Sliced and Radon Wasserstein Barycenters of Measures
This article details two approaches to compute barycenters of measures using 1-D Wasserstein distances along radial projections of the input measures. The first method makes use of the Radon transform of the measures, and the second is the solution of a convex optimization problem over the space of...
Saved in:
Published in | Journal of mathematical imaging and vision Vol. 51; no. 1; pp. 22 - 45 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.01.2015
Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article details two approaches to compute barycenters of measures using 1-D Wasserstein distances along radial projections of the input measures. The first method makes use of the Radon transform of the measures, and the second is the solution of a convex optimization problem over the space of measures. We show several properties of these barycenters and explain their relationship. We show numerical approximation schemes based on a discrete Radon transform and on the resolution of a non-convex optimization problem. We explore the respective merits and drawbacks of each approach on applications to two image processing problems: color transfer and texture mixing. |
---|---|
AbstractList | This article details two approaches to compute barycenters of measures using 1-D Wasserstein distances along radial projections of the input measures. The first me- thod makes use of the Radon transform of the measures, and the second is the solution of a convex optimization problem over the space of measures. We show several properties of these barycenters and explain their relationship. We show numerical approximation schemes based on a discrete Radon transform and on the resolution of a non-convex optimization problem. We explore the respective merits and drawbacks of each approach on applications to two image processing problems: color transfer and texture mixing. This article details two approaches to compute barycenters of measures using 1-D Wasserstein distances along radial projections of the input measures. The first method makes use of the Radon transform of the measures, and the second is the solution of a convex optimization problem over the space of measures. We show several properties of these barycenters and explain their relationship. We show numerical approximation schemes based on a discrete Radon transform and on the resolution of a non-convex optimization problem. We explore the respective merits and drawbacks of each approach on applications to two image processing problems: color transfer and texture mixing. |
Author | Pfister, Hanspeter Bonneel, Nicolas Rabin, Julien Peyré, Gabriel |
Author_xml | – sequence: 1 givenname: Nicolas surname: Bonneel fullname: Bonneel, Nicolas organization: Harvard University, CNRS-LIRIS – sequence: 2 givenname: Julien surname: Rabin fullname: Rabin, Julien organization: GREYC, Université de Caen – sequence: 3 givenname: Gabriel surname: Peyré fullname: Peyré, Gabriel email: gabriel.peyre@ceremade.dauphine.fr organization: CNRS-CEREMADE, Université Paris-Dauphine – sequence: 4 givenname: Hanspeter surname: Pfister fullname: Pfister, Hanspeter organization: Harvard University |
