Behavioural study of PEMFC during start-up/shutdown cycling for aeronautic applications
The deployment of proton exchange membrane fuel cell (PEMFC) for aeronautic applications is a value-added energy supply alternative that not only generates useful byproducts (oxygen-depleted air, water and heat) but addresses sensitive issues such as improving health conditions of airport personnel...
Saved in:
Published in | Materials for renewable and sustainable energy Vol. 8; no. 1; pp. 1 - 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.03.2019
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The deployment of proton exchange membrane fuel cell (PEMFC) for aeronautic applications is a value-added energy supply alternative that not only generates useful byproducts (oxygen-depleted air, water and heat) but addresses sensitive issues such as improving health conditions of airport personnel (silent operation minimizes noise) and decreasing greenhouse gas emission (in situ zero emissions). However, the PEMFC is yet to be industrialized due to its fast degrading components. The contribution of the several start-ups and shutdowns (a PEMFC undergoes when operated in aircraft) to the degradation is not well-understood. Hence, this study seeks to explore the effects of start-up/shutdown (SU/SD) cycling on a PEMFC’s lifetime. The SU/SD cycling is incorporated with heating to 60 °C and cooling to room temperature to mimic real-life temperature changes encountered in an aircraft. The tested membrane electrode assemblies (MEAs) were characterised for performance and evolution of its components to examine the extent and nature of degradation. More than two-thirds loss of electrochemically active surface area (ECSA) of catalyst, Pt particle growth (4.71–6.41 nm) associated with Ostwald ripening and formation of PtO from adsorption of OH
−
by Pt–M surface were identified to be causes of the observed voltage decay at 0.196 mV h
−1
rate. Hence, it is concluded that SU/SD cycling mostly affects the catalytic component of PEMFC in the aeronautic environment. |
---|---|
AbstractList | The deployment of proton exchange membrane fuel cell (PEMFC) for aeronautic applications is a value-added energy supply alternative that not only generates useful byproducts (oxygen-depleted air, water and heat) but addresses sensitive issues such as improving health conditions of airport personnel (silent operation minimizes noise) and decreasing greenhouse gas emission (in situ zero emissions). However, the PEMFC is yet to be industrialized due to its fast degrading components. The contribution of the several start-ups and shutdowns (a PEMFC undergoes when operated in aircraft) to the degradation is not well-understood. Hence, this study seeks to explore the effects of start-up/shutdown (SU/SD) cycling on a PEMFC’s lifetime. The SU/SD cycling is incorporated with heating to 60 °C and cooling to room temperature to mimic real-life temperature changes encountered in an aircraft. The tested membrane electrode assemblies (MEAs) were characterised for performance and evolution of its components to examine the extent and nature of degradation. More than two-thirds loss of electrochemically active surface area (ECSA) of catalyst, Pt particle growth (4.71–6.41 nm) associated with Ostwald ripening and formation of PtO from adsorption of OH− by Pt–M surface were identified to be causes of the observed voltage decay at 0.196 mV h−1 rate. Hence, it is concluded that SU/SD cycling mostly affects the catalytic component of PEMFC in the aeronautic environment. Abstract The deployment of proton exchange membrane fuel cell (PEMFC) for aeronautic applications is a value-added energy supply alternative that not only generates useful byproducts (oxygen-depleted air, water and heat) but addresses sensitive issues such as improving health conditions of airport