Behavioural study of PEMFC during start-up/shutdown cycling for aeronautic applications

The deployment of proton exchange membrane fuel cell (PEMFC) for aeronautic applications is a value-added energy supply alternative that not only generates useful byproducts (oxygen-depleted air, water and heat) but addresses sensitive issues such as improving health conditions of airport personnel...

Full description

Saved in:
Bibliographic Details
Published inMaterials for renewable and sustainable energy Vol. 8; no. 1; pp. 1 - 8
Main Authors Dyantyi, Noluntu, Parsons, Adrian, Bujlo, Piotr, Pasupathi, Sivakumar
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2019
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The deployment of proton exchange membrane fuel cell (PEMFC) for aeronautic applications is a value-added energy supply alternative that not only generates useful byproducts (oxygen-depleted air, water and heat) but addresses sensitive issues such as improving health conditions of airport personnel (silent operation minimizes noise) and decreasing greenhouse gas emission (in situ zero emissions). However, the PEMFC is yet to be industrialized due to its fast degrading components. The contribution of the several start-ups and shutdowns (a PEMFC undergoes when operated in aircraft) to the degradation is not well-understood. Hence, this study seeks to explore the effects of start-up/shutdown (SU/SD) cycling on a PEMFC’s lifetime. The SU/SD cycling is incorporated with heating to 60 °C and cooling to room temperature to mimic real-life temperature changes encountered in an aircraft. The tested membrane electrode assemblies (MEAs) were characterised for performance and evolution of its components to examine the extent and nature of degradation. More than two-thirds loss of electrochemically active surface area (ECSA) of catalyst, Pt particle growth (4.71–6.41 nm) associated with Ostwald ripening and formation of PtO from adsorption of OH − by Pt–M surface were identified to be causes of the observed voltage decay at 0.196 mV h −1 rate. Hence, it is concluded that SU/SD cycling mostly affects the catalytic component of PEMFC in the aeronautic environment.
AbstractList The deployment of proton exchange membrane fuel cell (PEMFC) for aeronautic applications is a value-added energy supply alternative that not only generates useful byproducts (oxygen-depleted air, water and heat) but addresses sensitive issues such as improving health conditions of airport personnel (silent operation minimizes noise) and decreasing greenhouse gas emission (in situ zero emissions). However, the PEMFC is yet to be industrialized due to its fast degrading components. The contribution of the several start-ups and shutdowns (a PEMFC undergoes when operated in aircraft) to the degradation is not well-understood. Hence, this study seeks to explore the effects of start-up/shutdown (SU/SD) cycling on a PEMFC’s lifetime. The SU/SD cycling is incorporated with heating to 60 °C and cooling to room temperature to mimic real-life temperature changes encountered in an aircraft. The tested membrane electrode assemblies (MEAs) were characterised for performance and evolution of its components to examine the extent and nature of degradation. More than two-thirds loss of electrochemically active surface area (ECSA) of catalyst, Pt particle growth (4.71–6.41 nm) associated with Ostwald ripening and formation of PtO from adsorption of OH− by Pt–M surface were identified to be causes of the observed voltage decay at 0.196 mV h−1 rate. Hence, it is concluded that SU/SD cycling mostly affects the catalytic component of PEMFC in the aeronautic environment.
Abstract The deployment of proton exchange membrane fuel cell (PEMFC) for aeronautic applications is a value-added energy supply alternative that not only generates useful byproducts (oxygen-depleted air, water and heat) but addresses sensitive issues such as improving health conditions of airport personnel (silent operation minimizes noise) and decreasing greenhouse gas emission (in situ zero emissions). However, the PEMFC is yet to be industrialized due to its fast degrading components. The contribution of the several start-ups and shutdowns (a PEMFC undergoes when operated in aircraft) to the degradation is not well-understood. Hence, this study seeks to explore the effects of start-up/shutdown (SU/SD) cycling on a PEMFC’s lifetime. The SU/SD cycling is incorporated with heating to 60 °C and cooling to room temperature to mimic real-life temperature changes encountered in an aircraft. The tested membrane electrode assemblies (MEAs) were characterised for performance and evolution of its components to examine the extent and nature of degradation. More than two-thirds loss of electrochemically active surface area (ECSA) of catalyst, Pt particle growth (4.71–6.41 nm) associated with Ostwald ripening and formation of PtO from adsorption of OH− by Pt–M surface were identified to be causes of the observed voltage decay at 0.196 mV h−1 rate. Hence, it is concluded that SU/SD cycling mostly affects the catalytic component of PEMFC in the aeronautic environment.