BackLink | https://hal.science/hal-00881872$$DView record in HAL |
BookMark | eNp9kEtLAzEQgINUsK3-AG979RCdSbKbzbEWtUJF8IHHkGYT3bJmJdkK_ntTVjx48DTMMN88vhmZhD44Qk4RzhFAXiSEukQKKCiUUFF-QKZYSk5lVfMJmYJigioF8ojMUtoCQM1QTol47FrrmsKEpngwTR-KF5OSi2lwbSguTfyyLgw5L3pf3DmTdtGlY3LoTZfcyU-ck-frq6fliq7vb26XizW1JeBAlfFiY4RCK0UjpaocWvQbJjbc2xqssrVDxxvrK294BdyW3rFSKMmUB9vwOTkb576ZTn_E9j2fo3vT6tVirfe1_EWNtWSfmHtx7LWxTyk6_wsg6L0iPSrSWZHeK9I8M_IPY9vBDG0fhmja7l-SjWTKW8Kri3rb72LIMv6BvgFpAHvB |
CitedBy_id | crossref_primary_10_3389_fncel_2023_1273283 crossref_primary_10_1111_cgf_15020 crossref_primary_10_1145_3550289 crossref_primary_10_1109_TIFS_2024_3516549 crossref_primary_10_1137_15M1032600 crossref_primary_10_1038_s41598_024_68573_7 crossref_primary_10_1145_3636428 crossref_primary_10_1016_j_patcog_2021_108175 crossref_primary_10_1137_17M1140431 crossref_primary_10_1109_OJSP_2020_3035070 crossref_primary_10_1093_genetics_iyad063 crossref_primary_10_1109_TKDE_2024_3459890 crossref_primary_10_1137_19M1301047 crossref_primary_10_1109_TPAMI_2024_3489030 crossref_primary_10_1137_19M1268252 crossref_primary_10_1137_16M1068827 crossref_primary_10_1007_s10851_017_0726_4 crossref_primary_10_1016_j_ins_2024_120925 crossref_primary_10_1080_10618600_2023_2183213 crossref_primary_10_1109_TMC_2023_3332034 crossref_primary_10_1145_2897824_2925918 crossref_primary_10_2139_ssrn_4157176 crossref_primary_10_1109_MSP_2017_2695801 crossref_primary_10_3902_jnns_31_187 crossref_primary_10_3150_17_BEJ1009 crossref_primary_10_1016_j_cnsns_2024_108494 crossref_primary_10_1051_swsc_2022009 crossref_primary_10_1016_j_jmva_2019_104581 crossref_primary_10_1214_22_EJS2001 crossref_primary_10_1016_j_patcog_2023_110080 crossref_primary_10_1145_2601097_2601175 crossref_primary_10_1016_j_cviu_2019_02_002 crossref_primary_10_1016_j_patcog_2018_02_021 crossref_primary_10_1016_j_nucengdes_2022_111675 crossref_primary_10_1007_s43670_024_00089_7 crossref_primary_10_1007_s12351_020_00589_z crossref_primary_10_2139_ssrn_4159681 crossref_primary_10_1109_TCE_2023_3300890 crossref_primary_10_1145_3582694 crossref_primary_10_1017_S0022377822000769 crossref_primary_10_1007_JHEP12_2024_219 crossref_primary_10_1214_23_EJS2211 crossref_primary_10_2139_ssrn_3276147 crossref_primary_10_1109_LRA_2024_3400160 crossref_primary_10_1007_s10208_025_09690_1 crossref_primary_10_1007_s43670_025_00097_1 crossref_primary_10_1016_j_cag_2024_103895 crossref_primary_10_1093_imaiai_iaz003 crossref_primary_10_1088_1361_6420_acf156 crossref_primary_10_1109_TPAMI_2016_2615921 crossref_primary_10_1007_JHEP06_2021_161 crossref_primary_10_1016_j_knosys_2023_111162 crossref_primary_10_5194_hess_27_991_2023 crossref_primary_10_1051_0004_6361_202451207 crossref_primary_10_1007_s11760_021_02042_w crossref_primary_10_1063_5_0013720 crossref_primary_10_1007_s43670_025_00100_9 crossref_primary_10_1049_iet_cvi_2019_0920 crossref_primary_10_1080_10618600_2023_2165500 crossref_primary_10_3847_1538_3881_ad0be4 