Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation

Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 6; pp. 1886 - 1891
Main Authors Gao, Caiji, Zhuang, Xiaohong, Cui, Yong, Fu, Xi, He, Yilin, Zhao, Qiong, Zeng, Yonglun, Shen, Jinbo, Luo, Ming, Jiang, Liwen
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 10.02.2015
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1421271112

Cover

Loading…
Abstract Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT machinery and the autophagy regulator remains unclear. Here, we show that FYVE domain protein required for endosomal sorting 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body (MVB) biogenesis and plant growth, plays roles both in vacuolar protein transport and autophagic degradation. FREE1 also regulates vacuole biogenesis in both seeds and vegetative cells of Arabidopsis . Additionally, FREE1 interacts directly with a unique plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 and associates with the PI3K complex, to regulate the autophagic degradation in plants. Thus, FREE1 plays multiple functional roles in vacuolar protein trafficking and organelle biogenesis as well as in autophagic degradation via a previously unidentified regulatory mechanism of cross-talk between the ESCRT machinery and autophagy process. Significance Macroautophagy (hereafter as autophagy) involves the delivery of cytosolic materials via autophagosome upon its fusion with the endosome and lysosome/vacuole. The endosomal sorting complex required for transport (ESCRT) machinery is responsible for the formation of intraluminal vesicles (ILVs) in multivesicular bodies (MVBs) and the sorting of ubiquitinated membrane cargos into MVB ILVs for degradation. Here, we show that, in addition to regulating MVB biogenesis, the plant-specific ESCRT component FYVE domain protein required for endosomal sorting 1 (FREE1) also plays dual roles in vacuolar protein transport and autophagic degradation. FREE1 directly interacts with a plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 to manipulate the autophagic degradation in plants. Thus, we demonstrate multiple functions of FREE1 and a direct link between the ESCRT machinery and autophagy process in plants.
AbstractList Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT machinery and the autophagy regulator remains unclear. Here, we show that FYVE domain protein required for endosomal sorting 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body (MVB) biogenesis and plant growth, plays roles both in vacuolar protein transport and autophagic degradation. FREE1 also regulates vacuole biogenesis in both seeds and vegetative cells of Arabidopsis. Additionally, FREE1 interacts directly with a unique plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 and associates with the PI3K complex, to regulate the autophagic degradation in plants. Thus, FREE1 plays multiple functional roles in vacuolar protein trafficking and organelle biogenesis as well as in autophagic degradation via a previously unidentified regulatory mechanism of cross-talk between the ESCRT machinery and autophagy process.
Macroautophagy (hereafter as autophagy) involves the delivery of cytosolic materials via autophagosome upon its fusion with the endosome and lysosome/vacuole. The endosomal sorting complex required for transport (ESCRT) machinery is responsible for the formation of intraluminal vesicles (ILVs) in multivesicular bodies (MVBs) and the sorting of ubiquitinated membrane cargos into MVB ILVs for degradation. Here, we show that, in addition to regulating MVB biogenesis, the plant-specific ESCRT component FYVE domain protein required for endosomal sorting 1 (FREE1) also plays dual roles in vacuolar protein transport and autophagic degradation. FREE1 directly interacts with a plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 to manipulate the autophagic degradation in plants. Thus, we demonstrate multiple functions of FREE1 and a direct link between the ESCRT machinery and autophagy process in plants. Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT machinery and the autophagy regulator remains unclear. Here, we show that FYVE domain protein required for endosomal sorting 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body (MVB) biogenesis and plant growth, plays roles both in vacuolar protein transport and autophagic degradation. FREE1 also regulates vacuole biogenesis in both seeds and vegetative cells of Arabidopsis . Additionally, FREE1 interacts directly with a unique plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 and associates with the PI3K complex, to regulate the autophagic degradation in plants. Thus, FREE1 plays multiple functional roles in vacuolar protein trafficking and organelle biogenesis as well as in autophagic degradation via a previously unidentified regulatory mechanism of cross-talk between the ESCRT machinery and autophagy process.
Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT machinery and the autophagy regulator remains unclear. Here, we show that FYVE domain protein required for endosomal sorting 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body (MVB) biogenesis and plant growth, plays roles both in vacuolar protein transport and autophagic degradation. FREE1 also regulates vacuole biogenesis in both seeds and vegetative cells of Arabidopsis . Additionally, FREE1 interacts directly with a unique plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 and associates with the PI3K complex, to regulate the autophagic degradation in plants. Thus, FREE1 plays multiple functional roles in vacuolar protein trafficking and organelle biogenesis as well as in autophagic degradation via a previously unidentified regulatory mechanism of cross-talk between the ESCRT machinery and autophagy process. Significance Macroautophagy (hereafter as autophagy) involves the delivery of cytosolic materials via autophagosome upon its fusion with the endosome and lysosome/vacuole. The endosomal sorting complex required for transport (ESCRT) machinery is responsible for the formation of intraluminal vesicles (ILVs) in multivesicular bodies (MVBs) and the sorting of ubiquitinated membrane cargos into MVB ILVs for degradation. Here, we show that, in addition to regulating MVB biogenesis, the plant-specific ESCRT component FYVE domain protein required for endosomal sorting 1 (FREE1) also plays dual roles in vacuolar protein transport and autophagic degradation. FREE1 directly interacts with a plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 to manipulate the autophagic degradation in plants. Thus, we demonstrate multiple functions of FREE1 and a direct link between the ESCRT machinery and autophagy process in plants.
Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT machinery and the autophagy regulator remains unclear. Here, we show that FYVE domain protein required for endosomal sorting 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body (MVB) biogenesis and plant growth, plays roles both in vacuolar protein transport and autophagic degradation. FREE1 also regulates vacuole biogenesis in both seeds and vegetative cells of Arabidopsis. Additionally, FREE1 interacts directly with a unique plant autophagy regulator SH3 domain-containing protein2 and associates with the PI3K complex, to regulate the autophagic degradation in plants. Thus, FREE1 plays multiple functional roles in vacuolar protein trafficking and organelle biogenesis as well as in autophagic degradation via a previously unidentified regulatory mechanism of cross-talk between the ESCRT machinery and autophagy process.Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT machinery and the autophagy regulator remains unclear. Here, we show that FYVE domain protein required for endosomal sorting 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body (MVB) biogenesis and plant growth, plays roles both in vacuolar protein transport and autophagic degradation. FREE1 also regulates vacuole biogenesis in both seeds and vegetative cells of Arabidopsis. Additionally, FREE1 interacts directly with a unique plant autophagy regulator SH3 domain-containing protein2 and associates with the PI3K complex, to regulate the autophagic degradation in plants. Thus, FREE1 plays multiple functional roles in vacuolar protein trafficking and organelle biogenesis as well as in autophagic degradation via a previously unidentified regulatory mechanism of cross-talk between the ESCRT machinery and autophagy process.
Author Yilin He
Qiong Zhao
Ming Luo
Yonglun Zeng
