Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy
Abstract Photodynamic therapy (PDT) is an innovative method for cancer treatment that involves the administration of a photosensitizing agent followed by exposure to visible light. An appreciable amount of a particular light source is a key to activate photosensitizers in PDT. However, the external...
Saved in:
Published in | Biomaterials Vol. 34; no. 4; pp. 1204 - 1212 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract Photodynamic therapy (PDT) is an innovative method for cancer treatment that involves the administration of a photosensitizing agent followed by exposure to visible light. An appreciable amount of a particular light source is a key to activate photosensitizers in PDT. However, the external excitation light source is a problem for clinical application because of the limitation of tissue-penetrating properties. Additionally, the wavelength of laser emission should match the absorption wavelength of each photosensitizer for efficient generation of reactive oxygen species and cell killing. In this study, Renilla luciferase-immobilized quantum dots-655 (QD-RLuc8) was used for bioluminescence resonance energy transfer (BRET)-mediated PDT to resolve these problems. The bioluminescent QD-RLuc8 conjugate exhibits self-illumination at 655 nm after coelenterazine addition, which can activate the photosensitizer, Foscan® -loaded micelles for PDT. Our results show that BRET-mediated PDT by QD-RLuc8 plus coelenterazine (20 μg/mL) successfully generated reactive oxygen species (40.8%), killed ∼ 50% A549 cells at 2 μg/mL equivalent Foscan® in vitro and significantly delayed tumor growth in vivo due to cell apoptosis under TUNEL analysis without obvious weight loss. Based on immunohistochemical observations, the proliferating cell nuclear antigen (PCNA)-negative area of tumor sections after BRET-mediated PDT was obviously increased compared to the PDT-untreated groups without an external light source. We conclude that this nanotechnology-based PDT possesses several clinical benefits, such as overcoming light penetration issues and treating deeper lesions that are intractable by PDT alone. |
---|---|
AbstractList | Photodynamic therapy (PDT) is an innovative method for cancer treatment that involves the administration of a photosensitizing agent followed by exposure to visible light. An appreciable amount of a particular light source is a key to activate photosensitizers in PDT. However, the external excitation light source is a problem for clinical application because of the limitation of tissue-penetrating properties. Additionally, the wavelength of laser emission should match the absorption wavelength of each photosensitizer for efficient generation of reactive oxygen species and cell killing. In this study, Renilla luciferase-immobilized quantum dots-655 (QD-RLuc8) was used for bioluminescence resonance energy transfer (BRET)-mediated PDT to resolve these problems. The bioluminescent QD-RLuc8 conjugate exhibits self-illumination at 655 nm after coelenterazine addition, which can activate the photosensitizer, Foscan registered -loaded micelles for PDT. Our results show that BRET-mediated PDT by QD-RLuc8 plus coelenterazine (20 mu g/mL) successfully generated reactive oxygen species (40.8%), killed 50% A549 cells at 2 mu g/mL equivalent Foscan registered in vitro and significantly delayed tumor growth in vivo due to cell apoptosis under TUNEL analysis without obvious weight loss. Based on immunohistochemical observations, the proliferating cell nuclear antigen (PCNA)-negative area of tumor sections after BRET-mediated PDT was obviously increased compared to the PDT-untreated groups without an external light source. We conclude that this nanotechnology-based PDT possesses several clinical benefits, such as overcoming light penetration issues and treating deeper lesions that are intractable by PDT alone. Photodynamic therapy (PDT) is an innovative method for cancer treatment that involves the administration of a photosensitizing agent followed by exposure to visible light. An appreciable amount of a particular light source is a key to activate photosensitizers in PDT. However, the external excitation light source is a problem for clinical application because of the limitation of tissue-penetrating properties. Additionally, the wavelength of laser emission should match the absorption wavelength of each photosensitizer for efficient generation of reactive oxygen species and cell killing. In this study, Renilla luciferase-immobilized quantum dots-655 (QD-RLuc8) was used for bioluminescence resonance energy transfer (BRET)-mediated PDT to resolve these problems. The bioluminescent QD-RLuc8 conjugate exhibits self-illumination at 655 nm after coelenterazine addition, which can activate the photosensitizer, Foscan(®)-loaded micelles for PDT. Our results show that BRET-mediated PDT by QD-RLuc8 plus coelenterazine (20 μg/mL) successfully generated reactive oxygen species (40.8%), killed ~ 50% A549 cells at 2 μg/mL equivalent Foscan(®)in vitro and significantly delayed tumor growth in vivo due to cell apoptosis under TUNEL analysis without obvious weight loss. Based on immunohistochemical observations, the proliferating cell nuclear antigen (PCNA)-negative area of tumor sections after BRET-mediated PDT was obviously increased compared to the PDT-untreated groups without an external light source. We conclude that this nanotechnology-based PDT possesses several clinical benefits, such as overcoming light penetration issues and treating deeper lesions that are intractable by PDT alone. Abstract Photodynamic therapy (PDT) is an innovative method for cancer treatment that involves the administration of a photosensitizing agent followed by exposure to visible light. An appreciable amount of a particular light source is a key to activate photosensitizers in PDT. However, the external excitation light source is a problem for clinical application because of the limitation of tissue-penetrating