The deployment of proton exchange membrane fuel cell (PEMFC) for aeronautic applications is a value-added energy supply alternative that not only generates useful byproducts (oxygen-depleted air, water and heat) but addresses sensitive issues such as improving health conditions of airport personnel (silent operation minimizes noise) and decreasing greenhouse gas emission (in situ zero emissions). However, the PEMFC is yet to be industrialized due to its fast degrading components. The contribution of the several start-ups and shutdowns (a PEMFC undergoes when operated in aircraft) to the degradation is not well-understood. Hence, this study seeks to explore the effects of start-up/shutdown (SU/SD) cycling on a PEMFC’s lifetime. The SU/SD cycling is incorporated with heating to 60 °C and cooling to room temperature to mimic real-life temperature changes encountered in an aircraft. The tested membrane electrode assemblies (MEAs) were characterised for performance and evolution of its components to examine the extent and nature of degradation. More than two-thirds loss of electrochemically active surface area (ECSA) of catalyst, Pt particle growth (4.71–6.41 nm) associated with Ostwald ripening and formation of PtO from adsorption of OH − by Pt–M surface were identified to be causes of the observed voltage decay at 0.196 mV h −1 rate. Hence, it is concluded that SU/SD cycling mostly affects the catalytic component of PEMFC in the aeronautic environment.
ArticleNumber 4
Author Bujlo, Piotr
Dyantyi, Noluntu
Parsons, Adrian
Pasupathi, Sivakumar
Author_xml – sequence: 1
  givenname: Noluntu
  surname: Dyantyi
  fullname: Dyantyi, Noluntu
  email: 3174867@myuwc.ac.za
  organization: Hydrogen South Africa (HySA) Systems Integration and Technology Validation Competence Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape
– sequence: 2
  givenname: Adrian
  surname: Parsons
  fullname: Parsons, Adrian
  organization: Hydrogen South Africa (HySA) Systems Integration and Technology Validation Competence Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape
– sequence: 3
  givenname: Piotr
  surname: Bujlo
  fullname: Bujlo, Piotr
  organization: Hydrogen South Africa (HySA) Systems Integration and Technology Validation Competence Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape
– sequence: 4
  givenname: Sivakumar
  surname: Pasupathi
  fullname: Pasupathi, Sivakumar
  organization: Hydrogen South Africa (HySA) Systems Integration and Technology Validation Competence Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape
BookMark eNp1UctO3TAQtSoqlVI-oLtIXafMJH7Ey3LFSwLBAsTSmjg25CqNg50U3b_Ht6noisVoRmfmnBnN-coOxjA6xr4j_EQAdZI4VLwuAXUOjiX_xA4r1LxELtXBey30F3ac0hYAsOYVKnnIHk_dM_3pwxJpKNK8dLsi-OLu7OZ8U3RL7MenjFKcy2U6Sc_L3IXXsbA7O-w7PsSCXAwjLXNvC5qmobc092FM39hnT0Nyx__yEXs4P7vfXJbXtxdXm1_XpRWAc9lwqgRp7ACt9lI5LSSgsMKjIqc4uQzqtuaaW6vaupVkG80RW46u8q4-Ylerbhdoa6bY_6a4M4F68xcI8cnk63s7OKOk1-iwBdF2HJqGUGmhrbKd9EAKstaPVWuK4WVxaTbb_Jcxn28qlLIGqRuRp3CdsjGkFJ1_34pg9naY1Q6T7TB7OwzPnGrlpGn_Uhf_K39MegNVH44Z
CitedBy_id crossref_primary_10_1016_j_jpowsour_2020_227779
crossref_primary_10_1016_j_jpowsour_2020_228587
crossref_primary_10_1080_15435075_2020_1712212
crossref_primary_10_1016_j_apsusc_2019_144511
crossref_primary_10_1021_acsami_9b06309
crossref_primary_10_1016_j_isci_2023_106569
crossref_primary_10_1051_e3sconf_202233406004
crossref_primary_10_1021_acscatal_0c02845
crossref_primary_10_1016_j_ijhydene_2023_07_039
crossref_primary_10_1016_j_jelechem_2021_115909
crossref_primary_10_1021_acs_jpcc_1c02805
crossref_primary_10_1016_j_apcatb_2023_122956
crossref_primary_10_1002_ente_202201028
crossref_primary_10_3390_aerospace10010023
crossref_primary_10_3390_en13226111
crossref_primary_10_1021_acs_energyfuels_3c01265
Cites_doi 10.1149/1.3254170
10.1149/1.3210571
10.1016/j.enconman.2010.02.011
10.1016/j.ijhydene.2012.04.085
10.1016/j.ast.2013.04.004
10.1149/1.2214540