Xi Fu
Jinbo Shen
Xiaohong Zhuang
Liwen Jiang
Yong Cui
Caiji Gao
Author_xml – sequence: 1
  givenname: Caiji
  surname: Gao
  fullname: Gao, Caiji
  organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
– sequence: 2
  givenname: Xiaohong
  surname: Zhuang
  fullname: Zhuang, Xiaohong
  organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
– sequence: 3
  givenname: Yong
  surname: Cui
  fullname: Cui, Yong
  organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
– sequence: 4
  givenname: Xi
  surname: Fu
  fullname: Fu, Xi
  organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
– sequence: 5
  givenname: Yilin
  surname: He
  fullname: He, Yilin
  organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
– sequence: 6
  givenname: Qiong
  surname: Zhao
  fullname: Zhao, Qiong
  organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
– sequence: 7
  givenname: Yonglun
  surname: Zeng
  fullname: Zeng, Yonglun
  organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
– sequence: 8
  givenname: Jinbo
  surname: Shen
  fullname: Shen, Jinbo
  organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
– sequence: 9
  givenname: Ming
  surname: Luo
  fullname: Luo, Ming
  organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China;, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; and
– sequence: 10
  givenname: Liwen
  surname: Jiang
  fullname: Jiang, Liwen
  organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China;, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25624505$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhS1URKeFNTuw1A2baa_fyQapGqYFqRJSH2vLSZzUVcYOdjIS_x6n0w7QBazu4n7n3OcROvDBW4TeEzgloNjZ4E06JZwSqggh9BVaECjJUvISDtACgKplwSk_REcpPQBAKQp4gw6pkJQLEAu0_TKZHsfQ24RDi43H59FUrglDcgmvb1bXt7gOmyGX9SO-uF6vCXYeR9tNvRmd7_DW1FPoTcRDDKPNuTEan4YQx-zWYDONYbg3natxY7tomqwK_i163Zo-2XdP8RjdXaxvV1-XV98vv63Or5a1ADIuC1I1bQWtkkJyXpZQNYViklVVUQJjvKmNYrRpSc1My1pJBWdWQiUbUlkqGDtGn3e-w1RtbFPnIaLp9RDdxsSfOhin_854d6-7sNWcMVCqzAafngxi-DHZNOqNS7Xte-NtmJImBTBCpeTq_6gUXAGjbHY9eYE-hCn6vImZEoXKF50NP_zZ_L7r5-tl4GwH1DGkFG27Rwjo-T_0_B_6939khXihqN34eJE8vev_oXtuZU7sqxCqZV5BITPwcQe0JmjTRZf03Q0FIgEIlyA5-wXjzNKF
CitedBy_id crossref_primary_10_1038_s41598_024_65555_7
crossref_primary_10_1016_j_plantsci_2019_01_017
crossref_primary_10_1016_j_molp_2016_01_011
crossref_primary_10_3389_fpls_2017_01969
crossref_primary_10_1016_j_semcdb_2017_07_018
crossref_primary_10_1073_pnas_1501318112
crossref_primary_10_3389_fpls_2019_01192
crossref_primary_10_1016_j_molp_2017_11_011
crossref_primary_10_1111_nph_14915
crossref_primary_10_3389_fpls_2020_00164
crossref_primary_10_1080_15592324_2021_1901448
crossref_primary_10_1016_j_isci_2024_110814
crossref_primary_10_1111_nph_18437
crossref_primary_10_3389_fpls_2020_00565
crossref_primary_10_7554_eLife_34532
crossref_primary_10_1093_plcell_koae004
crossref_primary_10_1242_jcs_232868
crossref_primary_10_1146_annurev_arplant_043015_112242
crossref_primary_10_1016_j_tplants_2015_10_008
crossref_primary_10_1080_15548627_2022_2127240
crossref_primary_10_1083_jcb_202203139
crossref_primary_10_1093_bioinformatics_bty399
crossref_primary_10_1007_s00425_020_03354_w
crossref_primary_10_3390_genes10040267
crossref_primary_10_1371_journal_pgen_1010431
crossref_primary_10_1007_s44307_023_00002_8
crossref_primary_10_1016_j_molp_2016_11_002
crossref_primary_10_1016_j_molp_2024_12_013
crossref_primary_10_1111_nph_14500
crossref_primary_10_1111_jipb_13005
crossref_primary_10_1242_jcs_202838
crossref_primary_10_3390_cells7010005
crossref_primary_10_1016_j_pbi_2019_05_009
crossref_primary_10_1016_j_tig_2020_06_013
crossref_primary_10_1146_annurev_arplant_081519_035910
