The clock gene Per1 is necessary in the retrosplenial cortex—but not in the suprachiasmatic nucleus—for incidental learning in young and aging male mice

•Learning induces Per1 expression within the RSC of young and aging mice.•This RSC Per1 induction rhythmically cycles in young and aging mice.•Bidirectional RSC Per1 manipulations affect spatial memory.•Learning also induces Per1 within the SCN of young (but not aging) mice.•Per1 knockdown in the SC...

Full description

Saved in:
Bibliographic Details
Published inNeurobiology of aging Vol. 126; pp. 77 - 90
Main Authors Brunswick, Chad A., Baldwin, Derek J., Bodinayake, Kasuni K., McKenna, Alexandria R., Lo, Chen-Yu, Bellfy, Lauren, Urban, Mark W., Stuart, Emily M., Murakami, Shoko, Smies, Chad W., Kwapis, Janine L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Learning induces Per1 expression within the RSC of young and aging mice.•This RSC Per1 induction rhythmically cycles in young and aging mice.•Bidirectional RSC Per1 manipulations affect spatial memory.•Learning also induces Per1 within the SCN of young (but not aging) mice.•Per1 knockdown in the SCN of young mice has no effect on memory. Aging impairs both circadian rhythms and memory, though the relationship between these impairments is not fully understood. Circadian rhythms are largely dictated by clock genes within the body's central pacemaker, the suprachiasmatic nucleus (SCN), though these genes are also expressed in local clocks throughout the body. As circadian rhythms can directly affect memory performance, one possibility is that memory deficits observed with age are downstream of global circadian rhythm disruptions stemming from the SCN. Here, we demonstrate that expression of clock gene Period1 within a memory-relevant cortical structure, the retrosplenial cortex (RSC), is necessary for incidental learning, and that age-related disruption of Period1 within the RSC—but not necessarily the SCN—contributes to cognitive decline. These data expand the known functions of clock genes beyond maintaining circadian rhythms and suggests that age-associated changes in clock gene expression modulates circadian rhythms and memory performance in a brain region–dependent manner.
AbstractList •Learning induces Per1 expression within the RSC of young and aging mice.•This RSC Per1 induction rhythmically cycles in young and aging mice.•Bidirectional RSC Per1 manipulations affect spatial memory.•Learning also induces Per1 within the SCN of young (but not aging) mice.•Per1 knockdown in the SCN of young mice has no effect on memory. Aging impairs both circadian rhythms and memory, though the relationship between these impairments is not fully understood. Circadian rhythms are largely dictated by clock genes within the body's central pacemaker, the suprachiasmatic nucleus (SCN), though these genes are also expressed in local clocks throughout the body. As circadian rhythms can directly affect memory performance, one possibility is that memory deficits observed with age are downstream of global circadian rhythm disruptions stemming from the SCN. Here, we demonstrate that expression of clock gene Period1 within a memory-relevant cortical structure, the retrosplenial cortex (RSC), is necessary for incidental learning, and that age-related disruption of Period1 within the RSC—but not necessarily the SCN—contributes to cognitive decline. These data expand the known functions of clock genes beyond maintaining circadian rhythms and suggests that age-associated changes in clock gene expression modulates circadian rhythms and memory performance in a brain region–dependent manner.
Aging impairs both circadian rhythms and memory, though the relationship between these impairments is not fully understood. Circadian rhythms are largely dictated by clock genes within the body's central pacemaker, the suprachiasmatic nucleus (SCN), though these genes are also expressed in local clocks throughout the body. As circadian rhythms can directly affect memory performance, one possibility is that memory deficits observed with age are downstream of global circadian rhythm disruptions stemming from the SCN. Here, we demonstrate that expression of clock gene Period1 within a memory-relevant cortical structure, the retrosplenial cortex (RSC), is necessary for incidental learning, and that age-related disruption of Period1 within the RSC-but not necessarily the SCN-contributes to cognitive decline. These data expand the known functions of clock genes beyond maintaining circadian rhythms and suggests that age-associated changes in clock gene expression modulates circadian rhythms and memory performance in a brain region-dependent manner.Aging impairs both circadian rhythms and memory, though the relationship between these impairments is not fully understood. Circadian rhythms are largely dictated by clock genes within the body's central pacemaker, the suprachiasmatic nucleus (SCN), though these genes are also expressed in local clocks throughout the body. As circadian rhythms can directly affect memory performance, one possibility is that memory deficits observed with age are downstream of global circadian rhythm disruptions stemming from the SCN. Here, we demonstrate that expression of clock gene Period1 within a memory-relevant cortical structure, the retrosplenial cortex (RSC), is necessary for incidental learning, and that age-related disruption of Period1 within the RSC-but not necessarily the SCN-contributes to cognitive decline. These data expand the known functions of clock genes beyond maintaining circadian rhythms and suggests that age-associated changes in clock gene expression modulates circadian rhythms and memory performance in a brain region-dependent manner.
Aging impairs both circadian rhythms and memory, though the relationship between these impairments is not fully understood. Circadian rhythms are largely dictated by clock genes within the body's central pacemaker, the suprachiasmatic nucleus (SCN), though these genes are also expressed in local clocks throughout the body. As circadian rhythms can directly affect memory performance, one possibility is that memory deficits observed with age are downstream of global circadian rhythm disruptions stemming from the SCN. Here, we demonstrate that expression of clock gene Period1 within a memory-relevant cortical structure, the retrosplenial cortex (RSC), is necessary for incidental learning, and that age-related disruption of Period1 within the RSC-but not necessarily the SCN-contributes to cognitive decline. These data expand the known functions of clock genes beyond maintaining circadian rhythms and suggests that age-associated changes in clock gene expression modulates circadian rhythms and memory performance in a brain region-dependent manner.
Author Smies, Chad W.
Bodinayake, Kasuni K.
Bellfy, Lauren
Stuart, Emily M.
Lo, Chen-Yu
Kwapis, Janine L.
Brunswick, Chad A.
McKenna, Alexandria R.
Murakami, Shoko
Urban, Mark W.
Baldwin, Derek J.
Author_xml – sequence: 1
  givenname: Chad A.
  surname: Brunswick
  fullname: Brunswick, Chad A.
  organization: Department of Biology, Pennsylvania State University, University Park, PA
– sequence: 2
  givenname: Derek J.
  surname: Baldwin
  fullname: Baldwin, Derek J.
  organization: Department of Biology, Pennsylvania State University, University Park, PA
– sequence: 3
  givenname: Kasuni K.
  surname: Bodinayake
  fullname: Bodinayake, Kasuni K.
  organization: Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
– sequence: 4
  givenname: Alexandria R.
  surname: McKenna
  fullname: McKenna, Alexandria R.
  organization: Department of Biology, Pennsylvania State University, University Park, PA
– sequence: 5
  givenname: Chen-Yu
  surname: Lo
  fullname: Lo, Chen-Yu
  organization: Department of Biology, Pennsylvania State University, University Park, PA
– sequence: 6
  givenname: Lauren
  surname: Bellfy
  fullname: Bellfy, Lauren
  organization: Department of Biology, Pennsylvania State University, University Park, PA
– sequence: 7
  givenname: Mark W.
  surname: Urban
  fullname: Urban, Mark W.
  organization: Department of Biology, Pennsylvania State University, University Park, PA
– sequence: 8
  givenname: Emily M.
  surname: Stuart
  fullname: Stuart, Emily M.
  organization: Department of Biology, Pennsylvania State University, University Park, PA
– sequence: 9
  givenname: Shoko
  surname: Murakami
  fullname: Murakami, Shoko
  organization: Department of Biology, Pennsylvania State University, University Park, PA
– sequence: 10
  givenname: Chad W.