10.2514/6.2003-2660
10.1016/j.jpowsour.2011.08.035
10.1039/b925930a
10.1016/j.ijhydene.2015.02.012
10.1016/j.jpowsour.2014.09.012
10.1016/j.ijhydene.2015.09.042
10.1016/j.jpowsour.2007.08.053
10.1016/j.jpowsour.2012.01.059
10.1016/j.ijhydene.2016.01.048
10.1016/j.ijhydene.2009.08.094
10.1016/j.ijhydene.2014.02.161
10.1016/j.jpowsour.2007.11.045
10.1016/j.ijhydene.2008.08.032
10.1016/j.apenergy.2012.08.003
10.1016/j.jpowsour.2007.03.061
10.1016/j.ijhydene.2008.04.048
10.1149/1.2180536
10.1016/j.ijhydene.2009.09.103
10.1149/1.2050347
10.1002/fuce.200700053
10.1016/j.electacta.2014.12.024
10.1016/j.electacta.2006.03.008
10.1016/j.jpowsour.2009.05.010
10.1016/j.jpowsour.2009.08.070
10.1016/j.cherd.2011.07.016
10.1016/B978-0-12-386936-4.10001-6
ContentType Journal Article
Copyright The Author(s) 2019
Materials for Renewable and Sustainable Energy is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: Materials for Renewable and Sustainable Energy is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M7S
PATMY
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.1007/s40243-019-0141-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2194-1467
EndPage 8
ExternalDocumentID oai_doaj_org_article_76f91e1b05bd4088a17959c7cd6f0a70
10_1007_s40243_019_0141_4
GroupedDBID -A0
2XV
4.4
5VS
7XC
8FE
8FG
8FH
AAFWJ
AAJSJ
AAKKN
AAPBV
AAYZJ
ABJCF
ACACY
ACGFS
ACIWK
ADBBV
ADINQ
AFGXO
AFKRA
AFNRJ
AFPKN
AFRAH
AHBXF
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ATCPS
BAPOH
BCNDV
BENPR
BGLVJ
BHPHI
C24
C6C
CCPQU
D1I
EBS
EJD
GROUPED_DOAJ
HCIFZ
HH5
IAO
IPNFZ
KB.
KQ8
L6V
M7S
M~E
OK1
PATMY
PDBOC
PIMPY
PROAC
PTHSS
PYCSY
RIG
RNS
RSV
SOJ
0R~
AAYXX
ABEEZ
ACULB
CITATION
EBLON
ITC
ABUWG
AZQEC
DWQXO
GNUQQ
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c501t-84a25a91d01c9f67e956015c5f17ae74aef679b3494cc7b3b6ac89411b41e2fe3
IEDL.DBID DOA
ISSN 2194-1459
IngestDate Tue Oct 22 15:15:17 EDT 2024
Thu Oct 10 16:55:44 EDT 2024
Thu Sep 26 15:54:07 EDT 2024
Sat Dec 16 12:05:02 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Degradation
Accelerated stress tests
Aeronautic environment
Proton exchange membrane fuel cells
Load profile
State of health
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-84a25a91d01c9f67e956015c5f17ae74aef679b3494cc7b3b6ac89411b41e2fe3
OpenAccessLink https://doaj.org/article/76f91e1b05bd4088a17959c7cd6f0a70
PQID 2166306985
PQPubID 2034692
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_76f91e1b05bd4088a17959c7cd6f0a70
proquest_journals_2166306985
crossref_primary_10_1007_s40243_019_0141_4
springer_journals_10_1007_s40243_019_0141_4
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Materials for renewable and sustainable energy
PublicationTitleAbbrev Mater Renew Sustain Energy
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References KalloJFuel cell system development and testing for aircraft applications, in 18th World Hydrogen Energy Conference, 16–21 May2010GermanyEssen435444
WernerCCharacteristics of PEMFC operation in ambient- and low-pressure environment considering the fuel cell humidificationCEAS Aeronaut. J.20146115
ZhangYStudy of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress testJ. Power Sources201527362691:CAS:528:DC%2BC2cXhsFyhtbzE10.1016/j.jpowsour.2014.09.012
MaassSCarbon support oxidation in PEM fuel cell cathodesJ. Power Sources20081764444511:CAS:528:DC%2BD1cXitVajtg%3D%3D10.1016/j.jpowsour.2007.08.053
Klebanoff, L.E., Cornelius, C.J.: Analysis of hydrogen storage for a fuel cell emergency power system (FCEPS) for commercial aircraft. In: Annual Merit Review and Peer Evaluation Meeting, 9–13 May, Arlington, Virginia (2011)
InabaMGas crossover and membrane degradation in polymer electrolyte fuel cellsElectrochim. Acta200651574657531:CAS:528:DC%2BD28XotVaqtL0%3D10.1016/j.electacta.2006.03.008
PeiPChangQTangTA quick evaluating method for automotive fuel cell lifetimeInt. J. Hydrogen Energy200833382938361:CAS:528:DC%2BD1cXovF2gtr4%3D10.1016/j.ijhydene.2008.04.048
