The clock gene Per1 is necessary in the retrosplenial cortex—but not in the suprachiasmatic nucleus—for incidental learning in young and aging male mice
•Learning induces Per1 expression within the RSC of young and aging mice.•This RSC Per1 induction rhythmically cycles in young and aging mice.•Bidirectional RSC Per1 manipulations affect spatial memory.•Learning also induces Per1 within the SCN of young (but not aging) mice.•Per1 knockdown in the SC...
Saved in:
Published in | Neurobiology of aging Vol. 126; pp. 77 - 90 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Learning induces Per1 expression within the RSC of young and aging mice.•This RSC Per1 induction rhythmically cycles in young and aging mice.•Bidirectional RSC Per1 manipulations affect spatial memory.•Learning also induces Per1 within the SCN of young (but not aging) mice.•Per1 knockdown in the SCN of young mice has no effect on memory.
Aging impairs both circadian rhythms and memory, though the relationship between these impairments is not fully understood. Circadian rhythms are largely dictated by clock genes within the body's central pacemaker, the suprachiasmatic nucleus (SCN), though these genes are also expressed in local clocks throughout the body. As circadian rhythms can directly affect memory performance, one possibility is that memory deficits observed with age are downstream of global circadian rhythm disruptions stemming from the SCN. Here, we demonstrate that expression of clock gene Period1 within a memory-relevant cortical structure, the retrosplenial cortex (RSC), is necessary for incidental learning, and that age-related disruption of Period1 within the RSC—but not necessarily the SCN—contributes to cognitive decline. These data expand the known functions of clock genes beyond maintaining circadian rhythms and suggests that age-associated changes in clock gene expression modulates circadian rhythms and memory performance in a brain region–dependent manner. |
---|---|
AbstractList | •Learning induces Per1 expression within the RSC of young and aging mice.•This RSC Per1 induction rhythmically cycles in young and aging mice.•Bidirectional RSC Per1 manipulations affect spatial memory.•Learning also induces Per1 within the SCN of young (but not aging) mice.•Per1 knockdown in the SCN of young mice has no effect on memory.
Aging impairs both circadian rhythms and memory, though the relationship between these impairments is not fully understood. Circadian rhythms are largely dictated by clock genes within the body's central pacemaker, the suprachiasmatic nucleus (SCN), though these genes are also expressed in local clocks throughout the body. As circadian rhythms can directly affect memory performance, one possibility is that memory deficits observed with age are downstream of global circadian rhythm disruptions stemming from the SCN. Here, we demonstrate that expression of clock gene Period1 within a memory-relevant cortical structure, the retrosplenial cortex (RSC), is necessary for incidental learning, and that age-related disruption of Period1 within the RSC—but not necessarily the SCN—contributes to cognitive decline. These data expand the known functions of clock genes beyond maintaining circadian rhythms and suggests that age-associated changes in clock gene expression modulates circadian rhythms and memory performance in a brain region–dependent manner. Aging impairs both circadian rhythms and memory, though the relationship between these impairments is not fully understood. Circadian rhythms are largely dictated by clock genes within the body's central pacemaker, the suprachiasmatic nucleus (SCN), though these genes are also expressed in local clocks throughout the body. As