  surname: Smies
  fullname: Smies, Chad W.
  organization: Department of Biology, Pennsylvania State University, University Park, PA
– sequence: 11
  givenname: Janine L.
  surname: Kwapis
  fullname: Kwapis, Janine L.
  email: jlk855@psu.edu, j9kwapis@gmail.com
  organization: Department of Biology, Pennsylvania State University, University Park, PA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36958103$$D View this record in MEDLINE/PubMed
BookMark eNqNkb9uFDEQhy0URC6BV0AuKGhuGe__lWggEECKBEWoLe_s7MUXr33Y3ojreIiUeTqeBB-XIJHqKk_xzSfP73fCjqyzxNgrAZkAUb9ZZ5Zm73rtjFppu8pyyIsM8gyge8IWoqrapSi75ogtQHTNsqxaOGYnIawBoCmb-hk7LuquagUUC3Z3eUUcjcNrviJL_Bt5wXXglpBCUH7LteUxMZ6id2FjyGplODof6efvX7f9HLl18YEK88YrvNIqTCpq5HZGQ3NI4Oh8glAPZGMSGFLept_vFrduToOyA_97EJ-UIT5ppOfs6ahMoBf37yn7fv7x8uzz8uLrpy9n7y6WWIGIyxYKQQqxo6qoAPKhHaEoaUz3QpVj11JdY0UVlUiUt0K1RS-oUUOOQP0AxSl7vfduvPsxU4hy0gHJGGXJzUHmTSeKBjpRJ_TlPTr3Ew1y4_WUUpIPiSbg7R7AFFfwNP5DBMhdgXIt_y9Q7gqUkMtUYFp__2gddUxROhu90uZQyfleQim0G01eBtRkkQbtCaMcnD5U9OGRCI22GpW5pu3hmj8ImuBN
CitedBy_id crossref_primary_10_1177_07487304231184761
crossref_primary_10_3390_ijms25147721
crossref_primary_10_1007_s11357_024_01084_5
crossref_primary_10_1038_s41386_023_01616_1
crossref_primary_10_3389_fnmol_2024_1429880
Cites_doi 10.1126/science.278.5343.1632
10.1016/j.nlm.2021.107535
10.1002/hipo.20637
10.1016/j.nlm.2022.107651
10.1038/nprot.2013.132
10.1016/S0092-8674(00)80494-8
10.1038/s41598-020-60937-z
10.1016/j.neures.2004.01.005
10.1016/j.neurobiolaging.2011.07.007
10.1037/0735-7044.120.3.612
10.3389/fnins.2021.642376
10.1016/S0306-4522(00)00288-8
10.1016/0896-6273(90)90303-W
10.1073/pnas.0308709101
10.1016/j.nlm.2022.107601
10.1101/2022.10.11.511798
10.1016/j.nlm.2021.107530
10.7554/eLife.63377
10.1080/01688639308402570
10.1016/0197-4580(82)90018-5
10.1523/JNEUROSCI.2799-18.2019
10.1111/ejn.12010
10.1523/JNEUROSCI.22-03-01155.2002
10.1523/JNEUROSCI.2107-11.2011
10.1038/s41593-019-0462-8
10.1111/jnc.13689
10.1016/0006-3223(90)90523-5
10.1073/pnas.142039099
10.1016/S0166-4328(02)00274-7
10.1016/S0166-4328(00)00145-5
10.1038/nn.2405
10.3389/fnbeh.2015.00011
10.1002/hipo.22262
10.1016/j.bbr.2012.02.022
10.1038/nmeth.3312
10.1007/s11357-006-9013-9
10.1126/science.1259652
10.1038/s41386-021-00959-x
10.1126/science.288.5466.682
10.1038/s41467-018-05868-0
10.1016/0092-8674(94)90399-9
10.1523/JNEUROSCI.6535-10.2011
10.1016/j.bbr.2004.04.005
10.1016/S0091-6773(78)92565-8
10.1007/BF00428692
10.1038/ncomms12926
10.1523/ENEURO.0455-18.2018
10.3109/07420528.2014.944975
10.1177/0748730405276352
10.1073/pnas.0503584102
10.1016/j.bbr.2016.04.027
10.1038/nn.2174
10.1523/JNEUROSCI.22-01-00350.2002
10.1016/0031-9384(87)90321-0
10.1016/0092-8674(95)90375-5
10.1073/pnas.76.11.5962
10.1016/S0028-3932(98)00044-X
10.1016/S0166-4328(01)00471-5
10.1016/j.nlm.2015.06.007
10.1093/emboj/20.15.3967
10.1016/0166-4328(94)90077-9
10.1016/j.biopsych.2010.04.031
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neurobiolaging.2023.02.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1558-1497
EndPage 90
ExternalDocumentID 36958103
10_1016_j_neurobiolaging_2023_02_009
S0197458023000428
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG074041
– fundername: NIA NIH HHS
  grantid: R00 AG056596
– fundername: NIA NIH HHS
  grantid: R00 AG056595
– fundername: NIA NIH HHS
  grantid: R21 AG068444
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
9JO
AABNK
AADFP
AAEDT
AAEDW
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABGSF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABOYX
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ACXNI
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDW
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LX8
M29
M2V
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OD~
OKEIE
OO0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNS
SPCBC
SSB
SSH
SSN
SSU
SSY
SSZ
T5K
WUQ
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c501t-8031eacc9e535002d8f034ef000052c98e66c5e5e4cee281a83b1e7ad2c0ebd03
IEDL.DBID .~1
ISSN 0197-4580
1558-1497
IngestDate Fri Jul 11 12:07:22 EDT 2025
Mon Jul 21 05:28:13 EDT 2025
Tue Jul 01 01:28:31 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Tue Dec 03 03:44:27 EST 2024
Tue Aug 26 16:40:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Suprachiasmatic nucleus
TTFL
RSC
DH
BMAL
HSV
IEG
Cry
Incidental learning
Cognitive decline
Per1
OLM
CREB
sgRNA
Aging
Retrosplenial cortex
ZT
CLOCK
SCN
Language English
License Copyright © 2023 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-8031eacc9e535002d8f034ef000052c98e66c5e5e4cee281a83b1e7ad2c0ebd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10106450
PMID 36958103
PQID 2791370916
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2791370916
pubmed_primary_36958103
crossref_primary_10_1016_j_neurobiolaging_2023_02_009
crossref_citationtrail_10_1016_j_neurobiolaging_2023_02_009
elsevier_sciencedirect_doi_10_1016_j_neurobiolaging_2023_02_009
elsevier_clinicalkey_doi_10_1016_j_neurobiolaging_2023_02_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neurobiology of aging
PublicationTitleAlternate Neurobiol Aging
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Moyer, Brown (bib0028) 2006; 120
Chavez, Scheiman, Vora, Pruitt, Tuttle, Iyer, Lin, Kiani, Guzman, Wiegand, Ter-Ovanesyan, Braff, Davidsohn, Housden, Perrimon, Weiss, Aach, Collins, Church (bib0010) 2015; 12
Ruby (bib0040) 2021; 15
Kwapis, Alaghband, López, Long, Li, Shu, Bodinayake, Matheos, Rapp, Wood (bib0023) 2019; 39
Chaudhury, Wang, Colwell (bib0009) 2005; 20
Witting, Kwa, Eikelenboom, Mirmiran, Swaab (bib0060) 1990; 27
Lorsch, Hamilton, Ramakrishnan, Parise, Salery, Wright, Lepack, Mews, Issler, McKenzie, Zhou, Parise, Pirpinias, Ortiz Torres, Kronman, Montgomery, Loh, Labonté, Conkey, Symonds, Neve, Turecki, Maze, Dong, Zhang, Shen, Bagot, Nestler (bib0026) 2019; 22
Weitzman, Moline, Czeisler, Zimmerman (bib0057) 1982; 3
Youngjohn, Crook (bib0066) 1993; 15
Kwapis, Jarome, Lee, Helmstetter (bib0024) 2015; 123
Rawashdeh, Jilg, Jedlicka, Slawska, Thomas, Saade, Schwarzacher, Stehle (bib0037) 2014; 24
Fernandez, Lu, Ha, Costacurta, Chavez, Heller, Ruby (bib0017) 2014; 346
Trask, Fournier (bib0049) 2022; 189
Neave, Lloyd, Sahgal, Aggleton (bib0031) 1994; 65
Stephan, Kovacevic (bib0047) 1978; 22
Wang, Nie, Duan, Zhu, Liu, Shan (bib0056) 2016; 11
Urban, Lo, Bodinayake, Brunswick, Murakami, Heimann, Kwapis (bib0051) 2021; 185
Wimmer, Hernandez, Blackwell, Abel (bib0059) 2012; 33
.