Eelman, S., del Pozo y de Poza, I., Krieg, T.: Fuel cell APU’s in commercial aircraft—an assessment of SOFC and PEMFC concepts. In: 24th International congress of the aeronautical sciences, 29 Aug–3 Sept, Yokohama, Japan, pp. 1–10 (2004)
FerreiraPJInstability of Pt/C electrocatalysts in proton exchange membrane fuel cells. A mechanistic fuel cellsJ. Electrochem. Soc.2005152A2256A227110.1149/1.2050347
de BruijnFADamVATJanssenGJMReview: durability and degradation issues of PEM fuel cell componentsFuel Cells2008832210.1002/fuce.200700053
FriedrichKAFuel cell systems for aircraft applicationECS Trans.2009251932021:CAS:528:DC%2BD1MXhtlOju73F10.1149/1.3210571
KeimMMultifunctional fuel cell system in an aircraft environment: an investigation focusing on fuel tank inerting and water generationAerosp. Sci. Technol.20132933033810.1016/j.ast.2013.04.004
BégotSFuel cell climatic tests designed for new configured aircraft applicationEnergy Convers. Manage.2010511522153510.1016/j.enconman.2010.02.011
TangHA degradation study of Nafion proton exchange membrane of PEM fuel cellsJ. Power Sources200717085921:CAS:528:DC%2BD2sXmtVSru78%3D10.1016/j.jpowsour.2007.03.061
HordéTAchardPMetkemeijerRPEMFC application for aviation: experimental and numerical study of sensitivity to altitudeInt. J. Hydrogen Energy201237108181082910.1016/j.ijhydene.2012.04.085
PeiPAnalysis on the PEM fuel cells after accelerated life experimentInt. J. Hydrogen Energy201035314731511:CAS:528:DC%2BC3cXjvFalsbs%3D10.1016/j.ijhydene.2009.09.103
Linse, N.: Start/stop phenomena in polymer electrolyte fuel cells, pp. 1–221, PhD Thesis (2012)
LinRInvestigating the effect of start-up and shut-down cycles on the performance of the proton exchange membrane fuel cell by segmented cell technologyInt. J. Hydrogen Energy20154014952149621:CAS:528:DC%2BC2MXhs1Sht73I10.1016/j.ijhydene.2015.09.042
Lapeña-ReyNEnvironmentally friendly power sources for aerospace applicationsJ. Power Sources200818135336210.1016/j.jpowsour.2007.11.045
ZhangSEffects of open-circuit operation on membrane and catalyst layer degradation in PEM fuel cellsJ. Power Sources2010195114211481:CAS:528:DC%2BD1MXht1Oiur3I10.1016/j.jpowsour.2009.08.070
YuYA review on performance degradation of proton exchange membrane fuel cells during startup and shutdown processes: causes, consequences, and mitigation strategiesJ. Power Sources201220510231:CAS:528:DC%2BC38XisVKgtbY%3D10.1016/j.jpowsour.2012.01.059
Seidel JonathanASehra ArunKColantonio RenatoONASA aeropropulsion research: Looking forward2001ClevelandNASA, Glenn Research Center
MakhariaRDurable PEM fuel cell electrode materials: requirements and benchmarking methodologiesECS Trans.200613181:CAS:528:DC%2BD2sXmsl2isLw%3D10.1149/1.2214540
Renouard-ValletGFuel cells for civil aircraft application: on-board production of power, water and inert gasChem. Eng. Res. Design2012903101:CAS:528:DC%2BC38XisFOhtrg%3D10.1016/j.cherd.2011.07.016
Daggett, D. L., Eelman, S. and Kristiansson, G.: Fuel cell APU for commercial aircraft. In: AIAA/ICAS International air and space symposium and exposition: the next 100 years, 14–17 July, Dayton, Ohio, pp. 1–9 (2003)
DLR International Press Release: DLR Airbus A320 ATRA taxis uses fuel cell-powered nose wheel for the first time. Available from: http://www.dlr.de/dlr/presse/en/desktopdefault.aspx/tabid-10307/470_read-931/year-2011/#/gallery/2079 (2011). Accessed 11 June 2015
ChungCGDegradation mechanism of electrocatalyst during long-term operation of PEMFCInt. J. Hydrogen Energy200934897489811:CAS:528:DC%2BD1MXht1Ogt7nJ10.1016/j.ijhydene.2009.08.094
WangXKumarRMyersDEffect of voltage on platinum dissolution relevance to polymer electrolyte fuel cellsElectrochem. Solid-State Lett.20069A225A2271:CAS:528:DC%2BD28XjsVWltbo%3D10.1149/1.2180536