properties. Additionally, the wavelength of laser emission should match the absorption wavelength of each photosensitizer for efficient generation of reactive oxygen species and cell killing. In this study, Renilla luciferase-immobilized quantum dots-655 (QD-RLuc8) was used for bioluminescence resonance energy transfer (BRET)-mediated PDT to resolve these problems. The bioluminescent QD-RLuc8 conjugate exhibits self-illumination at 655 nm after coelenterazine addition, which can activate the photosensitizer, Foscan® -loaded micelles for PDT. Our results show that BRET-mediated PDT by QD-RLuc8 plus coelenterazine (20 μg/mL) successfully generated reactive oxygen species (40.8%), killed ∼ 50% A549 cells at 2 μg/mL equivalent Foscan® in vitro and significantly delayed tumor growth in vivo due to cell apoptosis under TUNEL analysis without obvious weight loss. Based on immunohistochemical observations, the proliferating cell nuclear antigen (PCNA)-negative area of tumor sections after BRET-mediated PDT was obviously increased compared to the PDT-untreated groups without an external light source. We conclude that this nanotechnology-based PDT possesses several clinical benefits, such as overcoming light penetration issues and treating deeper lesions that are intractable by PDT alone. Photodynamic therapy (PDT) is an innovative method for cancer treatment that involves the administration of a photosensitizing agent followed by exposure to visible light. An appreciable amount of a particular light source is a key to activate photosensitizers in PDT. However, the external excitation light source is a problem for clinical application because of the limitation of tissue-penetrating properties. Additionally, the wavelength of laser emission should match the absorption wavelength of each photosensitizer for efficient generation of reactive oxygen species and cell killing. In this study, Renilla luciferase-immobilized quantum dots-655 (QD-RLuc8) was used for bioluminescence resonance energy transfer (BRET)-mediated PDT to resolve these problems. The bioluminescent QD-RLuc8 conjugate exhibits self-illumination at 655 nm after coelenterazine addition, which can activate the photosensitizer, Foscan®-loaded micelles for PDT. Our results show that BRET-mediated PDT by QD-RLuc8 plus coelenterazine (20 μg/mL) successfully generated reactive oxygen species (40.8%), killed ∼ 50% A549 cells at 2 μg/mL equivalent Foscan®in vitro and significantly delayed tumor growth in vivo due to cell apoptosis under TUNEL analysis without obvious weight loss. Based on immunohistochemical observations, the proliferating cell nuclear antigen (PCNA)-negative area of tumor sections after BRET-mediated PDT was obviously increased compared to the PDT-untreated groups without an external light source. We conclude that this nanotechnology-based PDT possesses several clinical benefits, such as overcoming light penetration issues and treating deeper lesions that are intractable by PDT alone. |
Author | Lai, Ping-Shan Hsu, Chia-Yen Lin, Yan-Fu Chen, Ching-Wen Yu, Hsiu-Ping |
Author_xml | – sequence: 1 fullname: Hsu, Chia-Yen – sequence: 2 fullname: Chen, Ching-Wen – sequence: 3 fullname: Yu, Hsiu-Ping – sequence: 4 fullname: Lin, Yan-Fu – sequence: 5 fullname: Lai, Ping-Shan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23069718$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1v1DAQtVAR3Rb-ArI4cckydhIn4YBESwtIlTgAZ8uxJ60Xx97aCVKQ-O84bEGI055mRnrvzcebM3Lig0dCXjDYMmDi1W7b2zCqCaNVLm05ML6FdgtV9YhsWNu0Rd1BfUI2wCpedILxU3KW0g5yDRV_Qk55CaJrWLshPy9scPNoPSaNXiONmIJXa4Ye4-1Cp6h8GjDSOVl_S92sba5UwsKOY-itsz_Q0PtZ-WkeqQlTokOINKEbCut-a-dRDd3fhSmYxavRajrdZYn98pQ8HvIK-OwhnpOv11dfLj8UN5_ef7x8e1PoGthUdHUJ3AhA6BrNKlRc1bwRvRA1ctGUZaX7ugfdDXrAvtfcNEK3phOtVsDLsjwnLw-6-xjuZ0yTHG3e1znlMcxJMiG6tm7y1Y6BViwPJI6Acs5YyaHlGfr6ANUxpBRxkPtoRxUXyUCupsqd_NdUuZoqoZXZ1Ex-_tBn7kc0f6l_XMyAdwcA5ht-txhl0nZ109iIepIm2OP6vPlPRjvrrVbuGy6YdmGOfuUwmTJHfl7fa_0uxgG6qmnKX17P03w |
CitedBy_id | crossref_primary_10_1016_j_mtcomm_2020_100975 crossref_primary_10_1021_cr400532z crossref_primary_10_1002_cmdc_202000979 crossref_primary_10_1186_s12951_017_0279_0 crossref_primary_10_1016_j_pmatsci_2020_100685 crossref_primary_10_1039_C4CC03984J crossref_primary_10_1126_sciadv_aba3009 crossref_primary_10_1002_ange_202314468 crossref_primary_10_1038_s41598_019_50242_9 crossref_primary_10_1016_j_biomaterials_2022_121875 crossref_primary_10_1021_cr5004198 crossref_primary_10_1021_ac404201s crossref_primary_10_1016_j_cej_2024_152400 crossref_primary_10_1016_j_pdpdt_2022_102856 crossref_primary_10_1002_adhm_201901058 crossref_primary_10_1016_j_ccr_2022_214726 crossref_primary_10_1039_c4pp00046c crossref_primary_10_1039_C6CS00271D crossref_primary_10_1002_smll_201805339 crossref_primary_10_1016_j_polymer_2016_04_056 crossref_primary_10_1080_09205063_2017_1398994 crossref_primary_10_3390_bios9020074 crossref_primary_10_1016_j_biomaterials_2020_119827 crossref_primary_10_1038_s12276_021_00599_7 crossref_primary_10_1016_j_jconrel_2014_04_024 crossref_primary_10_3389_fgene_2018_00616 crossref_primary_10_1021_acs_analchem_5b03581 crossref_primary_10_1002_cbic_201700486 crossref_primary_10_1016_j_biomaterials_2018_10_043 crossref_primary_10_1038_s41377_023_01149_8 crossref_primary_10_1016_j_trac_2018_11_012 crossref_primary_10_1021_acsnano_2c06667 crossref_primary_10_1039_D0CS01370F crossref_primary_10_1021_acs_chemrev_5b00049 crossref_primary_10_1039_D3NR01735D crossref_primary_10_1016_j_ccr_2017_02_007 crossref_primary_10_1021_acs_chemrev_6b00030 crossref_primary_10_1016_j_ijpharm_2022_121738 crossref_primary_10_2217_fon_13_176 crossref_primary_10_32607_actanaturae_27331 crossref_primary_10_1002_adma_202200334 crossref_primary_10_1016_j_biomaterials_2023_122079 crossref_primary_10_3390_biom9080384 crossref_primary_10_1021_acsomega_1c00838 crossref_primary_10_3389_fimmu_2021_795232 crossref_primary_10_1021_ct500681m crossref_primary_10_1016_j_biopha_2020_111095 crossref_primary_10_1039_D0CS01492C crossref_primary_10_1016_j_biomaterials_2021_121332 crossref_primary_10_1021_acsabm_0c00522 