121090
https://www.ncbi.nlm.nih.gov/pubmed/31476718
https://www.proquest.com/docview/2284004527
https://www.proquest.com/docview/2352449839
Volume 382
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6V8QIPiI1fBTYZidc0cWInDW_ToOrY6AtU6gOSZTuOlgolVdsJtAf-du4SZwOJrdKkPEW-yDqf77uL7z4DvHeYVRiZJoEuYiLV5mlAMBxInaaR45nL2l_ZX2bpdC4-L-RiACd9LwyVVXrf3_n01lv7N6HXZriqqvArHeoh3AoMQTCnaJvXhcjIyke_b8o8EB47Cik6AcDRN1084XK0vNBXGBhShVdOPAsRueb_49Nt8WeLQ5On8MQHkOy4m-M-DFx9AI__ohU8gAfn-ucz-P6ReCC6K5NYUzLj6qumskzbqmBVzTQ-vgCANb8qP3DVNQ58YGg_zBd7kPSaKF7x60xTL9bmOcwnn76dTAN_l0JgZcS3QW4lLw1P87g0sRhzUSRlbnEL6jwqpUwxqzD5uJC2KK2WptSYqJVao1QWa_QByQvYq5vavQJWGFlIqg4VhRWuTZmsdDpysYtTk0dDEL0GlfVE43TfxQ_VV5QtlVe8IsWrTvFDGF2LrTqmjV0C43551D8moxANdom-65dT4XaiMxJdu-Zyo2KE65ZmPrtjDAatQuRo00N42dnC9YwTjiaIeP_6_pN7A49iSuojHnD5Fva260t3iJHP1hy1pn0ED49Pz6azP_alAIk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RTxQxEJ4APqgPBlHxFLUm-rh32167e0vCgxHJIQcvQsKDSW273bgXs3vhjqA8-Kf4g8zsdkETlcSEZJ82naaZTjvftDNfAd54jCqsSoaRyQWRavMkIjccKZMkseepT5uj7P2DZHwkPx6r4yW46GphKK0y7P3tnt7s1uHPIGhzMCvLwSe61EN3KxGCYEwhecis3PM_zjBum2_tbuMkvxVi58Ph-3EUnhaInIr5Isqc4oXlSSYKK-SIy3xYZA4t0mRxoVSCINtmo1y5vHBG2cJg3FIYg1KpMLgkhtjvMtyRuF3Qswn9n9d5JeiPW84qunLA4V2XDQ2m_elXc45IlFLKMiJ2iMkX_Nkh_g3wNo5vZxUeBMTK3rVKeQhLvlqD-7_wGK7B8sScPYLP20Q80b7RxOqCWV-d16VjxpU5Kytm8AsZB6z-XoaGs7ZSYZOhwbKQXULSJ8Qpi70zQ8Vf88dwdCsafgIrVV35p8Byq3JF6agyd9I3MZpT3sReeJHYLO6B7DSoXWA2pwc2vukuhW2qg-I1KV63iu9B_0ps1lJ73CQw6qZH_2ajGt3PTaKvu-nUuH7pUsZUvj6da4H4oOG1T__RBlGylBkuoh6st7ZwNeIhl2mCAOPZ_w_uFdwdH-5P9GT3YO853BN0ohDziKsNWFmcnPoXCLsW9mVj5gy-3Pa6ugSXKTwl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+of+benzoic+acid+in+an+advanced+oxidation+process%3A+The+effects+of+reducing+agents&rft.jtitle=Journal+of+hazardous+materials&rft.au=He%2C+Dong-Qin&rft.au=Zhang%2C+Ying-Jie&rft.au=Pei%2C+Dan-Ni&rft.au=Huang%2C+Gui-Xiang&rft.date=2020-01-15&rft.issn=1873-3336&rft.eissn=1873-3336&rft.volume=382&rft.spage=121090&rft_id=info:doi/10.1016%2Fj.jhazmat.2019.121090&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon