Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation
Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 6; pp. 1886 - 1891 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
10.02.2015
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1421271112 |
Cover
Loading…
Abstract | Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT machinery and the autophagy regulator remains unclear. Here, we show that FYVE domain protein required for endosomal sorting 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body (MVB) biogenesis and plant growth, plays roles both in vacuolar protein transport and autophagic degradation. FREE1 also regulates vacuole biogenesis in both seeds and vegetative cells of Arabidopsis . Additionally, FREE1 interacts directly with a unique plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 and associates with the PI3K complex, to regulate the autophagic degradation in plants. Thus, FREE1 plays multiple functional roles in vacuolar protein trafficking and organelle biogenesis as well as in autophagic degradation via a previously unidentified regulatory mechanism of cross-talk between the ESCRT machinery and autophagy process.
Significance Macroautophagy (hereafter as autophagy) involves the delivery of cytosolic materials via autophagosome upon its fusion with the endosome and lysosome/vacuole. The endosomal sorting complex required for transport (ESCRT) machinery is responsible for the formation of intraluminal vesicles (ILVs) in multivesicular bodies (MVBs) and the sorting of ubiquitinated membrane cargos into MVB ILVs for degradation. Here, we show that, in addition to regulating MVB biogenesis, the plant-specific ESCRT component FYVE domain protein required for endosomal sorting 1 (FREE1) also plays dual roles in vacuolar protein transport and autophagic degradation. FREE1 directly interacts with a plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 to manipulate the autophagic degradation in plants. Thus, we demonstrate multiple functions of FREE1 and a direct link between the ESCRT machinery and autophagy process in plants. |
---|---|
AbstractList | Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT machinery and the autophagy regulator remains unclear. Here, we show that FYVE domain protein required for endosomal sorting 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body (MVB) biogenesis and plant growth, plays roles both in vacuolar protein transport and autophagic degradation. FREE1 also regulates vacuole biogenesis in both seeds and vegetative cells of Arabidopsis. Additionally, FREE1 interacts directly with a unique plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 and associates with the PI3K complex, to regulate the autophagic degradation in plants. Thus, FREE1 plays multiple functional roles in vacuolar protein trafficking and organelle biogenesis as well as in autophagic degradation via a previously unidentified regulatory mechanism of cross-talk between the ESCRT machinery and autophagy process. Macroautophagy (hereafter as autophagy) involves the delivery of cytosolic materials via autophagosome upon its fusion with the endosome and lysosome/vacuole. The endosomal sorting complex required for transport (ESCRT) machinery is responsible for the formation of intraluminal vesicles (ILVs) in multivesicular bodies (MVBs) and the sorting of ubiquitinated membrane cargos into MVB ILVs for degradation. Here, we show that, in addition to regulating MVB biogenesis, the plant-specific ESCRT component FYVE domain protein required for endosomal sorting 1 (FREE1) also plays dual roles in vacuolar protein transport and autophagic degradation. FREE1 directly interacts with a plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 to manipulate the autophagic degradation in plants. Thus, we demonstrate multiple functions of FREE1 and a direct link between the ESCRT machinery and autophagy process in plants. Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT machinery and the autophagy regulator remains unclear. Here, we show that FYVE domain protein required for endosomal sorting 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body (MVB) biogenesis and plant growth, plays roles both in vacuolar protein transport and autophagic degradation. FREE1 also regulates vacuole biogenesis in both seeds and vegetative cells of Arabidopsis . Additionally, FREE1 interacts directly with a unique plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 and associates with the PI3K complex, to regulate the autophagic degradation in plants. Thus, FREE1 plays multiple functional roles in vacuolar protein trafficking and organelle biogenesis as well as in autophagic degradation via a previously unidentified regulatory mechanism of cross-talk between the ESCRT machinery and autophagy process. Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT machinery and the autophagy regulator remains unclear. Here, we show that FYVE domain protein required for endosomal sorting 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body (MVB) biogenesis and plant growth, plays roles both in vacuolar protein transport and autophagic degradation. FREE1 also regulates vacuole biogenesis in both seeds and vegetative cells of Arabidopsis . Additionally, FREE1 interacts directly with a unique plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 and associates with the PI3K complex, to regulate the autophagic degradation in plants. Thus, FREE1 plays multiple functional roles in vacuolar protein trafficking and organelle biogenesis as well as in autophagic degradation via a previously unidentified regulatory mechanism of cross-talk between the ESCRT machinery and autophagy process. Significance Macroautophagy (hereafter as autophagy) involves the delivery of cytosolic materials via autophagosome upon its fusion with the endosome and lysosome/vacuole. The endosomal sorting complex required for transport (ESCRT) machinery is responsible for the formation of intraluminal vesicles (ILVs) in multivesicular bodies (MVBs) and the sorting of ubiquitinated membrane cargos into MVB ILVs for degradation. Here, we show that, in addition to regulating MVB biogenesis, the plant-specific ESCRT component FYVE domain protein required for endosomal sorting 1 (FREE1) also plays dual roles in vacuolar protein transport and autophagic degradation. FREE1 directly interacts with a plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 to manipulate the autophagic degradation in plants. Thus, we demonstrate multiple functions of FREE1 and a direct link between the ESCRT machinery and autophagy process in plants. Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT machinery and the autophagy regulator remains unclear. Here, we show that FYVE domain protein required for endosomal sorting 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body (MVB) biogenesis and plant growth, plays roles both in vacuolar protein transport and autophagic degradation. FREE1 also regulates vacuole biogenesis in both seeds and vegetative cells of Arabidopsis. Additionally, FREE1 interacts directly with a unique plant autophagy regulator SH3 domain-containing protein2 and associates with the PI3K complex, to regulate the autophagic degradation in plants. Thus, FREE1 plays multiple functional roles in vacuolar protein trafficking and organelle biogenesis as well as in autophagic degradation via a previously unidentified regulatory mechanism of cross-talk between the ESCRT machinery and autophagy process.Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT machinery and the autophagy regulator remains unclear. Here, we show that FYVE domain protein required for endosomal sorting 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body (MVB) biogenesis and plant growth, plays roles both in vacuolar protein transport and autophagic degradation. FREE1 also regulates vacuole biogenesis in both seeds and vegetative cells of Arabidopsis. Additionally, FREE1 interacts directly with a unique plant autophagy regulator SH3 domain-containing protein2 and associates with the PI3K complex, to regulate the autophagic degradation in plants. Thus, FREE1 plays multiple functional roles in vacuolar protein trafficking and organelle biogenesis as well as in autophagic degradation via a previously unidentified regulatory mechanism of cross-talk between the ESCRT machinery and autophagy process. |
Author | Yilin He Qiong Zhao Ming Luo Yonglun Zeng Xi Fu Jinbo Shen Xiaohong Zhuang Liwen Jiang Yong Cui Caiji Gao |
Author_xml | – sequence: 1 givenname: Caiji surname: Gao fullname: Gao, Caiji organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China – sequence: 2 givenname: Xiaohong surname: Zhuang fullname: Zhuang, Xiaohong organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China – sequence: 3 givenname: Yong surname: Cui fullname: Cui, Yong organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China – sequence: 4 givenname: Xi surname: Fu fullname: Fu, Xi organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China – sequence: 5 givenname: Yilin surname: He fullname: He, Yilin organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China – sequence: 6 givenname: Qiong surname: Zhao fullname: Zhao, Qiong organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China – sequence: 7 givenname: Yonglun surname: Zeng fullname: Zeng, Yonglun organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China – sequence: 8 givenname: Jinbo surname: Shen fullname: Shen, Jinbo organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China – sequence: 9 givenname: Ming surname: Luo fullname: Luo, Ming organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China;, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; and – sequence: 10 givenname: Liwen surname: Jiang fullname: Jiang, Liwen organization: Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China;, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25624505$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv1DAUhS1URKeFNTuw1A2baa_fyQapGqYFqRJSH2vLSZzUVcYOdjIS_x6n0w7QBazu4n7n3OcROvDBW4TeEzgloNjZ4E06JZwSqggh9BVaECjJUvISDtACgKplwSk_REcpPQBAKQp4gw6pkJQLEAu0_TKZHsfQ24RDi43H59FUrglDcgmvb1bXt7gOmyGX9SO-uF6vCXYeR9tNvRmd7_DW1FPoTcRDDKPNuTEan4YQx-zWYDONYbg3natxY7tomqwK_i163Zo-2XdP8RjdXaxvV1-XV98vv63Or5a1ADIuC1I1bQWtkkJyXpZQNYViklVVUQJjvKmNYrRpSc1My1pJBWdWQiUbUlkqGDtGn3e-w1RtbFPnIaLp9RDdxsSfOhin_854d6-7sNWcMVCqzAafngxi-DHZNOqNS7Xte-NtmJImBTBCpeTq_6gUXAGjbHY9eYE-hCn6vImZEoXKF50NP_zZ_L7r5-tl4GwH1DGkFG27Rwjo-T_0_B_6939khXihqN34eJE8vev_oXtuZU7sqxCqZV5BITPwcQe0JmjTRZf03Q0FIgEIlyA5-wXjzNKF |