crossref_primary_10_1093_plphys_kiad133
crossref_primary_10_1016_j_plantsci_2020_110489
crossref_primary_10_1042_EBC20170034
crossref_primary_10_1080_15548627_2022_2095838
crossref_primary_10_1093_plphys_kiac329
crossref_primary_10_1093_jxb_ery070
crossref_primary_10_1002_1873_3468_14352
crossref_primary_10_1016_j_envexpbot_2024_105863
crossref_primary_10_3389_fpls_2020_00425
crossref_primary_10_15252_embr_202255037
crossref_primary_10_1002_1873_3468_14355
crossref_primary_10_1111_tpj_15091
crossref_primary_10_3389_fpls_2018_01837
crossref_primary_10_3390_ijms18020306
crossref_primary_10_1071_FP17318
crossref_primary_10_1111_jipb_13792
crossref_primary_10_1186_s12870_024_05854_3
crossref_primary_10_3389_fpls_2023_1226498
crossref_primary_10_1534_g3_119_400456
crossref_primary_10_1016_j_jgg_2022_05_003
crossref_primary_10_1016_j_molp_2020_05_010
crossref_primary_10_1093_plcell_koab235
crossref_primary_10_1111_tpj_15024
crossref_primary_10_1016_j_isci_2023_107752
crossref_primary_10_1038_s42003_024_06284_5
crossref_primary_10_3390_ijms24010843
crossref_primary_10_3389_fpls_2023_1160162
crossref_primary_10_3390_cells9010119
crossref_primary_10_1038_s41477_019_0400_5
crossref_primary_10_1080_15592324_2016_1274481
crossref_primary_10_1016_j_jgg_2015_03_012
crossref_primary_10_1002_1873_3468_14362
crossref_primary_10_3390_ijms22094638
crossref_primary_10_1016_j_pbi_2015_08_010
crossref_primary_10_1002_1873_3468_14404
crossref_primary_10_1016_j_plantsci_2017_10_017
crossref_primary_10_3389_fpls_2019_00207
crossref_primary_10_1093_jxb_erx392
crossref_primary_10_1093_jxb_erac135
crossref_primary_10_3390_ijms21062205
crossref_primary_10_1016_j_pbi_2017_06_017
crossref_primary_10_1111_pbi_12652
crossref_primary_10_1016_j_tplants_2017_08_003
crossref_primary_10_1093_plcell_koac259
crossref_primary_10_1093_plcell_koad227
crossref_primary_10_1016_j_semcdb_2017_08_014
crossref_primary_10_3390_ijms20122900
crossref_primary_10_1007_s12374_020_09252_8
crossref_primary_10_3390_cells10061272
crossref_primary_10_1080_15548627_2021_1976965
crossref_primary_10_1002_1873_3468_14374
crossref_primary_10_3390_ijms20225623
crossref_primary_10_1080_27694127_2024_2395731
crossref_primary_10_1093_pcp_pcy070
crossref_primary_10_1091_mbc_e15_06_0361
crossref_primary_10_1111_tpj_15481
crossref_primary_10_1111_tra_12805
crossref_primary_10_1016_j_molp_2023_07_001
crossref_primary_10_1093_jxb_erad211
crossref_primary_10_3390_ijms22168779
crossref_primary_10_1093_jxb_erad459
crossref_primary_10_1073_pnas_2211258120
crossref_primary_10_1016_j_jplph_2016_06_023
crossref_primary_10_1016_j_tplants_2015_03_014
crossref_primary_10_1016_j_jmb_2025_168981
crossref_primary_10_1093_plcell_koaf012
crossref_primary_10_1038_s41467_023_37185_6
crossref_primary_10_1016_j_pbi_2018_09_004
crossref_primary_10_1073_pnas_1616299114
crossref_primary_10_1104_pp_16_00754
crossref_primary_10_1007_s00709_017_1190_0
crossref_primary_10_1016_j_ncrops_2024_100060
crossref_primary_10_1016_j_molp_2022_10_022
crossref_primary_10_1038_s41467_018_05913_y
crossref_primary_10_1093_pcp_pcw164
crossref_primary_10_1093_plcell_koab263
crossref_primary_10_3390_ijms242216039
crossref_primary_10_3390_plants10122619
crossref_primary_10_1073_pnas_1710866114
crossref_primary_10_1016_j_semcdb_2017_08_038
crossref_primary_10_3389_fpls_2016_01655
crossref_primary_10_1016_j_pbi_2017_08_005
crossref_primary_10_1073_pnas_2011900118
crossref_primary_10_1093_plcell_koac195
crossref_primary_10_1093_plcell_koae099
crossref_primary_10_1038_s41598_017_08577_8
crossref_primary_10_1111_pce_14336
crossref_primary_10_1016_j_tplants_2020_01_008
