Sliced and Radon Wasserstein Barycenters of Measures

This article details two approaches to compute barycenters of measures using 1-D Wasserstein distances along radial projections of the input measures. The first method makes use of the Radon transform of the measures, and the second is the solution of a convex optimization problem over the space of...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical imaging and vision Vol. 51; no. 1; pp. 22 - 45
Main Authors Bonneel, Nicolas, Rabin, Julien, Peyré, Gabriel, Pfister, Hanspeter
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.01.2015
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article details two approaches to compute barycenters of measures using 1-D Wasserstein distances along radial projections of the input measures. The first method makes use of the Radon transform of the measures, and the second is the solution of a convex optimization problem over the space of measures. We show several properties of these barycenters and explain their relationship. We show numerical approximation schemes based on a discrete Radon transform and on the resolution of a non-convex optimization problem. We explore the respective merits and drawbacks of each approach on applications to two image processing problems: color transfer and texture mixing.
AbstractList This article details two approaches to compute barycenters of measures using 1-D Wasserstein distances along radial projections of the input measures. The first me- thod makes use of the Radon transform of the measures, and the second is the solution of a convex optimization problem over the space of measures. We show several properties of these barycenters and explain their relationship. We show numerical approximation schemes based on a discrete Radon transform and on the resolution of a non-convex optimization problem. We explore the respective merits and drawbacks of each approach on applications to two image processing problems: color transfer and texture mixing.
This article details two approaches to compute barycenters of measures using 1-D Wasserstein distances along radial projections of the input measures. The first method makes use of the Radon transform of the measures, and the second is the solution of a convex optimization problem over the space of measures. We show several properties of these barycenters and explain their relationship. We show numerical approximation schemes based on a discrete Radon transform and on the resolution of a non-convex optimization problem. We explore the respective merits and drawbacks of each approach on applications to two image processing problems: color transfer and texture mixing.
Author Pfister, Hanspeter
Bonneel, Nicolas
Rabin, Julien
Peyré, Gabriel
Author_xml – sequence: 1
  givenname: Nicolas
  surname: Bonneel
  fullname: Bonneel, Nicolas
  organization: Harvard University, CNRS-LIRIS
– sequence: 2
  givenname: Julien
  surname: Rabin
  fullname: Rabin, Julien
  organization: GREYC, Université de Caen
– sequence: 3
  givenname: Gabriel
  surname: Peyré
  fullname: Peyré, Gabriel
  email: gabriel.peyre@ceremade.dauphine.fr
  organization: CNRS-CEREMADE, Université Paris-Dauphine
– sequence: 4
  givenname: Hanspeter
  surname: Pfister
