Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy

Abstract Photodynamic therapy (PDT) is an innovative method for cancer treatment that involves the administration of a photosensitizing agent followed by exposure to visible light. An appreciable amount of a particular light source is a key to activate photosensitizers in PDT. However, the external...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 34; no. 4; pp. 1204 - 1212
Main Authors Hsu, Chia-Yen, Chen, Ching-Wen, Yu, Hsiu-Ping, Lin, Yan-Fu, Lai, Ping-Shan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Photodynamic therapy (PDT) is an innovative method for cancer treatment that involves the administration of a photosensitizing agent followed by exposure to visible light. An appreciable amount of a particular light source is a key to activate photosensitizers in PDT. However, the external excitation light source is a problem for clinical application because of the limitation of tissue-penetrating properties. Additionally, the wavelength of laser emission should match the absorption wavelength of each photosensitizer for efficient generation of reactive oxygen species and cell killing. In this study, Renilla luciferase-immobilized quantum dots-655 (QD-RLuc8) was used for bioluminescence resonance energy transfer (BRET)-mediated PDT to resolve these problems. The bioluminescent QD-RLuc8 conjugate exhibits self-illumination at 655 nm after coelenterazine addition, which can activate the photosensitizer, Foscan® -loaded micelles for PDT. Our results show that BRET-mediated PDT by QD-RLuc8 plus coelenterazine (20 μg/mL) successfully generated reactive oxygen species (40.8%), killed ∼ 50% A549 cells at 2 μg/mL equivalent Foscan® in vitro and significantly delayed tumor growth in vivo due to cell apoptosis under TUNEL analysis without obvious weight loss. Based on immunohistochemical observations, the proliferating cell nuclear antigen (PCNA)-negative area of tumor sections after BRET-mediated PDT was obviously increased compared to the PDT-untreated groups without an external light source. We conclude that this nanotechnology-based PDT possesses several clinical benefits, such as overcoming light penetration issues and treating deeper lesions that are intractable by PDT alone.
AbstractList Photodynamic therapy (PDT) is an innovative method for cancer treatment that involves the administration of a photosensitizing agent followed by exposure to visible light. An appreciable amount of a particular light source is a key to activate photosensitizers in PDT. However, the external excitation light source is a problem for clinical application because of the limitation of tissue-penetrating properties. Additionally, the wavelength of laser emission should match the absorption wavelength of each photosensitizer for efficient generation of reactive oxygen species and cell killing. In this study, Renilla luciferase-immobilized quantum dots-655 (QD-RLuc8) was used for bioluminescence resonance energy transfer (BRET)-mediated PDT to resolve these problems. The bioluminescent QD-RLuc8 conjugate exhibits self-illumination at 655 nm after coelenterazine addition, which can activate the photosensitizer, Foscan registered -loaded micelles for PDT. Our results show that BRET-mediated PDT by QD-RLuc8 plus coelenterazine (20 mu g/mL) successfully generated reactive oxygen species (40.8%), killed 50% A549 cells at 2 mu g/mL equivalent Foscan registered in vitro and significantly delayed tumor growth in vivo due to cell apoptosis under TUNEL analysis without obvious weight loss. Based on immunohistochemical observations, the proliferating cell nuclear antigen (PCNA)-negative area of tumor sections after BRET-mediated PDT was obviously increased compared to the PDT-untreated groups without an external light source. We conclude that this nanotechnology-based PDT possesses several clinical benefits, such as overcoming light penetration issues and treating deeper lesions that are intractable by PDT alone.
Photodynamic therapy (PDT) is an innovative method for cancer treatment that involves the administration of a photosensitizing agent followed by exposure to visible light. An appreciable amount of a particular light source is a key to activate photosensitizers in PDT. However, the external excitation light source is a problem for clinical application because of the limitation of tissue-penetrating properties. Additionally, the wavelength of laser emission should match the absorption wavelength of each photosensitizer for efficient generation of reactive oxygen species and cell killing. In this study, Renilla luciferase-immobilized quantum dots-655 (QD-RLuc8) was used for bioluminescence resonance energy transfer (BRET)-mediated PDT to resolve these problems. The bioluminescent QD-RLuc8 conjugate exhibits self-illumination at 655 nm after coelenterazine addition, which can activate the photosensitizer, Foscan(®)-loaded micelles for PDT. Our results show that BRET-mediated PDT by QD-RLuc8 plus coelenterazine (20 μg/mL) successfully generated reactive oxygen species (40.8%), killed ~ 50% A549 cells at 2 μg/mL equivalent Foscan(®)in vitro and significantly delayed tumor growth in vivo due to cell apoptosis under TUNEL analysis without obvious weight loss. Based on immunohistochemical observations, the proliferating cell nuclear antigen (PCNA)-negative area of tumor sections after BRET-mediated PDT was obviously increased compared to the PDT-untreated groups without an external light source. We conclude that this nanotechnology-based PDT possesses several clinical benefits, such as overcoming light penetration issues and treating deeper lesions that are intractable by PDT alone.
Abstract Photodynamic therapy (PDT) is an innovative method for cancer treatment that involves the administration of a photosensitizing agent followed by exposure to visible light. An appreciable amount of a particular light source is a key to activate photosensitizers in PDT. However, the external excitation light source is a problem for clinical application because of the limitation of tissue-penetrating properties. Additionally, the wavelength of laser emission should match the absorption wavelength of each photosensitizer for efficient generation of reactive oxygen species and cell killing. In this study, Renilla luciferase-immobilized quantum dots-655 (QD-RLuc8) was used for bioluminescence resonance energy transfer (BRET)-mediated PDT to resolve these problems. The bioluminescent QD-RLuc8 conjugate exhibits self-illumination at 655 nm after coelenterazine addition, which can activate the photosensitizer, Foscan® -loaded micelles for PDT. Our results show that BRET-mediated PDT by QD-RLuc8 plus coelenterazine (20 μg/mL) successfully generated reactive oxygen species (40.8%), killed ∼ 50% A549 cells at 2 μg/mL equivalent Foscan® in vitro and significantly delayed tumor growth in vivo due to cell apoptosis under TUNEL analysis without obvious weight loss. Based on immunohistochemical observations, the proliferating cell nuclear antigen (PCNA)-negative area of tumor sections after BRET-mediated PDT was obviously increased compared to the PDT-untreated groups without an external light source. We conclude that this nanotechnology-based PDT possesses several clinical benefits, such as overcoming light penetration issues and treating deeper lesions that are intractable by PDT alone.