crossref_primary_10_1016_j_biomaterials_2019_119328 crossref_primary_10_3390_bios9010042 crossref_primary_10_1016_j_biomaterials_2013_09_075 crossref_primary_10_1016_j_pdpdt_2020_102082 crossref_primary_10_1039_D0TB00093K crossref_primary_10_2217_nnm_2017_0077 crossref_primary_10_1002_anie_202314468 crossref_primary_10_1039_C7CC00041C crossref_primary_10_1063_5_0176861 crossref_primary_10_1021_acsnano_3c05619 crossref_primary_10_1016_j_ccr_2021_213828 crossref_primary_10_1007_s10853_018_3038_1 crossref_primary_10_1016_j_mtbio_2019_100035 crossref_primary_10_1021_acs_bioconjchem_9b00740 crossref_primary_10_1111_brv_12758 crossref_primary_10_1002_smll_202104567 crossref_primary_10_3390_s20102909 crossref_primary_10_1016_j_ejpb_2023_11_008 crossref_primary_10_1016_j_apsb_2016_01_007 crossref_primary_10_3390_cancers13143484 crossref_primary_10_1016_j_ejmech_2020_113111 crossref_primary_10_1002_cphc_201600270 crossref_primary_10_1016_j_cclet_2017_08_015 crossref_primary_10_1007_s00216_016_9434_y crossref_primary_10_1021_acs_jpcc_9b10536 crossref_primary_10_1039_C7MH00726D crossref_primary_10_1002_chem_201705640 crossref_primary_10_1007_s00604_017_2145_z crossref_primary_10_1016_j_addr_2022_114344 crossref_primary_10_1002_adma_201801350 crossref_primary_10_3390_polym14071286 crossref_primary_10_1016_j_ejmech_2019_111683 crossref_primary_10_1039_C8SC04012E crossref_primary_10_1016_j_jconrel_2019_03_019 crossref_primary_10_1126_sciadv_aat2953 crossref_primary_10_3390_cancers14082004 crossref_primary_10_3389_fchem_2020_00770 crossref_primary_10_1016_j_ccr_2024_216027 crossref_primary_10_1016_j_jphotobiol_2018_09_006 crossref_primary_10_1039_C6CS00616G crossref_primary_10_1038_s41377_022_00729_4 crossref_primary_10_1021_acs_biomac_8b00085 crossref_primary_10_1016_j_nano_2019_04_008 crossref_primary_10_1021_acs_biomac_7b01469 crossref_primary_10_1515_gps_2021_0006 crossref_primary_10_1039_C6CS00296J crossref_primary_10_1109_JSTQE_2013_2283155 crossref_primary_10_24075_brsmu_2018_004 crossref_primary_10_1016_j_colsurfb_2014_06_002 crossref_primary_10_1016_j_jddst_2023_104175 crossref_primary_10_1016_j_pdpdt_2023_103923 crossref_primary_10_3389_fbioe_2020_594491 crossref_primary_10_1039_D0TB00262C crossref_primary_10_1002_adhm_201800252 crossref_primary_10_1016_j_biomaterials_2017_09_026 crossref_primary_10_1039_C5NR00828J crossref_primary_10_1111_php_13209 crossref_primary_10_1002_adom_201700181 crossref_primary_10_1016_j_apsb_2023_11_007 crossref_primary_10_4155_tde_13_105 crossref_primary_10_1007_s12274_023_5923_4 crossref_primary_10_1039_C7NR05233B crossref_primary_10_3390_s141019731 crossref_primary_10_1039_D0RA01477J crossref_primary_10_1002_smll_201501923 crossref_primary_10_1017_S1460396919000153 crossref_primary_10_1111_php_13730 crossref_primary_10_1002_smll_201301459 crossref_primary_10_1021_acsami_6b10255 |
Cites_doi | 10.1016/j.jconrel.2011.06.005 10.1021/ja104299t 10.1021/ja803325b 10.1002/anie.200700280 10.1073/pnas.91.25.12273 10.1126/science.1104274 10.1038/sj.bjc.6600664 10.1021/nl102172j 10.1016/j.jconrel.2011.09.085 10.1021/mp060117f 10.1038/nrc1071 10.1016/j.yjmcc.2008.08.006 10.1088/0957-4484/18/19/195105 10.1038/nprot.2006.162 10.1021/mp100060v 10.1562/0031-8655(2001)074<0126:CPIBHI>2.0.CO;2 10.1111/j.1751-1097.1997.tb03176.x 10.1016/j.jconrel.2006.03.009 10.1088/0957-4484/19/23/235105 10.1016/j.copbio.2007.01.003 10.1016/j.jconrel.2004.03.030 10.1016/j.jconrel.2007.06.012 10.1016/j.biomaterials.2009.03.048 10.1097/00130404-200203000-00009 10.1007/s11307-006-0048-1 10.1039/c2cc33851c 10.1002/smll.201102695 10.1002/adma.200801642 10.1021/ja062677d 10.1021/nl049295v 10.1002/jpp.328 10.1007/978-1-4613-2165-1_28 10.1054/bjoc.2001.1795 10.1016/j.jconrel.2011.03.017 10.1016/0022-1759(83)90303-4 10.1016/j.copbio.2009.01.001 10.1039/c1pp05163f 10.1038/nbt1188 10.1021/nl0611586 10.1063/1.2835701 10.1016/j.jconrel.2008.10.010 |
ContentType | Journal Article |
Copyright | Elsevier Ltd 2012 Elsevier Ltd Copyright © 2012 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: Elsevier Ltd – notice: 2012 Elsevier Ltd – notice: Copyright © 2012 Elsevier Ltd. All rights reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M |
DOI | 10.1016/j.biomaterials.2012.08.044 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 1212 |
ExternalDocumentID | 10_1016_j_biomaterials_2012_08_044 23069718 S0142961212009477 1_s2_0_S0142961212009477 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYOK ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AEVXI AEZYN AFCTW AFFNX AFJKZ AFKWA AFRHN AFRZQ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJOXV AJUYK AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AAIAV ABYKQ AJBFU DOVZS EFLBG CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M |
ID | FETCH-LOGICAL-c501t-95302d60e097c14ea2a5276b665e267334cb5b0c9fcfebbc2d76c8d968ca02333 |
IEDL.DBID | AIKHN |
ISSN | 0142-9612 |
IngestDate | Fri Oct 25 06:07:18 EDT 2024 Fri Oct 25 08:33:56 EDT 2024 Fri Oct 25 21:29:58 EDT 2024 Thu Sep 26 18:41:09 EDT 2024 Sat Sep 28 08:07:13 EDT 2024 Fri Feb 23 02:23:07 EST 2024 Tue Oct 15 22:54:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Illumination Bioluminescence Photodynamic therapy Energy transfer In vivo |
Language | English |
License | Copyright © 2012 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-95302d60e097c14ea2a5276b665e267334cb5b0c9fcfebbc2d76c8d968ca02333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23069718 |
PQID | 1221132082 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1669857905 proquest_miscellaneous_1664195365 proquest_miscellaneous_1221132082 crossref_primary_10_1016_j_biomaterials_2012_08_044 pubmed_primary_23069718 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2012_08_044 elsevier_clinicalkeyesjournals_1_s2_0_S0142961212009477 |
PublicationCentury | 2000 |