JoYYDegradation of polymer electrolyte membrane fuel cells repetitively exposed to reverse current condition under different temperatureJ. Power Sources2011196990699151:CAS:528:DC%2BC3MXht1CktbjI10.1016/j.jpowsour.2011.08.035
ZhaoMInfluence of membrane thickness on membrane degradation and platinum agglomeration under long-term open circuit voltage conditionsElectrochim. Acta20151532542621:CAS:528:DC%2BC2cXitVyjs7%2FJ10.1016/j.electacta.2014.12.024
Boeing International Press Release.: 787 electrical system. Available from: http://787updates.newairplane.com/787-Electrical-Systems/787-Electrical-System (2013). Accessed 11 June 2015
WernerCBusemeyerLKalloJThe impact of operating parameters and system architecture on the water management of a multifunctional PEMFC systemInt. J. Hydrogen Energy20154011595116031:CAS:528:DC%2BC2MXjtFGgtbg%3D10.1016/j.ijhydene.2015.02.012
PrattJWProton exchange membrane fuel cells for electrical power generation on-board commercial airplanesAppl. Energy20131017767961:CAS:528:DC%2BC38XhslClur3M10.1016/j.apenergy.2012.08.003
Romeo, G.: The First European Commision Funded aircraft powered by a hydrogen fuel cell took its first flight. https://fuelcellsworks.com/archives/2010/06/15/first-european-commission-funded-aircraft-powered-by-a-hydrogen-fuel-cell-takes-first-flight/ (2010). Accessed 23 July 2015
KimJHEffects of cathode inlet relative humidity on PEMFC durability during startup-shutdown cyclingJ. Electrochem. Soc.2010157B104B1121:CAS:528:DC%2BD1MXhsFagur%2FK10.1149/1.3254170
LiuMDiagnosis of membrane electrode assembly degradation with drive cycle test techniqueInt. J. Hydrogen Energy20143914370143751:CAS:528:DC%2BC2cXltFCjs7w%3D10.1016/j.ijhydene.2014.02.161
RoussVMechanical behaviour of a fuel cell stack under vibrating conditions linked to aircraft applications part I: experimentalInt. J. Hydrogen Energy200833675567651:CAS:528:DC%2BD1cXhtlCrurnK10.1016/j.ijhydene.2008.08.032
UnoMDevelopment and demonstration flight of a fuel cell system for high-altitude balloonsJ. Power Sources20091937887961:CAS:528:DC%2BD1MXotVKiu7c%3D10.1016/j.jpowsour.2009.05.010
Rathke, P., et al.: Long distance flight testing with fuel cell powered aircraft antares DLR-H2. https://www.dglr.de/publikationen/2014/301219.pdf (2013). Accessed 11 June 2015
ShanJLocal resolved investigation of PEMFC performance degradation mechanism during dynamic driving cycleInt. J. Hydrogen Energy201641423942501:CAS:528:DC%2BC28XhtlOltLo%3D10.1016/j.ijhydene.2016.01.048
Renouard-ValletGImproving the environmental impact of civil aircraft by fuel cell technology: concepts and technological progressEnergy Environ. Sci.201031458146810.1039/b925930a
YY Jo (141_CR30) 2011; 196
M Keim (141_CR15) 2013; 29
T Hordé (141_CR19) 2012; 37
PJ Ferreira (141_CR37) 2005; 152
JH Kim (141_CR27) 2010; 157
FA Bruijn de (141_CR26) 2008; 8
X Wang (141_CR36) 2006; 9
G Renouard-Vallet (141_CR17) 2010; 3
R Makharia (141_CR23) 2006; 1
N Lapeña-Rey (141_CR8) 2008; 181
M Liu (141_CR41) 2014; 39
141_CR12
141_CR34
141_CR11
V Rouss (141_CR13) 2008; 33
Y Yu (141_CR33) 2012; 205
P Pei (141_CR28) 2008; 33
J Shan (141_CR31) 2016; 41
S Bégot (141_CR14) 2010; 51
R Lin (141_CR32) 2015; 40
CG Chung (141_CR38) 2009; 34
G Renouard-Vallet (141_CR3) 2012; 90
141_CR10
S Maass (141_CR40) 2008; 176
KA Friedrich (141_CR2) 2009; 25
C Werner (141_CR21) 2015; 40
J Kallo (141_CR20) 2010
M Inaba (141_CR22) 2006; 51
H Tang (141_CR24) 2007; 170
P Pei (141_CR29) 2010; 35
JW Pratt (141_CR4) 2013; 101
M Zhao (141_CR35) 2015; 153
141_CR9
Y Zhang (141_CR39) 2015; 273
M Uno (141_CR18) 2009; 193
S Zhang (141_CR25) 2010; 195
141_CR5
141_CR6
A Seidel Jonathan (141_CR1) 2001
141_CR7
C Werner (141_CR16) 2014; 6
References_xml – volume: 157
  start-page: B104
  year: 2010
  ident: 141_CR27
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3254170
  contributor:
    fullname: JH Kim
– volume: 25
  start-page: 193
  year: 2009
  ident: 141_CR2
  publication-title: ECS Trans.