de Landeta, Pereyra, Medina, Katche (bib0015) 2020; 10
Bellfy, L., Smies, C.W., Bernhardt, A.R., Bodinayake, K.K., Sebastian, A., Stuart, E.M., Wright, D.S., Lo, C.-Y., Murakami, S., Boyd, H.M., von Abo, M.J., Albert, I., Kwapis, J.L., 2022. The clock gene Per1 expression may exert diurnal control over hippocampal memory consolidation. bioRxiv 2022.10.11.511798. doi
Inouye, Kawamura (bib0019) 1979; 76
Trask, Ferrara, Grisales, Helmstetter (bib0048) 2021; 185
Craik, Grady (bib0012) 2002
Wiggs, Weisberg, Martin (bib0058) 1998; 37
McClung, Sidiropoulou, Vitaterna, Takahashi, White, Cooper, Nestler (bib0027) 2005; 102
Abarca, Albrecht, Spanagel (bib0001) 2002; 99
Phan, Chan, Sindreu, Eckel-Mahan, Storm (bib0035) 2011; 31
Vann, Kristina Wilton, Muir, Aggleton (bib0054) 2003; 140
Yoo, Yamazaki, Lowrey, Shimomura, Ko, Buhr, Siepka, Hong, Oh, Yoo, Menaker, Takahashi (bib0065) 2004; 101
Chaudhury, Colwell (bib0008) 2002; 133
Trask, Pullins, Ferrara, Helmstetter (bib0050) 2021; 46
Zhou, Won, Karlsson, Zhou, Rogerson, Neve, Poirazi, Silva (bib0067) 2009; 12
Vogel-Ciernia, Wood (bib0055) 2014; 69
Davies, Navaratnam, Redfern (bib0014) 1973; 32
Yamazaki, Numano, Abe, Hida, Takahashi, Ueda, Block, Sakaki, Menaker, Tei (bib0062) 2000; 288
Shigeyoshi, Taguchi, Yamamoto, Takekida, Yan, Tei, Moriya, Shibata, Loros, Dunlap, Okamura (bib0042) 1997; 91
Eckel-Mahan, Phan, Han, Wang, Chan, Scheiner, Storm (bib0016) 2008; 11
Yin, Wallach, Del Vecchio, Wilder, Zhou, Quinn, Tully (bib0064) 1994; 79
Vann, Brown, Aggleton (bib0053) 2000; 101
Craik, McDowd (bib0013) 1987; 13
Rawashdeh, Jilg, Maronde, Fahrenkrug, Stehle (bib0038) 2016; 138
Shimizu, Kobayashi, Nakatsuji, Yamazaki, Shimba, Sakimura, Fukada (bib0043) 2016; 7
Pang, Miller, Fortress, McAuley (bib0034) 2006; 28
Cain, Chalmers, Ralph (bib0006) 2012; 230
Plautz, Kaneko, Hall, Kay (bib0036) 1997; 278
Harker, Whishaw (bib0018) 2002; 22
Vann, Aggleton (bib0052) 2004; 155
Spencer, Falcon, Kumar, Krishnan, Mukherjee, Birnbaum, McClung (bib0046) 2013; 37
Cermakian, Monaco, Pando, Dierich, Sassone-Corsi (bib0007) 2001; 20
Smies, Bodinayake, Kwapis (bib0044) 2022; 193
Bohnslav, Wimalasena, Clausing, Dai, Yarmolinsky, Cruz, Kashlan, Chiappe, Orefice, Woolf, Harvey (bib0005) 2021; 10
Corcoran, Donnan, Tronson, Guzmán, Gao, Jovasevic, Guedea, Radulovic (bib0011) 2011; 31
Larson, Gilbert, Wang, Lim, Weissman, Qi (bib0025) 2013; 8
Nelson, Hindley, Pearce, Vann, Aggleton (bib0032) 2015; 9
Mukherjee, Coque, Cao, Kumar, Chakravarty, Asaithamby, Graham, Gordon, Enwright, DiLeone, Birnbaum, Cooper, McClung (bib0029) 2010; 68
Snider, Dziema, Aten, Loeser, Norona, Hoyt, Obrietan (bib0045) 2016; 308
Antoniadis, Ko, McDonald (bib0003) 2000; 111
Shibata, Kondo, Naito (bib0041) 2004; 49
Yin, Del Vecchio, Zhou, Tully (bib0063) 1995; 81
Jilg, Lesny, Peruzki, Schwegler, Selbach, Dehghani, Stehle (bib0020) 2010; 20
Kwapis, Alaghband, Kramár, López, Vogel Ciernia, White, Shu, Rhee, Michael, Montellier, Liu, Magnan, Chen, Sassone-Corsi, Baldi, Matheos, Wood (bib0022) 2018; 9
Neve, Neve, Nestler, Carlezon (bib0033) 2005; 39
Mulder, Papantoniou, Gerkema, Van Der Zee (bib0030) 2014; 31
Woodruff, Chun, Hinds, Varra, Tirado, Morton, McClung, Spencer (bib0061) 2018; 5
Abe, Herzog, Yamazaki, Straume, Tei, Sakaki, Menaker, Block (bib0002) 2002; 22
Kornhauser, Nelson, Mayo, Takahashi (bib0021) 1990; 5
Renfrew, Pettigrew, Rapoport (bib0039) 1987; 41
de Landeta (10.1016/j.neurobiolaging.2023.02.009_bib0015) 2020; 10
Harker (10.1016/j.neurobiolaging.2023.02.009_bib0018) 2002; 22
McClung (10.1016/j.neurobiolaging.2023.02.009_bib0027) 2005; 102
Urban (10.1016/j.neurobiolaging.2023.02.009_bib0051) 2021; 185
Chavez (10.1016/j.neurobiolaging.2023.02.009_bib0010) 2015; 12
Larson (10.1016/j.neurobiolaging.2023.02.009_bib0025) 2013; 8
Stephan (10.1016/j.neurobiolaging.2023.02.009_bib0047) 1978; 22
Plautz (10.1016/j.neurobiolaging.2023.02.009_bib0036) 1997; 278
Woodruff (10.1016/j.neurobiolaging.2023.02.009_bib0061) 2018; 5
Eckel-Mahan (10.1016/j.neurobiolaging.2023.02.009_bib0016) 2008; 11
Kwapis (10.1016/j.neurobiolaging.2023.02.009_bib0023) 2019; 39
Antoniadis (10.1016/j.neurobiolaging.2023.02.009_bib0003) 2000; 111
Vann (10.1016/j.neurobiolaging.2023.02.009_bib0054) 2003; 140
Davies (10.1016/j.neurobiolaging.2023.02.009_bib0014) 1973; 32
Chaudhury (10.1016/j.neurobiolaging.2023.02.009_bib0008) 2002; 133
Zhou (10.1016/j.neurobiolaging.2023.02.009_bib0067) 2009; 12
Neave (10.1016/j.neurobiolaging.2023.02.009_bib0031) 1994; 65
10.1016/j.neurobiolaging.2023.02.009_bib0004
Phan (10.1016/j.neurobiolaging.2023.02.009_bib0035) 2011; 31
Nelson (10.1016/j.neurobiolaging.2023.02.009_bib0032) 2015; 9
Rawashdeh (10.1016/j.neurobiolaging.2023.02.009_bib0037) 2014; 24
Moyer (10.1016/j.neurobiolaging.2023.02.009_bib0028) 2006; 120
Chaudhury (10.1016/j.neurobiolaging.2023.02.009_bib0009) 2005; 20
Jilg (10.1016/j.neurobiolaging.2023.02.009_bib0020) 2010; 20
Weitzman (10.1016/j.neurobiolaging.2023.02.009_bib0057) 1982; 3