personnel (silent operation minimizes noise) and decreasing greenhouse gas emission (in situ zero emissions). However, the PEMFC is yet to be industrialized due to its fast degrading components. The contribution of the several start-ups and shutdowns (a PEMFC undergoes when operated in aircraft) to the degradation is not well-understood. Hence, this study seeks to explore the effects of start-up/shutdown (SU/SD) cycling on a PEMFC’s lifetime. The SU/SD cycling is incorporated with heating to 60 °C and cooling to room temperature to mimic real-life temperature changes encountered in an aircraft. The tested membrane electrode assemblies (MEAs) were characterised for performance and evolution of its components to examine the extent and nature of degradation. More than two-thirds loss of electrochemically active surface area (ECSA) of catalyst, Pt particle growth (4.71–6.41 nm) associated with Ostwald ripening and formation of PtO from adsorption of OH− by Pt–M surface were identified to be causes of the observed voltage decay at 0.196 mV h−1 rate. Hence, it is concluded that SU/SD cycling mostly affects the catalytic component of PEMFC in the aeronautic environment. The deployment of proton exchange membrane fuel cell (PEMFC) for aeronautic applications is a value-added energy supply alternative that not only generates useful byproducts (oxygen-depleted air, water and heat) but addresses sensitive issues such as improving health conditions of airport personnel (silent operation minimizes noise) and decreasing greenhouse gas emission (in situ zero emissions). However, the PEMFC is yet to be industrialized due to its fast degrading components. The contribution of the several start-ups and shutdowns (a PEMFC undergoes when operated in aircraft) to the degradation is not well-understood. Hence, this study seeks to explore the effects of start-up/shutdown (SU/SD) cycling on a PEMFC’s lifetime. The SU/SD cycling is incorporated with heating to 60 °C and cooling to room temperature to mimic real-life temperature changes encountered in an aircraft. The tested membrane electrode assemblies (MEAs) were characterised for performance and evolution of its components to examine the extent and nature of degradation. More than two-thirds loss of electrochemically active surface area (ECSA) of catalyst, Pt particle growth (4.71–6.41 nm) associated with Ostwald ripening and formation of PtO from adsorption of OH − by Pt–M surface were identified to be causes of the observed voltage decay at 0.196 mV h −1 rate. Hence, it is concluded that SU/SD cycling mostly affects the catalytic component of PEMFC in the aeronautic environment. |
ArticleNumber | 4 |
Author | Bujlo, Piotr Dyantyi, Noluntu Parsons, Adrian Pasupathi, Sivakumar |
Author_xml | – sequence: 1 givenname: Noluntu surname: Dyantyi fullname: Dyantyi, Noluntu email: 3174867@myuwc.ac.za organization: Hydrogen South Africa (HySA) Systems Integration and Technology Validation Competence Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape – sequence: 2 givenname: Adrian surname: Parsons fullname: Parsons, Adrian organization: Hydrogen South Africa (HySA) Systems Integration and Technology Validation Competence Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape – sequence: 3 givenname: Piotr surname: Bujlo fullname: Bujlo, Piotr organization: Hydrogen South Africa (HySA) Systems Integration and Technology Validation Competence Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape – sequence: 4 givenname: Sivakumar surname: Pasupathi fullname: Pasupathi, Sivakumar organization: Hydrogen South Africa (HySA) Systems Integration and Technology Validation Competence Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape |
BookMark | eNp1UctO3TAQtSoqlVI-oLtIXafMJH7Ey3LFSwLBAsTSmjg25CqNg50U3b_Ht6noisVoRmfmnBnN-coOxjA6xr4j_EQAdZI4VLwuAXUOjiX_xA4r1LxELtXBey30F3ac0hYAsOYVKnnIHk_dM_3pwxJpKNK8dLsi-OLu7OZ8U3RL7MenjFKcy2U6Sc_L3IXXsbA7O-w7PsSCXAwjLXNvC5qmobc092FM39hnT0Nyx__yEXs4P7vfXJbXtxdXm1_XpRWAc9lwqgRp7ACt9lI5LSSgsMKjIqc4uQzqtuaaW6vaupVkG80RW46u8q4-Ylerbhdoa6bY_6a4M4F68xcI8cnk63s7OKOk1-iwBdF2HJqGUGmhrbKd9EAKstaPVWuK4WVxaTbb_Jcxn28qlLIGqRuRp3CdsjGkFJ1_34pg9naY1Q6T7TB7OwzPnGrlpGn_Uhf_K39MegNVH44Z |
CitedBy_id | crossref_primary_10_1016_j_jpowsour_2020_227779 crossref_primary_10_1016_j_jpowsour_2020_228587 crossref_primary_10_1080_15435075_2020_1712212 crossref_primary_10_1016_j_apsusc_2019_144511 crossref_primary_10_1021_acsami_9b06309 crossref_primary_10_1016_j_isci_2023_106569 crossref_primary_10_1051_e3sconf_202233406004 crossref_primary_10_1021_acscatal_0c02845 crossref_primary_10_1016_j_ijhydene_2023_07_039 crossref_primary_10_1016_j_jelechem_2021_115909 crossref_primary_10_1021_acs_jpcc_1c02805 crossref_primary_10_1016_j_apcatb_2023_122956 crossref_primary_10_1002_ente_202201028 crossref_primary_10_3390_aerospace10010023 crossref_primary_10_3390_en13226111 crossref_primary_10_1021_acs_energyfuels_3c01265 |
Cites_doi | 10.1149/1.3254170 10.1149/1.3210571 10.1016/j.enconman.2010.02.011 10.1016/j.ijhydene.2012.04.085 10.1016/j.ast.2013.04.004 10.1149/1.2214540 10.2514/6.2003-2660 10.1016/j.jpowsour.2011.08.035 10.1039/b925930a 10.1016/j.ijhydene.2015.02.012 10.1016/j.jpowsour.2014.09.012 10.1016/j.ijhydene.2015.09.042 10.1016/j.jpowsour.2007.08.053 10.1016/j.jpowsour.2012.01.059 10.1016/j.ijhydene.2016.01.048 10.1016/j.ijhydene.2009.08.094 10.1016/j.ijhydene.2014.02.161 10.1016/j.jpowsour.2007.11.045 10.1016/j.ijhydene.2008.08.032 10.1016/j.apenergy.2012.08.003 10.1016/j.jpowsour.2007.03.061 10.1016/j.ijhydene.2008.04.048 10.1149/1.2180536 10.1016/j.ijhydene.2009.09.103 10.1149/1.2050347 10.1002/fuce.200700053 10.1016/j.electacta.2014.12.024 10.1016/j.electacta.2006.03.008 10.1016/j.jpowsour.2009.05.010 10.1016/j.jpowsour.2009.08.070 10.1016/j.cherd.2011.07.016 10.1016/B978-0-12-386936-4.10001-6 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 Materials for Renewable and Sustainable Energy is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: Materials for Renewable and Sustainable Energy is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M7S PATMY PDBOC PIMPY PQEST PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.1007/s40243-019-0141-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Environmental Science Database Materials Science Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2194-1467 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_76f91e1b05bd4088a17959c7cd6f0a70 10_1007_s40243_019_0141_4 |
GroupedDBID | -A0 2XV 4.4 5VS 7XC 8FE 8FG 8FH AAFWJ AAJSJ AAKKN AAPBV AAYZJ ABJCF ACACY ACGFS ACIWK ADBBV ADINQ AFGXO AFKRA AFNRJ AFPKN AFRAH AHBXF AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ATCPS BAPOH BCNDV BENPR BGLVJ BHPHI C24 C6C CCPQU D1I EBS EJD GROUPED_DOAJ HCIFZ HH5 IAO IPNFZ KB. KQ8 L6V M7S M~E OK1 PATMY PDBOC PIMPY PROAC PTHSS PYCSY RIG RNS RSV SOJ 0R~ AAYXX ABEEZ ACULB CITATION EBLON ITC ABUWG AZQEC DWQXO GNUQQ PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c501t-84a25a91d01c9f67e956015c5f17ae74aef679b3494cc7b3b6ac89411b41e2fe3 |
IEDL.DBID | DOA |
ISSN | 2194-1459 |
IngestDate | Tue Oct 22 15:15:17 EDT 2024 Thu Oct 10 16:55:44 EDT 2024 Thu Sep 26 15:54:07 EDT 2024 Sat Dec 16 12:05:02 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Degradation Accelerated stress tests Aeronautic environment Proton exchange membrane fuel cells Load profile State of health |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-84a25a91d01c9f67e956015c5f17ae74aef679b3494cc7b3b6ac89411b41e2fe3 |
OpenAccessLink | https://doaj.org/article/76f91e1b05bd4088a17959c7cd6f0a70 |
PQID | 2166306985 |