crossref_primary_10_1016_j_spa_2024_104462 crossref_primary_10_1103_PhysRevE_107_044216 crossref_primary_10_1111_rssb_12312 crossref_primary_10_1016_j_actamat_2024_120023 crossref_primary_10_1016_j_prime_2023_100286 crossref_primary_10_1109_TPAMI_2022_3222569 crossref_primary_10_5802_crmath_601 crossref_primary_10_1016_j_jspi_2024_106185 crossref_primary_10_1109_TIP_2015_2509419 crossref_primary_10_1007_s10462_022_10342_x crossref_primary_10_1007_s10851_022_01121_y crossref_primary_10_1007_s10851_024_01206_w crossref_primary_10_1090_mcom_3750 crossref_primary_10_1137_18M1208654 crossref_primary_10_1090_mcom_3994 crossref_primary_10_1145_3522612 crossref_primary_10_21468_SciPostPhysCore_7_3_048 crossref_primary_10_3390_s23125538 crossref_primary_10_1007_s00245_022_09911_x crossref_primary_10_1145_2816795_2818107 crossref_primary_10_1137_16M1067494 crossref_primary_10_1007_s10851_014_0547_7 crossref_primary_10_1111_cgf_14778 crossref_primary_10_1137_18M1168315 crossref_primary_10_1093_biomet_asaa019 crossref_primary_10_1038_s43856_023_00356_z crossref_primary_10_1109_TMRB_2021_3129113 crossref_primary_10_1109_TPAMI_2019_2903050 crossref_primary_10_1145_3072959_3095816 crossref_primary_10_1016_j_ailsci_2023_100068 crossref_primary_10_1109_TPAMI_2024_3390051 crossref_primary_10_1214_19_AAP1463 crossref_primary_10_1007_s00454_023_00583_0 crossref_primary_10_1016_j_patcog_2025_111414 crossref_primary_10_1109_TCSVT_2023_3267895 crossref_primary_10_1109_TIP_2020_2967600 crossref_primary_10_1145_2980179_2982428 crossref_primary_10_1214_20_EJS1725 crossref_primary_10_1088_2632_2153_adb3ee crossref_primary_10_2140_paa_2020_2_581 crossref_primary_10_3150_24_BEJ1765 crossref_primary_10_1016_j_cag_2021_12_004 crossref_primary_10_1016_j_jvcir_2023_103857 crossref_primary_10_1145_3465629 crossref_primary_10_1177_01423312231203030 crossref_primary_10_1007_JHEP08_2023_107 crossref_primary_10_1137_16M1093677 crossref_primary_10_1109_TKDE_2022_3185233 crossref_primary_10_3390_su15010568 crossref_primary_10_1109_TITS_2024_3399399 crossref_primary_10_1137_24M1656414 crossref_primary_10_1145_3386569_3392395 crossref_primary_10_1038_s41540_024_00441_6 crossref_primary_10_1145_3095816 crossref_primary_10_1016_j_neunet_2020_04_029 crossref_primary_10_1051_ps_2017020 crossref_primary_10_3390_sym16080942 crossref_primary_10_1080_00949655_2021_1903463 crossref_primary_10_1007_s00521_021_06031_5 crossref_primary_10_1080_10618600_2022_2084404 crossref_primary_10_1080_10618600_2022_2157835 crossref_primary_10_1137_23M1567771 crossref_primary_10_1038_s41698_023_00477_7 crossref_primary_10_1103_PhysRevFluids_6_L082501 crossref_primary_10_1080_01691864_2022_2035253 crossref_primary_10_1145_2766963 crossref_primary_10_1002_wics_1587 crossref_primary_10_1109_TPAMI_2024_3363780 crossref_primary_10_3390_s25061742 crossref_primary_10_1051_cocv_2024063 crossref_primary_10_1137_23M1618922 crossref_primary_10_1109_TKDE_2020_3014697 crossref_primary_10_1109_TMM_2023_3321535 crossref_primary_10_1214_23_EJS2135 crossref_primary_10_1145_3391229 crossref_primary_10_1016_j_imavis_2020_103974 