Abarca (10.1016/j.neurobiolaging.2023.02.009_bib0001) 2002; 99
Cain (10.1016/j.neurobiolaging.2023.02.009_bib0006) 2012; 230
Pang (10.1016/j.neurobiolaging.2023.02.009_bib0034) 2006; 28
Inouye (10.1016/j.neurobiolaging.2023.02.009_bib0019) 1979; 76
Yin (10.1016/j.neurobiolaging.2023.02.009_bib0063) 1995; 81
Corcoran (10.1016/j.neurobiolaging.2023.02.009_bib0011) 2011; 31
Yin (10.1016/j.neurobiolaging.2023.02.009_bib0064) 1994; 79
Kwapis (10.1016/j.neurobiolaging.2023.02.009_bib0024) 2015; 123
Vann (10.1016/j.neurobiolaging.2023.02.009_bib0052) 2004; 155
Youngjohn (10.1016/j.neurobiolaging.2023.02.009_bib0066) 1993; 15
Smies (10.1016/j.neurobiolaging.2023.02.009_bib0044) 2022; 193
Cermakian (10.1016/j.neurobiolaging.2023.02.009_bib0007) 2001; 20
Mulder (10.1016/j.neurobiolaging.2023.02.009_bib0030) 2014; 31
Neve (10.1016/j.neurobiolaging.2023.02.009_bib0033) 2005; 39
Shibata (10.1016/j.neurobiolaging.2023.02.009_bib0041) 2004; 49
Trask (10.1016/j.neurobiolaging.2023.02.009_bib0048) 2021; 185
Wiggs (10.1016/j.neurobiolaging.2023.02.009_bib0058) 1998; 37
Lorsch (10.1016/j.neurobiolaging.2023.02.009_bib0026) 2019; 22
Spencer (10.1016/j.neurobiolaging.2023.02.009_bib0046) 2013; 37
Vogel-Ciernia (10.1016/j.neurobiolaging.2023.02.009_bib0055) 2014; 69
Snider (10.1016/j.neurobiolaging.2023.02.009_bib0045) 2016; 308
Yoo (10.1016/j.neurobiolaging.2023.02.009_bib0065) 2004; 101
Mukherjee (10.1016/j.neurobiolaging.2023.02.009_bib0029) 2010; 68
Vann (10.1016/j.neurobiolaging.2023.02.009_bib0053) 2000; 101
Craik (10.1016/j.neurobiolaging.2023.02.009_bib0013) 1987; 13
Fernandez (10.1016/j.neurobiolaging.2023.02.009_bib0017) 2014; 346
Shigeyoshi (10.1016/j.neurobiolaging.2023.02.009_bib0042) 1997; 91
Renfrew (10.1016/j.neurobiolaging.2023.02.009_bib0039) 1987; 41
Yamazaki (10.1016/j.neurobiolaging.2023.02.009_bib0062) 2000; 288
Abe (10.1016/j.neurobiolaging.2023.02.009_bib0002) 2002; 22
Ruby (10.1016/j.neurobiolaging.2023.02.009_bib0040) 2021; 15
Witting (10.1016/j.neurobiolaging.2023.02.009_bib0060) 1990; 27
Wang (10.1016/j.neurobiolaging.2023.02.009_bib0056) 2016; 11
Shimizu (10.1016/j.neurobiolaging.2023.02.009_bib0043) 2016; 7
Bohnslav (10.1016/j.neurobiolaging.2023.02.009_bib0005) 2021; 10
Craik (10.1016/j.neurobiolaging.2023.02.009_bib0012) 2002
Wimmer (10.1016/j.neurobiolaging.2023.02.009_bib0059) 2012; 33
Trask (10.1016/j.neurobiolaging.2023.02.009_bib0049) 2022; 189
Rawashdeh (10.1016/j.neurobiolaging.2023.02.009_bib0038) 2016; 138
Trask (10.1016/j.neurobiolaging.2023.02.009_bib0050) 2021; 46
Kornhauser (10.1016/j.neurobiolaging.2023.02.009_bib0021) 1990; 5
Kwapis (10.1016/j.neurobiolaging.2023.02.009_bib0022) 2018; 9
References_xml – volume: 120
  start-page: 612
  year: 2006
  ident: bib0028
  article-title: Impaired trace and contextual fear conditioning in aged rats
  publication-title: Behav. Neurosci.
– volume: 81
  start-page: 107
  year: 1995
  end-page: 115
  ident: bib0063
  article-title: CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in drosophila
  publication-title: Cell
– volume: 8
  start-page: 2180
  year: 2013
  end-page: 2196
  ident: bib0025
  article-title: CRISPR interference (CRISPRi) for sequence-specific control of gene expression
  publication-title: Nat. Protoc.
– volume: 133
  start-page: 95
  year: 2002
  end-page: 108
  ident: bib0008
  article-title: Circadian modulation of learning and memory in fear-conditioned mice
  publication-title: Behav. Brain Res.
– volume: 5
  start-page: 127
  year: 1990
  end-page: 134
  ident: bib0021
  article-title: Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus
  publication-title: Neuron
– volume: 37
  start-page: 103
  year: 1998
  end-page: 118
  ident: bib0058
  article-title: Neural correlates of semantic and episodic memory retrieval
  publication-title: Neuropsychologia
– volume: 46
  start-page: 1386
  year: 2021
  end-page: 1392
  ident: bib0050
  article-title: The anterior retrosplenial cortex encodes event-related information and the posterior retrosplenial cortex encodes context-related information during memory formation
  publication-title: Neuropsychopharmacology
– volume: 230
  start-page: 288
  year: 2012
  end-page: 290
  ident: bib0006
  article-title: Circadian modulation of passive avoidance is not eliminated in arrhythmic hamsters with suprachiasmatic nucleus lesions
  publication-title: Behav. Brain Res.
– volume: 13
  start-page: 474
  year: 1987
  end-page: 479
  ident: bib0013
  article-title: Age differences in recall and recognition
  publication-title: J. Exp. Psychol.
– volume: 39
  start-page: 381
  year: 2005
  end-page: 391
  ident: bib0033
  article-title: Use of herpes virus amplicon vectors to study brain disorders
  publication-title: Bio.Techniques
– volume: 31
  start-page: 11655
  year: 2011
  end-page: 11659
  ident: bib0011
  article-title: NMDA receptors in retrosplenial cortex are necessary for retrieval of recent and remote context fear memory
  publication-title: J. Neurosci.