crossref_primary_10_1111_jipb_12941
crossref_primary_10_1093_plphys_kiaa100
crossref_primary_10_3390_antiox10111736
crossref_primary_10_1093_plphys_kiae426
crossref_primary_10_1146_annurev_arplant_042817_040606
crossref_primary_10_1016_j_molp_2016_02_005
crossref_primary_10_1016_j_pbi_2017_08_011
crossref_primary_10_1111_tpj_15065
crossref_primary_10_1073_pnas_2200492119
crossref_primary_10_1111_nph_19134
crossref_primary_10_1016_j_tplants_2018_05_002
crossref_primary_10_1111_nph_17358
crossref_primary_10_3390_membranes12070696
crossref_primary_10_1007_s13237_024_00505_2
crossref_primary_10_3389_fpls_2018_00781
crossref_primary_10_1016_j_molbiopara_2016_07_003
crossref_primary_10_1111_jipb_13460
crossref_primary_10_1007_s00709_015_0842_1
crossref_primary_10_1016_j_jplph_2020_153229
crossref_primary_10_1016_j_plantsci_2018_04_008
crossref_primary_10_3389_fpls_2022_1049144
crossref_primary_10_1080_15592324_2021_1977527
crossref_primary_10_1111_jipb_12895
crossref_primary_10_1016_j_tplants_2017_08_009
Cites_doi 10.1016/j.tplants.2012.05.006
10.1091/mbc.e13-08-0449
10.1104/pp.107.103945
10.1016/j.ceb.2007.07.002
10.1105/tpc.113.118307
10.1016/j.cell.2011.10.026
10.1091/mbc.e13-08-0447
10.4161/cc.7.9.5784
10.1146/annurev-cellbio-092910-154005
10.1111/j.1365-313X.2009.03851.x
10.1242/jcs.050021
10.1016/j.cub.2007.07.029
10.1105/tpc.106.045997
10.1093/hmg/ddq100
10.1016/j.cub.2014.09.014
10.1038/ncb1007-1102
10.1105/tpc.109.068635
10.1016/j.cell.2010.01.028
10.1242/jcs.091702
10.1042/BST0381469
10.1105/tpc.114.123141
10.1073/pnas.1402262111
10.1038/ncb1740
10.1016/j.cub.2007.09.032
10.1105/tpc.112.096057
10.1242/jcs.01370
10.1016/j.devcel.2011.05.015
10.1083/jcb.200702115
10.1016/j.tplants.2006.01.008
10.1111/j.1600-0854.2011.01242.x
10.1105/tpc.113.113399
ContentType Journal Article
Copyright Copyright National Academy of Sciences Feb 10, 2015
Copyright_xml – notice: Copyright National Academy of Sciences Feb 10, 2015
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1421271112
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Virology and AIDS Abstracts
CrossRef


MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate FREE1 regulates protein trafficking and autophagy
EISSN 1091-6490
EndPage 1891
ExternalDocumentID PMC4330779
3594804711
25624505
10_1073_pnas_1421271112
112_6_1886
US201600146064
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Research Grants Council, University Grants Committee, Hong Kong (RGC, UGC)
  grantid: AoE/M-05/12
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
H13
KM
PQEST
X
XHC
AAYXX
ABXSQ
ACHIC
ADQXQ
AQVQM
CITATION
IPSME
CGR
CUY
CVF
ECM
EIF
NPM
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c501t-81bdfb0f765644990bd87363bb890334dca732df1c3af3f62543e60b6d1be2533
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:36:26 EDT 2025
Fri Jul 11 08:24:45 EDT 2025
Fri Jul 11 15:31:31 EDT 2025
Mon Jun 30 08:33:36 EDT 2025
Wed Feb 19 01:53:41 EST 2025
Thu Apr 24 22:59:41 EDT 2025
Tue Jul 01 01:53:20 EDT 2025
Wed Nov 11 00:29:51 EST 2020
Wed Dec 27 19:14:01 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords FYVE domain
ESCRT machinery
autophagic degradation
FREE1
vacuole biogenesis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c501t-81bdfb0f765644990bd87363bb890334dca732df1c3af3f62543e60b6d1be2533
Notes http://dx.doi.org/10.1073/pnas.1421271112
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: C.G., X.Z., and L.J. designed research; C.G., X.Z., Y.C., X.F., Y.H., Q.Z., Y.Z., J.S., and M.L. performed research; C.G., X.Z., and L.J. analyzed data; and C.G., X.Z., and L.J. wrote the paper.
1C.G. and X.Z. contributed equally to this work.