crossref_primary_10_1007_s10851_017_0725_5 crossref_primary_10_3390_drones8060234 crossref_primary_10_1016_j_patcog_2023_110147 crossref_primary_10_1109_TCNS_2022_3210341 crossref_primary_10_1145_3306346_3323021 crossref_primary_10_1214_22_AOAS1633 crossref_primary_10_1093_imaiai_iaac014 crossref_primary_10_1111_cgf_13274 crossref_primary_10_1007_s11263_025_02357_y crossref_primary_10_1007_s11432_022_3679_0 crossref_primary_10_1016_j_jmsy_2023_09_011 crossref_primary_10_1145_3652602 crossref_primary_10_1145_3550454_3555484 crossref_primary_10_1016_j_measurement_2021_109359 crossref_primary_10_1109_ACCESS_2024_3360484 crossref_primary_10_1214_15_AOS1387 crossref_primary_10_1093_gji_ggad002 crossref_primary_10_1093_gji_ggad001 crossref_primary_10_1137_22M1481865 crossref_primary_10_3390_rs11111374 crossref_primary_10_1007_s00371_020_01990_7 crossref_primary_10_1111_rssb_12236 |
Cites_doi | 10.1137/100805741 10.1145/1073204.1073262 10.1006/aima.1997.1634 10.1145/2070781.2024192 10.1137/060650301 10.1109/TIP.2011.2142318 10.1007/978-1-4899-6765-7 10.1023/A:1018366000512 10.1023/B:VISI.0000036836.66311.97 10.1007/BF02186476 10.1007/s002110050002 10.1109/TIP.2005.860328 10.1002/nav.3800020109 10.1137/130920058 10.1111/j.1467-8659.2011.02032.x 10.1109/TIP.2010.2052822 10.1007/s10959-008-0151-0 10.1090/gsm/058 10.1007/s10851-013-0414-y 10.1007/978-3-642-20404-3_1 10.1109/ICCV.2005.166 10.1109/ICASSP.2012.6288148 10.1109/ICCV.1998.710701 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2014 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer Science+Business Media New York 2014 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1007/s10851-014-0506-3 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Computer Science |
EISSN | 1573-7683 |
EndPage | 45 |
ExternalDocumentID | oai_HAL_hal_00881872v1 10_1007_s10851_014_0506_3 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z83 Z88 Z8M Z8N Z8R Z8S Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 1XC AEIIB VOOES |
ID | FETCH-LOGICAL-c501t-9af4ba491c74d7796e1c1fb24b3fc80c9c8e1e3dcf6fa3603c5fe2549729f0cd3 |
IEDL.DBID | U2A |
ISSN | 0924-9907 |
IngestDate | Sat Jun 14 06:31:08 EDT 2025 Tue Jul 01 04:52:40 EDT 2025 Thu Apr 24 23:07:27 EDT 2025 Fri Feb 21 02:35:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Radon transform Wasserstein distance Barycenter of measures Optimal transport |
Language | English |
License | http://www.springer.com/tdm Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-9af4ba491c74d7796e1c1fb24b3fc80c9c8e1e3dcf6fa3603c5fe2549729f0cd3 |
ORCID | 0000-0003-3834-918X 0000-0002-4477-0387 0000-0001-5243-4810 |
OpenAccessLink | https://hal.science/hal-00881872 |
PageCount | 24 |
ParticipantIDs | hal_primary_oai_HAL_hal_00881872v1 crossref_primary_10_1007_s10851_014_0506_3 crossref_citationtrail_10_1007_s10851_014_0506_3 springer_journals_10_1007_s10851_014_0506_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston |
PublicationTitle | Journal of mathematical imaging and vision |
PublicationTitleAbbrev | J Math Imaging Vis |
PublicationYear | 2015 |