– volume: 140
  start-page: 107
  year: 2003
  end-page: 118
  ident: bib0054
  article-title: Testing the importance of the caudal retrosplenial cortex for spatial memory in rats
  publication-title: Behav. Brain Res.
– volume: 37
  start-page: 242
  year: 2013
  end-page: 250
  ident: bib0046
  article-title: Circadian genes Period 1 and Period 2 in the nucleus accumbens regulate anxiety-related behavior
  publication-title: Eur. J. Neurosci.
– volume: 79
  start-page: 49
  year: 1994
  end-page: 58
  ident: bib0064
  article-title: Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila
  publication-title: Cell
– volume: 49
  start-page: 1
  year: 2004
  end-page: 11
  ident: bib0041
  article-title: Organization of retrosplenial cortical projections to the anterior cingulate, motor, and prefrontal cortices in the rat
  publication-title: Neurosci. Res.
– volume: 189
  year: 2022
  ident: bib0049
  article-title: Examining a role for the retrosplenial cortex in age-related memory impairment
  publication-title: Neurobiol. Learning Memory
– volume: 39
  start-page: 4999
  year: 2019
  end-page: 5009
  ident: bib0023
  article-title: HDAC3-Mediated Repression of the Nr4a Family Contributes to Age-Related Impairments in Long-Term Memory
  publication-title: J. Neurosci.
– volume: 22
  start-page: 1155
  year: 2002
  end-page: 1164
  ident: bib0018
  article-title: Impaired spatial performance in rats with retrosplenial lesions: importance of the spatial problem and the rat strain in identifying lesion effects in a swimming pool
  publication-title: J. Neurosci.
– volume: 31
  start-page: 1075
  year: 2014
  end-page: 1092
  ident: bib0030
  article-title: Neither the SCN nor the adrenals are required for circadian time-place learning in mice
  publication-title: Chronobiol. Int.
– volume: 278
  start-page: 1632
  year: 1997
  end-page: 1635
  ident: bib0036
  article-title: Independent photoreceptive circadian clocks throughout drosophila
  publication-title: Science
– volume: 24
  start-page: 712
  year: 2014
  end-page: 723
  ident: bib0037
  article-title: PERIOD1 coordinates hippocampal rhythms and memory processing with daytime
  publication-title: Hippocampus
– volume: 5
  year: 2018
  ident: bib0061
  article-title: Coordination between prefrontal cortex clock gene expression and corticosterone contributes to enhanced conditioned fear extinction recall
  publication-title: eNeuro
– volume: 346
  start-page: 854
  year: 2014
  end-page: 857
  ident: bib0017
  article-title: Dysrhythmia in the suprachiasmatic nucleus inhibits memory processing
  publication-title: Science
– volume: 288
  start-page: 682
  year: 2000
  end-page: 685
  ident: bib0062
  article-title: Resetting central and peripheral circadian oscillators in transgenic rats
  publication-title: Science
– volume: 11
  start-page: 1074
  year: 2008
  end-page: 1082
  ident: bib0016
  article-title: Circadian oscillation of hippocampal MAPK activity and cAMP: implications for memory persistence
  publication-title: Nat. Neurosci.
– volume: 111
  start-page: 25
  year: 2000
  end-page: 37
  ident: bib0003
  article-title: Circadian rhythms, aging and memory
  publication-title: Behav. Brain Res.
– volume: 101
  start-page: 5339
  year: 2004
  end-page: 5346
  ident: bib0065
  article-title: PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 31
  start-page: 10640
  year: 2011
  end-page: 10647
  ident: bib0035
  article-title: The Diurnal Oscillation of MAP (Mitogen-Activated Protein) Kinase and Adenylyl Cyclase activities in the hippocampus depends on the suprachiasmatic nucleus
  publication-title: J. Neurosci.
– volume: 76
  start-page: 5962
  year: 1979
  end-page: 5966
  ident: bib0019
  article-title: Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 15
  start-page: 447
  year: 1993
  end-page: 460
  ident: bib0066
  article-title: Learning, forgetting, and retrieval of everyday material across the adult life span
  publication-title: J. Clin. Exp. Neuropsychol.
– volume: 123
  start-page: 110
  year: 2015
  end-page: 116
  ident: bib0024
  article-title: The retrosplenial cortex is involved in the formation of memory for context and trace fear conditioning
  publication-title: Neurobiol. Learn Mem.
– volume: 9
  start-page: 11
  year: 2015
  ident: bib0032
  article-title: The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning
  publication-title: Front Behav. Neurosci.
– volume: 12
  start-page: 1438
  year: 2009
  end-page: 1443
  ident: bib0067
  article-title: CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala
  publication-title: Nat. Neurosci.
– volume: 138
  start-page: 731
  year: 2016
  end-page: 745
  ident: bib0038
  article-title: gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK
  publication-title: J. Neurochem.
– reference: Bellfy, L., Smies, C.W., Bernhardt, A.R., Bodinayake, K.K., Sebastian, A., Stuart, E.M., Wright, D.S., Lo, C.-Y., Murakami, S., Boyd, H.M., von Abo, M.J., Albert, I., Kwapis, J.L., 2022. The clock gene Per1 expression may exert diurnal control over hippocampal memory consolidation. bioRxiv 2022.10.11.511798. doi:
– volume: 69
  year: 2014
  ident: bib0055
  article-title: Examining Object Location and Object Recognition Memory in Mice
  publication-title: Curr. Prot. Neurosci.
– volume: 32
  start-page: 211
  year: 1973
  end-page: 214
  ident: bib0014
  article-title: A 24-hour rhythm in passive-avoidance behaviour in rats
  publication-title: Psychopharmacologia
– volume: 155
  start-page: 97
  year: 2004
  end-page: 108
  ident: bib0052
  article-title: Testing the importance of the retrosplenial guidance system: effects of different sized retrosplenial cortex lesions on heading direction and spatial working memory
  publication-title: Behav. Brain Res.
– volume: 20
  start-page: 225
  year: 2005
  end-page: 236
  ident: bib0009
  article-title: Circadian regulation of hippocampal long-term potentiation
  publication-title: J. Biol. Rhythms
– volume: 41
  start-page: 627
  year: 1987
  end-page: 634
  ident: bib0039
  article-title: Motor activity and sleep duration as a function of age in healthy men
  publication-title: Physiol. Behav.
– volume: 65
  start-page: 89
  year: 1994
  end-page: 101
  ident: bib0031
  article-title: Lack of effect of lesions in the anterior cingulate cortex and retrosplenial cortex on certain tests of spatial memory in the rat
  publication-title: Behavioural Brain Research
– volume: 20
  start-page: 3967
  year: 2001
  end-page: 3974
  ident: bib0007
  article-title: Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene
  publication-title: EMBO J.
– volume: 12
  start-page: 326
  year: 2015
  end-page: 328
  ident: bib0010
  article-title: Highly-efficient Cas9-mediated transcriptional programming
  publication-title: Nat. Methods
– volume: 11
  year: 2016
  ident: bib0056
  article-title: Functionally Brain Network Connected to the Retrosplenial Cortex of Rats Revealed by 7T fMRI
  publication-title: PLoS One
– volume: 15
  year: 2021
  ident: bib0040
  article-title: Suppression of Circadian Timing and Its Impact on the Hippocampus
  publication-title: Front Neurosci.
– volume: 193
  year: 2022
  ident: bib0044
  article-title: Time to learn: The role of the molecular circadian clock in learning and memory
  publication-title: Neurobiol. Learning and Memory
– volume: 22
  start-page: 456
  year: 1978
  end-page: 462
  ident: bib0047
  article-title: Multiple retention deficit in passive avoidance in rats is eliminated by suprachiasmatic lesions
  publication-title: Behav. Biol.