Edited by Natasha V. Raikhel, Center for Plant Cell Biology, Riverside, CA, and approved January 1, 2015 (received for review November 6, 2014)
OpenAccessLink https://www.pnas.org/content/pnas/112/6/1886.full.pdf
PMID 25624505
PQID 1655874217
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_1654703239
proquest_miscellaneous_1803126647
crossref_citationtrail_10_1073_pnas_1421271112
pnas_primary_112_6_1886
crossref_primary_10_1073_pnas_1421271112
pubmed_primary_25624505
fao_agris_US201600146064
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4330779
proquest_journals_1655874217
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-10
PublicationDateYYYYMMDD 2015-02-10
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
Holwerda BC (e_1_3_3_20_2) 1992; 4
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
24554770 - Mol Biol Cell. 2014 Apr;25(8):1327-37
18418046 - Cell Cycle. 2008 May 1;7(9):1166-72
17689064 - Curr Opin Cell Biol. 2007 Aug;19(4):459-65
22694835 - Trends Plant Sci. 2012 Sep;17(9):526-37
25438943 - Curr Biol. 2014 Nov 3;24(21):2556-63
18552835 - Nat Cell Biol. 2008 Jul;10(7):776-87
19535733 - J Cell Sci. 2009 Jul 1;122(Pt 13):2179-83
17683935 - Curr Biol. 2007 Sep 18;17(18):1561-7
19773385 - Plant Cell. 2009 Sep;21(9):2914-27
24249832 - Plant Cell. 2013 Nov;25(11):4596-615
21763610 - Dev Cell. 2011 Jul 19;21(1):77-91
19309456 - Plant J. 2009 Jul;59(1):169-78
17984323 - J Cell Biol. 2007 Nov 5;179(3):485-500
20144757 - Cell. 2010 Feb 5;140(3):313-26
16488176 - Trends Plant Sci. 2006 Mar;11(3):115-23
24843126 - Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8293-8
22078875 - Cell. 2011 Nov 11;147(4):728-41
22389403 - J Cell Sci. 2012 Feb 1;125(Pt 3):685-94
21801009 - Annu Rev Cell Dev Biol. 2011;27:107-32
24554766 - Mol Biol Cell. 2014 Apr;25(8):1338-54
17293568 - Plant Cell. 2007 Feb;19(2):597-609
1498598 - Plant Cell. 1992 Mar;4(3):307-18
23800962 - Plant Cell. 2013 Jun;25(6):2236-52
17909521 - Nat Cell Biol. 2007 Oct;9(10):1102-9
20223751 - Hum Mol Genet. 2010 Jun 1;19(11):2228-38
22570441 - Plant Cell. 2012 May;24(5):2086-104
15340014 - J Cell Sci. 2004 Sep 15;117(Pt 20):4837-48
17935992 - Curr Biol. 2007 Oct 23;17(20):1817-25
21118109 - Biochem Soc Trans. 2010 Dec;38(6):1469-73
21722280 - Traffic. 2011 Oct;12(10):1306-17
24824487 - Plant Cell. 2014 May 13;26(5):2080-2097
17905861 - Plant Physiol. 2007 Dec;145(4):1371-82
References_xml – ident: e_1_3_3_24_2
  doi: 10.1016/j.tplants.2012.05.006
– ident: e_1_3_3_30_2
  doi: 10.1091/mbc.e13-08-0449
– ident: e_1_3_3_21_2
  doi: 10.1104/pp.107.103945
– ident: e_1_3_3_1_2
  doi: 10.1016/j.ceb.2007.07.002
– ident: e_1_3_3_16_2
  doi: 10.1105/tpc.113.118307
– ident: e_1_3_3_6_2
  doi: 10.1016/j.cell.2011.10.026
– ident: e_1_3_3_29_2
  doi: 10.1091/mbc.e13-08-0447
– ident: e_1_3_3_26_2
  doi: 10.4161/cc.7.9.5784
– ident: e_1_3_3_8_2
  doi: 10.1146/annurev-cellbio-092910-154005
– ident: e_1_3_3_22_2
  doi: 10.1111/j.1365-313X.2009.03851.x
– ident: e_1_3_3_15_2
  doi: 10.1242/jcs.050021
– ident: e_1_3_3_9_2
  doi: 10.1016/j.cub.2007.07.029
– ident: e_1_3_3_18_2
  doi: 10.1105/tpc.106.045997
– ident: e_1_3_3_28_2
  doi: 10.1093/hmg/ddq100