PQPubID | 2034692 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_76f91e1b05bd4088a17959c7cd6f0a70 proquest_journals_2166306985 crossref_primary_10_1007_s40243_019_0141_4 springer_journals_10_1007_s40243_019_0141_4 |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Materials for renewable and sustainable energy |
PublicationTitleAbbrev | Mater Renew Sustain Energy |
PublicationYear | 2019 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | KalloJFuel cell system development and testing for aircraft applications, in 18th World Hydrogen Energy Conference, 16–21 May2010GermanyEssen435444 WernerCCharacteristics of PEMFC operation in ambient- and low-pressure environment considering the fuel cell humidificationCEAS Aeronaut. J.20146115 ZhangYStudy of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress testJ. Power Sources201527362691:CAS:528:DC%2BC2cXhsFyhtbzE10.1016/j.jpowsour.2014.09.012 MaassSCarbon support oxidation in PEM fuel cell cathodesJ. Power Sources20081764444511:CAS:528:DC%2BD1cXitVajtg%3D%3D10.1016/j.jpowsour.2007.08.053 Klebanoff, L.E., Cornelius, C.J.: Analysis of hydrogen storage for a fuel cell emergency power system (FCEPS) for commercial aircraft. In: Annual Merit Review and Peer Evaluation Meeting, 9–13 May, Arlington, Virginia (2011) InabaMGas crossover and membrane degradation in polymer electrolyte fuel cellsElectrochim. Acta200651574657531:CAS:528:DC%2BD28XotVaqtL0%3D10.1016/j.electacta.2006.03.008 PeiPChangQTangTA quick evaluating method for automotive fuel cell lifetimeInt. J. Hydrogen Energy200833382938361:CAS:528:DC%2BD1cXovF2gtr4%3D10.1016/j.ijhydene.2008.04.048 Eelman, S., del Pozo y de Poza, I., Krieg, T.: Fuel cell APU’s in commercial aircraft—an assessment of SOFC and PEMFC concepts. In: 24th International congress of the aeronautical sciences, 29 Aug–3 Sept, Yokohama, Japan, pp. 1–10 (2004) FerreiraPJInstability of Pt/C electrocatalysts in proton exchange membrane fuel cells. A mechanistic fuel cellsJ. Electrochem. Soc.2005152A2256A227110.1149/1.2050347 de BruijnFADamVATJanssenGJMReview: durability and degradation issues of PEM fuel cell componentsFuel Cells2008832210.1002/fuce.200700053 FriedrichKAFuel cell systems for aircraft applicationECS Trans.2009251932021:CAS:528:DC%2BD1MXhtlOju73F10.1149/1.3210571 KeimMMultifunctional fuel cell system in an aircraft environment: an investigation focusing on fuel tank inerting and water generationAerosp. Sci. Technol.20132933033810.1016/j.ast.2013.04.004 BégotSFuel cell climatic tests designed for new configured aircraft applicationEnergy Convers. Manage.2010511522153510.1016/j.enconman.2010.02.011 TangHA degradation study of Nafion proton exchange membrane of PEM fuel cellsJ. Power Sources200717085921:CAS:528:DC%2BD2sXmtVSru78%3D10.1016/j.jpowsour.2007.03.061 HordéTAchardPMetkemeijerRPEMFC application for aviation: experimental and numerical study of sensitivity to altitudeInt. J. Hydrogen Energy201237108181082910.1016/j.ijhydene.2012.04.085 PeiPAnalysis on the PEM fuel cells after accelerated life experimentInt. J. Hydrogen Energy201035314731511:CAS:528:DC%2BC3cXjvFalsbs%3D10.1016/j.ijhydene.2009.09.103 Linse, N.: Start/stop phenomena in polymer electrolyte fuel cells, pp. 1–221, PhD Thesis (2012) LinRInvestigating the effect of start-up and shut-down cycles on the performance of the proton exchange membrane fuel cell by segmented cell technologyInt. J. Hydrogen Energy20154014952149621:CAS:528:DC%2BC2MXhs1Sht73I10.1016/j.ijhydene.2015.09.042 Lapeña-ReyNEnvironmentally friendly power sources for aerospace applicationsJ. Power Sources200818135336210.1016/j.jpowsour.2007.11.045 ZhangSEffects of open-circuit operation on membrane and catalyst layer degradation in PEM fuel cellsJ. Power Sources2010195114211481:CAS:528:DC%2BD1MXht1Oiur3I10.1016/j.jpowsour.2009.08.070 YuYA review on performance degradation of proton exchange membrane fuel cells during startup and shutdown processes: causes, consequences, and mitigation strategiesJ. Power Sources201220510231:CAS:528:DC%2BC38XisVKgtbY%3D10.1016/j.jpowsour.2012.01.059 Seidel JonathanASehra ArunKColantonio RenatoONASA aeropropulsion research: Looking forward2001ClevelandNASA, Glenn Research Center MakhariaRDurable PEM fuel cell electrode materials: requirements and benchmarking methodologiesECS Trans.200613181:CAS:528:DC%2BD2sXmsl2isLw%3D10.1149/1.2214540 Renouard-ValletGFuel cells for civil aircraft application: on-board production of power, water and inert gasChem. Eng. Res. Design2012903101:CAS:528:DC%2BC38XisFOhtrg%3D10.1016/j.cherd.2011.07.016 Daggett, D. L., Eelman, S. and Kristiansson, G.: Fuel cell APU for commercial aircraft. In: AIAA/ICAS International air and space symposium and exposition: the next 100 years, 14–17 July, Dayton, Ohio, pp. 1–9 (2003) DLR International Press Release: DLR Airbus A320 ATRA taxis uses fuel cell-powered nose wheel for the first time. Available from: http://www.dlr.de/dlr/presse/en/desktopdefault.aspx/tabid-10307/470_read-931/year-2011/#/gallery/2079 (2011). Accessed 11 June 2015 ChungCGDegradation mechanism of electrocatalyst during long-term operation of PEMFCInt. J. Hydrogen Energy200934897489811:CAS:528:DC%2BD1MXht1Ogt7nJ10.1016/j.ijhydene.2009.08.094 WangXKumarRMyersDEffect of voltage on platinum dissolution relevance to polymer electrolyte fuel cellsElectrochem. Solid-State Lett.20069A225A2271:CAS:528:DC%2BD28XjsVWltbo%3D10.1149/1.2180536 JoYYDegradation of polymer electrolyte membrane fuel cells repetitively exposed to reverse current condition under different temperatureJ. Power Sources2011196990699151:CAS:528:DC%2BC3MXht1CktbjI10.1016/j.jpowsour.2011.08.035 ZhaoMInfluence of membrane thickness on membrane degradation and platinum agglomeration under long-term open circuit voltage conditionsElectrochim. Acta20151532542621:CAS:528:DC%2BC2cXitVyjs7%2FJ10.1016/j.electacta.2014.12.024 Boeing International Press Release.: 787 electrical system. Available from: http://787updates.newairplane.com/787-Electrical-Systems/787-Electrical-System (2013). Accessed 11 June 2015 WernerCBusemeyerLKalloJThe impact of operating parameters and system architecture on the water management of a multifunctional PEMFC systemInt. J. Hydrogen Energy20154011595116031:CAS:528:DC%2BC2MXjtFGgtbg%3D10.1016/j.ijhydene.2015.02.012 PrattJWProton exchange membrane fuel cells for electrical power generation on-board commercial airplanesAppl. Energy20131017767961:CAS:528:DC%2BC38XhslClur3M10.1016/j.apenergy.2012.08.003 Romeo, G.: The First European Commision Funded aircraft powered by a hydrogen fuel cell took its first flight. https://fuelcellsworks.com/archives/2010/06/15/first-european-commission-funded-aircraft-powered-by-a-hydrogen-fuel-cell-takes-first-flight/ (2010). Accessed 23 July 2015 KimJHEffects of cathode inlet relative humidity on PEMFC durability during startup-shutdown cyclingJ. Electrochem. Soc.2010157B104B1121:CAS:528:DC%2BD1MXhsFagur%2FK10.1149/1.3254170 LiuMDiagnosis of membrane electrode assembly degradation with drive cycle test techniqueInt. J. Hydrogen Energy20143914370143751:CAS:528:DC%2BC2cXltFCjs7w%3D10.1016/j.ijhydene.2014.02.161 RoussVMechanical behaviour of a fuel cell stack under vibrating conditions linked to aircraft applications part I: experimentalInt. J. Hydrogen Energy200833675567651:CAS:528:DC%2BD1cXhtlCrurnK10.1016/j.ijhydene.2008.08.032 UnoMDevelopment and demonstration flight of a fuel cell system for high-altitude balloonsJ. Power Sources20091937887961:CAS:528:DC%2BD1MXotVKiu7c%3D10.1016/j.jpowsour.2009.05.010 Rathke, P., et al.: Long distance flight testing with fuel cell powered aircraft antares DLR-H2. https://www.dglr.de/publikationen/2014/301219.pdf (2013). Accessed 11 June 2015 ShanJLocal resolved investigation of PEMFC performance degradation mechanism during dynamic driving cycleInt. J. Hydrogen Energy201641423942501:CAS:528:DC%2BC28XhtlOltLo%3D10.1016/j.ijhydene.2016.01.048 