Photodynamic therapy (PDT) is an innovative method for cancer treatment that involves the administration of a photosensitizing agent followed by exposure to visible light. An appreciable amount of a particular light source is a key to activate photosensitizers in PDT. However, the external excitation light source is a problem for clinical application because of the limitation of tissue-penetrating properties. Additionally, the wavelength of laser emission should match the absorption wavelength of each photosensitizer for efficient generation of reactive oxygen species and cell killing. In this study, Renilla luciferase-immobilized quantum dots-655 (QD-RLuc8) was used for bioluminescence resonance energy transfer (BRET)-mediated PDT to resolve these problems. The bioluminescent QD-RLuc8 conjugate exhibits self-illumination at 655 nm after coelenterazine addition, which can activate the photosensitizer, Foscan®-loaded micelles for PDT. Our results show that BRET-mediated PDT by QD-RLuc8 plus coelenterazine (20 μg/mL) successfully generated reactive oxygen species (40.8%), killed ∼ 50% A549 cells at 2 μg/mL equivalent Foscan®in vitro and significantly delayed tumor growth in vivo due to cell apoptosis under TUNEL analysis without obvious weight loss. Based on immunohistochemical observations, the proliferating cell nuclear antigen (PCNA)-negative area of tumor sections after BRET-mediated PDT was obviously increased compared to the PDT-untreated groups without an external light source. We conclude that this nanotechnology-based PDT possesses several clinical benefits, such as overcoming light penetration issues and treating deeper lesions that are intractable by PDT alone.
Author Lai, Ping-Shan
Hsu, Chia-Yen
Lin, Yan-Fu
Chen, Ching-Wen
Yu, Hsiu-Ping
Author_xml – sequence: 1
  fullname: Hsu, Chia-Yen
– sequence: 2
  fullname: Chen, Ching-Wen
– sequence: 3
  fullname: Yu, Hsiu-Ping
– sequence: 4
  fullname: Lin, Yan-Fu
– sequence: 5
  fullname: Lai, Ping-Shan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23069718$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQtVAR3Rb-ArI4cckydhIn4YBESwtIlTgAZ8uxJ60Xx97aCVKQ-O84bEGI055mRnrvzcebM3Lig0dCXjDYMmDi1W7b2zCqCaNVLm05ML6FdgtV9YhsWNu0Rd1BfUI2wCpedILxU3KW0g5yDRV_Qk55CaJrWLshPy9scPNoPSaNXiONmIJXa4Ye4-1Cp6h8GjDSOVl_S92sba5UwsKOY-itsz_Q0PtZ-WkeqQlTokOINKEbCut-a-dRDd3fhSmYxavRajrdZYn98pQ8HvIK-OwhnpOv11dfLj8UN5_ef7x8e1PoGthUdHUJ3AhA6BrNKlRc1bwRvRA1ctGUZaX7ugfdDXrAvtfcNEK3phOtVsDLsjwnLw-6-xjuZ0yTHG3e1znlMcxJMiG6tm7y1Y6BViwPJI6Acs5YyaHlGfr6ANUxpBRxkPtoRxUXyUCupsqd_NdUuZoqoZXZ1Ex-_tBn7kc0f6l_XMyAdwcA5ht-txhl0nZ109iIepIm2OP6vPlPRjvrrVbuGy6YdmGOfuUwmTJHfl7fa_0uxgG6qmnKX17P03w
CitedBy_id crossref_primary_10_1016_j_mtcomm_2020_100975
crossref_primary_10_1021_cr400532z
crossref_primary_10_1002_cmdc_202000979
crossref_primary_10_1186_s12951_017_0279_0
crossref_primary_10_1016_j_pmatsci_2020_100685
crossref_primary_10_1039_C4CC03984J
crossref_primary_10_1126_sciadv_aba3009
crossref_primary_10_1002_ange_202314468
crossref_primary_10_1038_s41598_019_50242_9
crossref_primary_10_1016_j_biomaterials_2022_121875
crossref_primary_10_1021_cr5004198
crossref_primary_10_1021_ac404201s
crossref_primary_10_1016_j_cej_2024_152400
crossref_primary_10_1016_j_pdpdt_2022_102856
crossref_primary_10_1002_adhm_201901058
crossref_primary_10_1016_j_ccr_2022_214726
crossref_primary_10_1039_c4pp00046c
crossref_primary_10_1039_C6CS00271D
crossref_primary_10_1002_smll_201805339
crossref_primary_10_1016_j_polymer_2016_04_056
crossref_primary_10_1080_09205063_2017_1398994
crossref_primary_10_3390_bios9020074
crossref_primary_10_1016_j_biomaterials_2020_119827
crossref_primary_10_1038_s12276_021_00599_7
crossref_primary_10_1016_j_jconrel_2014_04_024
crossref_primary_10_3389_fgene_2018_00616
crossref_primary_10_1021_acs_analchem_5b03581
crossref_primary_10_1002_cbic_201700486
crossref_primary_10_1016_j_biomaterials_2018_10_043
crossref_primary_10_1038_s41377_023_01149_8
crossref_primary_10_1016_j_trac_2018_11_012
crossref_primary_10_1021_acsnano_2c06667
crossref_primary_10_1039_D0CS01370F
crossref_primary_10_1021_acs_chemrev_5b00049
crossref_primary_10_1039_D3NR01735D
crossref_primary_10_1016_j_ccr_2017_02_007
crossref_primary_10_1021_acs_chemrev_6b00030
crossref_primary_10_1016_j_ijpharm_2022_121738
crossref_primary_10_2217_fon_13_176
crossref_primary_10_32607_actanaturae_27331
crossref_primary_10_1002_adma_202200334
crossref_primary_10_1016_j_biomaterials_2023_122079
crossref_primary_10_3390_biom9080384
crossref_primary_10_1021_acsomega_1c00838
crossref_primary_10_3389_fimmu_2021_795232
crossref_primary_10_1021_ct500681m
crossref_primary_10_1016_j_biopha_2020_111095
crossref_primary_10_1039_D0CS01492C
crossref_primary_10_1016_j_biomaterials_2021_121332
crossref_primary_10_1021_acsabm_0c00522
crossref_primary_10_1016_j_biomaterials_2019_119328
crossref_primary_10_3390_bios9010042
crossref_primary_10_1016_j_biomaterials_2013_09_075
crossref_primary_10_1016_j_pdpdt_2020_102082
crossref_primary_10_1039_D0TB00093K
crossref_primary_10_2217_nnm_2017_0077
crossref_primary_10_1002_anie_202314468
crossref_primary_10_1039_C7CC00041C
crossref_primary_10_1063_5_0176861
crossref_primary_10_1021_acsnano_3c05619
crossref_primary_10_1016_j_ccr_2021_213828
crossref_primary_10_1007_s10853_018_3038_1
crossref_primary_10_1016_j_mtbio_2019_100035
crossref_primary_10_1021_acs_bioconjchem_9b00740
crossref_primary_10_1111_brv_12758
crossref_primary_10_1002_smll_202104567
crossref_primary_10_3390_s20102909
crossref_primary_10_1016_j_ejpb_2023_11_008
crossref_primary_10_1016_j_apsb_2016_01_007
crossref_primary_10_3390_cancers13143484
crossref_primary_10_1016_j_ejmech_2020_113111
crossref_primary_10_1002_cphc_201600270
crossref_primary_10_1016_j_cclet_2017_08_015
crossref_primary_10_1007_s00216_016_9434_y
crossref_primary_10_1021_acs_jpcc_9b10536
crossref_primary_10_1039_C7MH00726D
crossref_primary_10_1002_chem_201705640
crossref_primary_10_1007_s00604_017_2145_z
crossref_primary_10_1016_j_addr_2022_114344
crossref_primary_10_1002_adma_201801350
crossref_primary_10_3390_polym14071286
crossref_primary_10_1016_j_ejmech_2019_111683
crossref_primary_10_1039_C8SC04012E
crossref_primary_10_1016_j_jconrel_2019_03_019
crossref_primary_10_1126_sciadv_aat2953
crossref_primary_10_3390_cancers14082004
crossref_primary_10_3389_fchem_2020_00770
crossref_primary_10_1016_j_ccr_2024_216027
crossref_primary_10_1016_j_jphotobiol_2018_09_006
crossref_primary_10_1039_C6CS00616G
crossref_primary_10_1038_s41377_022_00729_4