– ident: e_1_3_3_5_2
  doi: 10.1016/j.cub.2014.09.014
– ident: e_1_3_3_7_2
  doi: 10.1038/ncb1007-1102
– ident: e_1_3_3_27_2
  doi: 10.1105/tpc.109.068635
– ident: e_1_3_3_25_2
  doi: 10.1016/j.cell.2010.01.028
– ident: e_1_3_3_12_2
  doi: 10.1242/jcs.091702
– ident: e_1_3_3_14_2
  doi: 10.1042/BST0381469
– volume: 4
  start-page: 307
  year: 1992
  ident: e_1_3_3_20_2
  article-title: Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions
  publication-title: Plant Cell
– ident: e_1_3_3_19_2
  doi: 10.1105/tpc.114.123141
– ident: e_1_3_3_17_2
  doi: 10.1073/pnas.1402262111
– ident: e_1_3_3_32_2
  doi: 10.1038/ncb1740
– ident: e_1_3_3_10_2
  doi: 10.1016/j.cub.2007.09.032
– ident: e_1_3_3_23_2
  doi: 10.1105/tpc.112.096057
– ident: e_1_3_3_31_2
  doi: 10.1242/jcs.01370
– ident: e_1_3_3_2_2
  doi: 10.1016/j.devcel.2011.05.015
– ident: e_1_3_3_11_2
  doi: 10.1083/jcb.200702115
– ident: e_1_3_3_3_2
  doi: 10.1016/j.tplants.2006.01.008
– ident: e_1_3_3_4_2
  doi: 10.1111/j.1600-0854.2011.01242.x
– ident: e_1_3_3_13_2
  doi: 10.1105/tpc.113.113399
– reference: 21118109 - Biochem Soc Trans. 2010 Dec;38(6):1469-73
– reference: 25438943 - Curr Biol. 2014 Nov 3;24(21):2556-63
– reference: 24824487 - Plant Cell. 2014 May 13;26(5):2080-2097
– reference: 17984323 - J Cell Biol. 2007 Nov 5;179(3):485-500
– reference: 15340014 - J Cell Sci. 2004 Sep 15;117(Pt 20):4837-48
– reference: 16488176 - Trends Plant Sci. 2006 Mar;11(3):115-23
– reference: 19773385 - Plant Cell. 2009 Sep;21(9):2914-27
– reference: 18552835 - Nat Cell Biol. 2008 Jul;10(7):776-87
– reference: 17689064 - Curr Opin Cell Biol. 2007 Aug;19(4):459-65
– reference: 17293568 - Plant Cell. 2007 Feb;19(2):597-609
– reference: 24843126 - Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8293-8
– reference: 17683935 - Curr Biol. 2007 Sep 18;17(18):1561-7
– reference: 24554766 - Mol Biol Cell. 2014 Apr;25(8):1338-54
– reference: 23800962 - Plant Cell. 2013 Jun;25(6):2236-52
– reference: 24249832 - Plant Cell. 2013 Nov;25(11):4596-615
– reference: 19535733 - J Cell Sci. 2009 Jul 1;122(Pt 13):2179-83
– reference: 17905861 - Plant Physiol. 2007 Dec;145(4):1371-82
– reference: 22694835 - Trends Plant Sci. 2012 Sep;17(9):526-37
– reference: 19309456 - Plant J. 2009 Jul;59(1):169-78
– reference: 21722280 - Traffic. 2011 Oct;12(10):1306-17
– reference: 21763610 - Dev Cell. 2011 Jul 19;21(1):77-91
– reference: 1498598 - Plant Cell. 1992 Mar;4(3):307-18
– reference: 17909521 - Nat Cell Biol. 2007 Oct;9(10):1102-9
– reference: 22389403 - J Cell Sci. 2012 Feb 1;125(Pt 3):685-94
– reference: 21801009 - Annu Rev Cell Dev Biol. 2011;27:107-32
– reference: 20144757 - Cell. 2010 Feb 5;140(3):313-26
– reference: 22078875 - Cell. 2011 Nov 11;147(4):728-41
– reference: 18418046 - Cell Cycle. 2008 May 1;7(9):1166-72
– reference: 20223751 - Hum Mol Genet. 2010 Jun 1;19(11):2228-38
– reference: 22570441 - Plant Cell. 2012 May;24(5):2086-104
– reference: 17935992 - Curr Biol. 2007 Oct 23;17(20):1817-25
– reference: 24554770 - Mol Biol Cell. 2014 Apr;25(8):1327-37
SSID ssj0009580
Score 2.5460896
Snippet Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic...