CitedBy_id | crossref_primary_10_1038_s41598_024_65555_7 crossref_primary_10_1016_j_plantsci_2019_01_017 crossref_primary_10_1016_j_molp_2016_01_011 crossref_primary_10_3389_fpls_2017_01969 crossref_primary_10_1016_j_semcdb_2017_07_018 crossref_primary_10_1073_pnas_1501318112 crossref_primary_10_3389_fpls_2019_01192 crossref_primary_10_1016_j_molp_2017_11_011 crossref_primary_10_1111_nph_14915 crossref_primary_10_3389_fpls_2020_00164 crossref_primary_10_1080_15592324_2021_1901448 crossref_primary_10_1016_j_isci_2024_110814 crossref_primary_10_1111_nph_18437 crossref_primary_10_3389_fpls_2020_00565 crossref_primary_10_7554_eLife_34532 crossref_primary_10_1093_plcell_koae004 crossref_primary_10_1242_jcs_232868 crossref_primary_10_1146_annurev_arplant_043015_112242 crossref_primary_10_1016_j_tplants_2015_10_008 crossref_primary_10_1080_15548627_2022_2127240 crossref_primary_10_1083_jcb_202203139 crossref_primary_10_1093_bioinformatics_bty399 crossref_primary_10_1007_s00425_020_03354_w crossref_primary_10_3390_genes10040267 crossref_primary_10_1371_journal_pgen_1010431 crossref_primary_10_1007_s44307_023_00002_8 crossref_primary_10_1016_j_molp_2016_11_002 crossref_primary_10_1016_j_molp_2024_12_013 crossref_primary_10_1111_nph_14500 crossref_primary_10_1111_jipb_13005 crossref_primary_10_1242_jcs_202838 crossref_primary_10_3390_cells7010005 crossref_primary_10_1016_j_pbi_2019_05_009 crossref_primary_10_1016_j_tig_2020_06_013 crossref_primary_10_1146_annurev_arplant_081519_035910 crossref_primary_10_1093_plphys_kiad133 crossref_primary_10_1016_j_plantsci_2020_110489 crossref_primary_10_1042_EBC20170034 crossref_primary_10_1080_15548627_2022_2095838 crossref_primary_10_1093_plphys_kiac329 crossref_primary_10_1093_jxb_ery070 crossref_primary_10_1002_1873_3468_14352 crossref_primary_10_1016_j_envexpbot_2024_105863 crossref_primary_10_3389_fpls_2020_00425 crossref_primary_10_15252_embr_202255037 crossref_primary_10_1002_1873_3468_14355 crossref_primary_10_1111_tpj_15091 crossref_primary_10_3389_fpls_2018_01837 crossref_primary_10_3390_ijms18020306 crossref_primary_10_1071_FP17318 crossref_primary_10_1111_jipb_13792 crossref_primary_10_1186_s12870_024_05854_3 crossref_primary_10_3389_fpls_2023_1226498 crossref_primary_10_1534_g3_119_400456 crossref_primary_10_1016_j_jgg_2022_05_003 crossref_primary_10_1016_j_molp_2020_05_010 crossref_primary_10_1093_plcell_koab235 crossref_primary_10_1111_tpj_15024 crossref_primary_10_1016_j_isci_2023_107752 crossref_primary_10_1038_s42003_024_06284_5 crossref_primary_10_3390_ijms24010843 crossref_primary_10_3389_fpls_2023_1160162 crossref_primary_10_3390_cells9010119 crossref_primary_10_1038_s41477_019_0400_5 crossref_primary_10_1080_15592324_2016_1274481 crossref_primary_10_1016_j_jgg_2015_03_012 crossref_primary_10_1002_1873_3468_14362 crossref_primary_10_3390_ijms22094638 crossref_primary_10_1016_j_pbi_2015_08_010 crossref_primary_10_1002_1873_3468_14404 crossref_primary_10_1016_j_plantsci_2017_10_017 crossref_primary_10_3389_fpls_2019_00207 crossref_primary_10_1093_jxb_erx392 crossref_primary_10_1093_jxb_erac135 crossref_primary_10_3390_ijms21062205 crossref_primary_10_1016_j_pbi_2017_06_017 crossref_primary_10_1111_pbi_12652 crossref_primary_10_1016_j_tplants_2017_08_003 crossref_primary_10_1093_plcell_koac259 crossref_primary_10_1093_plcell_koad227 crossref_primary_10_1016_j_semcdb_2017_08_014 crossref_primary_10_3390_ijms20122900 crossref_primary_10_1007_s12374_020_09252_8 crossref_primary_10_3390_cells10061272 crossref_primary_10_1080_15548627_2021_1976965 crossref_primary_10_1002_1873_3468_14374 crossref_primary_10_3390_ijms20225623 crossref_primary_10_1080_27694127_2024_2395731 