  fullname: Pfister, Hanspeter
  organization: Harvard University
BackLink https://hal.science/hal-00881872$$DView record in HAL
BookMark eNp9kEtLAzEQgINUsK3-AG979RCdSbKbzbEWtUJF8IHHkGYT3bJmJdkK_ntTVjx48DTMMN88vhmZhD44Qk4RzhFAXiSEukQKKCiUUFF-QKZYSk5lVfMJmYJigioF8ojMUtoCQM1QTol47FrrmsKEpngwTR-KF5OSi2lwbSguTfyyLgw5L3pf3DmTdtGlY3LoTZfcyU-ck-frq6fliq7vb26XizW1JeBAlfFiY4RCK0UjpaocWvQbJjbc2xqssrVDxxvrK294BdyW3rFSKMmUB9vwOTkb576ZTn_E9j2fo3vT6tVirfe1_EWNtWSfmHtx7LWxTyk6_wsg6L0iPSrSWZHeK9I8M_IPY9vBDG0fhmja7l-SjWTKW8Kri3rb72LIMv6BvgFpAHvB
CitedBy_id crossref_primary_10_3389_fncel_2023_1273283
crossref_primary_10_1111_cgf_15020
crossref_primary_10_1145_3550289
crossref_primary_10_1109_TIFS_2024_3516549
crossref_primary_10_1137_15M1032600
crossref_primary_10_1038_s41598_024_68573_7
crossref_primary_10_1145_3636428
crossref_primary_10_1016_j_patcog_2021_108175
crossref_primary_10_1137_17M1140431
crossref_primary_10_1109_OJSP_2020_3035070
crossref_primary_10_1093_genetics_iyad063
crossref_primary_10_1109_TKDE_2024_3459890
crossref_primary_10_1137_19M1301047
crossref_primary_10_1109_TPAMI_2024_3489030
crossref_primary_10_1137_19M1268252
crossref_primary_10_1137_16M1068827
crossref_primary_10_1007_s10851_017_0726_4
crossref_primary_10_1016_j_ins_2024_120925
crossref_primary_10_1080_10618600_2023_2183213
crossref_primary_10_1109_TMC_2023_3332034
crossref_primary_10_1145_2897824_2925918
crossref_primary_10_2139_ssrn_4157176
crossref_primary_10_1109_MSP_2017_2695801
crossref_primary_10_3902_jnns_31_187
crossref_primary_10_3150_17_BEJ1009
crossref_primary_10_1016_j_cnsns_2024_108494
crossref_primary_10_1051_swsc_2022009
crossref_primary_10_1016_j_jmva_2019_104581
crossref_primary_10_1214_22_EJS2001
crossref_primary_10_1016_j_patcog_2023_110080
crossref_primary_10_1145_2601097_2601175
crossref_primary_10_1016_j_cviu_2019_02_002
crossref_primary_10_1016_j_patcog_2018_02_021
crossref_primary_10_1016_j_nucengdes_2022_111675
crossref_primary_10_1007_s43670_024_00089_7
crossref_primary_10_1007_s12351_020_00589_z
crossref_primary_10_2139_ssrn_4159681
crossref_primary_10_1109_TCE_2023_3300890
crossref_primary_10_1145_3582694
crossref_primary_10_1017_S0022377822000769
crossref_primary_10_1007_JHEP12_2024_219
crossref_primary_10_1214_23_EJS2211
crossref_primary_10_2139_ssrn_3276147
crossref_primary_10_1109_LRA_2024_3400160
crossref_primary_10_1007_s10208_025_09690_1
crossref_primary_10_1007_s43670_025_00097_1
crossref_primary_10_1016_j_cag_2024_103895
crossref_primary_10_1093_imaiai_iaz003
crossref_primary_10_1088_1361_6420_acf156
crossref_primary_10_1109_TPAMI_2016_2615921
crossref_primary_10_1007_JHEP06_2021_161
crossref_primary_10_1016_j_knosys_2023_111162
crossref_primary_10_5194_hess_27_991_2023
crossref_primary_10_1051_0004_6361_202451207
crossref_primary_10_1007_s11760_021_02042_w
crossref_primary_10_1063_5_0013720
crossref_primary_10_1007_s43670_025_00100_9
crossref_primary_10_1049_iet_cvi_2019_0920
crossref_primary_10_1080_10618600_2023_2165500
crossref_primary_10_3847_1538_3881_ad0be4
crossref_primary_10_1016_j_spa_2024_104462
crossref_primary_10_1103_PhysRevE_107_044216
crossref_primary_10_1111_rssb_12312
crossref_primary_10_1016_j_actamat_2024_120023
crossref_primary_10_1016_j_prime_2023_100286