Publisher | Springer US Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Verlag |
References | Brady (CR9) 1998; 27 Benamou, Brenier (CR3) 2000; 84 Dellacherie, Meyer (CR11) 1978 CR15 Matusik, Zwicker, Durand (CR22) 2005; 24 Bonneel, van de Panne, Paris, Heidrich (CR8) 2011; 30 CR13 Helgason (CR19) 1980 CR10 CR32 Agueh, Carlier (CR1) 2011; 43 Averbuch, Coifman, Donoho, Israeli, Shkolnisky, Sedelnikov (CR2) 2008; 30 CR30 Bertsekas (CR5) 1988; 14 Rabin, Delon, Gousseau (CR27) 2011; 20 Galerne, Lagae, Lefebvre, Drettakis (CR17) 2012; 31 Galerne, Gousseau, Morel (CR16) 2011; 20 Boman, Lindskog (CR7) 2009; 22 Kantorovich (CR20) 1942; 37 Papadakis, Peyré, Oudet (CR25) 2014; 7 CR4 CR6 Delon (CR12) 2006; 15 CR29 CR28 CR26 Solodov (CR31) 1998; 11 Mérigot (CR24) 2011; 30 Haker, Zhu, Tannenbaum, Angenent (CR18) 2004; 60 Kuhn (CR21) 1955; 2 McCann (CR23) 1997; 128 Digne, Cohen-Steiner, Alliez, Goes, Desbrun (CR14) 2013; 48 S Helgason (506_CR19) 1980 M Solodov (506_CR31) 1998; 11 N Bonneel (506_CR8) 2011; 30 HW Kuhn (506_CR21) 1955; 2 B Galerne (506_CR17) 2012; 31 506_CR4 W Matusik (506_CR22) 2005; 24 506_CR30 506_CR6 506_CR10 506_CR32 506_CR13 506_CR15 506_CR14 Q Mérigot (506_CR24) 2011; 30 RJ McCann (506_CR23) 1997; 128 C Dellacherie (506_CR11) 1978 ML Brady (506_CR9) 1998; 27 L Kantorovich (506_CR20) 1942; 37 JD Benamou (506_CR3) 2000; 84 506_CR28 N Papadakis (506_CR25) 2014; 7 506_CR29 M Agueh (506_CR1) 2011; 43 A Averbuch (506_CR2) 2008; 30 J Rabin (506_CR27) 2011; 20 D Bertsekas (506_CR5) 1988; 14 S Haker (506_CR18) 2004; 60 J Delon (506_CR12) 2006; 15 B Galerne (506_CR16) 2011; 20 506_CR26 J Boman (506_CR7) 2009; 22 |
References_xml | – volume: 43 start-page: 904 issue: 2 year: 2011 end-page: 924 ident: CR1 article-title: Barycenters in the wasserstein space publication-title: SIAM J. Math. Anal. doi: 10.1137/100805741 – volume: 24 start-page: 787 issue: 3 year: 2005 end-page: 794 ident: CR22 article-title: Texture design using a simplicial complex of morphable textures publication-title: ACM Trans. Graph. doi: 10.1145/1073204.1073262 – volume: 128 start-page: 153 issue: 1 year: 1997 end-page: 179 ident: CR23 article-title: A convexity principle for interacting gases publication-title: Adv. Math. doi: 10.1006/aima.1997.1634 – volume: 30 start-page: 1 issue: 6 year: 2011 end-page: 12 ident: CR8 article-title: Displacement interpolation using lagrangian mass transport publication-title: ACM Trans. Graph. (SIGGRAPH ASIA’11) doi: 10.1145/2070781.2024192 – ident: CR4 – volume: 30 start-page: 785 issue: 2 year: 2008 end-page: 803 ident: CR2 article-title: A framework for discrete integral transformations: II. The 2D discrete radon transform publication-title: SIAM J. Sci. Comput. doi: 10.1137/060650301 – volume: 20 start-page: 3073 issue: 11 year: 2011 end-page: 3085 ident: CR27 article-title: Removing artefacts from color and contrast modifications publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2142318 – ident: CR30 – year: 1980 ident: CR19 publication-title: The Radon Transform doi: 10.1007/978-1-4899-6765-7 – ident: CR10 – ident: CR6 – ident: CR29 – volume: 11 start-page: 23 issue: 1 year: 1998 end-page: 35 ident: CR31 article-title: Incremental gradient algorithms with stepsizes bounded away from zero publication-title: Comput. Optim. Appl. doi: 10.1023/A:1018366000512 – volume: 60 start-page: 225 issue: 3 year: 2004 end-page: 240 ident: CR18 article-title: Optimal mass transport for registration and warping publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000036836.66311.97 – year: 1978 ident: CR11 publication-title: Probabilities and Potential Math. Stud. 29 – volume: 27 start-page: 107 issue: 1 year: 1998 end-page: 119 ident: CR9 article-title: A fast discrete approximation algorithm for the radon transform publication-title: J. Comput. – volume: 14 start-page: 105 year: 1988 end-page: 123 ident: CR5 article-title: The auction algorithm: a distributed relaxation method for the assignment problem publication-title: Ann. Operat. Res. doi: 10.1007/BF02186476 – volume: 84 start-page: 375 issue: 3 year: 2000 end-page: 393 ident: CR3 article-title: A computational fluid mechanics solution of the monge-kantorovich mass transfer problem publication-title: Numer. Math. doi: 10.1007/s002110050002 – volume: 15 start-page: 241 issue: 1 year: 2006 end-page: 248 ident: CR12 article-title: Movie and video scale-time equalization application to flicker reduction publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.860328 – ident: CR15 – volume: 2 start-page: 83 year: 1955 end-page: 97 ident: CR21 article-title: The Hungarian method of solving the assignment problem publication-title: Naval Res. Logist. Quart. doi: 10.1002/nav.3800020109 – ident: CR13 – volume: 37 start-page: 227 issue: 2 year: 1942 end-page: 229 ident: CR20 article-title: On the transfer of masses publication-title: Doklady Akademii Nauk – volume: 7 start-page: 212 issue: 1 year: 2014 end-page: 238 ident: CR25 article-title: Optimal transport with proximal splitting publication-title: SIAM J. Imaging Sci. doi: 10.1137/130920058 – volume: 30 start-page: 1583 issue: 5 year: 2011 end-page: 1592 ident: CR24 article-title: A multiscale approach to optimal transport publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2011.02032.x – ident: CR32 – volume: 31 start-page: 73.1 issue: 4 year: 2012 end-page: 73.9 ident: CR17 article-title: Gabor noise by example publication-title: ACM Trans. Graph. (Proceedings of ACM SIGGRAPH 2012) – volume: 48 start-page: 369 issue: 2 year: 2013 end-page: 382 ident: CR14 article-title: Feature-preserving surface reconstruction and simplification from defect-laden point sets publication-title: J. Math. Imaging Vis. – ident: CR28 – ident: CR26 – volume: 20 start-page: 257 issue: 1 year: 2011 end-page: 267 ident: CR16 article-title: Random phase textures: theory and synthesis publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2052822 – volume: 22 start-page: 683 issue: 3 year: 2009 end-page: 710 ident: CR7 article-title: Support theorems for the radon transform and Cramèr–Wold theorems publication-title: J. Theor. Prob. doi: 10.1007/s10959-008-0151-0 – ident: 506_CR32 doi: 