PublicationDate | 2013-01-01 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Nishiyama, Nakagishi, Morimoto, Lai, Miyazaki, Urano (bib11) 2009; 133 Theodossiou, Hothersall, Woods, Okkenhaug, Jacobson, MacRobert (bib31) 2003; 63 So, Xu, Loening, Gambhir, Rao (bib21) 2006; 24 Kim, Chaudhary, Ozkan (bib28) 2007; 18 Chen, Keltner, Christophersen, Zheng, Krouse, Singhal (bib29) 2002; 8 Bovis, Woodhams, Loizidou, Schegelmann, Bown, MacRobert (bib6) 2012; 157 Baba, Pudavar, Roy, Ohulchanskyy, Chen, Pandey (bib7) 2007; 4 Syu, Yu, Hsu, Rajan, Hsu, Chang (bib14) 2012; 8 Schipper, Patel, Gambhir (bib32) 2006; 8 Rao, Dragulescu-Andrasi, Yao (bib23) 2007; 18 Sun, Zhou, Lin, Wang, Fernando, Pathak (bib43) 2006; 128 Xia, Rao (bib24) 2009; 20 Hsu, Nieh, Lai (bib3) 2012; 48 Shieh, Hsu, Huang, Chen, Huang, Lai (bib8) 2011; 152 Mosmann (bib27) 1983; 65 Dolmans, Fukumura, Jain (bib1) 2003; 3 MacDonald, Dougherty (bib2) 2001; 5 Chen, Deng, Lin, Pang, Qing, Qu (bib19) 2008; 19 So, Loening, Gambhir, Rao (bib26) 2006; 1 Redmond, Land, Truscott (bib10) 1985; 193 Lai, Lou, Peng, Pai, Yen, Huang (bib4) 2007; 122 Liu, Chen, Wang, Joly (bib15) 2008; 92 Peng, Lai, Lin, Wu, Shieh (bib12) 2009; 30 Compagnin, Moret, Celotti, Miotto, Woodhams, MacRobert (bib34) 2011; 10 Du, Yu, Pan, Li, Chen, Yan (bib22) 2010; 132 Koshman, Waters, Walker, Los, de Tombe, Goldspink (bib16) 2008; 45 Carpenter, Fehr, Kraus, Petrich (bib30) 1994; 91 Jang, Nakagishi, Nishiyama, Kawauchi, Morimoto, Kikuchi (bib9) 2006; 113 Murcia, Minner, Mustata, Ritchie, Naumann (bib17) 2008; 130 Wyld, Reed, Brown (bib40) 2001; 84 Lagerholm, Wang, Ernst, Ly, Liu, Bruchez (bib35) 2004; 4 Lu, Syu, Nishiyama, Kataoka, Lai (bib37) 2011; 155 Michalet, Pinaud, Bentolila, Tsay, Doose, Li (bib20) 2005; 307 Luo, Kessel (bib41) 1997; 66 Shieh, Peng, Chiang, Wang, Hsu, Wang (bib13) 2010; 7 Teiten, Bezdetnaya, Morliere, Santus, Guillemin (bib33) 2003; 88 Luksiene (bib38) 2003; 39 Bayles, Chahal, Chahal, Goldbeck, Cohen, Helms (bib36) 2010; 10 Yao, Zhang, Xiao, Xia, Rao (bib25) 2007; 46 Kang, Liu, Tsang, Ma, Fan, Wong (bib42) 2009; 21 Takeuchi, Ichikawa, Yonezawa, Kurohane, Koishi, Nango (bib5) 2004; 97 Zhang, So, Rao (bib18) 2006; 6 Kamuhabwa, Agostinis, D'Hallewin, Baert, De Witte (bib39) 2001; 74 Shieh (10.1016/j.biomaterials.2012.08.044_bib8) 2011; 152 MacDonald (10.1016/j.biomaterials.2012.08.044_bib2) 2001; 5 Takeuchi (10.1016/j.biomaterials.2012.08.044_bib5) 2004; 97 Jang (10.1016/j.biomaterials.2012.08.044_bib9) 2006; 113 Peng (10.1016/j.biomaterials.2012.08.044_bib12) 2009; 30 Theodossiou (10.1016/j.biomaterials.2012.08.044_bib31) 2003; 63 Luksiene (10.1016/j.biomaterials.2012.08.044_bib38) 2003; 39 Baba (10.1016/j.biomaterials.2012.08.044_bib7) 2007; 4 Yao (10.1016/j.biomaterials.2012.08.044_bib25) 2007; 46 Lu (10.1016/j.biomaterials.2012.08.044_bib37) 2011; 155 Michalet (10.1016/j.biomaterials.2012.08.044_bib20) 2005; 307 Du (10.1016/j.biomaterials.2012.08.044_bib22) 2010; 132 Kim (10.1016/j.biomaterials.2012.08.044_bib28) 2007; 18 Luo (10.1016/j.biomaterials.2012.08.044_bib41) 1997; 66 Syu (10.1016/j.biomaterials.2012.08.044_bib14) 2012; 8 So (10.1016/j.biomaterials.2012.08.044_bib26) 2006; 1 Shieh (10.1016/j.biomaterials.2012.08.044_bib13) 2010; 7 Kang (10.1016/j.biomaterials.2012.08.044_bib42) 2009; 21 Carpenter (10.1016/j.biomaterials.2012.08.044_bib30) 1994; 91 Bayles (10.1016/j.biomaterials.2012.08.044_bib36) 2010; 10 Kamuhabwa (10.1016/j.biomaterials.2012.08.044_bib39) 2001; 74 Hsu (10.1016/j.biomaterials.2012.08.044_bib3) 2012; 48 Schipper (10.1016/j.biomaterials.2012.08.044_bib32) 2006; 8 Nishiyama (10.1016/j.biomaterials.2012.08.044_bib11) 2009; 133 Compagnin (10.1016/j.biomaterials.2012.08.044_bib34) 2011; 10 Lagerholm (10.1016/j.biomaterials.2012.08.044_bib35) 2004; 4 Lai (10.1016/j.biomaterials.2012.08.044_bib4) 2007; 122 Teiten (10.1016/j.biomaterials.2012.08.044_bib33) 2003; 88 So (10.1016/j.biomaterials.2012.08.044_bib21) 2006; 24 Rao (10.1016/j.biomaterials.2012.08.044_bib23) 2007; 18 Chen (10.1016/j.biomaterials.2012.08.044_bib19) 2008; 19 Wyld (10.1016/j.biomaterials.2012.08.044_bib40) 2001; 84 Redmond (10.1016/j.biomaterials.2012.08.044_bib10) 1985; 193 Sun (10.1016/j.biomaterials.2012.08.044_bib43) 2006; 128 Xia (10.1016/j.biomaterials.2012.08.044_bib24) 2009; 20 Chen (10.1016/j.biomaterials.2012.08.044_bib29) 2002; 8 Bovis (10.1016/j.biomaterials.2012.08.044_bib6) 2012; 157 Dolmans (10.1016/j.biomaterials.2012.08.044_bib1) 2003; 3 Liu (10.1016/j.biomaterials.2012.08.044_bib15) 2008; 92 Koshman (10.1016/j.biomaterials.2012.08.044_bib16) 2008; 45 Zhang (10.1016/j.biomaterials.2012.08.044_bib18) 2006; 6 Murcia (10.1016/j.biomaterials.2012.08.044_bib17) 2008; 130 Mosmann (10.1016/j.biomaterials.2012.08.044_bib27) 1983; 65 |
References_xml | – volume: 152 start-page: 418 year: 2011 end-page: 425 ident: bib8 article-title: Reversal of doxorubicin-resistance by multifunctional nanoparticles in MCF-7/ADR cells publication-title: J Control Release contributor: fullname: Lai – volume: 3 start-page: 380 year: 2003 end-page: 387 ident: bib1 article-title: Photodynamic therapy for cancer publication-title: Nat Rev Cancer contributor: fullname: Jain – volume: 130 start-page: 15054 year: 2008 end-page: 15062 ident: bib17 article-title: Design of quantum dot-conjugated lipids for long-term, high-speed tracking experiments on cell surfaces publication-title: J Am Chem Soc contributor: fullname: Naumann – volume: 5 start-page: 105 year: 2001 end-page: 129 ident: bib2 article-title: Basic principles of photodynamic therapy publication-title: J Porphyr Phthalocyanines contributor: fullname: Dougherty – volume: 48 start-page: 9343 year: 2012 end-page: 9345 ident: bib3 article-title: Facile self-assembly of porphyrin-embedded polymeric vesicles for theranostic applications publication-title: Chem Comm contributor: fullname: Lai – volume: 1 start-page: 1160 year: 2006 end-page: 1164 ident: bib26 article-title: Creating self-illuminating quantum dot conjugates publication-title: Nat Protoc contributor: fullname: Rao – volume: 4 start-page: 2019 year: 2004 end-page: 2022 ident: bib35 article-title: Multicolor coding of cells with cationic peptide coated quantum dots publication-title: Nano Lett contributor: fullname: Bruchez – volume: 10 start-page: 4086 year: 2010 end-page: 4092 ident: bib36 article-title: Rapid cytosolic delivery of luminescent nanocrystals in live cells with endosome-disrupting polymer colloids publication-title: Nano Lett contributor: fullname: Helms – volume: 30 start-page: 3614 year: 2009 end-page: 3625 ident: bib12 article-title: Dual chemotherapy and photodynamic therapy in an HT-29 human colon cancer xenograft model using SN-38-loaded chlorin-core star block copolymer micelles publication-title: Biomaterials contributor: fullname: Shieh – volume: 45 start-page: 853 year: 2008 end-page: 856 ident: bib16 article-title: Delivery and visualization of proteins conjugated to quantum dots in cardiac myocytes publication-title: J Mol Cell Cardiol contributor: fullname: Goldspink – volume: 6 start-page: 1988 year: 2006 end-page: 1992 ident: bib18 article-title: Protease-modulated cellular uptake of quantum dots publication-title: Nano Lett contributor: fullname: Rao – volume: 63 start-page: 1818 year: 2003 end-page: 1821 ident: bib31 article-title: Firefly luciferin-activated Rose Bengal: in vitro photodynamic therapy by intracellular chemiluminescence in transgenic NIH 3T3 cells publication-title: Cancer Res contributor: fullname: MacRobert – volume: 92 start-page: 043901 year: 2008 ident: bib15 article-title: Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation publication-title: Appl Phys Lett contributor: fullname: Joly – volume: 24 start-page: 339 year: 2006 end-page: 343 ident: bib21 article-title: Self-illuminating quantum dot conjugates for in vivo imaging publication-title: Nat Biotechnol contributor: fullname: Rao – volume: 65 start-page: 55 year: 1983 end-page: 63 ident: bib27 article-title: Rapid colorimetric assay for cellular growth and survival - applicarion to proliferation and cyto-toxicity assays publication-title: J Immunol Methods contributor: fullname: Mosmann – volume: 8 start-page: 218 year: 2006 end-page: 225 ident: bib32 article-title: Evaluation of firefly luciferase bioluminescence mediated photodynamic toxicity in cancer cells publication-title: Mol Imaging Biol contributor: fullname: Gambhir – volume: 8 start-page: 154 year: 2002 end-page: 163 ident: bib29 article-title: New technology for deep light distribution in tissue for phototherapy publication-title: Cancer J contributor: fullname: Singhal – volume: 21 start-page: 661 year: 2009 end-page: 664 ident: bib42 article-title: Water-soluble silicon quantum dots with wavelength-tunable photoluminescence publication-title: Adv Mater contributor: fullname: Wong – volume: 20 start-page: 37 year: 2009 end-page: 44 ident: bib24 article-title: Biosensing and imaging based on bioluminescence resonance energy transfer publication-title: Curr Opin Biotechnol contributor: fullname: Rao – volume: 66 start-page: 479 year: 1997 end-page: 483 ident: bib41 article-title: Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine publication-title: Photochem Photobiol contributor: fullname: Kessel – volume: 157 start-page: 196 year: 2012 end-page: 205 ident: bib6 article-title: Improved in vivo delivery of m-THPC via pegylated liposomes for use in photodynamic therapy publication-title: J Control Release contributor: fullname: MacRobert – volume: 132 start-page: 12780 year: 2010 end-page: 12781 ident: bib22 article-title: Quantum-dot-decorated robust transductable bioluminescent nanocapsules publication-title: J Am Chem Soc contributor: fullname: Yan – volume: 84 start-page: 1384 year: 2001 end-page: 1386 ident: bib40 article-title: Differential cell death response to photodynamic therapy is dependent on dose and cell type publication-title: Br J Cancer contributor: fullname: Brown – volume: 97 start-page: 231 year: 2004 end-page: 240 ident: bib5 article-title: Intracellular target for photo sensitization in cancer antiangiogenic photodynamic therapy mediated by polycation liposome publication-title: J Control Release contributor: fullname: Nango – volume: 307 start-page: 538 year: 2005 end-page: 544 ident: bib20 article-title: Quantum dots for live cells, in vivo imaging, and diagnostics publication-title: Science contributor: fullname: Li – volume: 19 year: 2008 ident: bib19 article-title: Quantum dot-labeled aptamer nanoprobes specifically targeting glioma cells publication-title: Nanotechnology contributor: fullname: Qu – volume: 88 start-page: 146 year: 2003 end-page: 152 ident: bib33 article-title: Endoplasmic reticulum and golgi apparatus are the preferential sites of Foscan publication-title: Br J Cancer contributor: fullname: Guillemin – volume: 18 year: 2007 ident: bib28 article-title: Multicolour hybrid nanoprobes of molecular beacon conjugated quantum dots: FRET and gel electrophoresis assisted target DNA detection publication-title: Nanotechnology contributor: fullname: Ozkan – volume: 10 start-page: 1751 year: 2011 end-page: 1759 ident: bib34 article-title: Meta-tetra(hydroxyphenyl)chlorin-loaded liposomes sterically stabilised with poly(ethylene glycol) of different length and density: characterisation, in vitro cellular uptake and phototoxicity publication-title: Photochem Photobiol Sci contributor: fullname: MacRobert – volume: 193 start-page: 293 year: 1985 end-page: 302 ident: bib10 article-title: Aggregation effects on the photophysical properties of porphyrins in relation to mechanisms involved in photodynamic therapy publication-title: Adv Exp Med Biol contributor: fullname: Truscott – volume: 122 start-page: 39 year: 2007 end-page: 46 ident: bib4 article-title: Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy publication-title: J Control Release contributor: fullname: Huang – volume: 113 start-page: 73 year: 2006 end-page: 79 ident: bib9 article-title: Polyion complex micelles for photodynamic therapy: incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property publication-title: J Control Release contributor: fullname: Kikuchi – volume: 8 start-page: 2060 year: 2012 end-page: 2069 ident: bib14 article-title: Improved photodynamic cancer treatment by