Renouard-ValletGImproving the environmental impact of civil aircraft by fuel cell technology: concepts and technological progressEnergy Environ. Sci.201031458146810.1039/b925930a YY Jo (141_CR30) 2011; 196 M Keim (141_CR15) 2013; 29 T Hordé (141_CR19) 2012; 37 PJ Ferreira (141_CR37) 2005; 152 JH Kim (141_CR27) 2010; 157 FA Bruijn de (141_CR26) 2008; 8 X Wang (141_CR36) 2006; 9 G Renouard-Vallet (141_CR17) 2010; 3 R Makharia (141_CR23) 2006; 1 N Lapeña-Rey (141_CR8) 2008; 181 M Liu (141_CR41) 2014; 39 141_CR12 141_CR34 141_CR11 V Rouss (141_CR13) 2008; 33 Y Yu (141_CR33) 2012; 205 P Pei (141_CR28) 2008; 33 J Shan (141_CR31) 2016; 41 S Bégot (141_CR14) 2010; 51 R Lin (141_CR32) 2015; 40 CG Chung (141_CR38) 2009; 34 G Renouard-Vallet (141_CR3) 2012; 90 141_CR10 S Maass (141_CR40) 2008; 176 KA Friedrich (141_CR2) 2009; 25 C Werner (141_CR21) 2015; 40 J Kallo (141_CR20) 2010 M Inaba (141_CR22) 2006; 51 H Tang (141_CR24) 2007; 170 P Pei (141_CR29) 2010; 35 JW Pratt (141_CR4) 2013; 101 M Zhao (141_CR35) 2015; 153 141_CR9 Y Zhang (141_CR39) 2015; 273 M Uno (141_CR18) 2009; 193 S Zhang (141_CR25) 2010; 195 141_CR5 141_CR6 A Seidel Jonathan (141_CR1) 2001 141_CR7 C Werner (141_CR16) 2014; 6 |
References_xml | – volume: 157 start-page: B104 year: 2010 ident: 141_CR27 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3254170 contributor: fullname: JH Kim – volume: 25 start-page: 193 year: 2009 ident: 141_CR2 publication-title: ECS Trans. doi: 10.1149/1.3210571 contributor: fullname: KA Friedrich – volume: 51 start-page: 1522 year: 2010 ident: 141_CR14 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2010.02.011 contributor: fullname: S Bégot – volume: 37 start-page: 10818 year: 2012 ident: 141_CR19 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.04.085 contributor: fullname: T Hordé – volume: 29 start-page: 330 year: 2013 ident: 141_CR15 publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2013.04.004 contributor: fullname: M Keim – volume: 1 start-page: 3 year: 2006 ident: 141_CR23 publication-title: ECS Trans. doi: 10.1149/1.2214540 contributor: fullname: R Makharia – ident: 141_CR6 doi: 10.2514/6.2003-2660 – volume: 196 start-page: 9906 year: 2011 ident: 141_CR30 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.08.035 contributor: fullname: YY Jo – volume: 3 start-page: 1458 year: 2010 ident: 141_CR17 publication-title: Energy Environ. Sci. doi: 10.1039/b925930a contributor: fullname: G Renouard-Vallet – volume: 40 start-page: 11595 year: 2015 ident: 141_CR21 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.02.012 contributor: fullname: C Werner – volume: 273 start-page: 62 year: 2015 ident: 141_CR39 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.09.012 contributor: fullname: Y Zhang – ident: 141_CR12 – ident: 141_CR10 – volume: 40 start-page: 14952 year: 2015 ident: 141_CR32 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.09.042 contributor: fullname: R Lin – volume: 176 start-page: 444 year: 2008 ident: 141_CR40 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.08.053 contributor: fullname: S Maass – volume: 205 start-page: 10 year: 2012 ident: 141_CR33 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.01.059 contributor: fullname: Y Yu – volume: 41 start-page: 4239 year: 2016 ident: 141_CR31 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.01.048 contributor: fullname: J Shan – volume: 34 start-page: 8974 year: 2009 ident: 141_CR38 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.08.094 contributor: fullname: CG Chung – volume: 39 start-page: 14370 year: 2014 ident: 141_CR41 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.02.161 contributor: fullname: M Liu – ident: 141_CR5 – volume: 181 start-page: 353 year: 2008 ident: 141_CR8 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.11.045 contributor: fullname: N Lapeña-Rey – volume: 33 start-page: 6755 year: 2008 ident: 141_CR13 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.08.032 contributor: fullname: V Rouss – volume: 101 start-page: 776 year: 2013 ident: 141_CR4 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.08.003 contributor: fullname: JW Pratt – start-page: 435 volume-title: Fuel cell system development and testing for aircraft applications, in 18th World Hydrogen Energy Conference, 16–21 May year: 2010 ident: 141_CR20 contributor: fullname: J Kallo – volume: 170 start-page: 85 year: 2007 ident: 141_CR24 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.03.061 contributor: fullname: H Tang – volume: 33 start-page: 3829 year: 2008 ident: 141_CR28 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.04.048 contributor: fullname: P Pei – volume: 9 start-page: A225 year: 2006 ident: 141_CR36 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.2180536 contributor: fullname: X Wang – volume: 35 start-page: 3147 year: 2010 ident: 141_CR29 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.09.103 contributor: fullname: P Pei – ident: 141_CR7 – volume: 152 start-page: A2256 year: 2005 ident: 141_CR37 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2050347 contributor: fullname: PJ Ferreira – ident: 141_CR9 – volume: 8 start-page: 3 year: 2008 ident: 141_CR26 publication-title: Fuel Cells doi: 10.1002/fuce.200700053 contributor: fullname: FA Bruijn de – volume: 6 start-page: 1 year: 2014 ident: 141_CR16 publication-title: CEAS Aeronaut. J. contributor: fullname: C Werner – volume: 153 start-page: 254 year: 2015 ident: 141_CR35 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.12.024 contributor: fullname: M Zhao – ident: 141_CR11 – volume: 51 start-page: 5746 year: 2006 ident: 141_CR22 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.03.008 contributor: fullname: M Inaba – volume: 193 start-page: 788 year: 2009 ident: 141_CR18 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.05.010 contributor: fullname: M Uno – volume-title: NASA aeropropulsion research: Looking forward year: 2001 ident: 141_CR1 contributor: fullname: A Seidel Jonathan – volume: 195 start-page: 1142 year: 2010 ident: 141_CR25 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.08.070 contributor: fullname: S Zhang – volume: 90 start-page: 3 year: 2012 ident: 141_CR3 publication-title: Chem. Eng. Res. Design doi: 10.1016/j.cherd.2011.07.016 contributor: fullname: G Renouard-Vallet – ident: 141_CR34 doi: 10.1016/B978-0-12-386936-4.10001-6 |
SSID | ssj0001342176 |
Score | 2.2611935 |
Snippet | The deployment of proton exchange membrane fuel cell (PEMFC) for aeronautic applications is a value-added energy supply alternative that not only generates... Abstract The deployment of proton exchange membrane fuel cell (PEMFC) for aeronautic applications is a value-added energy supply alternative that not only... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Accelerated stress tests Aeronautic environment Aeronautics Aging aircraft Aircraft Aircraft components Aircraft noise Airports Byproducts Catalysis Chemistry and Materials Science Cycles Decay rate Degradation Emissions Fuel technology Greenhouse effect Greenhouse gases Heat exchange Load profile Materials Science Original Paper Ostwald ripening Proton exchange membrane fuel cells Renewable and Green Energy Shutdowns State of health Temperature |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxshEB61zqU9RH2qzqPi0FMrlIWFBU5VE9mKKiWKqkbNDQEL6cl2_Tj032fAbJxUaq7sarUaBvi-GeYbgE9acmSyvaKKO00FV4n6tumpaWVMAQFqW6r4Ly6782vx_Ube1IDbql6rHPbEslH385Bj5Cec4dnYdEbLr4s_NHeNytnV2kLjOexxZArNCPZOJ5dXP3ZRllYg5i4d5pCtUyakGVKbuX5OZD0-ZNP5ypBALvXocCoa_o-A5z-50nIETV_BfsWO5Nt2sl_Dszh7Ay8fKAq-hV9V7zCLaZAiHUvmiVxNLqZnZFuRiKPoLXSzOFn93qx7JOEk_M31kbcE8StxcYnYPEe4ycPc9ju4nk5-np3T2juBBtmwNdXCcekM6xsWTOpUzDyIySATUy4q4SIOGp_FaUJQvvWdC9oIxrxgkafYvofRbD6LH4C4ljnttVLGBGGSMJq71mQh-qR7pdQYPg9Gs4utRIa9F0MuFrZoYZstbMUYTrNZ71_M6tZlYL68tXWxWNUlwyLzjfS9wG3QsdwRPajQd6lxqhnD0TApti65ld05yBi-DBO1e_zfPzp4-mOH8IIXB8l-cgSj9XITjxGHrP3H6mx3EsfXng priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqJQkAcmkNU4sWN7hKpVhVTEQAWbZTs2TAX1MfDvObvpC8HAerGi6O6c-87n-w6ha8lzyGQrQURuJGG5CMQWWUVUwX1wAFCL1MU_eCz7Q_bwyl9rsujYC_Ojft-esEiZBwlvvNXDIN3ZRjsQgmW8vdUpO6vjlIIBuE6j5CAtJ5Rxtahh_vaWjSiUyPo3EOaPomiKNb0DtF-DRHw3t-oh2vKjI7S3Rh14jF5qYsPImoETRyz-CPipO-h18Lz1EKTgFmT22Z68z6YVZNvYfcVGyDcMQBUbPwYQHo-y8XoR-wQNe93nTp_UQxKI4xmdEslMzo2iVUadCqXwMeGh3PFAhfGCGQ9CZSMLjXPCFrY0TipGqWXU58EXp6gx-hj5M4RNQY20UgilHFOBKZmbQkXG-SArIUQT3SyUpj_nXBh6yXqcNKxBwzpqWLMmuo9qXS6MNNZJANbV9a7QogyKemozbisG_ztD4-hzJ1xVhsyIrIlaC6Poem9NdE4BJWWlkryJbheGWj3-84vO_7X6Au3myV-i27RQYzqe-UvAH1N7lTzvG0nyzpY priority: 102 providerName: Springer Nature |
Title | Behavioural study of PEMFC during start-up/shutdown cycling for aeronautic applications |
URI | https://link.springer.com/article/10.1007/s40243-019-0141-4 https://www.proquest.com/docview/2166306985 https://doaj.org/article/76f91e1b05bd4088a17959c7cd6f0a70 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PTxwhFH7xx6UejNo2rt1uOHiyIQ4MDHCsm12NicaYmnojwEB7Wo3uHvrf98HM6m6TxouXSQbmwLwH4ft4vO8BHGvJkcm2iiruNBVcJerrqqWmljEFBKh1yeK_um4u7sTlvbxfKfWV74R18sCd4U5VkwyLzFfStwKXhGO5OnZQoW1S5VTH1iuzQqbK6UotEGuXynLI0ikT0ixDmjlvTmQdPmTR-aqQQA61tikV7f41wPlPjLRsPdM92O0xI_nejXUfNuLsAHZWlAQ_ws9e5zCLaJAiGUseErmZXE3HpMtExFb8Wbp4PH3-vZi3SL5J-JPzIn8RxK3ExSfE5Plkm6zGtD_B3XTyY3xB-5oJNMiKzakWjktnWFuxYFKjYuY_TAaZmHJRCRex0fgsShOC8rVvXNBGMOYFizzF-jNszR5m8RCIq5nTXitlTBAmCaO5q00WoE-6VUoN4GRpNPvYSWPYFxHkYmGLFrbZwlYM4Cyb9eXDrGpdGtDXtve1fcvXAxgunWL7pfZsOUPQVDVGywF8Wzrqtfu_Izp6jxF9gQ-8TKM8m4awNX9axK-IUuZ-BJt6ej6C7bPJ9c0tvo25yM9mPCpT9S_NfuKr |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,41131,41132,42200,42201,43612,43817,51588,52245,74363,74630 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxQxDI5KewAOVXmJ7QNy4ASKOpkkk-RUQdVlgW7FoRW9RUkmKafdZR-H_vva2ZluiwTXzGg0chz7sx1_JuSDUTVEsq1muvaGyVpnFkTVMitUyhEAqihd_OOLZnQlv1-r6y7htuiuVfY2sRjqdhoxR35cc_CNVWONOpn9YTg1Cqur3QiNJ2RHCvDV2Ck-_LrJsQgJiLvMl4NYnXGpbF_YxO45iWx8EEvjhSEJkdQj11QY_B_Bzr8qpcUBDffIbocc6ef1Vr8gW2nykjx_wCf4ivzq2A6RSoMW4lg6zfTn2Xh4Stf9iLAKusJWs-PF79WyhRCcxlvsjryhgF6pT3NA5pjfpg8r26_J1fDs8nTEuskJLKqKL5mRvlbe8rbi0eZGJ4yCuIoqc-2Tlj7Bog1ITROjDiI0PhorOQ-Spzon8YZsT6aT9JZQL7g3wWhtbZQ2S2tqLyzS0GfTaq0H5GMvNDdbE2S4eyrkImEHEnYoYScH5AuK9f5F5LYuC9P5jeuOitNNtjzxUKnQSjCCnuM89Khj2-TK62pADvtNcd2BW7iNegzIp36jNo__-Uf7___Ye_J0dDk-d-ffLn4ckGd1URbUmUOyvZyv0hEgkmV4V9TuDqpI2Sk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BKiE4IJ4ipYAPnEBW1rv22j4hWhKVR6MIUdGbZXvtckpCHof-e8aOt2mR4Oq1rNV4PP7GM_MNwFslavRkO0llbRXltYzUNVVHdSNC9AhQm1zFfzZtT8_5lwtxUfKf1iWtsreJ2VB3C5_eyEc1w7uxarUSo1jSImafJh-Wv2nqIJUiraWdxl04kBynDuDgeDydfd-_uDQc8XfuNoeeO2Vc6D7MmWrpeOLmQ886pQ9x9KtuXVSZz_8WCP0rbpqvo8kjeFhwJPm42_jHcCfMn8CDG-yCT-Fn4T5MxBok08iSRSSz8dnkhOyqE3EUNYdul6P1r-2mQ4ec-KtUK3lJEMsSG1aI09NrN7kZ534G55Pxj5NTWvooUC8qtqGK21pYzbqKeR1bGZJPxIQXkUkbJLcBB7VLRDXeS9e41nqlOWOOs1DH0DyHwXwxDy-A2IZZ5ZSUWnuuI9eqto1OpPRRdVLKIbzrhWaWO7oMc02MnCVsUMImSdjwIRwnsV5PTEzXeWCxujTl4BjZRs0Cc5VwHUeTaFnqju6l79pYWVkN4ajfFFOO39rslWUI7_uN2n_-5x8d_n-xN3APdc58-zz9-hLu11lXksocwWCz2oZXCE827nXRuz_MJd7G |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behavioural+study+of+PEMFC+during+start-up%2Fshutdown+cycling+for+aeronautic+applications&rft.jtitle=Materials+for+renewable+and+sustainable+energy&rft.au=Dyantyi%2C+Noluntu&rft.au=Parsons%2C+Adrian&rft.au=Bujlo%2C+Piotr&rft.au=Pasupathi%2C+Sivakumar&rft.date=2019-03-01&rft.issn=2194-1459&rft.eissn=2194-1467&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1007%2Fs40243-019-0141-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40243_019_0141_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-1459&client=summon |