crossref_primary_10_1021_acs_biomac_8b00085
crossref_primary_10_1016_j_nano_2019_04_008
crossref_primary_10_1021_acs_biomac_7b01469
crossref_primary_10_1515_gps_2021_0006
crossref_primary_10_1039_C6CS00296J
crossref_primary_10_1109_JSTQE_2013_2283155
crossref_primary_10_24075_brsmu_2018_004
crossref_primary_10_1016_j_colsurfb_2014_06_002
crossref_primary_10_1016_j_jddst_2023_104175
crossref_primary_10_1016_j_pdpdt_2023_103923
crossref_primary_10_3389_fbioe_2020_594491
crossref_primary_10_1039_D0TB00262C
crossref_primary_10_1002_adhm_201800252
crossref_primary_10_1016_j_biomaterials_2017_09_026
crossref_primary_10_1039_C5NR00828J
crossref_primary_10_1111_php_13209
crossref_primary_10_1002_adom_201700181
crossref_primary_10_1016_j_apsb_2023_11_007
crossref_primary_10_4155_tde_13_105
crossref_primary_10_1007_s12274_023_5923_4
crossref_primary_10_1039_C7NR05233B
crossref_primary_10_3390_s141019731
crossref_primary_10_1039_D0RA01477J
crossref_primary_10_1002_smll_201501923
crossref_primary_10_1017_S1460396919000153
crossref_primary_10_1111_php_13730
crossref_primary_10_1002_smll_201301459
crossref_primary_10_1021_acsami_6b10255
Cites_doi 10.1016/j.jconrel.2011.06.005
10.1021/ja104299t
10.1021/ja803325b
10.1002/anie.200700280
10.1073/pnas.91.25.12273
10.1126/science.1104274
10.1038/sj.bjc.6600664
10.1021/nl102172j
10.1016/j.jconrel.2011.09.085
10.1021/mp060117f
10.1038/nrc1071
10.1016/j.yjmcc.2008.08.006
10.1088/0957-4484/18/19/195105
10.1038/nprot.2006.162
10.1021/mp100060v
10.1562/0031-8655(2001)074<0126:CPIBHI>2.0.CO;2
10.1111/j.1751-1097.1997.tb03176.x
10.1016/j.jconrel.2006.03.009
10.1088/0957-4484/19/23/235105
10.1016/j.copbio.2007.01.003
10.1016/j.jconrel.2004.03.030
10.1016/j.jconrel.2007.06.012
10.1016/j.biomaterials.2009.03.048
10.1097/00130404-200203000-00009
10.1007/s11307-006-0048-1
10.1039/c2cc33851c
10.1002/smll.201102695
10.1002/adma.200801642
10.1021/ja062677d
10.1021/nl049295v
10.1002/jpp.328
10.1007/978-1-4613-2165-1_28
10.1054/bjoc.2001.1795
10.1016/j.jconrel.2011.03.017
10.1016/0022-1759(83)90303-4
10.1016/j.copbio.2009.01.001
10.1039/c1pp05163f
10.1038/nbt1188
10.1021/nl0611586
10.1063/1.2835701
10.1016/j.jconrel.2008.10.010
ContentType Journal Article
Copyright Elsevier Ltd
2012 Elsevier Ltd
Copyright © 2012 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: Elsevier Ltd
– notice: 2012 Elsevier Ltd
– notice: Copyright © 2012 Elsevier Ltd. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
DOI 10.1016/j.biomaterials.2012.08.044
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList Engineering Research Database
MEDLINE - Academic

Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 1212
ExternalDocumentID 10_1016_j_biomaterials_2012_08_044
23069718
S0142961212009477
1_s2_0_S0142961212009477
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYOK
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AEVXI
AEZYN
AFCTW
AFFNX
AFJKZ
AFKWA
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AJUYK
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
ID FETCH-LOGICAL-c501t-95302d60e097c14ea2a5276b665e267334cb5b0c9fcfebbc2d76c8d968ca02333
IEDL.DBID AIKHN
ISSN 0142-9612
IngestDate Fri Oct 25 06:07:18 EDT 2024
Fri Oct 25 08:33:56 EDT 2024
Fri Oct 25 21:29:58 EDT 2024
Thu Sep 26 18:41:09 EDT 2024
Sat Sep 28 08:07:13 EDT 2024
Fri Feb 23 02:23:07 EST 2024
Tue Oct 15 22:54:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Illumination
Bioluminescence
Photodynamic therapy
Energy transfer
In vivo
Language English
License Copyright © 2012 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-95302d60e097c14ea2a5276b665e267334cb5b0c9fcfebbc2d76c8d968ca02333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23069718
PQID 1221132082
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1669857905
proquest_miscellaneous_1664195365
proquest_miscellaneous_1221132082
crossref_primary_10_1016_j_biomaterials_2012_08_044
pubmed_primary_23069718
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2012_08_044
elsevier_clinicalkeyesjournals_1_s2_0_S0142961212009477
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Nishiyama, Nakagishi, Morimoto, Lai, Miyazaki, Urano (bib11) 2009; 133
Theodossiou, Hothersall, Woods, Okkenhaug, Jacobson, MacRobert (bib31) 2003; 63
So, Xu, Loening, Gambhir, Rao (bib21) 2006; 24
Kim, Chaudhary, Ozkan (bib28) 2007; 18
Chen, Keltner, Christophersen, Zheng, Krouse, Singhal (bib29) 2002; 8
Bovis, Woodhams, Loizidou, Schegelmann, Bown, MacRobert (bib6) 2012; 157
Baba, Pudavar, Roy, Ohulchanskyy, Chen, Pandey (bib7) 2007; 4
Syu, Yu, Hsu, Rajan, Hsu, Chang (bib14) 2012; 8
Schipper, Patel, Gambhir (bib32) 2006; 8
Rao, Dragulescu-Andrasi, Yao (bib23) 2007; 18
Sun, Zhou, Lin, Wang, Fernando, Pathak (bib43) 2006; 128
Xia, Rao (bib24) 2009; 20
Hsu, Nieh, Lai (bib3) 2012; 48
Shieh, Hsu, Huang, Chen, Huang, Lai (bib8) 2011; 152
Mosmann (bib27) 1983; 65
Dolmans, Fukumura, Jain (bib1) 2003; 3
MacDonald, Dougherty (bib2) 2001; 5
Chen, Deng, Lin, Pang, Qing, Qu (bib19) 2008; 19
So, Loening, Gambhir, Rao (bib26) 2006; 1
Redmond, Land, Truscott (bib10) 1985; 193
Lai, Lou, Peng, Pai, Yen, Huang (bib4) 2007; 122
Liu, Chen, Wang, Joly (bib15) 2008; 92
Peng, Lai, Lin, Wu, Shieh (bib12) 2009; 30
Compagnin, Moret, Celotti, Miotto, Woodhams, MacRobert (bib34) 2011; 10
Du, Yu, Pan, Li, Chen, Yan (bib22) 2010; 132
Koshman, Waters, Walker, Los, de Tombe, Goldspink (bib16) 2008; 45
Carpenter, Fehr, Kraus, Petrich (bib30) 1994; 91
Jang, Nakagishi, Nishiyama, Kawauchi, Morimoto, Kikuchi (bib9) 2006; 113
Murcia, Minner, Mustata, Ritchie, Naumann (bib17) 2008; 130
Wyld, Reed, Brown (bib40) 2001; 84
Lagerholm, Wang, Ernst, Ly, Liu, Bruchez (bib35) 2004; 4
Lu, Syu, Nishiyama, Kataoka, Lai (bib37) 2011; 155
Michalet, Pinaud, Bentolila, Tsay, Doose, Li (bib20) 2005; 307
Luo, Kessel (bib41) 1997; 66
Shieh, Peng, Chiang, Wang, Hsu, Wang (bib13) 2010; 7
Teiten, Bezdetnaya, Morliere, Santus, Guillemin (bib33) 2003; 88
Luksiene (bib38) 2003; 39
Bayles, Chahal, Chahal, Goldbeck, Cohen, Helms (bib36) 2010; 10
Yao, Zhang, Xiao, Xia, Rao (bib25) 2007; 46
Kang, Liu, Tsang, Ma, Fan, Wong (bib42) 2009; 21
Takeuchi, Ichikawa, Yonezawa, Kurohane, Koishi, Nango (bib5) 2004; 97
Zhang, So, Rao (bib18) 2006; 6
Kamuhabwa, Agostinis, D'Hallewin, Baert, De Witte (bib39) 2001; 74
Shieh (10.1016/j.biomaterials.2012.08.044_bib8) 2011; 152
MacDonald (10.1016/j.biomaterials.2012.08.044_bib2) 2001; 5
Takeuchi (10.1016/j.biomaterials.2012.08.044_bib5) 2004; 97