crossref_primary_10_1109_TPAMI_2022_3222569
crossref_primary_10_5802_crmath_601
crossref_primary_10_1016_j_jspi_2024_106185
crossref_primary_10_1109_TIP_2015_2509419
crossref_primary_10_1007_s10462_022_10342_x
crossref_primary_10_1007_s10851_022_01121_y
crossref_primary_10_1007_s10851_024_01206_w
crossref_primary_10_1090_mcom_3750
crossref_primary_10_1137_18M1208654
crossref_primary_10_1090_mcom_3994
crossref_primary_10_1145_3522612
crossref_primary_10_21468_SciPostPhysCore_7_3_048
crossref_primary_10_3390_s23125538
crossref_primary_10_1007_s00245_022_09911_x
crossref_primary_10_1145_2816795_2818107
crossref_primary_10_1137_16M1067494
crossref_primary_10_1007_s10851_014_0547_7
crossref_primary_10_1111_cgf_14778
crossref_primary_10_1137_18M1168315
crossref_primary_10_1093_biomet_asaa019
crossref_primary_10_1038_s43856_023_00356_z
crossref_primary_10_1109_TMRB_2021_3129113
crossref_primary_10_1109_TPAMI_2019_2903050
crossref_primary_10_1145_3072959_3095816
crossref_primary_10_1016_j_ailsci_2023_100068
crossref_primary_10_1109_TPAMI_2024_3390051
crossref_primary_10_1214_19_AAP1463
crossref_primary_10_1007_s00454_023_00583_0
crossref_primary_10_1016_j_patcog_2025_111414
crossref_primary_10_1109_TCSVT_2023_3267895
crossref_primary_10_1109_TIP_2020_2967600
crossref_primary_10_1145_2980179_2982428
crossref_primary_10_1214_20_EJS1725
crossref_primary_10_1088_2632_2153_adb3ee
crossref_primary_10_2140_paa_2020_2_581
crossref_primary_10_3150_24_BEJ1765
crossref_primary_10_1016_j_cag_2021_12_004
crossref_primary_10_1016_j_jvcir_2023_103857
crossref_primary_10_1145_3465629
crossref_primary_10_1177_01423312231203030
crossref_primary_10_1007_JHEP08_2023_107
crossref_primary_10_1137_16M1093677
crossref_primary_10_1109_TKDE_2022_3185233
crossref_primary_10_3390_su15010568
crossref_primary_10_1109_TITS_2024_3399399
crossref_primary_10_1137_24M1656414
crossref_primary_10_1145_3386569_3392395
crossref_primary_10_1038_s41540_024_00441_6
crossref_primary_10_1145_3095816
crossref_primary_10_1016_j_neunet_2020_04_029
crossref_primary_10_1051_ps_2017020
crossref_primary_10_3390_sym16080942
crossref_primary_10_1080_00949655_2021_1903463
crossref_primary_10_1007_s00521_021_06031_5
crossref_primary_10_1080_10618600_2022_2084404
crossref_primary_10_1080_10618600_2022_2157835
crossref_primary_10_1137_23M1567771
crossref_primary_10_1038_s41698_023_00477_7
crossref_primary_10_1103_PhysRevFluids_6_L082501
crossref_primary_10_1080_01691864_2022_2035253
crossref_primary_10_1145_2766963
crossref_primary_10_1002_wics_1587
crossref_primary_10_1109_TPAMI_2024_3363780
crossref_primary_10_3390_s25061742
crossref_primary_10_1051_cocv_2024063
crossref_primary_10_1137_23M1618922
crossref_primary_10_1109_TKDE_2020_3014697
crossref_primary_10_1109_TMM_2023_3321535
crossref_primary_10_1214_23_EJS2135
crossref_primary_10_1145_3391229
crossref_primary_10_1016_j_imavis_2020_103974
crossref_primary_10_1007_s10851_017_0725_5
crossref_primary_10_3390_drones8060234
crossref_primary_10_1016_j_patcog_2023_110147
crossref_primary_10_1109_TCNS_2022_3210341
crossref_primary_10_1145_3306346_3323021
crossref_primary_10_1214_22_AOAS1633
crossref_primary_10_1093_imaiai_iaac014
crossref_primary_10_1111_cgf_13274
crossref_primary_10_1007_s11263_025_02357_y
crossref_primary_10_1007_s11432_022_3679_0