– volume: 101
  start-page: 983
  year: 2000
  end-page: 991
  ident: bib0053
  article-title: Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatial memory tests
  publication-title: Neuroscience
– volume: 22
  start-page: 350
  year: 2002
  end-page: 356
  ident: bib0002
  article-title: Circadian rhythms in isolated brain regions
  publication-title: J. Neurosci.
– volume: 7
  start-page: 12926
  year: 2016
  ident: bib0043
  article-title: SCOP/PHLPP1β mediates circadian regulation of long-term recognition memory
  publication-title: Nat. Commun.
– volume: 20
  start-page: 377
  year: 2010
  end-page: 388
  ident: bib0020
  article-title: Temporal dynamics of mouse hippocampal clock gene expression support memory processing
  publication-title: Hippocampus
– year: 2002
  ident: bib0012
  article-title: Aging, Memory, and Frontal Lobe Functioning
  publication-title: Principles of Frontal Lobe Function
– volume: 10
  start-page: e63377
  year: 2021
  ident: bib0005
  article-title: DeepEthogram, a machine learning pipeline for supervised behavior classification from raw pixels
  publication-title: eLife
– volume: 9
  start-page: 3323
  year: 2018
  ident: bib0022
  article-title: Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory
  publication-title: Nat. Commun.
– volume: 27
  start-page: 563
  year: 1990
  end-page: 572
  ident: bib0060
  article-title: Alterations in the circadian rest-activity rhythm in aging and Alzheimer's disease
  publication-title: Biol. Psychiatr.
– volume: 22
  start-page: 1413
  year: 2019
  end-page: 1423
  ident: bib0026
  article-title: Stress resilience is promoted by a Zfp189-driven transcriptional network in prefrontal cortex
  publication-title: Nat. Neurosci.
– reference: .
– volume: 10
  start-page: 4002
  year: 2020
  ident: bib0015
  article-title: Anterior retrosplenial cortex is required for long-term object recognition memory
  publication-title: Sci. Rep.
– volume: 33
  start-page: 2220
  year: 2012
  end-page: 2224
  ident: bib0059
  article-title: Aging impairs hippocampus-dependent long-term memory for object location in mice
  publication-title: Neurobiol. Aging
– volume: 28
  start-page: 283
  year: 2006
  end-page: 296
  ident: bib0034
  article-title: Age-related disruptions of circadian rhythm and memory in the senescence-accelerated mouse (SAMP8)
  publication-title: AGE
– volume: 3
  start-page: 299
  year: 1982
  end-page: 309
  ident: bib0057
  article-title: Chronobiology of aging: Temperature, sleep-wake rhythms and entrainment
  publication-title: Neurobiol. Aging
– volume: 91
  start-page: 1043
  year: 1997
  end-page: 1053
  ident: bib0042
  article-title: Light-Induced Resetting of a Mammalian Circadian Clock Is Associated with Rapid Induction of the mPer1 Transcript
  publication-title: Cell
– volume: 185
  year: 2021
  ident: bib0048
  article-title: Optogenetic inhibition of either the anterior or posterior retrosplenial cortex disrupts retrieval of a trace, but not delay, fear memory
  publication-title: Neurobiol.Learning Memory
– volume: 102
  start-page: 9377
  year: 2005
  end-page: 9381
  ident: bib0027
  article-title: Regulation of dopaminergic transmission and cocaine reward by the Clock gene
  publication-title: Proc. Nat. Acad. Sci.
– volume: 99
  start-page: 9026
  year: 2002
  end-page: 9030
  ident: bib0001
  article-title: Cocaine sensitization and reward are under the influence of circadian genes and rhythm
  publication-title: Proceed. Nat. Acad. Sci.
– volume: 308
  start-page: 222
  year: 2016
  end-page: 235
  ident: bib0045
  article-title: Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits
  publication-title: Behav. Brain Res.
– volume: 68
  start-page: 503
  year: 2010
  end-page: 511
  ident: bib0029
  article-title: Knockdown of clock in the ventral tegmental area through rna interference results in a mixed state of mania and depression-like behavior
  publication-title: Biol. Psychiatr.
– volume: 185
  year: 2021
  ident: bib0051
  article-title: The circadian clock gene Per1 modulates context fear memory formation within the retrosplenial cortex in a sex-specific manner
  publication-title: Neurobiol. Learning Memory
– volume: 278
  start-page: 1632
  year: 1997
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0036
  article-title: Independent photoreceptive circadian clocks throughout drosophila
  publication-title: Science
  doi: 10.1126/science.278.5343.1632
– volume: 185
  year: 2021
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0051
  article-title: The circadian clock gene Per1 modulates context fear memory formation within the retrosplenial cortex in a sex-specific manner
  publication-title: Neurobiol. Learning Memory
  doi: 10.1016/j.nlm.2021.107535
– volume: 20
  start-page: 377
  year: 2010
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0020
  article-title: Temporal dynamics of mouse hippocampal clock gene expression support memory processing
  publication-title: Hippocampus
  doi: 10.1002/hipo.20637
– volume: 193
  year: 2022
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0044
  article-title: Time to learn: The role of the molecular circadian clock in learning and memory
  publication-title: Neurobiol. Learning and Memory
  doi: 10.1016/j.nlm.2022.107651
– volume: 8
  start-page: 2180
  year: 2013
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0025
  article-title: CRISPR interference (CRISPRi) for sequence-specific control of gene expression
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.132
– volume: 91
  start-page: 1043
  year: 1997
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0042
  article-title: Light-Induced Resetting of a Mammalian Circadian Clock Is Associated with Rapid Induction of the mPer1 Transcript
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80494-8
– volume: 11
  year: 2016
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0056
  article-title: Functionally Brain Network Connected to the Retrosplenial Cortex of Rats Revealed by 7T fMRI
  publication-title: PLoS One
– volume: 10
  start-page: 4002
  year: 2020
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0015
  article-title: Anterior retrosplenial cortex is required for long-term object recognition memory
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-60937-z
– volume: 49
  start-page: 1
  year: 2004
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0041
  article-title: Organization of retrosplenial cortical projections to the anterior cingulate, motor, and prefrontal cortices in the rat
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2004.01.005
– volume: 33
  start-page: 2220
  year: 2012
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0059
  article-title: Aging impairs hippocampus-dependent long-term memory for object location in mice
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2011.07.007
– volume: 120
  start-page: 612
  year: 2006
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0028
  article-title: Impaired trace and contextual fear conditioning in aged rats
  publication-title: Behav. Neurosci.
  doi: 10.1037/0735-7044.120.3.612
– volume: 15
  year: 2021
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0040
  article-title: Suppression of Circadian Timing and Its Impact on the Hippocampus
  publication-title: Front Neurosci.
  doi: 10.3389/fnins.2021.642376
– volume: 101
  start-page: 983
  year: 2000
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0053
  article-title: Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatial memory tests
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(00)00288-8
– volume: 5
  start-page: 127
  year: 1990
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0021
  article-title: Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus
  publication-title: Neuron
  doi: 10.1016/0896-6273(90)90303-W
– volume: 101
  start-page: 5339
  year: 2004
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0065
  article-title: PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0308709101
– volume: 189
  year: 2022
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0049
  article-title: Examining a role for the retrosplenial cortex in age-related memory impairment
  publication-title: Neurobiol. Learning Memory
  doi: 10.1016/j.nlm.2022.107601
– ident: 10.1016/j.neurobiolaging.2023.02.009_bib0004
  doi: 10.1101/2022.10.11.511798
– volume: 185
  year: 2021
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0048
  article-title: Optogenetic inhibition of either the anterior or posterior retrosplenial cortex disrupts retrieval of a trace, but not delay, fear memory
  publication-title: Neurobiol.Learning Memory
  doi: 10.1016/j.nlm.2021.107530
– volume: 10
  start-page: e63377
  year: 2021
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0005
  article-title: DeepEthogram, a machine learning pipeline for supervised behavior classification from raw pixels
  publication-title: eLife
  doi: 10.7554/eLife.63377
– volume: 15
  start-page: 447
  year: 1993
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0066
  article-title: Learning, forgetting, and retrieval of everyday material across the adult life span
  publication-title: J. Clin. Exp. Neuropsychol.