Jang (10.1016/j.biomaterials.2012.08.044_bib9) 2006; 113
Peng (10.1016/j.biomaterials.2012.08.044_bib12) 2009; 30
Theodossiou (10.1016/j.biomaterials.2012.08.044_bib31) 2003; 63
Luksiene (10.1016/j.biomaterials.2012.08.044_bib38) 2003; 39
Baba (10.1016/j.biomaterials.2012.08.044_bib7) 2007; 4
Yao (10.1016/j.biomaterials.2012.08.044_bib25) 2007; 46
Lu (10.1016/j.biomaterials.2012.08.044_bib37) 2011; 155
Michalet (10.1016/j.biomaterials.2012.08.044_bib20) 2005; 307
Du (10.1016/j.biomaterials.2012.08.044_bib22) 2010; 132
Kim (10.1016/j.biomaterials.2012.08.044_bib28) 2007; 18
Luo (10.1016/j.biomaterials.2012.08.044_bib41) 1997; 66
Syu (10.1016/j.biomaterials.2012.08.044_bib14) 2012; 8
So (10.1016/j.biomaterials.2012.08.044_bib26) 2006; 1
Shieh (10.1016/j.biomaterials.2012.08.044_bib13) 2010; 7
Kang (10.1016/j.biomaterials.2012.08.044_bib42) 2009; 21
Carpenter (10.1016/j.biomaterials.2012.08.044_bib30) 1994; 91
Bayles (10.1016/j.biomaterials.2012.08.044_bib36) 2010; 10
Kamuhabwa (10.1016/j.biomaterials.2012.08.044_bib39) 2001; 74
Hsu (10.1016/j.biomaterials.2012.08.044_bib3) 2012; 48
Schipper (10.1016/j.biomaterials.2012.08.044_bib32) 2006; 8
Nishiyama (10.1016/j.biomaterials.2012.08.044_bib11) 2009; 133
Compagnin (10.1016/j.biomaterials.2012.08.044_bib34) 2011; 10
Lagerholm (10.1016/j.biomaterials.2012.08.044_bib35) 2004; 4
Lai (10.1016/j.biomaterials.2012.08.044_bib4) 2007; 122
Teiten (10.1016/j.biomaterials.2012.08.044_bib33) 2003; 88
So (10.1016/j.biomaterials.2012.08.044_bib21) 2006; 24
Rao (10.1016/j.biomaterials.2012.08.044_bib23) 2007; 18
Chen (10.1016/j.biomaterials.2012.08.044_bib19) 2008; 19
Wyld (10.1016/j.biomaterials.2012.08.044_bib40) 2001; 84
Redmond (10.1016/j.biomaterials.2012.08.044_bib10) 1985; 193
Sun (10.1016/j.biomaterials.2012.08.044_bib43) 2006; 128
Xia (10.1016/j.biomaterials.2012.08.044_bib24) 2009; 20
Chen (10.1016/j.biomaterials.2012.08.044_bib29) 2002; 8
Bovis (10.1016/j.biomaterials.2012.08.044_bib6) 2012; 157
Dolmans (10.1016/j.biomaterials.2012.08.044_bib1) 2003; 3
Liu (10.1016/j.biomaterials.2012.08.044_bib15) 2008; 92
Koshman (10.1016/j.biomaterials.2012.08.044_bib16) 2008; 45
Zhang (10.1016/j.biomaterials.2012.08.044_bib18) 2006; 6
Murcia (10.1016/j.biomaterials.2012.08.044_bib17) 2008; 130
Mosmann (10.1016/j.biomaterials.2012.08.044_bib27) 1983; 65
References_xml – volume: 152
  start-page: 418
  year: 2011
  end-page: 425
  ident: bib8
  article-title: Reversal of doxorubicin-resistance by multifunctional nanoparticles in MCF-7/ADR cells
  publication-title: J Control Release
  contributor:
    fullname: Lai
– volume: 3
  start-page: 380
  year: 2003
  end-page: 387
  ident: bib1
  article-title: Photodynamic therapy for cancer
  publication-title: Nat Rev Cancer
  contributor:
    fullname: Jain
– volume: 130
  start-page: 15054
  year: 2008
  end-page: 15062
  ident: bib17
  article-title: Design of quantum dot-conjugated lipids for long-term, high-speed tracking experiments on cell surfaces
  publication-title: J Am Chem Soc
  contributor:
    fullname: Naumann
– volume: 5
  start-page: 105
  year: 2001
  end-page: 129
  ident: bib2
  article-title: Basic principles of photodynamic therapy
  publication-title: J Porphyr Phthalocyanines
  contributor:
    fullname: Dougherty
– volume: 48
  start-page: 9343
  year: 2012
  end-page: 9345
  ident: bib3
  article-title: Facile self-assembly of porphyrin-embedded polymeric vesicles for theranostic applications
  publication-title: Chem Comm
  contributor:
    fullname: Lai
– volume: 1
  start-page: 1160
  year: 2006
  end-page: 1164
  ident: bib26
  article-title: Creating self-illuminating quantum dot conjugates
  publication-title: Nat Protoc
  contributor:
    fullname: Rao
– volume: 4
  start-page: 2019
  year: 2004
  end-page: 2022
  ident: bib35
  article-title: Multicolor coding of cells with cationic peptide coated quantum dots
  publication-title: Nano Lett
  contributor:
    fullname: Bruchez
– volume: 10
  start-page: 4086
  year: 2010
  end-page: 4092
  ident: bib36
  article-title: Rapid cytosolic delivery of luminescent nanocrystals in live cells with endosome-disrupting polymer colloids
  publication-title: Nano Lett
  contributor:
    fullname: Helms
– volume: 30
  start-page: 3614
  year: 2009
  end-page: 3625
  ident: bib12
  article-title: Dual chemotherapy and photodynamic therapy in an HT-29 human colon cancer xenograft model using SN-38-loaded chlorin-core star block copolymer micelles
  publication-title: Biomaterials
  contributor:
    fullname: Shieh
– volume: 45
  start-page: 853
  year: 2008
  end-page: 856
  ident: bib16
  article-title: Delivery and visualization of proteins conjugated to quantum dots in cardiac myocytes
  publication-title: J Mol Cell Cardiol
  contributor:
    fullname: Goldspink
– volume: 6
  start-page: 1988
  year: 2006
  end-page: 1992
  ident: bib18
  article-title: Protease-modulated cellular uptake of quantum dots
  publication-title: Nano Lett
  contributor:
    fullname: Rao
– volume: 63
  start-page: 1818
  year: 2003
  end-page: 1821
  ident: bib31
  article-title: Firefly luciferin-activated Rose Bengal: in vitro photodynamic therapy by intracellular chemiluminescence in transgenic NIH 3T3 cells
  publication-title: Cancer Res
  contributor:
    fullname: MacRobert
– volume: 92
  start-page: 043901
  year: 2008
  ident: bib15
  article-title: Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation
  publication-title: Appl Phys Lett
  contributor:
    fullname: Joly
– volume: 24
  start-page: 339
  year: 2006
  end-page: 343
  ident: bib21
  article-title: Self-illuminating quantum dot conjugates for in vivo imaging
  publication-title: Nat Biotechnol
  contributor:
    fullname: Rao
– volume: 65
  start-page: 55
  year: 1983
  end-page: 63
  ident: bib27
  article-title: Rapid colorimetric assay for cellular growth and survival - applicarion to proliferation and cyto-toxicity assays
  publication-title: J Immunol Methods
  contributor:
    fullname: Mosmann
– volume: 8
  start-page: 218
  year: 2006
  end-page: 225
  ident: bib32
  article-title: Evaluation of firefly luciferase bioluminescence mediated photodynamic toxicity in cancer cells
  publication-title: Mol Imaging Biol
  contributor:
    fullname: Gambhir
– volume: 8
  start-page: 154
  year: 2002
  end-page: 163
  ident: bib29
  article-title: New technology for deep light distribution in tissue for phototherapy
  publication-title: Cancer J
  contributor:
    fullname: Singhal