folate-conjugated polymeric micelles in KB xenografted animal model publication-title: Small contributor: fullname: Chang – volume: 128 start-page: 7756 year: 2006 end-page: 7757 ident: bib43 article-title: Quantum-sized carbon dots for bright and colorful photoluminescence publication-title: J Am Chem Soc contributor: fullname: Pathak – volume: 74 start-page: 126 year: 2001 end-page: 132 ident: bib39 article-title: Cellular photodestruction induced by hypericin in AY-27 rat bladder carcinoma cells publication-title: Photochem Photobiol contributor: fullname: De Witte – volume: 4 start-page: 289 year: 2007 end-page: 297 ident: bib7 article-title: New method for delivering a hydrophobic drug for photodynamic therapy using pure nanocrystal form of the drug publication-title: Mol Pharmaceutics contributor: fullname: Pandey – volume: 7 start-page: 1244 year: 2010 end-page: 1253 ident: bib13 article-title: Reduced skin photosensitivity with meta-tetra(hydroxyphenyl) chlorin-loaded micelles based on a poly (2-ethyl-2-oxazoline)-b-poly ( publication-title: Mol Pharmaceutics contributor: fullname: Wang – volume: 39 start-page: 1137 year: 2003 end-page: 1150 ident: bib38 article-title: Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment publication-title: Medicina (Kaunas) contributor: fullname: Luksiene – volume: 133 start-page: 245 year: 2009 end-page: 251 ident: bib11 article-title: Enhanced photodynamic cancer treatment by supramolecular nanocarriers charged with dendrimer phthalocyanine publication-title: J Control Release contributor: fullname: Urano – volume: 91 start-page: 12273 year: 1994 end-page: 12277 ident: bib30 article-title: Chemiluminescent activation of the antiviral activity of hypericin: a molecular flashlight publication-title: Proc Natl Acad Sci contributor: fullname: Petrich – volume: 46 start-page: 4346 year: 2007 end-page: 4349 ident: bib25 article-title: Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases publication-title: Angew Chem Int Ed contributor: fullname: Rao – volume: 155 start-page: 458 year: 2011 end-page: 464 ident: bib37 article-title: Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic therapy and overcomes the drug-resistance in vivo publication-title: J Control Release contributor: fullname: Lai – volume: 18 start-page: 17 year: 2007 end-page: 25 ident: bib23 article-title: Fluorescence imaging in vivo: recent advances publication-title: Curr Opin Biotechnol contributor: fullname: Yao – volume: 155 start-page: 458 year: 2011 ident: 10.1016/j.biomaterials.2012.08.044_bib37 article-title: Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic therapy and overcomes the drug-resistance in vivo publication-title: J Control Release doi: 10.1016/j.jconrel.2011.06.005 contributor: fullname: Lu – volume: 39 start-page: 1137 year: 2003 ident: 10.1016/j.biomaterials.2012.08.044_bib38 article-title: Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment publication-title: Medicina (Kaunas) contributor: fullname: Luksiene – volume: 132 start-page: 12780 year: 2010 ident: 10.1016/j.biomaterials.2012.08.044_bib22 article-title: Quantum-dot-decorated robust transductable bioluminescent nanocapsules publication-title: J Am Chem Soc doi: 10.1021/ja104299t contributor: fullname: Du – volume: 130 start-page: 15054 year: 2008 ident: 10.1016/j.biomaterials.2012.08.044_bib17 article-title: Design of quantum dot-conjugated lipids for long-term, high-speed tracking experiments on cell surfaces publication-title: J Am Chem Soc doi: 10.1021/ja803325b contributor: fullname: Murcia – volume: 46 start-page: 4346 year: 2007 ident: 10.1016/j.biomaterials.2012.08.044_bib25 article-title: Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases publication-title: Angew Chem Int Ed doi: 10.1002/anie.200700280 contributor: fullname: Yao – volume: 91 start-page: 12273 year: 1994 ident: 10.1016/j.biomaterials.2012.08.044_bib30 article-title: Chemiluminescent activation of the antiviral activity of hypericin: a molecular flashlight publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.91.25.12273 contributor: fullname: Carpenter – volume: 307 start-page: 538 year: 2005 ident: 10.1016/j.biomaterials.2012.08.044_bib20 article-title: Quantum dots for live cells, in vivo imaging, and diagnostics publication-title: Science doi: 10.1126/science.1104274 contributor: fullname: Michalet – volume: 63 start-page: 1818 year: 2003 ident: 10.1016/j.biomaterials.2012.08.044_bib31 article-title: Firefly luciferin-activated Rose Bengal: in vitro photodynamic therapy by intracellular chemiluminescence in transgenic NIH 3T3 cells publication-title: Cancer Res contributor: fullname: Theodossiou – volume: 88 start-page: 146 year: 2003 ident: 10.1016/j.biomaterials.2012.08.044_bib33 article-title: Endoplasmic reticulum and golgi apparatus are the preferential sites of Foscan® localisation in cultured tumour cells publication-title: Br J Cancer doi: 10.1038/sj.bjc.6600664 contributor: fullname: Teiten – volume: 10 start-page: 4086 year: 2010 ident: 10.1016/j.biomaterials.2012.08.044_bib36 article-title: Rapid cytosolic delivery of luminescent nanocrystals in live cells with endosome-disrupting polymer colloids publication-title: Nano Lett doi: 10.1021/nl102172j contributor: fullname: Bayles – volume: 157 start-page: 196 year: 2012 ident: 10.1016/j.biomaterials.2012.08.044_bib6 article-title: Improved in vivo delivery of m-THPC via pegylated liposomes for use in photodynamic therapy publication-title: J Control Release doi: 10.1016/j.jconrel.2011.09.085 contributor: fullname: Bovis – volume: 4 start-page: 289 year: 2007 ident: 10.1016/j.biomaterials.2012.08.044_bib7 article-title: New method for delivering a hydrophobic drug for photodynamic therapy using pure nanocrystal form of the drug publication-title: Mol Pharmaceutics doi: 10.1021/mp060117f contributor: fullname: Baba – volume: 3 start-page: 380 year: 2003 ident: 10.1016/j.biomaterials.2012.08.044_bib1 article-title: Photodynamic therapy for cancer publication-title: Nat Rev Cancer doi: 10.1038/nrc1071 