  doi: 10.1149/1.3210571
  contributor:
    fullname: KA Friedrich
– volume: 51
  start-page: 1522
  year: 2010
  ident: 141_CR14
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2010.02.011
  contributor:
    fullname: S Bégot
– volume: 37
  start-page: 10818
  year: 2012
  ident: 141_CR19
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.04.085
  contributor:
    fullname: T Hordé
– volume: 29
  start-page: 330
  year: 2013
  ident: 141_CR15
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2013.04.004
  contributor:
    fullname: M Keim
– volume: 1
  start-page: 3
  year: 2006
  ident: 141_CR23
  publication-title: ECS Trans.
  doi: 10.1149/1.2214540
  contributor:
    fullname: R Makharia
– ident: 141_CR6
  doi: 10.2514/6.2003-2660
– volume: 196
  start-page: 9906
  year: 2011
  ident: 141_CR30
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.08.035
  contributor:
    fullname: YY Jo
– volume: 3
  start-page: 1458
  year: 2010
  ident: 141_CR17
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b925930a
  contributor:
    fullname: G Renouard-Vallet
– volume: 40
  start-page: 11595
  year: 2015
  ident: 141_CR21
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.02.012
  contributor:
    fullname: C Werner
– volume: 273
  start-page: 62
  year: 2015
  ident: 141_CR39
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.09.012
  contributor:
    fullname: Y Zhang
– ident: 141_CR12
– ident: 141_CR10
– volume: 40
  start-page: 14952
  year: 2015
  ident: 141_CR32
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.09.042
  contributor:
    fullname: R Lin
– volume: 176
  start-page: 444
  year: 2008
  ident: 141_CR40
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.08.053
  contributor:
    fullname: S Maass
– volume: 205
  start-page: 10
  year: 2012
  ident: 141_CR33
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.01.059
  contributor:
    fullname: Y Yu
– volume: 41
  start-page: 4239
  year: 2016
  ident: 141_CR31
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.01.048
  contributor:
    fullname: J Shan
– volume: 34
  start-page: 8974
  year: 2009
  ident: 141_CR38
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.08.094
  contributor:
    fullname: CG Chung
– volume: 39
  start-page: 14370
  year: 2014
  ident: 141_CR41
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.02.161
  contributor:
    fullname: M Liu
– ident: 141_CR5
– volume: 181
  start-page: 353
  year: 2008
  ident: 141_CR8
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.11.045
  contributor:
    fullname: N Lapeña-Rey
– volume: 33
  start-page: 6755
  year: 2008
  ident: 141_CR13
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.08.032
  contributor:
    fullname: V Rouss
– volume: 101
  start-page: 776
  year: 2013
  ident: 141_CR4
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.08.003
  contributor:
    fullname: JW Pratt
– start-page: 435
  volume-title: Fuel cell system development and testing for aircraft applications, in 18th World Hydrogen Energy Conference, 16–21 May
  year: 2010
  ident: 141_CR20
  contributor:
    fullname: J Kallo
– volume: 170
  start-page: 85
  year: 2007
  ident: 141_CR24
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.03.061
  contributor:
    fullname: H Tang
– volume: 33
  start-page: 3829
  year: 2008
  ident: 141_CR28
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.04.048
  contributor:
    fullname: P Pei
– volume: 9
  start-page: A225
  year: 2006
  ident: 141_CR36
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.2180536
  contributor:
    fullname: X Wang
– volume: 35
  start-page: 3147
  year: 2010
  ident: 141_CR29
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.09.103
  contributor:
    fullname: P Pei
– ident: 141_CR7
– volume: 152
  start-page: A2256
  year: 2005
  ident: 141_CR37
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2050347
  contributor:
    fullname: PJ Ferreira
– ident: 141_CR9
– volume: 8
  start-page: 3
  year: 2008
  ident: 141_CR26
  publication-title: Fuel Cells
  doi: 10.1002/fuce.200700053
  contributor:
    fullname: FA Bruijn de
– volume: 6
  start-page: 1
  year: 2014
  ident: 141_CR16
  publication-title: CEAS Aeronaut. J.
  contributor:
    fullname: C Werner
– volume: 153
  start-page: 254
  year: 2015
  ident: 141_CR35
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.12.024
  contributor:
    fullname: M Zhao
– ident: 141_CR11
– volume: 51
  start-page: 5746
  year: 2006
  ident: 141_CR22
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.03.008
  contributor:
    fullname: M Inaba
– volume: 193
  start-page: 788
  year: 2009
  ident: 141_CR18
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.05.010
  contributor:
    fullname: M Uno
– volume-title: NASA aeropropulsion research: Looking forward
  year: 2001
  ident: 141_CR1
  contributor:
    fullname: A Seidel Jonathan
– volume: 195
  start-page: 1142
  year: 2010
  ident: 141_CR25
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.08.070
  contributor:
    fullname: S Zhang
– volume: 90
  start-page: 3
  year: 2012
  ident: 141_CR3
  publication-title: Chem. Eng. Res. Design
  doi: 10.1016/j.cherd.2011.07.016
  contributor:
    fullname: G Renouard-Vallet
– ident: 141_CR34
  doi: 10.1016/B978-0-12-386936-4.10001-6
SSID ssj0001342176
Score 2.2611935
Snippet The deployment of proton exchange membrane fuel cell (PEMFC) for aeronautic applications is a value-added energy supply alternative that not only generates...