– volume: 21
  start-page: 661
  year: 2009
  end-page: 664
  ident: bib42
  article-title: Water-soluble silicon quantum dots with wavelength-tunable photoluminescence
  publication-title: Adv Mater
  contributor:
    fullname: Wong
– volume: 20
  start-page: 37
  year: 2009
  end-page: 44
  ident: bib24
  article-title: Biosensing and imaging based on bioluminescence resonance energy transfer
  publication-title: Curr Opin Biotechnol
  contributor:
    fullname: Rao
– volume: 66
  start-page: 479
  year: 1997
  end-page: 483
  ident: bib41
  article-title: Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine
  publication-title: Photochem Photobiol
  contributor:
    fullname: Kessel
– volume: 157
  start-page: 196
  year: 2012
  end-page: 205
  ident: bib6
  article-title: Improved in vivo delivery of m-THPC via pegylated liposomes for use in photodynamic therapy
  publication-title: J Control Release
  contributor:
    fullname: MacRobert
– volume: 132
  start-page: 12780
  year: 2010
  end-page: 12781
  ident: bib22
  article-title: Quantum-dot-decorated robust transductable bioluminescent nanocapsules
  publication-title: J Am Chem Soc
  contributor:
    fullname: Yan
– volume: 84
  start-page: 1384
  year: 2001
  end-page: 1386
  ident: bib40
  article-title: Differential cell death response to photodynamic therapy is dependent on dose and cell type
  publication-title: Br J Cancer
  contributor:
    fullname: Brown
– volume: 97
  start-page: 231
  year: 2004
  end-page: 240
  ident: bib5
  article-title: Intracellular target for photo sensitization in cancer antiangiogenic photodynamic therapy mediated by polycation liposome
  publication-title: J Control Release
  contributor:
    fullname: Nango
– volume: 307
  start-page: 538
  year: 2005
  end-page: 544
  ident: bib20
  article-title: Quantum dots for live cells, in vivo imaging, and diagnostics
  publication-title: Science
  contributor:
    fullname: Li
– volume: 19
  year: 2008
  ident: bib19
  article-title: Quantum dot-labeled aptamer nanoprobes specifically targeting glioma cells
  publication-title: Nanotechnology
  contributor:
    fullname: Qu
– volume: 88
  start-page: 146
  year: 2003
  end-page: 152
  ident: bib33
  article-title: Endoplasmic reticulum and golgi apparatus are the preferential sites of Foscan
  publication-title: Br J Cancer
  contributor:
    fullname: Guillemin
– volume: 18
  year: 2007
  ident: bib28
  article-title: Multicolour hybrid nanoprobes of molecular beacon conjugated quantum dots: FRET and gel electrophoresis assisted target DNA detection
  publication-title: Nanotechnology
  contributor:
    fullname: Ozkan
– volume: 10
  start-page: 1751
  year: 2011
  end-page: 1759
  ident: bib34
  article-title: Meta-tetra(hydroxyphenyl)chlorin-loaded liposomes sterically stabilised with poly(ethylene glycol) of different length and density: characterisation, in vitro cellular uptake and phototoxicity
  publication-title: Photochem Photobiol Sci
  contributor:
    fullname: MacRobert
– volume: 193
  start-page: 293
  year: 1985
  end-page: 302
  ident: bib10
  article-title: Aggregation effects on the photophysical properties of porphyrins in relation to mechanisms involved in photodynamic therapy
  publication-title: Adv Exp Med Biol
  contributor:
    fullname: Truscott
– volume: 122
  start-page: 39
  year: 2007
  end-page: 46
  ident: bib4
  article-title: Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy
  publication-title: J Control Release
  contributor:
    fullname: Huang
– volume: 113
  start-page: 73
  year: 2006
  end-page: 79
  ident: bib9
  article-title: Polyion complex micelles for photodynamic therapy: incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property
  publication-title: J Control Release
  contributor:
    fullname: Kikuchi
– volume: 8
  start-page: 2060
  year: 2012
  end-page: 2069
  ident: bib14
  article-title: Improved photodynamic cancer treatment by folate-conjugated polymeric micelles in KB xenografted animal model
  publication-title: Small
  contributor:
    fullname: Chang
– volume: 128
  start-page: 7756
  year: 2006
  end-page: 7757
  ident: bib43
  article-title: Quantum-sized carbon dots for bright and colorful photoluminescence
  publication-title: J Am Chem Soc
  contributor:
    fullname: Pathak
– volume: 74
  start-page: 126
  year: 2001
  end-page: 132
  ident: bib39
  article-title: Cellular photodestruction induced by hypericin in AY-27 rat bladder carcinoma cells
  publication-title: Photochem Photobiol
  contributor:
    fullname: De Witte
– volume: 4
  start-page: 289
  year: 2007
  end-page: 297
  ident: bib7
  article-title: New method for delivering a hydrophobic drug for photodynamic therapy using pure nanocrystal form of the drug
  publication-title: Mol Pharmaceutics
  contributor:
    fullname: Pandey
– volume: 7
  start-page: 1244
  year: 2010
  end-page: 1253
  ident: bib13
  article-title: Reduced skin photosensitivity with meta-tetra(hydroxyphenyl) chlorin-loaded micelles based on a poly (2-ethyl-2-oxazoline)-b-poly (
  publication-title: Mol Pharmaceutics
  contributor:
    fullname: Wang
– volume: 39
  start-page: 1137
  year: 2003
  end-page: 1150
  ident: bib38
  article-title: Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment
  publication-title: Medicina (Kaunas)
  contributor:
    fullname: Luksiene
– volume: 133
  start-page: 245
  year: 2009
  end-page: 251
  ident: bib11
  article-title: Enhanced photodynamic cancer treatment by supramolecular nanocarriers charged with dendrimer phthalocyanine
  publication-title: J Control Release
  contributor:
    fullname: Urano
– volume: 91
  start-page: 12273
  year: 1994
  end-page: 12277
  ident: bib30
  article-title: Chemiluminescent activation of the antiviral activity of hypericin: a molecular flashlight
  publication-title: Proc Natl Acad Sci
  contributor:
    fullname: Petrich
– volume: 46
  start-page: 4346
  year: 2007
  end-page: 4349
  ident: bib25
  article-title: Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases
  publication-title: Angew Chem Int Ed
  contributor:
    fullname: Rao
– volume: 155
  start-page: 458
  year: 2011
  end-page: 464
  ident: bib37
  article-title: Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic therapy and overcomes the drug-resistance in vivo
  publication-title: J Control Release
  contributor:
    fullname: Lai
– volume: 18
  start-page: 17
  year: 2007
  end-page: 25
  ident: bib23