10.1090/gsm/058 – volume: 14 start-page: 105 year: 1988 ident: 506_CR5 publication-title: Ann. Operat. Res. doi: 10.1007/BF02186476 – volume: 60 start-page: 225 issue: 3 year: 2004 ident: 506_CR18 publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000036836.66311.97 – ident: 506_CR14 doi: 10.1007/s10851-013-0414-y – volume: 2 start-page: 83 year: 1955 ident: 506_CR21 publication-title: Naval Res. Logist. Quart. doi: 10.1002/nav.3800020109 – volume: 20 start-page: 3073 issue: 11 year: 2011 ident: 506_CR27 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2142318 – volume: 27 start-page: 107 issue: 1 year: 1998 ident: 506_CR9 publication-title: J. Comput. – ident: 506_CR10 – volume-title: The Radon Transform year: 1980 ident: 506_CR19 doi: 10.1007/978-1-4899-6765-7 – volume: 43 start-page: 904 issue: 2 year: 2011 ident: 506_CR1 publication-title: SIAM J. Math. Anal. doi: 10.1137/100805741 – volume: 15 start-page: 241 issue: 1 year: 2006 ident: 506_CR12 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.860328 – volume: 84 start-page: 375 issue: 3 year: 2000 ident: 506_CR3 publication-title: Numer. Math. doi: 10.1007/s002110050002 – volume: 128 start-page: 153 issue: 1 year: 1997 ident: 506_CR23 publication-title: Adv. Math. doi: 10.1006/aima.1997.1634 – volume: 11 start-page: 23 issue: 1 year: 1998 ident: 506_CR31 publication-title: Comput. Optim. Appl. doi: 10.1023/A:1018366000512 – volume: 37 start-page: 227 issue: 2 year: 1942 ident: 506_CR20 publication-title: Doklady Akademii Nauk – ident: 506_CR15 – volume-title: Probabilities and Potential Math. Stud. 29 year: 1978 ident: 506_CR11 – volume: 7 start-page: 212 issue: 1 year: 2014 ident: 506_CR25 publication-title: SIAM J. Imaging Sci. doi: 10.1137/130920058 – volume: 22 start-page: 683 issue: 3 year: 2009 ident: 506_CR7 publication-title: J. Theor. Prob. doi: 10.1007/s10959-008-0151-0 – volume: 30 start-page: 1583 issue: 5 year: 2011 ident: 506_CR24 publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2011.02032.x – volume: 24 start-page: 787 issue: 3 year: 2005 ident: 506_CR22 publication-title: ACM Trans. Graph. doi: 10.1145/1073204.1073262 – volume: 20 start-page: 257 issue: 1 year: 2011 ident: 506_CR16 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2052822 – ident: 506_CR28 – ident: 506_CR29 doi: 10.1007/978-3-642-20404-3_1 – ident: 506_CR26 doi: 10.1109/ICCV.2005.166 – volume: 31 start-page: 73.1 issue: 4 year: 2012 ident: 506_CR17 publication-title: ACM Trans. Graph. (Proceedings of ACM SIGGRAPH 2012) – volume: 30 start-page: 1 issue: 6 year: 2011 ident: 506_CR8 publication-title: ACM Trans. Graph. (SIGGRAPH ASIA’11) doi: 10.1145/2070781.2024192 – ident: 506_CR13 doi: 10.1109/ICASSP.2012.6288148 – ident: 506_CR30 doi: 10.1109/ICCV.1998.710701 – volume: 30 start-page: 785 issue: 2 year: 2008 ident: 506_CR2 publication-title: SIAM J. Sci. Comput. doi: 10.1137/060650301 – ident: 506_CR4 – ident: 506_CR6 |
SSID | ssj0008217 |
Score | 2.5711126 |
Snippet | This article details two approaches to compute barycenters of measures using 1-D Wasserstein distances along radial projections of the input measures. The... |