crossref_primary_10_1016_j_jmsy_2023_09_011
crossref_primary_10_1145_3652602
crossref_primary_10_1145_3550454_3555484
crossref_primary_10_1016_j_measurement_2021_109359
crossref_primary_10_1109_ACCESS_2024_3360484
crossref_primary_10_1214_15_AOS1387
crossref_primary_10_1093_gji_ggad002
crossref_primary_10_1093_gji_ggad001
crossref_primary_10_1137_22M1481865
crossref_primary_10_3390_rs11111374
crossref_primary_10_1007_s00371_020_01990_7
crossref_primary_10_1111_rssb_12236
Cites_doi 10.1137/100805741
10.1145/1073204.1073262
10.1006/aima.1997.1634
10.1145/2070781.2024192
10.1137/060650301
10.1109/TIP.2011.2142318
10.1007/978-1-4899-6765-7
10.1023/A:1018366000512
10.1023/B:VISI.0000036836.66311.97
10.1007/BF02186476
10.1007/s002110050002
10.1109/TIP.2005.860328
10.1002/nav.3800020109
10.1137/130920058
10.1111/j.1467-8659.2011.02032.x
10.1109/TIP.2010.2052822
10.1007/s10959-008-0151-0
10.1090/gsm/058
10.1007/s10851-013-0414-y
10.1007/978-3-642-20404-3_1
10.1109/ICCV.2005.166
10.1109/ICASSP.2012.6288148
10.1109/ICCV.1998.710701
ContentType Journal Article
Copyright Springer Science+Business Media New York 2014
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media New York 2014
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1007/s10851-014-0506-3
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1573-7683
EndPage 45
ExternalDocumentID oai_HAL_hal_00881872v1
10_1007_s10851_014_0506_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z83
Z88
Z8M
Z8N
Z8R
Z8S
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
1XC
AEIIB
VOOES
ID FETCH-LOGICAL-c501t-9af4ba491c74d7796e1c1fb24b3fc80c9c8e1e3dcf6fa3603c5fe2549729f0cd3
IEDL.DBID U2A
ISSN 0924-9907
IngestDate Sat Jun 14 06:31:08 EDT 2025
Tue Jul 01 04:52:40 EDT 2025
Thu Apr 24 23:07:27 EDT 2025
Fri Feb 21 02:35:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Radon transform
Wasserstein distance
Barycenter of measures
Optimal transport
Language English
License http://www.springer.com/tdm
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-9af4ba491c74d7796e1c1fb24b3fc80c9c8e1e3dcf6fa3603c5fe2549729f0cd3
ORCID 0000-0003-3834-918X
0000-0002-4477-0387
0000-0001-5243-4810
OpenAccessLink https://hal.science/hal-00881872
PageCount 24
ParticipantIDs hal_primary_oai_HAL_hal_00881872v1
crossref_primary_10_1007_s10851_014_0506_3
crossref_citationtrail_10_1007_s10851_014_0506_3
springer_journals_10_1007_s10851_014_0506_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Journal of mathematical imaging and vision
PublicationTitleAbbrev J Math Imaging Vis
PublicationYear 2015
Publisher Springer US
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Verlag
References Brady (CR9) 1998; 27
Benamou, Brenier (CR3) 2000; 84
Dellacherie, Meyer (CR11) 1978
CR15
Matusik, Zwicker, Durand (CR22) 2005; 24
Bonneel, van de Panne, Paris, Heidrich (CR8) 2011; 30
CR13
Helgason (CR19) 1980
CR10
CR32
Agueh, Carlier (CR1) 2011; 43
Averbuch, Coifman, Donoho, Israeli, Shkolnisky, Sedelnikov (CR2) 2008; 30
CR30
Bertsekas (CR5) 1988; 14
Rabin, Delon, Gousseau (CR27) 2011; 20
Galerne, Lagae, Lefebvre, Drettakis (CR17) 2012; 31
Galerne, Gousseau, Morel (CR16) 2011; 20
Boman, Lindskog (CR7) 2009; 22
Kantorovich (CR20) 1942; 37
Papadakis, Peyré, Oudet (CR25) 2014; 7
CR4