circadian rhythms can directly affect memory performance, one possibility is that memory deficits observed with age are downstream of global circadian rhythm disruptions stemming from the SCN. Here, we demonstrate that expression of clock gene Period1 within a memory-relevant cortical structure, the retrosplenial cortex (RSC), is necessary for incidental learning, and that age-related disruption of Period1 within the RSC-but not necessarily the SCN-contributes to cognitive decline. These data expand the known functions of clock genes beyond maintaining circadian rhythms and suggests that age-associated changes in clock gene expression modulates circadian rhythms and memory performance in a brain region-dependent manner.Aging impairs both circadian rhythms and memory, though the relationship between these impairments is not fully understood. Circadian rhythms are largely dictated by clock genes within the body's central pacemaker, the suprachiasmatic nucleus (SCN), though these genes are also expressed in local clocks throughout the body. As circadian rhythms can directly affect memory performance, one possibility is that memory deficits observed with age are downstream of global circadian rhythm disruptions stemming from the SCN. Here, we demonstrate that expression of clock gene Period1 within a memory-relevant cortical structure, the retrosplenial cortex (RSC), is necessary for incidental learning, and that age-related disruption of Period1 within the RSC-but not necessarily the SCN-contributes to cognitive decline. These data expand the known functions of clock genes beyond maintaining circadian rhythms and suggests that age-associated changes in clock gene expression modulates circadian rhythms and memory performance in a brain region-dependent manner. Aging impairs both circadian rhythms and memory, though the relationship between these impairments is not fully understood. Circadian rhythms are largely dictated by clock genes within the body's central pacemaker, the suprachiasmatic nucleus (SCN), though these genes are also expressed in local clocks throughout the body. As circadian rhythms can directly affect memory performance, one possibility is that memory deficits observed with age are downstream of global circadian rhythm disruptions stemming from the SCN. Here, we demonstrate that expression of clock gene Period1 within a memory-relevant cortical structure, the retrosplenial cortex (RSC), is necessary for incidental learning, and that age-related disruption of Period1 within the RSC-but not necessarily the SCN-contributes to cognitive decline. These data expand the known functions of clock genes beyond maintaining circadian rhythms and suggests that age-associated changes in clock gene expression modulates circadian rhythms and memory performance in a brain region-dependent manner. |
Author | Smies, Chad W. Bodinayake, Kasuni K. Bellfy, Lauren Stuart, Emily M. Lo, Chen-Yu Kwapis, Janine L. Brunswick, Chad A. McKenna, Alexandria R. Murakami, Shoko Urban, Mark W. Baldwin, Derek J. |
Author_xml | – sequence: 1 givenname: Chad A. surname: Brunswick fullname: Brunswick, Chad A. organization: Department of Biology, Pennsylvania State University, University Park, PA – sequence: 2 givenname: Derek J. surname: Baldwin fullname: Baldwin, Derek J. organization: Department of Biology, Pennsylvania State University, University Park, PA – sequence: 3 givenname: Kasuni K. surname: Bodinayake fullname: Bodinayake, Kasuni K. organization: Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA – sequence: 4 givenname: Alexandria R. surname: McKenna fullname: McKenna, Alexandria R. organization: Department of Biology, Pennsylvania State University, University Park, PA – sequence: 5 givenname: Chen-Yu surname: Lo fullname: Lo, Chen-Yu organization: Department of Biology, Pennsylvania State University, University Park, PA – sequence: 6 givenname: Lauren surname: Bellfy fullname: Bellfy, Lauren organization: Department of Biology, Pennsylvania State University, University Park, PA – sequence: 7 givenname: Mark W. surname: Urban fullname: Urban, Mark W. organization: Department of Biology, Pennsylvania State University, University Park, PA – sequence: 8 givenname: Emily M. surname: Stuart fullname: Stuart, Emily M. organization: Department of Biology, Pennsylvania State University, University Park, PA – sequence: 9 givenname: Shoko surname: Murakami fullname: Murakami, Shoko organization: Department of Biology, Pennsylvania State University, University Park, PA – sequence: 10 givenname: Chad W. surname: Smies fullname: Smies, Chad W. organization: Department of Biology, Pennsylvania State University, University Park, PA – sequence: 11 givenname: Janine L. surname: Kwapis fullname: Kwapis, Janine L. email: jlk855@psu.edu, j9kwapis@gmail.com organization: Department of Biology, Pennsylvania State University, University Park, PA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36958103$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkb9uFDEQhy0URC6BV0AuKGhuGe__lWggEECKBEWoLe_s7MUXr33Y3ojreIiUeTqeBB-XIJHqKk_xzSfP73fCjqyzxNgrAZkAUb9ZZ5Zm73rtjFppu8pyyIsM8gyge8IWoqrapSi75ogtQHTNsqxaOGYnIawBoCmb-hk7LuquagUUC3Z3eUUcjcNrviJL_Bt5wXXglpBCUH7LteUxMZ6id2FjyGplODof6efvX7f9HLl18YEK88YrvNIqTCpq5HZGQ3NI4Oh8glAPZGMSGFLept_vFrduToOyA_97EJ-UIT5ppOfs6ahMoBf37yn7fv7x8uzz8uLrpy9n7y6WWIGIyxYKQQqxo6qoAPKhHaEoaUz3QpVj11JdY0UVlUiUt0K1RS-oUUOOQP0AxSl7vfduvPsxU4hy0gHJGGXJzUHmTSeKBjpRJ_TlPTr3Ew1y4_WUUpIPiSbg7R7AFFfwNP5DBMhdgXIt_y9Q7gqUkMtUYFp__2gddUxROhu90uZQyfleQim0G01eBtRkkQbtCaMcnD5U9OGRCI22GpW5pu3hmj8ImuBN |
CitedBy_id | crossref_primary_10_1177_07487304231184761 crossref_primary_10_3390_ijms25147721 crossref_primary_10_1007_s11357_024_01084_5 crossref_primary_10_1038_s41386_023_01616_1 crossref_primary_10_3389_fnmol_2024_1429880 |
Cites_doi | 10.1126/science.278.5343.1632 10.1016/j.nlm.2021.107535 10.1002/hipo.20637 10.1016/j.nlm.2022.107651 10.1038/nprot.2013.132 10.1016/S0092-8674(00)80494-8 10.1038/s41598-020-60937-z 10.1016/j.neures.2004.01.005 10.1016/j.neurobiolaging.2011.07.007 10.1037/0735-7044.120.3.612 10.3389/fnins.2021.642376 10.1016/S0306-4522(00)00288-8 10.1016/0896-6273(90)90303-W 10.1073/pnas.0308709101 10.1016/j.nlm.2022.107601 10.1101/2022.10.11.511798 10.1016/j.nlm.2021.107530 10.7554/eLife.63377 10.1080/01688639308402570 10.1016/0197-4580(82)90018-5 10.1523/JNEUROSCI.2799-18.2019 10.1111/ejn.12010 10.1523/JNEUROSCI.22-03-01155.2002 10.1523/JNEUROSCI.2107-11.2011 10.1038/s41593-019-0462-8 10.1111/jnc.13689 10.1016/0006-3223(90)90523-5 10.1073/pnas.142039099 10.1016/S0166-4328(02)00274-7 10.1016/S0166-4328(00)00145-5 10.1038/nn.2405 10.3389/fnbeh.2015.00011 10.1002/hipo.22262 10.1016/j.bbr.2012.02.022 10.1038/nmeth.3312 10.1007/s11357-006-9013-9 10.1126/science.1259652 10.1038/s41386-021-00959-x 10.1126/science.288.5466.682 10.1038/s41467-018-05868-0 10.1016/0092-8674(94)90399-9 10.1523/JNEUROSCI.6535-10.2011 10.1016/j.bbr.2004.04.005 10.1016/S0091-6773(78)92565-8 10.1007/BF00428692 10.1038/ncomms12926 10.1523/ENEURO.0455-18.2018 10.3109/07420528.2014.944975 10.1177/0748730405276352 10.1073/pnas.0503584102 10.1016/j.bbr.2016.04.027 10.1038/nn.2174 10.1523/JNEUROSCI.22-01-00350.2002 10.1016/0031-9384(87)90321-0 10.1016/0092-8674(95)90375-5 10.1073/pnas.76.11.5962 10.1016/S0028-3932(98)00044-X 10.1016/S0166-4328(01)00471-5 10.1016/j.nlm.2015.06.007 10.1093/emboj/20.15.3967 10.1016/0166-4328(94)90077-9 10.1016/j.biopsych.2010.04.031 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.neurobiolaging.2023.02.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1558-1497 |