crossref_primary_10_1093_pcp_pcy070 crossref_primary_10_1091_mbc_e15_06_0361 crossref_primary_10_1111_tpj_15481 crossref_primary_10_1111_tra_12805 crossref_primary_10_1016_j_molp_2023_07_001 crossref_primary_10_1093_jxb_erad211 crossref_primary_10_3390_ijms22168779 crossref_primary_10_1093_jxb_erad459 crossref_primary_10_1073_pnas_2211258120 crossref_primary_10_1016_j_jplph_2016_06_023 crossref_primary_10_1016_j_tplants_2015_03_014 crossref_primary_10_1016_j_jmb_2025_168981 crossref_primary_10_1093_plcell_koaf012 crossref_primary_10_1038_s41467_023_37185_6 crossref_primary_10_1016_j_pbi_2018_09_004 crossref_primary_10_1073_pnas_1616299114 crossref_primary_10_1104_pp_16_00754 crossref_primary_10_1007_s00709_017_1190_0 crossref_primary_10_1016_j_ncrops_2024_100060 crossref_primary_10_1016_j_molp_2022_10_022 crossref_primary_10_1038_s41467_018_05913_y crossref_primary_10_1093_pcp_pcw164 crossref_primary_10_1093_plcell_koab263 crossref_primary_10_3390_ijms242216039 crossref_primary_10_3390_plants10122619 crossref_primary_10_1073_pnas_1710866114 crossref_primary_10_1016_j_semcdb_2017_08_038 crossref_primary_10_3389_fpls_2016_01655 crossref_primary_10_1016_j_pbi_2017_08_005 crossref_primary_10_1073_pnas_2011900118 crossref_primary_10_1093_plcell_koac195 crossref_primary_10_1093_plcell_koae099 crossref_primary_10_1038_s41598_017_08577_8 crossref_primary_10_1111_pce_14336 crossref_primary_10_1016_j_tplants_2020_01_008 crossref_primary_10_1111_jipb_12941 crossref_primary_10_1093_plphys_kiaa100 crossref_primary_10_3390_antiox10111736 crossref_primary_10_1093_plphys_kiae426 crossref_primary_10_1146_annurev_arplant_042817_040606 crossref_primary_10_1016_j_molp_2016_02_005 crossref_primary_10_1016_j_pbi_2017_08_011 crossref_primary_10_1111_tpj_15065 crossref_primary_10_1073_pnas_2200492119 crossref_primary_10_1111_nph_19134 crossref_primary_10_1016_j_tplants_2018_05_002 crossref_primary_10_1111_nph_17358 crossref_primary_10_3390_membranes12070696 crossref_primary_10_1007_s13237_024_00505_2 crossref_primary_10_3389_fpls_2018_00781 crossref_primary_10_1016_j_molbiopara_2016_07_003 crossref_primary_10_1111_jipb_13460 crossref_primary_10_1007_s00709_015_0842_1 crossref_primary_10_1016_j_jplph_2020_153229 crossref_primary_10_1016_j_plantsci_2018_04_008 crossref_primary_10_3389_fpls_2022_1049144 crossref_primary_10_1080_15592324_2021_1977527 crossref_primary_10_1111_jipb_12895 crossref_primary_10_1016_j_tplants_2017_08_009 |
Cites_doi | 10.1016/j.tplants.2012.05.006 10.1091/mbc.e13-08-0449 10.1104/pp.107.103945 10.1016/j.ceb.2007.07.002 10.1105/tpc.113.118307 10.1016/j.cell.2011.10.026 10.1091/mbc.e13-08-0447 10.4161/cc.7.9.5784 10.1146/annurev-cellbio-092910-154005 10.1111/j.1365-313X.2009.03851.x 10.1242/jcs.050021 10.1016/j.cub.2007.07.029 10.1105/tpc.106.045997 10.1093/hmg/ddq100 10.1016/j.cub.2014.09.014 10.1038/ncb1007-1102 10.1105/tpc.109.068635 10.1016/j.cell.2010.01.028 10.1242/jcs.091702 10.1042/BST0381469 10.1105/tpc.114.123141 10.1073/pnas.1402262111 10.1038/ncb1740 10.1016/j.cub.2007.09.032 10.1105/tpc.112.096057 10.1242/jcs.01370 10.1016/j.devcel.2011.05.015 10.1083/jcb.200702115 10.1016/j.tplants.2006.01.008 10.1111/j.1600-0854.2011.01242.x 10.1105/tpc.113.113399 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Feb 10, 2015 |
Copyright_xml | – notice: Copyright National Academy of Sciences Feb 10, 2015 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1421271112 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | FREE1 regulates protein trafficking and autophagy |
EISSN | 1091-6490 |
EndPage | 1891 |