contributor: fullname: Dolmans – volume: 45 start-page: 853 year: 2008 ident: 10.1016/j.biomaterials.2012.08.044_bib16 article-title: Delivery and visualization of proteins conjugated to quantum dots in cardiac myocytes publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2008.08.006 contributor: fullname: Koshman – volume: 18 year: 2007 ident: 10.1016/j.biomaterials.2012.08.044_bib28 article-title: Multicolour hybrid nanoprobes of molecular beacon conjugated quantum dots: FRET and gel electrophoresis assisted target DNA detection publication-title: Nanotechnology doi: 10.1088/0957-4484/18/19/195105 contributor: fullname: Kim – volume: 1 start-page: 1160 year: 2006 ident: 10.1016/j.biomaterials.2012.08.044_bib26 article-title: Creating self-illuminating quantum dot conjugates publication-title: Nat Protoc doi: 10.1038/nprot.2006.162 contributor: fullname: So – volume: 7 start-page: 1244 year: 2010 ident: 10.1016/j.biomaterials.2012.08.044_bib13 article-title: Reduced skin photosensitivity with meta-tetra(hydroxyphenyl) chlorin-loaded micelles based on a poly (2-ethyl-2-oxazoline)-b-poly (d, l-lactide) diblock copolymer in vivo publication-title: Mol Pharmaceutics doi: 10.1021/mp100060v contributor: fullname: Shieh – volume: 74 start-page: 126 year: 2001 ident: 10.1016/j.biomaterials.2012.08.044_bib39 article-title: Cellular photodestruction induced by hypericin in AY-27 rat bladder carcinoma cells publication-title: Photochem Photobiol doi: 10.1562/0031-8655(2001)074<0126:CPIBHI>2.0.CO;2 contributor: fullname: Kamuhabwa – volume: 66 start-page: 479 year: 1997 ident: 10.1016/j.biomaterials.2012.08.044_bib41 article-title: Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine publication-title: Photochem Photobiol doi: 10.1111/j.1751-1097.1997.tb03176.x contributor: fullname: Luo – volume: 113 start-page: 73 year: 2006 ident: 10.1016/j.biomaterials.2012.08.044_bib9 article-title: Polyion complex micelles for photodynamic therapy: incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property publication-title: J Control Release doi: 10.1016/j.jconrel.2006.03.009 contributor: fullname: Jang – volume: 19 year: 2008 ident: 10.1016/j.biomaterials.2012.08.044_bib19 article-title: Quantum dot-labeled aptamer nanoprobes specifically targeting glioma cells publication-title: Nanotechnology doi: 10.1088/0957-4484/19/23/235105 contributor: fullname: Chen – volume: 18 start-page: 17 year: 2007 ident: 10.1016/j.biomaterials.2012.08.044_bib23 article-title: Fluorescence imaging in vivo: recent advances publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2007.01.003 contributor: fullname: Rao – volume: 97 start-page: 231 year: 2004 ident: 10.1016/j.biomaterials.2012.08.044_bib5 article-title: Intracellular target for photo sensitization in cancer antiangiogenic photodynamic therapy mediated by polycation liposome publication-title: J Control Release doi: 10.1016/j.jconrel.2004.03.030 contributor: fullname: Takeuchi – volume: 122 start-page: 39 year: 2007 ident: 10.1016/j.biomaterials.2012.08.044_bib4 article-title: Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy publication-title: J Control Release doi: 10.1016/j.jconrel.2007.06.012 contributor: fullname: Lai – volume: 30 start-page: 3614 year: 2009 ident: 10.1016/j.biomaterials.2012.08.044_bib12 article-title: Dual chemotherapy and photodynamic therapy in an HT-29 human colon cancer xenograft model using SN-38-loaded chlorin-core star block copolymer micelles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.03.048 contributor: fullname: Peng – volume: 8 start-page: 154 year: 2002 ident: 10.1016/j.biomaterials.2012.08.044_bib29 article-title: New technology for deep light distribution in tissue for phototherapy publication-title: Cancer J doi: 10.1097/00130404-200203000-00009 contributor: fullname: Chen – volume: 8 start-page: 218 year: 2006 ident: 10.1016/j.biomaterials.2012.08.044_bib32 article-title: Evaluation of firefly luciferase bioluminescence mediated photodynamic toxicity in cancer cells publication-title: Mol Imaging Biol doi: 10.1007/s11307-006-0048-1 contributor: fullname: Schipper – volume: 48 start-page: 9343 year: 2012 ident: 10.1016/j.biomaterials.2012.08.044_bib3 article-title: Facile self-assembly of porphyrin-embedded polymeric vesicles for theranostic applications publication-title: Chem Comm doi: 10.1039/c2cc33851c contributor: fullname: Hsu – volume: 8 start-page: 2060 year: 2012 ident: 10.1016/j.biomaterials.2012.08.044_bib14 article-title: Improved photodynamic cancer treatment by folate-conjugated polymeric micelles in KB xenografted animal model publication-title: Small doi: 10.1002/smll.201102695 contributor: fullname: Syu – volume: 21 start-page: 661 year: 2009 ident: 10.1016/j.biomaterials.2012.08.044_bib42 article-title: Water-soluble silicon quantum dots with wavelength-tunable photoluminescence publication-title: Adv Mater doi: 10.1002/adma.200801642 contributor: fullname: Kang – volume: 128 start-page: 7756 year: 2006 ident: 10.1016/j.biomaterials.2012.08.044_bib43 article-title: Quantum-sized carbon dots for bright and colorful photoluminescence publication-title: J Am Chem Soc doi: 10.1021/ja062677d contributor: fullname: Sun – volume: 4 start-page: 2019 year: 2004 ident: 10.1016/j.biomaterials.2012.08.044_bib35 article-title: Multicolor coding of cells with cationic peptide coated quantum dots publication-title: Nano Lett doi: 10.1021/nl049295v contributor: fullname: Lagerholm – volume: 5 start-page: 105 year: 2001 ident: 10.1016/j.biomaterials.2012.08.044_bib2 article-title: Basic principles of photodynamic therapy publication-title: J Porphyr Phthalocyanines doi: 10.1002/jpp.328 contributor: fullname: MacDonald – volume: 193 start-page: 293 year: 1985 ident: 10.1016/j.biomaterials.2012.08.044_bib10 article-title: Aggregation effects on the photophysical properties of porphyrins in relation to mechanisms involved in photodynamic therapy publication-title: Adv Exp Med Biol doi: 10.1007/978-1-4613-2165-1_28 contributor: fullname: Redmond – volume: 84 