CR6
Delon (CR12) 2006; 15
CR29
CR28
CR26
Solodov (CR31) 1998; 11
Mérigot (CR24) 2011; 30
Haker, Zhu, Tannenbaum, Angenent (CR18) 2004; 60
Kuhn (CR21) 1955; 2
McCann (CR23) 1997; 128
Digne, Cohen-Steiner, Alliez, Goes, Desbrun (CR14) 2013; 48
S Helgason (506_CR19) 1980
M Solodov (506_CR31) 1998; 11
N Bonneel (506_CR8) 2011; 30
HW Kuhn (506_CR21) 1955; 2
B Galerne (506_CR17) 2012; 31
506_CR4
W Matusik (506_CR22) 2005; 24
506_CR30
506_CR6
506_CR10
506_CR32
506_CR13
506_CR15
506_CR14
Q Mérigot (506_CR24) 2011; 30
RJ McCann (506_CR23) 1997; 128
C Dellacherie (506_CR11) 1978
ML Brady (506_CR9) 1998; 27
L Kantorovich (506_CR20) 1942; 37
JD Benamou (506_CR3) 2000; 84
506_CR28
N Papadakis (506_CR25) 2014; 7
506_CR29
M Agueh (506_CR1) 2011; 43
A Averbuch (506_CR2) 2008; 30
J Rabin (506_CR27) 2011; 20
D Bertsekas (506_CR5) 1988; 14
S Haker (506_CR18) 2004; 60
J Delon (506_CR12) 2006; 15
B Galerne (506_CR16) 2011; 20
506_CR26
J Boman (506_CR7) 2009; 22
References_xml – volume: 43
  start-page: 904
  issue: 2
  year: 2011
  end-page: 924
  ident: CR1
  article-title: Barycenters in the wasserstein space
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/100805741
– volume: 24
  start-page: 787
  issue: 3
  year: 2005
  end-page: 794
  ident: CR22
  article-title: Texture design using a simplicial complex of morphable textures
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1073204.1073262
– volume: 128
  start-page: 153
  issue: 1
  year: 1997
  end-page: 179
  ident: CR23
  article-title: A convexity principle for interacting gases
  publication-title: Adv. Math.
  doi: 10.1006/aima.1997.1634
– volume: 30
  start-page: 1
  issue: 6
  year: 2011
  end-page: 12
  ident: CR8
  article-title: Displacement interpolation using lagrangian mass transport
  publication-title: ACM Trans. Graph. (SIGGRAPH ASIA’11)
  doi: 10.1145/2070781.2024192
– ident: CR4
– volume: 30
  start-page: 785
  issue: 2
  year: 2008
  end-page: 803
  ident: CR2
  article-title: A framework for discrete integral transformations: II. The 2D discrete radon transform
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/060650301
– volume: 20
  start-page: 3073
  issue: 11
  year: 2011
  end-page: 3085
  ident: CR27
  article-title: Removing artefacts from color and contrast modifications
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2142318
– ident: CR30
– year: 1980
  ident: CR19
  publication-title: The Radon Transform
  doi: 10.1007/978-1-4899-6765-7
– ident: CR10
– ident: CR6
– ident: CR29
– volume: 11
  start-page: 23
  issue: 1
  year: 1998
  end-page: 35
  ident: CR31
  article-title: Incremental gradient algorithms with stepsizes bounded away from zero
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1018366000512
– volume: 60
  start-page: 225
  issue: 3
  year: 2004
  end-page: 240
  ident: CR18
  article-title: Optimal mass transport for registration and warping
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000036836.66311.97
– year: 1978
  ident: CR11
  publication-title: Probabilities and Potential Math. Stud. 29
– volume: 27
  start-page: 107
  issue: 1
  year: 1998
  end-page: 119
  ident: CR9
  article-title: A fast discrete approximation algorithm for the radon transform
  publication-title: J. Comput.