  article-title: Fluorescence imaging in vivo: recent advances
  publication-title: Curr Opin Biotechnol
  contributor:
    fullname: Yao
– volume: 155
  start-page: 458
  year: 2011
  ident: 10.1016/j.biomaterials.2012.08.044_bib37
  article-title: Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic therapy and overcomes the drug-resistance in vivo
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2011.06.005
  contributor:
    fullname: Lu
– volume: 39
  start-page: 1137
  year: 2003
  ident: 10.1016/j.biomaterials.2012.08.044_bib38
  article-title: Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment
  publication-title: Medicina (Kaunas)
  contributor:
    fullname: Luksiene
– volume: 132
  start-page: 12780
  year: 2010
  ident: 10.1016/j.biomaterials.2012.08.044_bib22
  article-title: Quantum-dot-decorated robust transductable bioluminescent nanocapsules
  publication-title: J Am Chem Soc
  doi: 10.1021/ja104299t
  contributor:
    fullname: Du
– volume: 130
  start-page: 15054
  year: 2008
  ident: 10.1016/j.biomaterials.2012.08.044_bib17
  article-title: Design of quantum dot-conjugated lipids for long-term, high-speed tracking experiments on cell surfaces
  publication-title: J Am Chem Soc
  doi: 10.1021/ja803325b
  contributor:
    fullname: Murcia
– volume: 46
  start-page: 4346
  year: 2007
  ident: 10.1016/j.biomaterials.2012.08.044_bib25
  article-title: Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200700280
  contributor:
    fullname: Yao
– volume: 91
  start-page: 12273
  year: 1994
  ident: 10.1016/j.biomaterials.2012.08.044_bib30
  article-title: Chemiluminescent activation of the antiviral activity of hypericin: a molecular flashlight
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.91.25.12273
  contributor:
    fullname: Carpenter
– volume: 307
  start-page: 538
  year: 2005
  ident: 10.1016/j.biomaterials.2012.08.044_bib20
  article-title: Quantum dots for live cells, in vivo imaging, and diagnostics
  publication-title: Science
  doi: 10.1126/science.1104274
  contributor:
    fullname: Michalet
– volume: 63
  start-page: 1818
  year: 2003
  ident: 10.1016/j.biomaterials.2012.08.044_bib31
  article-title: Firefly luciferin-activated Rose Bengal: in vitro photodynamic therapy by intracellular chemiluminescence in transgenic NIH 3T3 cells
  publication-title: Cancer Res
  contributor:
    fullname: Theodossiou
– volume: 88
  start-page: 146
  year: 2003
  ident: 10.1016/j.biomaterials.2012.08.044_bib33
  article-title: Endoplasmic reticulum and golgi apparatus are the preferential sites of Foscan® localisation in cultured tumour cells
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6600664
  contributor:
    fullname: Teiten
– volume: 10
  start-page: 4086
  year: 2010
  ident: 10.1016/j.biomaterials.2012.08.044_bib36
  article-title: Rapid cytosolic delivery of luminescent nanocrystals in live cells with endosome-disrupting polymer colloids
  publication-title: Nano Lett
  doi: 10.1021/nl102172j
  contributor:
    fullname: Bayles
– volume: 157
  start-page: 196
  year: 2012
  ident: 10.1016/j.biomaterials.2012.08.044_bib6
  article-title: Improved in vivo delivery of m-THPC via pegylated liposomes for use in photodynamic therapy
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2011.09.085
  contributor:
    fullname: Bovis
– volume: 4
  start-page: 289
  year: 2007
  ident: 10.1016/j.biomaterials.2012.08.044_bib7
  article-title: New method for delivering a hydrophobic drug for photodynamic therapy using pure nanocrystal form of the drug
  publication-title: Mol Pharmaceutics
  doi: 10.1021/mp060117f
  contributor:
    fullname: Baba
– volume: 3
  start-page: 380
  year: 2003
  ident: 10.1016/j.biomaterials.2012.08.044_bib1
  article-title: Photodynamic therapy for cancer
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1071
  contributor:
    fullname: Dolmans
– volume: 45
  start-page: 853
  year: 2008
  ident: 10.1016/j.biomaterials.2012.08.044_bib16
  article-title: Delivery and visualization of proteins conjugated to quantum dots in cardiac myocytes
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2008.08.006
  contributor:
    fullname: Koshman
– volume: 18
  year: 2007
  ident: 10.1016/j.biomaterials.2012.08.044_bib28
  article-title: Multicolour hybrid nanoprobes of molecular beacon conjugated quantum dots: FRET and gel electrophoresis assisted target DNA detection
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/19/195105
  contributor:
    fullname: Kim
– volume: 1
  start-page: 1160
  year: 2006
  ident: 10.1016/j.biomaterials.2012.08.044_bib26
  article-title: Creating self-illuminating quantum dot conjugates
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2006.162
  contributor:
    fullname: So
– volume: 7
  start-page: 1244
  year: 2010
  ident: 10.1016/j.biomaterials.2012.08.044_bib13
  article-title: Reduced skin photosensitivity with meta-tetra(hydroxyphenyl) chlorin-loaded micelles based on a poly (2-ethyl-2-oxazoline)-b-poly (d, l-lactide) diblock copolymer in vivo
  publication-title: Mol Pharmaceutics
  doi: 10.1021/mp100060v
  contributor:
    fullname: Shieh
– volume: 74
  start-page: 126
  year: 2001
  ident: 10.1016/j.biomaterials.2012.08.044_bib39
  article-title: Cellular photodestruction induced by hypericin in AY-27 rat bladder carcinoma cells
  publication-title: Photochem Photobiol
  doi: 10.1562/0031-8655(2001)074<0126:CPIBHI>2.0.CO;2
  contributor:
    fullname: Kamuhabwa
– volume: 66
  start-page: 479
  year: 1997
  ident: 10.1016/j.biomaterials.2012.08.044_bib41
  article-title: Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine
  publication-title: Photochem Photobiol
  doi: 10.1111/j.1751-1097.1997.tb03176.x
  contributor:
    fullname: Luo
– volume: 113
  start-page: 73
  year: 2006
  ident: 10.1016/j.biomaterials.2012.08.044_bib9
  article-title: Polyion complex micelles for photodynamic therapy: incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2006.03.009
  contributor:
    fullname: Jang
– volume: 19
  year: 2008
  ident: 10.1016/j.biomaterials.2012.08.044_bib19
  article-title: Quantum dot-labeled aptamer nanoprobes specifically targeting glioma cells
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/23/235105
  contributor:
    fullname: Chen
– volume: 18
  start-page: 17
  year: 2007
  ident: 10.1016/j.biomaterials.2012.08.044_bib23
  article-title: Fluorescence imaging in vivo: recent advances