start-page: 1384 year: 2001 ident: 10.1016/j.biomaterials.2012.08.044_bib40 article-title: Differential cell death response to photodynamic therapy is dependent on dose and cell type publication-title: Br J Cancer doi: 10.1054/bjoc.2001.1795 contributor: fullname: Wyld – volume: 152 start-page: 418 year: 2011 ident: 10.1016/j.biomaterials.2012.08.044_bib8 article-title: Reversal of doxorubicin-resistance by multifunctional nanoparticles in MCF-7/ADR cells publication-title: J Control Release doi: 10.1016/j.jconrel.2011.03.017 contributor: fullname: Shieh – volume: 65 start-page: 55 year: 1983 ident: 10.1016/j.biomaterials.2012.08.044_bib27 article-title: Rapid colorimetric assay for cellular growth and survival - applicarion to proliferation and cyto-toxicity assays publication-title: J Immunol Methods doi: 10.1016/0022-1759(83)90303-4 contributor: fullname: Mosmann – volume: 20 start-page: 37 year: 2009 ident: 10.1016/j.biomaterials.2012.08.044_bib24 article-title: Biosensing and imaging based on bioluminescence resonance energy transfer publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2009.01.001 contributor: fullname: Xia – volume: 10 start-page: 1751 year: 2011 ident: 10.1016/j.biomaterials.2012.08.044_bib34 article-title: Meta-tetra(hydroxyphenyl)chlorin-loaded liposomes sterically stabilised with poly(ethylene glycol) of different length and density: characterisation, in vitro cellular uptake and phototoxicity publication-title: Photochem Photobiol Sci doi: 10.1039/c1pp05163f contributor: fullname: Compagnin – volume: 24 start-page: 339 year: 2006 ident: 10.1016/j.biomaterials.2012.08.044_bib21 article-title: Self-illuminating quantum dot conjugates for in vivo imaging publication-title: Nat Biotechnol doi: 10.1038/nbt1188 contributor: fullname: So – volume: 6 start-page: 1988 year: 2006 ident: 10.1016/j.biomaterials.2012.08.044_bib18 article-title: Protease-modulated cellular uptake of quantum dots publication-title: Nano Lett doi: 10.1021/nl0611586 contributor: fullname: Zhang – volume: 92 start-page: 043901 year: 2008 ident: 10.1016/j.biomaterials.2012.08.044_bib15 article-title: Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation publication-title: Appl Phys Lett doi: 10.1063/1.2835701 contributor: fullname: Liu – volume: 133 start-page: 245 year: 2009 ident: 10.1016/j.biomaterials.2012.08.044_bib11 article-title: Enhanced photodynamic cancer treatment by supramolecular nanocarriers charged with dendrimer phthalocyanine publication-title: J Control Release doi: 10.1016/j.jconrel.2008.10.010 contributor: fullname: Nishiyama |
SSID | ssj0014042 |
Score | 2.5035162 |
Snippet | Abstract Photodynamic therapy (PDT) is an innovative method for cancer treatment that involves the administration of a photosensitizing agent followed by... Photodynamic therapy (PDT) is an innovative method for cancer treatment that involves the administration of a photosensitizing agent followed by exposure to... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1204 |
SubjectTerms | Advanced Basic Science Bioluminescence Biomedical materials Cell Line, Tumor Dentistry Energy transfer Enzymes, Immobilized Fluorescence Resonance Energy Transfer - methods Humans Illumination In vivo Light sources Luciferases - pharmacokinetics Lung Neoplasms - drug therapy Lung Neoplasms - metabolism Lung Neoplasms - pathology Mesoporphyrins - administration & dosage Nanostructure Photochemotherapy - methods Photodynamic therapy Photosensitizing Agents - administration & dosage Quantum Dots Renilla Surgical implants Treatment Outcome Tumors Wavelengths |
Title | Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy |
URI | https://www.clinicalkey.es/playcontent/1-s2.0-S0142961212009477 https://dx.doi.org/10.1016/j.biomaterials.2012.08.044 https://www.ncbi.nlm.nih.gov/pubmed/23069718 https://search.proquest.com/docview/1221132082 https://search.proquest.com/docview/1664195365 https://search.proquest.com/docview/1669857905 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61WwnBAUF5LY_KSFzDJrZjxwcOVUW1gNoTlXqzEtsLW203S5McQILfzoyTrIpQKySu0SSOPWPPN54XwBvcMpUqnU48Yms0UMhJSLdNXuoiJ8xeFpTgfHKq5mfy43l-vgNHYy4MhVUOZ39_psfTengyG1ZztlkuZxSWxA0VwKILfqn1LuyhOuLFBPYOP3yan26dCTKNPXSIPqEXxtqjMcyLstzLtuc2RXrxWNFTypv01E04NOqj4wdwfwCS7LD_14ewE9b7cO9aecF9uHMyOM4fwU_qOdldUoy7ozkytLJrqrURWIjZf6yNCDZcMYqE_8JWnaOgF9RxyRJFlUJofwTPvnXIie6SoS3bMMS7rAmrRbJcxW_jBD3bfK3b2vd97lmf3fX9MZwdv_98NE-GzguJy9OsJZ9uyr1KQ2q0y2QoeZlzrSql8sCVFkK6Kq9SZxZuEarKca-VK7xRhSsRBAjxBCbreh2eAVuYTJbCSyM8gjUtC2eoQr9HZBQE0k9BjOtsN32BDTtGnl3Y69yxxB1LTTOlnIIeWWLHFFI89EIz7MDGZrZBYvuXlEzh3fbNPwTNog75p5FfjxJgcSeSe6Vch7rDETka04IjprqFRilJjkuV30pjipwKp03haS9i25Uhg9EgnHj-n7N4AXd57OtBd0kvYdJedeEVoqu2OoDdt7-yg2EP_QaUXid6 |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VVuJxQFBey9NIXKPN2o4dHzhUFdWWdvfUSr1Zie2FRdvN0iQHkPjvzDjJqgi1QuIaTeLYM2N_43kBfECVKVXhdOIRW6OBQk5Cum3yUucZYfYipwTn2VxNz-Xni-xiBw6HXBgKq-z3_m5Pj7t1_2Tcr-Z4s1yOKSyJGyqARRf8Uus7sIdowKB27h0cn0znW2eCTGMPHaJP6IWh9mgM86Is96LpuE2RXjxW9JTypnPqJhwaz6OjR_CwB5LsoPvXx7AT1vvw4Fp5wX24O-sd50_gF_WcbC8pxt3RHBla2RXV2ggsxOw_1kQEG64YRcJ_YavWUdALnnHJEkWVQmh_Bs--t8iJ9pKhLVszxLusDqtFslzFb-MEPdt8rZrKd33uWZfd9eMpnB99OjucJn3nhcRl6aQhn27KvUpDarSbyFDwIuNalUplgSsthHRlVqbOLNwilKXjXiuXe6NyVyAIEOIZ7K6rdXgBbGEmshBeGuERrGmZO0MV-j0ioyCQfgRiWGe76Qps2CHy7Ju9zh1L3LHUNFPKEeiBJXZIIcVNL9S9BtZ2Ymsktn9JyQg-bt_8Q9AsniH_NPL7QQIsaiK5V4p1qFockaMxLThiqltolJLkuFTZrTQmz6hw2giedyK2XRkyGA3CiZf_OYt3cG96Nju1p8fzk1dwn8ceH3Sv9Bp2m6s2vEGk1ZRve036DbUwKW4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioluminescence+resonance+energy+transfer+using+luciferase-immobilized+quantum+dots+for+self-illuminated+photodynamic+therapy&rft.jtitle=Biomaterials&rft.au=Hsu%2C+Chia-Yen&rft.au=Chen%2C+Ching-Wen&rft.au=Yu%2C+Hsiu-Ping&rft.au=Lin%2C+Yan-Fu&rft.date=2013-01-01&rft.issn=0142-9612&rft.volume=34&rft.issue=4&rft.spage=1204&rft.epage=1212&rft_id=info:doi/10.1016%2Fj.biomaterials.2012.08.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2012_08_044 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961212X00346%2Fcov150h.gif |