– volume: 14
  start-page: 105
  year: 1988
  end-page: 123
  ident: CR5
  article-title: The auction algorithm: a distributed relaxation method for the assignment problem
  publication-title: Ann. Operat. Res.
  doi: 10.1007/BF02186476
– volume: 84
  start-page: 375
  issue: 3
  year: 2000
  end-page: 393
  ident: CR3
  article-title: A computational fluid mechanics solution of the monge-kantorovich mass transfer problem
  publication-title: Numer. Math.
  doi: 10.1007/s002110050002
– volume: 15
  start-page: 241
  issue: 1
  year: 2006
  end-page: 248
  ident: CR12
  article-title: Movie and video scale-time equalization application to flicker reduction
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.860328
– ident: CR15
– volume: 2
  start-page: 83
  year: 1955
  end-page: 97
  ident: CR21
  article-title: The Hungarian method of solving the assignment problem
  publication-title: Naval Res. Logist. Quart.
  doi: 10.1002/nav.3800020109
– ident: CR13
– volume: 37
  start-page: 227
  issue: 2
  year: 1942
  end-page: 229
  ident: CR20
  article-title: On the transfer of masses
  publication-title: Doklady Akademii Nauk
– volume: 7
  start-page: 212
  issue: 1
  year: 2014
  end-page: 238
  ident: CR25
  article-title: Optimal transport with proximal splitting
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/130920058
– volume: 30
  start-page: 1583
  issue: 5
  year: 2011
  end-page: 1592
  ident: CR24
  article-title: A multiscale approach to optimal transport
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2011.02032.x
– ident: CR32
– volume: 31
  start-page: 73.1
  issue: 4
  year: 2012
  end-page: 73.9
  ident: CR17
  article-title: Gabor noise by example
  publication-title: ACM Trans. Graph. (Proceedings of ACM SIGGRAPH 2012)
– volume: 48
  start-page: 369
  issue: 2
  year: 2013
  end-page: 382
  ident: CR14
  article-title: Feature-preserving surface reconstruction and simplification from defect-laden point sets
  publication-title: J. Math. Imaging Vis.
– ident: CR28
– ident: CR26
– volume: 20
  start-page: 257
  issue: 1
  year: 2011
  end-page: 267
  ident: CR16
  article-title: Random phase textures: theory and synthesis
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2052822
– volume: 22
  start-page: 683
  issue: 3
  year: 2009
  end-page: 710
  ident: CR7
  article-title: Support theorems for the radon transform and Cramèr–Wold theorems
  publication-title: J. Theor. Prob.
  doi: 10.1007/s10959-008-0151-0
– ident: 506_CR32
  doi: 10.1090/gsm/058
– volume: 14
  start-page: 105
  year: 1988
  ident: 506_CR5
  publication-title: Ann. Operat. Res.
  doi: 10.1007/BF02186476
– volume: 60
  start-page: 225
  issue: 3
  year: 2004
  ident: 506_CR18
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000036836.66311.97
– ident: 506_CR14
  doi: 10.1007/s10851-013-0414-y
– volume: 2
  start-page: 83
  year: 1955
  ident: 506_CR21
  publication-title: Naval Res. Logist. Quart.
  doi: 10.1002/nav.3800020109
– volume: 20
  start-page: 3073
  issue: 11
  year: 2011
  ident: 506_CR27
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2142318
– volume: 27
  start-page: 107
  issue: 1
  year: 1998
  ident: 506_CR9
  publication-title: J. Comput.