  doi: 10.1080/01688639308402570
– volume: 3
  start-page: 299
  year: 1982
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0057
  article-title: Chronobiology of aging: Temperature, sleep-wake rhythms and entrainment
  publication-title: Neurobiol. Aging
  doi: 10.1016/0197-4580(82)90018-5
– year: 2002
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0012
  article-title: Aging, Memory, and Frontal Lobe Functioning
– volume: 39
  start-page: 4999
  year: 2019
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0023
  article-title: HDAC3-Mediated Repression of the Nr4a Family Contributes to Age-Related Impairments in Long-Term Memory
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2799-18.2019
– volume: 37
  start-page: 242
  year: 2013
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0046
  article-title: Circadian genes Period 1 and Period 2 in the nucleus accumbens regulate anxiety-related behavior
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.12010
– volume: 22
  start-page: 1155
  year: 2002
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0018
  article-title: Impaired spatial performance in rats with retrosplenial lesions: importance of the spatial problem and the rat strain in identifying lesion effects in a swimming pool
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-03-01155.2002
– volume: 31
  start-page: 11655
  year: 2011
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0011
  article-title: NMDA receptors in retrosplenial cortex are necessary for retrieval of recent and remote context fear memory
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2107-11.2011
– volume: 22
  start-page: 1413
  year: 2019
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0026
  article-title: Stress resilience is promoted by a Zfp189-driven transcriptional network in prefrontal cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0462-8
– volume: 138
  start-page: 731
  year: 2016
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0038
  article-title: Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.13689
– volume: 27
  start-page: 563
  year: 1990
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0060
  article-title: Alterations in the circadian rest-activity rhythm in aging and Alzheimer's disease
  publication-title: Biol. Psychiatr.
  doi: 10.1016/0006-3223(90)90523-5
– volume: 99
  start-page: 9026
  year: 2002
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0001
  article-title: Cocaine sensitization and reward are under the influence of circadian genes and rhythm
  publication-title: Proceed. Nat. Acad. Sci.
  doi: 10.1073/pnas.142039099
– volume: 140
  start-page: 107
  year: 2003
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0054
  article-title: Testing the importance of the caudal retrosplenial cortex for spatial memory in rats
  publication-title: Behav. Brain Res.
  doi: 10.1016/S0166-4328(02)00274-7
– volume: 111
  start-page: 25
  year: 2000
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0003
  article-title: Circadian rhythms, aging and memory
  publication-title: Behav. Brain Res.
  doi: 10.1016/S0166-4328(00)00145-5
– volume: 12
  start-page: 1438
  year: 2009
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0067
  article-title: CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2405
– volume: 9
  start-page: 11
  year: 2015
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0032
  article-title: The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning
  publication-title: Front Behav. Neurosci.
  doi: 10.3389/fnbeh.2015.00011
– volume: 24
  start-page: 712
  year: 2014
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0037
  article-title: PERIOD1 coordinates hippocampal rhythms and memory processing with daytime
  publication-title: Hippocampus
  doi: 10.1002/hipo.22262
– volume: 230
  start-page: 288
  year: 2012
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0006
  article-title: Circadian modulation of passive avoidance is not eliminated in arrhythmic hamsters with suprachiasmatic nucleus lesions
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2012.02.022
– volume: 12
  start-page: 326
  year: 2015
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0010
  article-title: Highly-efficient Cas9-mediated transcriptional programming
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3312
– volume: 28
  start-page: 283
  issue: 2006
  year: 2006
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0034
  article-title: Age-related disruptions of circadian rhythm and memory in the senescence-accelerated mouse (SAMP8)
  publication-title: AGE
  doi: 10.1007/s11357-006-9013-9
– volume: 346
  start-page: 854
  year: 2014
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0017
  article-title: Dysrhythmia in the suprachiasmatic nucleus inhibits memory processing
  publication-title: Science
  doi: 10.1126/science.1259652
– volume: 46
  start-page: 1386
  year: 2021
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0050
  article-title: The anterior retrosplenial cortex encodes event-related information and the posterior retrosplenial cortex encodes context-related information during memory formation
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-021-00959-x
– volume: 288
  start-page: 682
  year: 2000
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0062
  article-title: Resetting central and peripheral circadian oscillators in transgenic rats
  publication-title: Science
  doi: 10.1126/science.288.5466.682
– volume: 9
  start-page: 3323
  year: 2018
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0022
  article-title: Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05868-0
– volume: 79
  start-page: 49
  year: 1994
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0064
  article-title: Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90399-9
– volume: 31
  start-page: 10640
  year: 2011
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0035
  article-title: The Diurnal Oscillation of MAP (Mitogen-Activated Protein) Kinase and Adenylyl Cyclase activities in the hippocampus depends on the suprachiasmatic nucleus
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6535-10.2011
– volume: 155
  start-page: 97
  year: 2004
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0052
  article-title: Testing the importance of the retrosplenial guidance system: effects of different sized retrosplenial cortex lesions on heading direction and spatial working memory
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2004.04.005
– volume: 22
  start-page: 456
  year: 1978
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0047
  article-title: Multiple retention deficit in passive avoidance in rats is eliminated by suprachiasmatic lesions
  publication-title: Behav. Biol.
  doi: 10.1016/S0091-6773(78)92565-8
– volume: 32
  start-page: 211
  year: 1973
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0014
  article-title: A 24-hour rhythm in passive-avoidance behaviour in rats
  publication-title: Psychopharmacologia
  doi: 10.1007/BF00428692
– volume: 7
  start-page: 12926
  year: 2016
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0043
  article-title: SCOP/PHLPP1β mediates circadian regulation of long-term recognition memory
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12926
– volume: 5
  year: 2018
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0061
  article-title: Coordination between prefrontal cortex clock gene expression and corticosterone contributes to enhanced conditioned fear extinction recall
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0455-18.2018
– volume: 31
  start-page: 1075
  year: 2014
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0030
  article-title: Neither the SCN nor the adrenals are required for circadian time-place learning in mice
  publication-title: Chronobiol. Int.
  doi: 10.3109/07420528.2014.944975
– volume: 20
  start-page: 225
  year: 2005
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0009
  article-title: Circadian regulation of hippocampal long-term potentiation
  publication-title: J. Biol. Rhythms
  doi: 10.1177/0748730405276352
– volume: 102
  start-page: 9377
  year: 2005
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0027
  article-title: Regulation of dopaminergic transmission and cocaine reward by the Clock gene
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.0503584102
– volume: 308
  start-page: 222
  year: 2016
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0045
  article-title: Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2016.04.027
– volume: 11
  start-page: 1074
  year: 2008
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0016
  article-title: Circadian oscillation of hippocampal MAPK activity and cAMP: implications for memory persistence
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2174
– volume: 22
  start-page: 350
  year: 2002
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0002
  article-title: Circadian rhythms in isolated brain regions
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-01-00350.2002
– volume: 41
  start-page: 627
  year: 1987
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0039
  article-title: Motor activity and sleep duration as a function of age in healthy men
  publication-title: Physiol. Behav.
  doi: 10.1016/0031-9384(87)90321-0
– volume: 69
  year: 2014
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0055
  article-title: Examining Object Location and Object Recognition Memory in Mice
  publication-title: Curr. Prot. Neurosci.