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2007.01.003
  contributor:
    fullname: Rao
– volume: 97
  start-page: 231
  year: 2004
  ident: 10.1016/j.biomaterials.2012.08.044_bib5
  article-title: Intracellular target for photo sensitization in cancer antiangiogenic photodynamic therapy mediated by polycation liposome
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2004.03.030
  contributor:
    fullname: Takeuchi
– volume: 122
  start-page: 39
  year: 2007
  ident: 10.1016/j.biomaterials.2012.08.044_bib4
  article-title: Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2007.06.012
  contributor:
    fullname: Lai
– volume: 30
  start-page: 3614
  year: 2009
  ident: 10.1016/j.biomaterials.2012.08.044_bib12
  article-title: Dual chemotherapy and photodynamic therapy in an HT-29 human colon cancer xenograft model using SN-38-loaded chlorin-core star block copolymer micelles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.03.048
  contributor:
    fullname: Peng
– volume: 8
  start-page: 154
  year: 2002
  ident: 10.1016/j.biomaterials.2012.08.044_bib29
  article-title: New technology for deep light distribution in tissue for phototherapy
  publication-title: Cancer J
  doi: 10.1097/00130404-200203000-00009
  contributor:
    fullname: Chen
– volume: 8
  start-page: 218
  year: 2006
  ident: 10.1016/j.biomaterials.2012.08.044_bib32
  article-title: Evaluation of firefly luciferase bioluminescence mediated photodynamic toxicity in cancer cells
  publication-title: Mol Imaging Biol
  doi: 10.1007/s11307-006-0048-1
  contributor:
    fullname: Schipper
– volume: 48
  start-page: 9343
  year: 2012
  ident: 10.1016/j.biomaterials.2012.08.044_bib3
  article-title: Facile self-assembly of porphyrin-embedded polymeric vesicles for theranostic applications
  publication-title: Chem Comm
  doi: 10.1039/c2cc33851c
  contributor:
    fullname: Hsu
– volume: 8
  start-page: 2060
  year: 2012
  ident: 10.1016/j.biomaterials.2012.08.044_bib14
  article-title: Improved photodynamic cancer treatment by folate-conjugated polymeric micelles in KB xenografted animal model
  publication-title: Small
  doi: 10.1002/smll.201102695
  contributor:
    fullname: Syu
– volume: 21
  start-page: 661
  year: 2009
  ident: 10.1016/j.biomaterials.2012.08.044_bib42
  article-title: Water-soluble silicon quantum dots with wavelength-tunable photoluminescence
  publication-title: Adv Mater
  doi: 10.1002/adma.200801642
  contributor:
    fullname: Kang
– volume: 128
  start-page: 7756
  year: 2006
  ident: 10.1016/j.biomaterials.2012.08.044_bib43
  article-title: Quantum-sized carbon dots for bright and colorful photoluminescence
  publication-title: J Am Chem Soc
  doi: 10.1021/ja062677d
  contributor:
    fullname: Sun
– volume: 4
  start-page: 2019
  year: 2004
  ident: 10.1016/j.biomaterials.2012.08.044_bib35
  article-title: Multicolor coding of cells with cationic peptide coated quantum dots
  publication-title: Nano Lett
  doi: 10.1021/nl049295v
  contributor:
    fullname: Lagerholm
– volume: 5
  start-page: 105
  year: 2001
  ident: 10.1016/j.biomaterials.2012.08.044_bib2
  article-title: Basic principles of photodynamic therapy
  publication-title: J Porphyr Phthalocyanines
  doi: 10.1002/jpp.328
  contributor:
    fullname: MacDonald
– volume: 193
  start-page: 293
  year: 1985
  ident: 10.1016/j.biomaterials.2012.08.044_bib10
  article-title: Aggregation effects on the photophysical properties of porphyrins in relation to mechanisms involved in photodynamic therapy
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-1-4613-2165-1_28
  contributor:
    fullname: Redmond
– volume: 84
  start-page: 1384
  year: 2001
  ident: 10.1016/j.biomaterials.2012.08.044_bib40
  article-title: Differential cell death response to photodynamic therapy is dependent on dose and cell type
  publication-title: Br J Cancer
  doi: 10.1054/bjoc.2001.1795
  contributor:
    fullname: Wyld
– volume: 152
  start-page: 418
  year: 2011
  ident: 10.1016/j.biomaterials.2012.08.044_bib8
  article-title: Reversal of doxorubicin-resistance by multifunctional nanoparticles in MCF-7/ADR cells
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2011.03.017
  contributor:
    fullname: Shieh
– volume: 65
  start-page: 55
  year: 1983
  ident: 10.1016/j.biomaterials.2012.08.044_bib27
  article-title: Rapid colorimetric assay for cellular growth and survival - applicarion to proliferation and cyto-toxicity assays
  publication-title: J Immunol Methods
  doi: 10.1016/0022-1759(83)90303-4
  contributor:
    fullname: Mosmann
– volume: 20
  start-page: 37
  year: 2009
  ident: 10.1016/j.biomaterials.2012.08.044_bib24
  article-title: Biosensing and imaging based on bioluminescence resonance energy transfer
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2009.01.001
  contributor:
    fullname: Xia
– volume: 10
  start-page: 1751
  year: 2011
  ident: 10.1016/j.biomaterials.2012.08.044_bib34
  article-title: Meta-tetra(hydroxyphenyl)chlorin-loaded liposomes sterically stabilised with poly(ethylene glycol) of different length and density: characterisation, in vitro cellular uptake and phototoxicity
  publication-title: Photochem Photobiol Sci
  doi: 10.1039/c1pp05163f
  contributor:
    fullname: Compagnin
– volume: 24
  start-page: 339
  year: 2006
  ident: 10.1016/j.biomaterials.2012.08.044_bib21
  article-title: Self-illuminating quantum dot conjugates for in vivo imaging
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1188
  contributor:
    fullname: So
– volume: 6
  start-page: 1988
  year: 2006
  ident: 10.1016/j.biomaterials.2012.08.044_bib18
  article-title: Protease-modulated cellular uptake of quantum dots
  publication-title: Nano Lett
  doi: 10.1021/nl0611586
  contributor:
    fullname: Zhang
– volume: 92
  start-page: 043901
  year: 2008
  ident: 10.1016/j.biomaterials.2012.08.044_bib15
  article-title: Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2835701
  contributor:
    fullname: Liu
– volume: 133
  start-page: 245
  year: 2009
  ident: 10.1016/j.biomaterials.2012.08.044_bib11
  article-title: Enhanced photodynamic cancer treatment by supramolecular nanocarriers charged with dendrimer phthalocyanine
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2008.10.010
  contributor:
    fullname: Nishiyama
SSID ssj0014042
Score 2.5035162
Snippet Abstract Photodynamic therapy (PDT) is an innovative method for cancer treatment that involves the administration of a photosensitizing agent followed by...