SourceID | hal crossref springer |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 22 |
SubjectTerms | Applications of Mathematics Computer Science Engineering Sciences Image Processing and Computer Vision Mathematical Methods in Physics Mathematics Numerical Analysis Signal and Image Processing Signal,Image and Speech Processing |
Title | Sliced and Radon Wasserstein Barycenters of Measures |
URI | https://link.springer.com/article/10.1007/s10851-014-0506-3 https://hal.science/hal-00881872 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7YdoEDjwFiPKYIcQJFSts0bY8d2piA7QBMjFOV5iEOU4fWwe_H6WM8BEicKkVpVNmN8zm2PyN0JkIhUsYNUZFxCQMETyJXcqK4IwEtGMWKOu7RmA8n7HrqT6s67rzOdq9DkoWl_lTsBugAXF9GqG8Tthqo5YPrbvO4Jm68Mr-hW7TZpeBYEDC1QR3K_GmJL4dR49mmQn6LhxbHzGAbbVb4EMelQnfQms7aaKvCirjaiTkM1e0Y6rE22hitKFjzXcTuZ2ADFBaZwndCzTP8KIrSStveEvfszY2l41zkeG7wqLwpzPfQZNB_uBySqkUCkT51liQShqWCRY4MmAqCiGtHOiZ1WeoZGVIZyVA72lPScCM8Tj2bXGZ9QsDUhkrl7aNmNs_0AcKh67Eg8ALNmQYfMQ3hIPcjqh3LKKeY00G0llUiK_5w28ZilnwwH1vxJiDexIo38TrofPXKS0me8dfkU1DAap6lvR7Gt4kdA6UCrgjcN_iIi1o_SbXZ8t-XPPzX7CO0DmjIL-9XjlFzuXjVJ4A4lmkXteJBrze2z6unm363-OPeAV7Ey8k |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgHIADSwFRVgtxAlnK4jjJsSCqAG0P0IreLMeLOFQpagrfzzgbiwCJq-VY0Yw988aeeYPQuYiESCkzRMXGIxQQPIk9yYhirgS0YBQt6rgHQ5aM6d0kmFR13Hmd7V4_SRaW-lOxG6ADCH0pcQKbsLWMVgALRHYrj71uY34jr2iz60BgQcDUhvVT5k9LfHFGy882FfLbe2jhZnpbaKPCh7hbKnQbLemsjTYrrIirk5jDUN2OoR5ro_VBQ8Ga7yD6OAUboLDIFH4QapbhJ1GUVtr2lvjK3txYOs55jmcGD8qbwnwXjXs3o-uEVC0SiAwcd0FiYWgqaOzKkKowjJl2pWtSj6a-kZEjYxlpV_tKGmaEzxzfJpfZmBAwtXGk8vdQK5tleh_hyPNpGPqhZlRDjJhG4MiD2NGuZZRT1O0gp5YVlxV_uG1jMeUfzMdWvBzEy614ud9BF80nLyV5xl-Tz0ABzTxLe510-9yOgVIBV4TeG_zEZa0fXh22_PclD_41-xStJqNBn_dvh_eHaA2QUVDetRyh1mL-qo8BfSzSk2K3vQNZ2sus |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEA62guiDR1WsZxCflGB2N3s91qNUbYuoxb4t2Rz4ULalu_r7nezlgQq-DtmwzOT4JjPzDUInPOA8Zp4mMtQ2YYDgSWgLj0jPEoAWtGR5Hfdg6PVG7Hbsjss-p2mV7V6FJIuaBsPSlGTnM6nPPxW-AVIAN5gR6prkrQZaZKYYGBb0yO7UR3Fg5y13KTgZBI5dvwpr_jTFl4up8WLSIr_FRvMrp7uOVkusiDuFcTfQgkpaaK3EjbjclSmIqtYMlayFVgY1HWu6idjjBM4DiXki8QOX0wQ_87zM0rS6xBfmFcdQc85TPNV4ULwaplto1L1-uuyRsl0CES61MhJyzWLOQkv4TPp-6ClLWDq2WexoEVARikBZypFCe5o7HnVMopnxDwFfayqks42ayTRROwgHtsN83_GVxxT4i3EAl7obUmUZdjnJrDaila4iUXKJm5YWk-iDBdmoNwL1Rka9kdNGp_Uns4JI46_Bx2CAepyhwO51-pGRgVEBY_j2G_zEWWWfqNx46e9T7v5r9BFaur_qRv2b4d0eWgaQ5BbPLvuomc1f1QEAkSw-zBfbO3ltz98 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sliced+and+Radon+Wasserstein+Barycenters+of+Measures&rft.jtitle=Journal+of+mathematical+imaging+and+vision&rft.au=Bonneel%2C+Nicolas&rft.au=Rabin%2C+Julien&rft.au=Peyr%C3%A9%2C+Gabriel&rft.au=Pfister%2C+Hanspeter&rft.date=2015-01-01&rft.pub=Springer+US&rft.issn=0924-9907&rft.eissn=1573-7683&rft.volume=51&rft.issue=1&rft.spage=22&rft.epage=45&rft_id=info:doi/10.1007%2Fs10851-014-0506-3&rft.externalDocID=10_1007_s10851_014_0506_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-9907&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-9907&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-9907&client=summon |