ExternalDocumentID | PMC4330779 3594804711 25624505 10_1073_pnas_1421271112 112_6_1886 US201600146064 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Research Grants Council, University Grants Committee, Hong Kong (RGC, UGC) grantid: AoE/M-05/12 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ H13 KM PQEST X XHC AAYXX ABXSQ ACHIC ADQXQ AQVQM CITATION IPSME CGR CUY CVF ECM EIF NPM YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c501t-81bdfb0f765644990bd87363bb890334dca732df1c3af3f62543e60b6d1be2533 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:36:26 EDT 2025 Fri Jul 11 08:24:45 EDT 2025 Fri Jul 11 15:31:31 EDT 2025 Mon Jun 30 08:33:36 EDT 2025 Wed Feb 19 01:53:41 EST 2025 Thu Apr 24 22:59:41 EDT 2025 Tue Jul 01 01:53:20 EDT 2025 Wed Nov 11 00:29:51 EST 2020 Wed Dec 27 19:14:01 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | FYVE domain ESCRT machinery autophagic degradation FREE1 vacuole biogenesis |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c501t-81bdfb0f765644990bd87363bb890334dca732df1c3af3f62543e60b6d1be2533 |
Notes | http://dx.doi.org/10.1073/pnas.1421271112 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: C.G., X.Z., and L.J. designed research; C.G., X.Z., Y.C., X.F., Y.H., Q.Z., Y.Z., J.S., and M.L. performed research; C.G., X.Z., and L.J. analyzed data; and C.G., X.Z., and L.J. wrote the paper. 1C.G. and X.Z. contributed equally to this work. Edited by Natasha V. Raikhel, Center for Plant Cell Biology, Riverside, CA, and approved January 1, 2015 (received for review November 6, 2014) |
OpenAccessLink | https://www.pnas.org/content/pnas/112/6/1886.full.pdf |
PMID | 25624505 |
PQID | 1655874217 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1654703239 proquest_miscellaneous_1803126647 crossref_citationtrail_10_1073_pnas_1421271112 pnas_primary_112_6_1886 crossref_primary_10_1073_pnas_1421271112 pubmed_primary_25624505 fao_agris_US201600146064 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4330779 proquest_journals_1655874217 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-10 |
PublicationDateYYYYMMDD | 2015-02-10 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2015 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 Holwerda BC (e_1_3_3_20_2) 1992; 4 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 24554770 - Mol Biol Cell. 2014 Apr;25(8):1327-37 18418046 - Cell Cycle. 2008 May 1;7(9):1166-72 17689064 - Curr Opin Cell Biol. 2007 Aug;19(4):459-65 22694835 - Trends Plant Sci. 2012 Sep;17(9):526-37 25438943 - Curr Biol. 2014 Nov 3;24(21):2556-63 18552835 - Nat Cell Biol. 2008 Jul;10(7):776-87 19535733 - J Cell Sci. 2009 Jul 1;122(Pt 13):2179-83 17683935 - Curr Biol. 2007 Sep 18;17(18):1561-7 19773385 - Plant Cell. 2009 Sep;21(9):2914-27 24249832 - Plant Cell. 2013 Nov;25(11):4596-615 21763610 - Dev Cell. 2011 Jul 19;21(1):77-91 19309456 - Plant J. 2009 Jul;59(1):169-78 17984323 - J Cell Biol. 2007 Nov 5;179(3):485-500 20144757 - Cell. 2010 Feb 5;140(3):313-26 16488176 - Trends Plant Sci. 2006 Mar;11(3):115-23 24843126 - Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8293-8 22078875 - Cell. 2011 Nov 11;147(4):728-41 22389403 - J Cell Sci. 2012 Feb 1;125(Pt 3):685-94 21801009 - Annu Rev Cell Dev Biol. 2011;27:107-32 24554766 - Mol Biol Cell. 2014 Apr;25(8):1338-54 17293568 - Plant Cell. 2007 Feb;19(2):597-609 1498598 - Plant Cell. 1992 Mar;4(3):307-18 23800962 - Plant Cell. 2013 Jun;25(6):2236-52 17909521 - Nat Cell Biol. 2007 Oct;9(10):1102-9 20223751 - Hum Mol Genet. 2010 Jun 1;19(11):2228-38 22570441 - Plant Cell. 2012 May;24(5):2086-104 15340014 - J Cell Sci. 2004 Sep 15;117(Pt 20):4837-48 17935992 - Curr Biol. 2007 Oct 23;17(20):1817-25 21118109 - Biochem Soc Trans. 2010 Dec;38(6):1469-73 21722280 - Traffic. 2011 Oct;12(10):1306-17 24824487 - Plant Cell. 2014 May 13;26(5):2080-2097 17905861 - Plant Physiol. 2007 Dec;145(4):1371-82 |