Macroautophagy (hereafter as autophagy) involves the delivery of cytosolic materials via autophagosome upon its fusion with the endosome and lysosome/vacuole....
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1886
SubjectTerms Arabidopsis
Arabidopsis - genetics
Arabidopsis - physiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Autophagy
Autophagy - physiology
biogenesis
Biological Sciences
Biosynthesis
Carrier Proteins - genetics
Carrier Proteins - metabolism
Degradation
Endosomal Sorting Complexes Required for Transport - metabolism
Flowers & plants
Fluorescence Resonance Energy Transfer
lysosomes
Microscopy, Confocal
Microscopy, Electron, Transmission
Multivesicular Bodies - metabolism
Photobleaching
Plant growth
Protein Transport - genetics
Protein Transport - physiology
Proteins
transport proteins
vacuoles
Vesicular Transport Proteins - genetics
Vesicular Transport Proteins - metabolism
Title Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation
URI http://www.pnas.org/content/112/6/1886.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25624505
https://www.proquest.com/docview/1655874217
https://www.proquest.com/docview/1654703239
https://www.proquest.com/docview/1803126647
https://pubmed.ncbi.nlm.nih.gov/PMC4330779
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELaS9NJL1fSVbdPKlXpItSIFbDB7XG03iSo1ivKQVr0gG0yWqoUoWXLob-yP6owxhqRJ1faCVjBrDPMxD5j5TMi7SEPQruPI07nOPR76yksiIbyAZRLck9bCdLl-PowPzvinRbRYW_s5qFpqVmo3-3FnX8n_aBX2gV6xS_YfNOsGhR3wG_QLW9AwbP9Kxx-x9wPrA009Bjyp00upyry-QJaR-cns-NSUjNcVfvDfO57Pg7Z9xSw_j-8IrmXWYG47NnQNWPLYcZ23JK4N0g5IMI7jHEkl8l6NNp49cv7vqqs2OOxeL077ZhVrQa7G3vjosF_6eCbLr-V4X9bdjkUp6yWufvRl2UjrU41JwuKEpuzFxnvN8H1FYPq_beXqgO67nYQ7_dBEh-A2edtYvatbqwyo8WLerivqzHYQDvA5NMJB0rJr_-YdwJzhksaVvAIHgdT2gR1kgJWL7wYsEAmGPPKj3k12pQG3vKeraYSh0jjFc6-TByEkLegm9hfBgAI6aRui7AV2RFOCfbg1JWSotue_ES6tF7JGEl6Qvishul3XOwiUTh-TRzbDodMWrptkTVdPyGanArpjic7fPyXXiF9q8EvrgsqKDvBLDX6pwy81-KVlRXv80g6_1OKXOvzCaDnt8UsH-H1Gzvbmp7MDz64D4mWRH6w8yKzyQvmFgNyDQ4buqzwRLGZKJROfMZ5nUrAwL4KMyYIVMfI76NhXcR4oHUI-85xsVDDVLUK5ZInmkCMnOuQFVyrnRSICNYkniZ4UckR2u9udZpYkH9dq-ZaaYg3BUrz5aa-qEdlxf7ho-WHuF90C_aXyHLx3enYSIrcjUjdBUjAiL4ywG8FhaUS2Oz2n1vLAmHEUJQIGFiPy1h0Gv4Af-2Sl68bIcPDmIZv8QSYBlw4ROhc4AQMdN4UOgCMiboDKCSAv_c0jVbk0_PScQeAgJi_vvahX5GFvGbbJxuqy0a8htl-pN-aR-QXmo_fU
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+roles+of+an+Arabidopsis+ESCRT+component+FREE1+in+regulating+vacuolar+protein+transport+and+autophagic+degradation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Caiji+Gao&rft.au=Xiaohong+Zhuang&rft.au=Yong+Cui&rft.au=Xi+Fu&rft.date=2015-02-10&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=6&rft.spage=1886&rft_id=info:doi/10.1073%2Fpnas.1421271112&rft_id=info%3Apmid%2F25624505&rft.externalDBID=n%2Fa&rft.externalDocID=112_6_1886
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F6.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F6.cover.gif