EndPage | 90 |
ExternalDocumentID | 36958103 10_1016_j_neurobiolaging_2023_02_009 S0197458023000428 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG074041 – fundername: NIA NIH HHS grantid: R00 AG056596 – fundername: NIA NIH HHS grantid: R00 AG056595 – fundername: NIA NIH HHS grantid: R21 AG068444 |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM 9JO AABNK AADFP AAEDT AAEDW AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABGSF ABIVO ABJNI ABLJU ABMAC ABMZM ABOYX ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ACXNI ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDW HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LX8 M29 M2V M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OD~ OKEIE OO0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SNS SPCBC SSB SSH SSN SSU SSY SSZ T5K WUQ Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c501t-8031eacc9e535002d8f034ef000052c98e66c5e5e4cee281a83b1e7ad2c0ebd03 |
IEDL.DBID | .~1 |
ISSN | 0197-4580 1558-1497 |
IngestDate | Fri Jul 11 12:07:22 EDT 2025 Mon Jul 21 05:28:13 EDT 2025 Tue Jul 01 01:28:31 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 Tue Dec 03 03:44:27 EST 2024 Tue Aug 26 16:40:59 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Suprachiasmatic nucleus TTFL RSC DH BMAL HSV IEG Cry Incidental learning Cognitive decline Per1 OLM CREB sgRNA Aging Retrosplenial cortex ZT CLOCK SCN |
Language | English |
License | Copyright © 2023 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-8031eacc9e535002d8f034ef000052c98e66c5e5e4cee281a83b1e7ad2c0ebd03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10106450 |
PMID | 36958103 |
PQID | 2791370916 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2791370916 pubmed_primary_36958103 crossref_primary_10_1016_j_neurobiolaging_2023_02_009 crossref_citationtrail_10_1016_j_neurobiolaging_2023_02_009 elsevier_sciencedirect_doi_10_1016_j_neurobiolaging_2023_02_009 elsevier_clinicalkey_doi_10_1016_j_neurobiolaging_2023_02_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2023 2023-06-00 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neurobiology of aging |
PublicationTitleAlternate | Neurobiol Aging |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Moyer, Brown (bib0028) 2006; 120 Chavez, Scheiman, Vora, Pruitt, Tuttle, Iyer, Lin, Kiani, Guzman, Wiegand, Ter-Ovanesyan, Braff, Davidsohn, Housden, Perrimon, Weiss, Aach, Collins, Church (bib0010) 2015; 12 Ruby (bib0040) 2021; 15 Kwapis, Alaghband, López, Long, Li, Shu, Bodinayake, Matheos, Rapp, Wood (bib0023) 2019; 39 Chaudhury, Wang, Colwell (bib0009) 2005; 20 Witting, Kwa, Eikelenboom, Mirmiran, Swaab (bib0060) 1990; 27 Lorsch, Hamilton, Ramakrishnan, Parise, Salery, Wright, Lepack, Mews, Issler, McKenzie, Zhou, Parise, Pirpinias, Ortiz Torres, Kronman, Montgomery, Loh, Labonté, Conkey, Symonds, Neve, Turecki, Maze, Dong, Zhang, Shen, Bagot, Nestler (bib0026) 2019; 22 Weitzman, Moline, Czeisler, Zimmerman (bib0057) 1982; 3 Youngjohn, Crook (bib0066) 1993; 15 Kwapis, Jarome, Lee, Helmstetter (bib0024) 2015; 123 Rawashdeh, Jilg, Jedlicka, Slawska, Thomas, Saade, Schwarzacher, Stehle (bib0037) 2014; 24 Fernandez, Lu, Ha, Costacurta, Chavez, Heller, Ruby (bib0017) 2014; 346 Trask, Fournier (bib0049) 2022; 189 Neave, Lloyd, Sahgal, Aggleton (bib0031) 1994; 65 Stephan, Kovacevic (bib0047) 1978; 22 Wang, Nie, Duan, Zhu, Liu, Shan (bib0056) 2016; 11 Urban, Lo, Bodinayake, Brunswick, Murakami, Heimann, Kwapis (bib0051) 2021; 185 Wimmer, Hernandez, Blackwell, Abel (bib0059) 2012; 33 . de Landeta, Pereyra, Medina, Katche (bib0015) 2020; 10 Bellfy, L., Smies, C.W., Bernhardt, A.R., Bodinayake, K.K., Sebastian, A., Stuart, E.M., Wright, D.S., Lo, C.