References_xml | – ident: e_1_3_3_24_2 doi: 10.1016/j.tplants.2012.05.006 – ident: e_1_3_3_30_2 doi: 10.1091/mbc.e13-08-0449 – ident: e_1_3_3_21_2 doi: 10.1104/pp.107.103945 – ident: e_1_3_3_1_2 doi: 10.1016/j.ceb.2007.07.002 – ident: e_1_3_3_16_2 doi: 10.1105/tpc.113.118307 – ident: e_1_3_3_6_2 doi: 10.1016/j.cell.2011.10.026 – ident: e_1_3_3_29_2 doi: 10.1091/mbc.e13-08-0447 – ident: e_1_3_3_26_2 doi: 10.4161/cc.7.9.5784 – ident: e_1_3_3_8_2 doi: 10.1146/annurev-cellbio-092910-154005 – ident: e_1_3_3_22_2 doi: 10.1111/j.1365-313X.2009.03851.x – ident: e_1_3_3_15_2 doi: 10.1242/jcs.050021 – ident: e_1_3_3_9_2 doi: 10.1016/j.cub.2007.07.029 – ident: e_1_3_3_18_2 doi: 10.1105/tpc.106.045997 – ident: e_1_3_3_28_2 doi: 10.1093/hmg/ddq100 – ident: e_1_3_3_5_2 doi: 10.1016/j.cub.2014.09.014 – ident: e_1_3_3_7_2 doi: 10.1038/ncb1007-1102 – ident: e_1_3_3_27_2 doi: 10.1105/tpc.109.068635 – ident: e_1_3_3_25_2 doi: 10.1016/j.cell.2010.01.028 – ident: e_1_3_3_12_2 doi: 10.1242/jcs.091702 – ident: e_1_3_3_14_2 doi: 10.1042/BST0381469 – volume: 4 start-page: 307 year: 1992 ident: e_1_3_3_20_2 article-title: Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions publication-title: Plant Cell – ident: e_1_3_3_19_2 doi: 10.1105/tpc.114.123141 – ident: e_1_3_3_17_2 doi: 10.1073/pnas.1402262111 – ident: e_1_3_3_32_2 doi: 10.1038/ncb1740 – ident: e_1_3_3_10_2 doi: 10.1016/j.cub.2007.09.032 – ident: e_1_3_3_23_2 doi: 10.1105/tpc.112.096057 – ident: e_1_3_3_31_2 doi: 10.1242/jcs.01370 – ident: e_1_3_3_2_2 doi: 10.1016/j.devcel.2011.05.015 – ident: e_1_3_3_11_2 doi: 10.1083/jcb.200702115 – ident: e_1_3_3_3_2 doi: 10.1016/j.tplants.2006.01.008 – ident: e_1_3_3_4_2 doi: 10.1111/j.1600-0854.2011.01242.x – ident: e_1_3_3_13_2 doi: 10.1105/tpc.113.113399 – reference: 21118109 - Biochem Soc Trans. 2010 Dec;38(6):1469-73 – reference: 25438943 - Curr Biol. 2014 Nov 3;24(21):2556-63 – reference: 24824487 - Plant Cell. 2014 May 13;26(5):2080-2097 – reference: 17984323 - J Cell Biol. 2007 Nov 5;179(3):485-500 – reference: 15340014 - J Cell Sci. 2004 Sep 15;117(Pt 20):4837-48 – reference: 16488176 - Trends Plant Sci. 2006 Mar;11(3):115-23 – reference: 19773385 - Plant Cell. 2009 Sep;21(9):2914-27 – reference: 18552835 - Nat Cell Biol. 2008 Jul;10(7):776-87 – reference: 17689064 - Curr Opin Cell Biol. 2007 Aug;19(4):459-65 – reference: 17293568 - Plant Cell. 2007 Feb;19(2):597-609 – reference: 24843126 - Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8293-8 – reference: 17683935 - Curr Biol. 2007 Sep 18;17(18):1561-7 – reference: 24554766 - Mol Biol Cell. 2014 Apr;25(8):1338-54 – reference: 23800962 - Plant Cell. 2013 Jun;25(6):2236-52 – reference: 24249832 - Plant Cell. 2013 Nov;25(11):4596-615 – reference: 19535733 - J Cell Sci. 2009 Jul 1;122(Pt 13):2179-83 – reference: 17905861 - Plant Physiol. 2007 Dec;145(4):1371-82 – reference: 22694835 - Trends Plant Sci. 2012 Sep;17(9):526-37 – reference: 19309456 - Plant J. 2009 Jul;59(1):169-78 – reference: 21722280 - Traffic. 2011 Oct;12(10):1306-17 – reference: 21763610 - Dev Cell. 2011 Jul 19;21(1):77-91 – reference: 1498598 - Plant Cell. 1992 Mar;4(3):307-18 – reference: 17909521 - Nat Cell Biol. 2007 Oct;9(10):1102-9 – reference: 22389403 - J Cell Sci. 2012 Feb 1;125(Pt 3):685-94 – reference: 21801009 - Annu Rev Cell Dev Biol. 2011;27:107-32 – reference: 20144757 - Cell. 2010 Feb 5;140(3):313-26 – reference: 22078875 - Cell. 2011 Nov 11;147(4):728-41 – reference: 18418046 - Cell Cycle. 2008 May 1;7(9):1166-72 – reference: 20223751 - Hum Mol Genet. 2010 Jun 1;19(11):2228-38 – reference: 22570441 - Plant Cell. 2012 May;24(5):2086-104 – reference: 17935992 - Curr Biol. 2007 Oct 23;17(20):1817-25 – reference: 24554770 - Mol Biol Cell. 2014 Apr;25(8):1327-37 |