Abstract The deployment of proton exchange membrane fuel cell (PEMFC) for aeronautic applications is a value-added energy supply alternative that not only...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms Accelerated stress tests
Aeronautic environment
Aeronautics
Aging aircraft
Aircraft
Aircraft components
Aircraft noise
Airports
Byproducts
Catalysis
Chemistry and Materials Science
Cycles
Decay rate
Degradation
Emissions
Fuel technology
Greenhouse effect
Greenhouse gases
Heat exchange
Load profile
Materials Science
Original Paper
Ostwald ripening
Proton exchange membrane fuel cells
Renewable and Green Energy
Shutdowns
State of health
Temperature
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxshEB61zqU9RH2qzqPi0FMrlIWFBU5VE9mKKiWKqkbNDQEL6cl2_Tj032fAbJxUaq7sarUaBvi-GeYbgE9acmSyvaKKO00FV4n6tumpaWVMAQFqW6r4Ly6782vx_Ube1IDbql6rHPbEslH385Bj5Cec4dnYdEbLr4s_NHeNytnV2kLjOexxZArNCPZOJ5dXP3ZRllYg5i4d5pCtUyakGVKbuX5OZD0-ZNP5ypBALvXocCoa_o-A5z-50nIETV_BfsWO5Nt2sl_Dszh7Ay8fKAq-hV9V7zCLaZAiHUvmiVxNLqZnZFuRiKPoLXSzOFn93qx7JOEk_M31kbcE8StxcYnYPEe4ycPc9ju4nk5-np3T2juBBtmwNdXCcekM6xsWTOpUzDyIySATUy4q4SIOGp_FaUJQvvWdC9oIxrxgkafYvofRbD6LH4C4ljnttVLGBGGSMJq71mQh-qR7pdQYPg9Gs4utRIa9F0MuFrZoYZstbMUYTrNZ71_M6tZlYL68tXWxWNUlwyLzjfS9wG3QsdwRPajQd6lxqhnD0TApti65ld05yBi-DBO1e_zfPzp4-mOH8IIXB8l-cgSj9XITjxGHrP3H6mx3EsfXng
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqJQkAcmkNU4sWN7hKpVhVTEQAWbZTs2TAX1MfDvObvpC8HAerGi6O6c-87n-w6ha8lzyGQrQURuJGG5CMQWWUVUwX1wAFCL1MU_eCz7Q_bwyl9rsujYC_Ojft-esEiZBwlvvNXDIN3ZRjsQgmW8vdUpO6vjlIIBuE6j5CAtJ5Rxtahh_vaWjSiUyPo3EOaPomiKNb0DtF-DRHw3t-oh2vKjI7S3Rh14jF5qYsPImoETRyz-CPipO-h18Lz1EKTgFmT22Z68z6YVZNvYfcVGyDcMQBUbPwYQHo-y8XoR-wQNe93nTp_UQxKI4xmdEslMzo2iVUadCqXwMeGh3PFAhfGCGQ9CZSMLjXPCFrY0TipGqWXU58EXp6gx-hj5M4RNQY20UgilHFOBKZmbQkXG-SArIUQT3SyUpj_nXBh6yXqcNKxBwzpqWLMmuo9qXS6MNNZJANbV9a7QogyKemozbisG_ztD4-hzJ1xVhsyIrIlaC6Poem9NdE4BJWWlkryJbheGWj3-84vO_7X6Au3myV-i27RQYzqe-UvAH1N7lTzvG0nyzpY
  priority: 102
  providerName: Springer Nature
Title Behavioural study of PEMFC during start-up/shutdown cycling for aeronautic applications
URI https://link.springer.com/article/10.1007/s40243-019-0141-4
https://www.proquest.com/docview/2166306985
https://doaj.org/article/76f91e1b05bd4088a17959c7cd6f0a70