– ident: 506_CR10
– volume-title: The Radon Transform
  year: 1980
  ident: 506_CR19
  doi: 10.1007/978-1-4899-6765-7
– volume: 43
  start-page: 904
  issue: 2
  year: 2011
  ident: 506_CR1
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/100805741
– volume: 15
  start-page: 241
  issue: 1
  year: 2006
  ident: 506_CR12
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.860328
– volume: 84
  start-page: 375
  issue: 3
  year: 2000
  ident: 506_CR3
  publication-title: Numer. Math.
  doi: 10.1007/s002110050002
– volume: 128
  start-page: 153
  issue: 1
  year: 1997
  ident: 506_CR23
  publication-title: Adv. Math.
  doi: 10.1006/aima.1997.1634
– volume: 11
  start-page: 23
  issue: 1
  year: 1998
  ident: 506_CR31
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1018366000512
– volume: 37
  start-page: 227
  issue: 2
  year: 1942
  ident: 506_CR20
  publication-title: Doklady Akademii Nauk
– ident: 506_CR15
– volume-title: Probabilities and Potential Math. Stud. 29
  year: 1978
  ident: 506_CR11
– volume: 7
  start-page: 212
  issue: 1
  year: 2014
  ident: 506_CR25
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/130920058
– volume: 22
  start-page: 683
  issue: 3
  year: 2009
  ident: 506_CR7
  publication-title: J. Theor. Prob.
  doi: 10.1007/s10959-008-0151-0
– volume: 30
  start-page: 1583
  issue: 5
  year: 2011
  ident: 506_CR24
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2011.02032.x
– volume: 24
  start-page: 787
  issue: 3
  year: 2005
  ident: 506_CR22
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1073204.1073262
– volume: 20
  start-page: 257
  issue: 1
  year: 2011
  ident: 506_CR16
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2052822
– ident: 506_CR28
– ident: 506_CR29
  doi: 10.1007/978-3-642-20404-3_1
– ident: 506_CR26
  doi: 10.1109/ICCV.2005.166
– volume: 31
  start-page: 73.1
  issue: 4
  year: 2012
  ident: 506_CR17
  publication-title: ACM Trans. Graph. (Proceedings of ACM SIGGRAPH 2012)
– volume: 30
  start-page: 1
  issue: 6
  year: 2011
  ident: 506_CR8
  publication-title: ACM Trans. Graph. (SIGGRAPH ASIA’11)
  doi: 10.1145/2070781.2024192
– ident: 506_CR13
  doi: 10.1109/ICASSP.2012.6288148
– ident: 506_CR30
  doi: 10.1109/ICCV.1998.710701
– volume: 30
  start-page: 785
  issue: 2
  year: 2008
  ident: 506_CR2
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/060650301
– ident: 506_CR4
– ident: 506_CR6
SSID ssj0008217
Score 2.5711126
Snippet This article details two approaches to compute barycenters of measures using 1-D Wasserstein distances along radial projections of the input measures. The...
SourceID hal
crossref
springer
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 22
SubjectTerms Applications of Mathematics
Computer Science
Engineering Sciences
Image Processing and Computer Vision