SSID | ssj0009580 |
Score | 2.5460896 |
Snippet | Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic... Macroautophagy (hereafter as autophagy) involves the delivery of cytosolic materials via autophagosome upon its fusion with the endosome and lysosome/vacuole.... |
SourceID | pubmedcentral proquest pubmed crossref pnas fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1886 |
SubjectTerms | Arabidopsis Arabidopsis - genetics Arabidopsis - physiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Autophagy Autophagy - physiology biogenesis Biological Sciences Biosynthesis Carrier Proteins - genetics Carrier Proteins - metabolism Degradation Endosomal Sorting Complexes Required for Transport - metabolism Flowers & plants Fluorescence Resonance Energy Transfer lysosomes Microscopy, Confocal Microscopy, Electron, Transmission Multivesicular Bodies - metabolism Photobleaching Plant growth Protein Transport - genetics Protein Transport - physiology Proteins transport proteins vacuoles Vesicular Transport Proteins - genetics Vesicular Transport Proteins - metabolism |
Title | Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation |
URI | http://www.pnas.org/content/112/6/1886.abstract https://www.ncbi.nlm.nih.gov/pubmed/25624505 https://www.proquest.com/docview/1655874217 https://www.proquest.com/docview/1654703239 https://www.proquest.com/docview/1803126647 https://pubmed.ncbi.nlm.nih.gov/PMC4330779 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELaS9NJL1fSVbdPKlXpItSIFbDB7XG03iSo1ivKQVr0gG0yWqoUoWXLob-yP6owxhqRJ1faCVjBrDPMxD5j5TMi7SEPQruPI07nOPR76yksiIbyAZRLck9bCdLl-PowPzvinRbRYW_s5qFpqVmo3-3FnX8n_aBX2gV6xS_YfNOsGhR3wG_QLW9AwbP9Kxx-x9wPrA009Bjyp00upyry-QJaR-cns-NSUjNcVfvDfO57Pg7Z9xSw_j-8IrmXWYG47NnQNWPLYcZ23JK4N0g5IMI7jHEkl8l6NNp49cv7vqqs2OOxeL077ZhVrQa7G3vjosF_6eCbLr-V4X9bdjkUp6yWufvRl2UjrU41JwuKEpuzFxnvN8H1FYPq_beXqgO67nYQ7_dBEh-A2edtYvatbqwyo8WLerivqzHYQDvA5NMJB0rJr_-YdwJzhksaVvAIHgdT2gR1kgJWL7wYsEAmGPPKj3k12pQG3vKeraYSh0jjFc6-TByEkLegm9hfBgAI6aRui7AV2RFOCfbg1JWSotue_ES6tF7JGEl6Qvishul3XOwiUTh-TRzbDodMWrptkTVdPyGanArpjic7fPyXXiF9q8EvrgsqKDvBLDX6pwy81-KVlRXv80g6_1OKXOvzCaDnt8UsH-H1Gzvbmp7MDz64D4mWRH6w8yKzyQvmFgNyDQ4buqzwRLGZKJROfMZ5nUrAwL4KMyYIVMfI76NhXcR4oHUI-85xsVDDVLUK5ZInmkCMnOuQFVyrnRSICNYkniZ4UckR2u9udZpYkH9dq-ZaaYg3BUrz5aa-qEdlxf7ho-WHuF90C_aXyHLx3enYSIrcjUjdBUjAiL4ywG8FhaUS2Oz2n1vLAmHEUJQIGFiPy1h0Gv4Af-2Sl68bIcPDmIZv8QSYBlw4ROhc4AQMdN4UOgCMiboDKCSAv_c0jVbk0_PScQeAgJi_vvahX5GFvGbbJxuqy0a8htl-pN-aR-QXmo_fU |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+roles+of+an+Arabidopsis+ESCRT+component+FREE1+in+regulating+vacuolar+protein+transport+and+autophagic+degradation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Caiji+Gao&rft.au=Xiaohong+Zhuang&rft.au=Yong+Cui&rft.au=Xi+Fu&rft.date=2015-02-10&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=6&rft.spage=1886&rft_id=info:doi/10.1073%2Fpnas.1421271112&rft_id=info%3Apmid%2F25624505&rft.externalDBID=n%2Fa&rft.externalDocID=112_6_1886 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F6.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F6.cover.gif |