– volume: 81
  start-page: 107
  year: 1995
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0063
  article-title: CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in drosophila
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90375-5
– volume: 76
  start-page: 5962
  year: 1979
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0019
  article-title: Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.76.11.5962
– volume: 37
  start-page: 103
  year: 1998
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0058
  article-title: Neural correlates of semantic and episodic memory retrieval
  publication-title: Neuropsychologia
  doi: 10.1016/S0028-3932(98)00044-X
– volume: 133
  start-page: 95
  year: 2002
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0008
  article-title: Circadian modulation of learning and memory in fear-conditioned mice
  publication-title: Behav. Brain Res.
  doi: 10.1016/S0166-4328(01)00471-5
– volume: 123
  start-page: 110
  year: 2015
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0024
  article-title: The retrosplenial cortex is involved in the formation of memory for context and trace fear conditioning
  publication-title: Neurobiol. Learn Mem.
  doi: 10.1016/j.nlm.2015.06.007
– volume: 20
  start-page: 3967
  year: 2001
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0007
  article-title: Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.15.3967
– volume: 39
  start-page: 381
  year: 2005
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0033
  article-title: Use of herpes virus amplicon vectors to study brain disorders
  publication-title: Bio.Techniques
– volume: 65
  start-page: 89
  year: 1994
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0031
  article-title: Lack of effect of lesions in the anterior cingulate cortex and retrosplenial cortex on certain tests of spatial memory in the rat
  publication-title: Behavioural Brain Research
  doi: 10.1016/0166-4328(94)90077-9
– volume: 13
  start-page: 474
  year: 1987
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0013
  article-title: Age differences in recall and recognition
  publication-title: J. Exp. Psychol.
– volume: 68
  start-page: 503
  year: 2010
  ident: 10.1016/j.neurobiolaging.2023.02.009_bib0029
  article-title: Knockdown of clock in the ventral tegmental area through rna interference results in a mixed state of mania and depression-like behavior
  publication-title: Biol. Psychiatr.
  doi: 10.1016/j.biopsych.2010.04.031
SSID ssj0007476
Score 2.4535513
Snippet •Learning induces Per1 expression within the RSC of young and aging mice.•This RSC Per1 induction rhythmically cycles in young and aging mice.•Bidirectional...
Aging impairs both circadian rhythms and memory, though the relationship between these impairments is not fully understood. Circadian rhythms are largely...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 77
SubjectTerms Aging
Aging - genetics
Animals
Brain - metabolism
Circadian Clocks - genetics
Circadian Rhythm - genetics
Cognitive decline
Gyrus Cinguli - metabolism
Incidental learning
Male
Mice
Per1
Period Circadian Proteins - genetics
Period Circadian Proteins - metabolism
Retrosplenial cortex
Suprachiasmatic nucleus
Suprachiasmatic Nucleus - metabolism
Transcription Factors - metabolism
Title The clock gene Per1 is necessary in the retrosplenial cortex—but not in the suprachiasmatic nucleus—for incidental learning in young and aging male mice
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0197458023000428
https://dx.doi.org/10.1016/j.neurobiolaging.2023.02.009
https://www.ncbi.nlm.nih.gov/pubmed/36958103
https://www.proquest.com/docview/2791370916
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RQED6UCuKLqPWyXsoIxbd0Ty4nOUFElmJZFYughb4dcpnU6O7ZZTcB90X8ET766_wlzpwkW_pQqPi4IZNNMpNvvpzMfCPEQZ7kKUqMvaBSpUeAF3ppHsRepvNCo9ZRhdwo_OEknp5G787U2Y44GnphuKyyx_4O0x1a91vG_d0cL-t6_InISRIpFjCTjvlzB3uUcJQf_rgo8yC6HHct06zvreVNcXBR4-U0I1ntyE0EOuRR4p2CZ3pVmrqKhrp0dHxH3O55JEy6U70rdtDeE3sTS-_Q8w28AFfZ6ZbM98RvigUoKGt9AwoXhI-48qFeg0XuEchWG6gtEBGEFTZ0NssZF-DNoOA63O9_fv7K2wbsohn2WrfcWvWlztZO7hUsSyK3a9qRCDDw2n3peiyhn0hxzoYbRhXIbAnuJsCcEhPMCaXui9PjN5-Ppl4_lcErlPQbSmmhT2hdpKhCRXha6kqGEVbSfTUsUo1xXChUGFH-DbSf6TD3McnKoJCYlzJ8IHbtwuIjAUkWYynLoMp1QK_pfqairJJphbritepwJF4OTjBFL1nOkzNmZqhN-2ouu9CwC40MDLlwJNTWetlJd1zT7tXgbzO0pxKgGsox17R_vbW_FMr_cITnQ5gZetr5E05mcdGuTZCkfpgQx4tH4mEXf9trC-NUaV-Gj__7_5-IW_yrq4h7KnabVYvPiHs1-b57uPbFjcnb99OTvzimN2s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6VVAIuFVAoKa9BqriZrB9rr4UQiiqqlLYREq3U28qPMRiSTRTbErnxIzjy6_glzK7toB4qFXGNPY7tGX_zeT3zDWMHaZTGyDF0vELkDgGe78SpFzqJTDOJUgYFmkbhs2k4uQg-XIrLLXbY98KYssoO-1tMt2jd_TLq7uZoWZajT0ROokAYATNumf8ttm3UqcSAbY-PTybTDSATYw7brmkj8S35bXbwt8zLykYawSM7FOi1mSbeinjG12Wq65iozUhH99hORyVh3J7tfbaF-gHbHWt6jZ6v4RXY4k67ar7LflE4QEaJ6xtQxCB8xJULZQUaTZtAslpDqYG4IKywprNZzkwN3gwyU4r7_fePn2lTg17U_V5VY7qrvpRJZRVfQRtV5KaiHYkDg1m-z22bJXRDKT4bw7UBFkh0DvYmwJxyE8wJqB6yi6P354cTpxvM4GSCuzVlNd8lwM5iFL4gSM1lwf0AC24_HGaxxDDMBAoMKAV70k2kn7oYJbmXcUxz7j9iA73Q-JhBlISY89wrUunRm7qbiCApeFygLMxytT9kb3onqKxTLTfDM2aqL0_7qq66UBkXKu4pcuGQiY31slXvuKHd297fqu9QJUxVlGZuaP9uY38lmv_hCC_7MFP0wJuvOInGRVMpL4pdPyKaFw7ZXht_m2vzw1hIl_v7__3_L9idyfnZqTo9np48YXfNlrZA7ikb1KsGnxEVq9Pn3aP2B7FqOhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+clock+gene+Per1+is+necessary+in+the+retrosplenial+cortex%E2%80%94but+not+in+the+suprachiasmatic+nucleus%E2%80%94for+incidental+learning+in+young+and+aging+male+mice&rft.jtitle=Neurobiology+of+aging&rft.au=Brunswick%2C+Chad+A.&rft.au=Baldwin%2C+Derek+J.&rft.au=Bodinayake%2C+Kasuni+K.&rft.au=McKenna%2C+Alexandria+R.&rft.date=2023-06-01&rft.pub=Elsevier+Inc&rft.issn=0197-4580&rft.volume=126&rft.spage=77&rft.epage=90&rft_id=info:doi/10.1016%2Fj.neurobiolaging.2023.02.009&rft.externalDocID=S0197458023000428
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-4580&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-4580&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-4580&client=summon