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PTxwhFH7xx6UejNo2rt1uOHiyIQ4MDHCsm12NicaYmnojwEB7Wo3uHvrf98HM6m6TxouXSQbmwLwH4ft4vO8BHGvJkcm2iiruNBVcJerrqqWmljEFBKh1yeK_um4u7sTlvbxfKfWV74R18sCd4U5VkwyLzFfStwKXhGO5OnZQoW1S5VTH1iuzQqbK6UotEGuXynLI0ikT0ixDmjlvTmQdPmTR-aqQQA61tikV7f41wPlPjLRsPdM92O0xI_nejXUfNuLsAHZWlAQ_ws9e5zCLaJAiGUseErmZXE3HpMtExFb8Wbp4PH3-vZi3SL5J-JPzIn8RxK3ExSfE5Plkm6zGtD_B3XTyY3xB-5oJNMiKzakWjktnWFuxYFKjYuY_TAaZmHJRCRex0fgsShOC8rVvXNBGMOYFizzF-jNszR5m8RCIq5nTXitlTBAmCaO5q00WoE-6VUoN4GRpNPvYSWPYFxHkYmGLFrbZwlYM4Cyb9eXDrGpdGtDXtve1fcvXAxgunWL7pfZsOUPQVDVGywF8Wzrqtfu_Izp6jxF9gQ-8TKM8m4awNX9axK-IUuZ-BJt6ej6C7bPJ9c0tvo25yM9mPCpT9S_NfuKr
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,41131,41132,42200,42201,43612,43817,51588,52245,74363,74630
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxQxDI5KewAOVXmJ7QNy4ASKOpkkk-RUQdVlgW7FoRW9RUkmKafdZR-H_vva2ZluiwTXzGg0chz7sx1_JuSDUTVEsq1muvaGyVpnFkTVMitUyhEAqihd_OOLZnQlv1-r6y7htuiuVfY2sRjqdhoxR35cc_CNVWONOpn9YTg1Cqur3QiNJ2RHCvDV2Ck-_LrJsQgJiLvMl4NYnXGpbF_YxO45iWx8EEvjhSEJkdQj11QY_B_Bzr8qpcUBDffIbocc6ef1Vr8gW2nykjx_wCf4ivzq2A6RSoMW4lg6zfTn2Xh4Stf9iLAKusJWs-PF79WyhRCcxlvsjryhgF6pT3NA5pjfpg8r26_J1fDs8nTEuskJLKqKL5mRvlbe8rbi0eZGJ4yCuIoqc-2Tlj7Bog1ITROjDiI0PhorOQ-Spzon8YZsT6aT9JZQL7g3wWhtbZQ2S2tqLyzS0GfTaq0H5GMvNDdbE2S4eyrkImEHEnYoYScH5AuK9f5F5LYuC9P5jeuOitNNtjzxUKnQSjCCnuM89Khj2-TK62pADvtNcd2BW7iNegzIp36jNo__-Uf7___Ye_J0dDk-d-ffLn4ckGd1URbUmUOyvZyv0hEgkmV4V9TuDqpI2Sk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BKiE4IJ4ipYAPnEBW1rv22j4hWhKVR6MIUdGbZXvtckpCHof-e8aOt2mR4Oq1rNV4PP7GM_MNwFslavRkO0llbRXltYzUNVVHdSNC9AhQm1zFfzZtT8_5lwtxUfKf1iWtsreJ2VB3C5_eyEc1w7uxarUSo1jSImafJh-Wv2nqIJUiraWdxl04kBynDuDgeDydfd-_uDQc8XfuNoeeO2Vc6D7MmWrpeOLmQ886pQ9x9KtuXVSZz_8WCP0rbpqvo8kjeFhwJPm42_jHcCfMn8CDG-yCT-Fn4T5MxBok08iSRSSz8dnkhOyqE3EUNYdul6P1r-2mQ4ec-KtUK3lJEMsSG1aI09NrN7kZ534G55Pxj5NTWvooUC8qtqGK21pYzbqKeR1bGZJPxIQXkUkbJLcBB7VLRDXeS9e41nqlOWOOs1DH0DyHwXwxDy-A2IZZ5ZSUWnuuI9eqto1OpPRRdVLKIbzrhWaWO7oMc02MnCVsUMImSdjwIRwnsV5PTEzXeWCxujTl4BjZRs0Cc5VwHUeTaFnqju6l79pYWVkN4ajfFFOO39rslWUI7_uN2n_-5x8d_n-xN3APdc58-zz9-hLu11lXksocwWCz2oZXCE827nXRuz_MJd7G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behavioural+study+of+PEMFC+during+start-up%2Fshutdown+cycling+for+aeronautic+applications&rft.jtitle=Materials+for+renewable+and+sustainable+energy&rft.au=Dyantyi%2C+Noluntu&rft.au=Parsons%2C+Adrian&rft.au=Bujlo%2C+Piotr&rft.au=Pasupathi%2C+Sivakumar&rft.date=2019-03-01&rft.issn=2194-1459&rft.eissn=2194-1467&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1007%2Fs40243-019-0141-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40243_019_0141_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-1459&client=summon