Photodynamic therapy (PDT) is an innovative method for cancer treatment that involves the administration of a photosensitizing agent followed by exposure to...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1204
SubjectTerms Advanced Basic Science
Bioluminescence
Biomedical materials
Cell Line, Tumor
Dentistry
Energy transfer
Enzymes, Immobilized
Fluorescence Resonance Energy Transfer - methods
Humans
Illumination
In vivo
Light sources
Luciferases - pharmacokinetics
Lung Neoplasms - drug therapy
Lung Neoplasms - metabolism
Lung Neoplasms - pathology
Mesoporphyrins - administration & dosage
Nanostructure
Photochemotherapy - methods
Photodynamic therapy
Photosensitizing Agents - administration & dosage
Quantum Dots
Renilla
Surgical implants
Treatment Outcome
Tumors
Wavelengths
Title Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy
URI https://www.clinicalkey.es/playcontent/1-s2.0-S0142961212009477
https://dx.doi.org/10.1016/j.biomaterials.2012.08.044
https://www.ncbi.nlm.nih.gov/pubmed/23069718
https://search.proquest.com/docview/1221132082
https://search.proquest.com/docview/1664195365
https://search.proquest.com/docview/1669857905
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61WwnBAUF5LY_KSFzDJrZjxwcOVUW1gNoTlXqzEtsLW203S5McQILfzoyTrIpQKySu0SSOPWPPN54XwBvcMpUqnU48Yms0UMhJSLdNXuoiJ8xeFpTgfHKq5mfy43l-vgNHYy4MhVUOZ39_psfTengyG1ZztlkuZxSWxA0VwKILfqn1LuyhOuLFBPYOP3yan26dCTKNPXSIPqEXxtqjMcyLstzLtuc2RXrxWNFTypv01E04NOqj4wdwfwCS7LD_14ewE9b7cO9aecF9uHMyOM4fwU_qOdldUoy7ozkytLJrqrURWIjZf6yNCDZcMYqE_8JWnaOgF9RxyRJFlUJofwTPvnXIie6SoS3bMMS7rAmrRbJcxW_jBD3bfK3b2vd97lmf3fX9MZwdv_98NE-GzguJy9OsJZ9uyr1KQ2q0y2QoeZlzrSql8sCVFkK6Kq9SZxZuEarKca-VK7xRhSsRBAjxBCbreh2eAVuYTJbCSyM8gjUtC2eoQr9HZBQE0k9BjOtsN32BDTtGnl3Y69yxxB1LTTOlnIIeWWLHFFI89EIz7MDGZrZBYvuXlEzh3fbNPwTNog75p5FfjxJgcSeSe6Vch7rDETka04IjprqFRilJjkuV30pjipwKp03haS9i25Uhg9EgnHj-n7N4AXd57OtBd0kvYdJedeEVoqu2OoDdt7-yg2EP_QaUXid6
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VVuJxQFBey9NIXKPN2o4dHzhUFdWWdvfUSr1Zie2FRdvN0iQHkPjvzDjJqgi1QuIaTeLYM2N_43kBfECVKVXhdOIRW6OBQk5Cum3yUucZYfYipwTn2VxNz-Xni-xiBw6HXBgKq-z3_m5Pj7t1_2Tcr-Z4s1yOKSyJGyqARRf8Uus7sIdowKB27h0cn0znW2eCTGMPHaJP6IWh9mgM86Is96LpuE2RXjxW9JTypnPqJhwaz6OjR_CwB5LsoPvXx7AT1vvw4Fp5wX24O-sd50_gF_WcbC8pxt3RHBla2RXV2ggsxOw_1kQEG64YRcJ_YavWUdALnnHJEkWVQmh_Bs--t8iJ9pKhLVszxLusDqtFslzFb-MEPdt8rZrKd33uWZfd9eMpnB99OjucJn3nhcRl6aQhn27KvUpDarSbyFDwIuNalUplgSsthHRlVqbOLNwilKXjXiuXe6NyVyAIEOIZ7K6rdXgBbGEmshBeGuERrGmZO0MV-j0ioyCQfgRiWGe76Qps2CHy7Ju9zh1L3LHUNFPKEeiBJXZIIcVNL9S9BtZ2Ymsktn9JyQg-bt_8Q9AsniH_NPL7QQIsaiK5V4p1qFockaMxLThiqltolJLkuFTZrTQmz6hw2giedyK2XRkyGA3CiZf_OYt3cG96Nju1p8fzk1dwn8ceH3Sv9Bp2m6s2vEGk1ZRve036DbUwKW4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioluminescence+resonance+energy+transfer+using+luciferase-immobilized+quantum+dots+for+self-illuminated+photodynamic+therapy&rft.jtitle=Biomaterials&rft.au=Hsu%2C+Chia-Yen&rft.au=Chen%2C+Ching-Wen&rft.au=Yu%2C+Hsiu-Ping&rft.au=Lin%2C+Yan-Fu&rft.date=2013-01-01&rft.issn=0142-9612&rft.volume=34&rft.issue=4&rft.spage=1204&rft.epage=1212&rft_id=info:doi/10.1016%2Fj.biomaterials.2012.08.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2012_08_044
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961212X00346%2Fcov150h.gif