Mathematical Methods in Physics
Mathematics
Numerical Analysis
Signal and Image Processing
Signal,Image and Speech Processing
Title Sliced and Radon Wasserstein Barycenters of Measures
URI https://link.springer.com/article/10.1007/s10851-014-0506-3
https://hal.science/hal-00881872
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7YdoEDjwFiPKYIcQJFSts0bY8d2piA7QBMjFOV5iEOU4fWwe_H6WM8BEicKkVpVNmN8zm2PyN0JkIhUsYNUZFxCQMETyJXcqK4IwEtGMWKOu7RmA8n7HrqT6s67rzOdq9DkoWl_lTsBugAXF9GqG8Tthqo5YPrbvO4Jm68Mr-hW7TZpeBYEDC1QR3K_GmJL4dR49mmQn6LhxbHzGAbbVb4EMelQnfQms7aaKvCirjaiTkM1e0Y6rE22hitKFjzXcTuZ2ADFBaZwndCzTP8KIrSStveEvfszY2l41zkeG7wqLwpzPfQZNB_uBySqkUCkT51liQShqWCRY4MmAqCiGtHOiZ1WeoZGVIZyVA72lPScCM8Tj2bXGZ9QsDUhkrl7aNmNs_0AcKh67Eg8ALNmQYfMQ3hIPcjqh3LKKeY00G0llUiK_5w28ZilnwwH1vxJiDexIo38TrofPXKS0me8dfkU1DAap6lvR7Gt4kdA6UCrgjcN_iIi1o_SbXZ8t-XPPzX7CO0DmjIL-9XjlFzuXjVJ4A4lmkXteJBrze2z6unm363-OPeAV7Ey8k
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgHIADSwFRVgtxAlnK4jjJsSCqAG0P0IreLMeLOFQpagrfzzgbiwCJq-VY0Yw988aeeYPQuYiESCkzRMXGIxQQPIk9yYhirgS0YBQt6rgHQ5aM6d0kmFR13Hmd7V4_SRaW-lOxG6ADCH0pcQKbsLWMVgALRHYrj71uY34jr2iz60BgQcDUhvVT5k9LfHFGy882FfLbe2jhZnpbaKPCh7hbKnQbLemsjTYrrIirk5jDUN2OoR5ro_VBQ8Ga7yD6OAUboLDIFH4QapbhJ1GUVtr2lvjK3txYOs55jmcGD8qbwnwXjXs3o-uEVC0SiAwcd0FiYWgqaOzKkKowjJl2pWtSj6a-kZEjYxlpV_tKGmaEzxzfJpfZmBAwtXGk8vdQK5tleh_hyPNpGPqhZlRDjJhG4MiD2NGuZZRT1O0gp5YVlxV_uG1jMeUfzMdWvBzEy614ud9BF80nLyV5xl-Tz0ABzTxLe510-9yOgVIBV4TeG_zEZa0fXh22_PclD_41-xStJqNBn_dvh_eHaA2QUVDetRyh1mL-qo8BfSzSk2K3vQNZ2sus
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEA62guiDR1WsZxCflGB2N3s91qNUbYuoxb4t2Rz4ULalu_r7nezlgQq-DtmwzOT4JjPzDUInPOA8Zp4mMtQ2YYDgSWgLj0jPEoAWtGR5Hfdg6PVG7Hbsjss-p2mV7V6FJIuaBsPSlGTnM6nPPxW-AVIAN5gR6prkrQZaZKYYGBb0yO7UR3Fg5y13KTgZBI5dvwpr_jTFl4up8WLSIr_FRvMrp7uOVkusiDuFcTfQgkpaaK3EjbjclSmIqtYMlayFVgY1HWu6idjjBM4DiXki8QOX0wQ_87zM0rS6xBfmFcdQc85TPNV4ULwaplto1L1-uuyRsl0CES61MhJyzWLOQkv4TPp-6ClLWDq2WexoEVARikBZypFCe5o7HnVMopnxDwFfayqks42ayTRROwgHtsN83_GVxxT4i3EAl7obUmUZdjnJrDaila4iUXKJm5YWk-iDBdmoNwL1Rka9kdNGp_Uns4JI46_Bx2CAepyhwO51-pGRgVEBY_j2G_zEWWWfqNx46e9T7v5r9BFaur_qRv2b4d0eWgaQ5BbPLvuomc1f1QEAkSw-zBfbO3ltz98
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sliced+and+Radon+Wasserstein+Barycenters+of+Measures&rft.jtitle=Journal+of+mathematical+imaging+and+vision&rft.au=Bonneel%2C+Nicolas&rft.au=Rabin%2C+Julien&rft.au=Peyr%C3%A9%2C+Gabriel&rft.au=Pfister%2C+Hanspeter&rft.date=2015-01-01&rft.pub=Springer+US&rft.issn=0924-9907&rft.eissn=1573-7683&rft.volume=51&rft.issue=1&rft.spage=22&rft.epage=45&rft_id=info:doi/10.1007%2Fs10851-014-0506-3&rft.externalDocID=10_1007_s10851_014_0506_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-9907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-9907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-9907&client=summon