-Y., Murakami, S., Boyd, H.M., von Abo, M.J., Albert, I., Kwapis, J.L., 2022. The clock gene Per1 expression may exert diurnal control over hippocampal memory consolidation. bioRxiv 2022.10.11.511798. doi Inouye, Kawamura (bib0019) 1979; 76 Trask, Ferrara, Grisales, Helmstetter (bib0048) 2021; 185 Craik, Grady (bib0012) 2002 Wiggs, Weisberg, Martin (bib0058) 1998; 37 McClung, Sidiropoulou, Vitaterna, Takahashi, White, Cooper, Nestler (bib0027) 2005; 102 Abarca, Albrecht, Spanagel (bib0001) 2002; 99 Phan, Chan, Sindreu, Eckel-Mahan, Storm (bib0035) 2011; 31 Vann, Kristina Wilton, Muir, Aggleton (bib0054) 2003; 140 Yoo, Yamazaki, Lowrey, Shimomura, Ko, Buhr, Siepka, Hong, Oh, Yoo, Menaker, Takahashi (bib0065) 2004; 101 Chaudhury, Colwell (bib0008) 2002; 133 Trask, Pullins, Ferrara, Helmstetter (bib0050) 2021; 46 Zhou, Won, Karlsson, Zhou, Rogerson, Neve, Poirazi, Silva (bib0067) 2009; 12 Vogel-Ciernia, Wood (bib0055) 2014; 69 Davies, Navaratnam, Redfern (bib0014) 1973; 32 Yamazaki, Numano, Abe, Hida, Takahashi, Ueda, Block, Sakaki, Menaker, Tei (bib0062) 2000; 288 Shigeyoshi, Taguchi, Yamamoto, Takekida, Yan, Tei, Moriya, Shibata, Loros, Dunlap, Okamura (bib0042) 1997; 91 Eckel-Mahan, Phan, Han, Wang, Chan, Scheiner, Storm (bib0016) 2008; 11 Yin, Wallach, Del Vecchio, Wilder, Zhou, Quinn, Tully (bib0064) 1994; 79 Vann, Brown, Aggleton (bib0053) 2000; 101 Craik, McDowd (bib0013) 1987; 13 Rawashdeh, Jilg, Maronde, Fahrenkrug, Stehle (bib0038) 2016; 138 Shimizu, Kobayashi, Nakatsuji, Yamazaki, Shimba, Sakimura, Fukada (bib0043) 2016; 7 Pang, Miller, Fortress, McAuley (bib0034) 2006; 28 Cain, Chalmers, Ralph (bib0006) 2012; 230 Plautz, Kaneko, Hall, Kay (bib0036) 1997; 278 Harker, Whishaw (bib0018) 2002; 22 Vann, Aggleton (bib0052) 2004; 155 Spencer, Falcon, Kumar, Krishnan, Mukherjee, Birnbaum, McClung (bib0046) 2013; 37 Cermakian, Monaco, Pando, Dierich, Sassone-Corsi (bib0007) 2001; 20 Smies, Bodinayake, Kwapis (bib0044) 2022; 193 Bohnslav, Wimalasena, Clausing, Dai, Yarmolinsky, Cruz, Kashlan, Chiappe, Orefice, Woolf, Harvey (bib0005) 2021; 10 Corcoran, Donnan, Tronson, Guzmán, Gao, Jovasevic, Guedea, Radulovic (bib0011) 2011; 31 Larson, Gilbert, Wang, Lim, Weissman, Qi (bib0025) 2013; 8 Nelson, Hindley, Pearce, Vann, Aggleton (bib0032) 2015; 9 Mukherjee, Coque, Cao, Kumar, Chakravarty, Asaithamby, Graham, Gordon, Enwright, DiLeone, Birnbaum, Cooper, McClung (bib0029) 2010; 68 Snider, Dziema, Aten, Loeser, Norona, Hoyt, Obrietan (bib0045) 2016; 308 Antoniadis, Ko, McDonald (bib0003) 2000; 111 Shibata, Kondo, Naito (bib0041) 2004; 49 Yin, Del Vecchio, Zhou, Tully (bib0063) 1995; 81 Jilg, Lesny, Peruzki, Schwegler, Selbach, Dehghani, Stehle (bib0020) 2010; 20 Kwapis, Alaghband, Kramár, López, Vogel Ciernia, White, Shu, Rhee, Michael, Montellier, Liu, Magnan, Chen, Sassone-Corsi, Baldi, Matheos, Wood (bib0022) 2018; 9 Neve, Neve, Nestler, Carlezon (bib0033) 2005; 39 Mulder, Papantoniou, Gerkema, Van Der Zee (bib0030) 2014; 31 Woodruff, Chun, Hinds, Varra, Tirado, Morton, McClung, Spencer (bib0061) 2018; 5 Abe, Herzog, Yamazaki, Straume, Tei, Sakaki, Menaker, Block (bib0002) 2002; 22 Kornhauser, Nelson, Mayo, Takahashi (bib0021) 1990; 5 Renfrew, Pettigrew, Rapoport (bib0039) 1987; 41 de Landeta (10.1016/j.neurobiolaging.2023.02.009_bib0015) 2020; 10 Harker (10.1016/j.neurobiolaging.2023.02.009_bib0018) 2002; 22 McClung (10.1016/j.neurobiolaging.2023.02.009_bib0027) 2005; 102 Urban (10.1016/j.neurobiolaging.2023.02.009_bib0051) 2021; 185 Chavez (10.1016/j.neurobiolaging.2023.02.009_bib0010) 2015; 12 Larson (10.1016/j.neurobiolaging.2023.02.009_bib0025) 2013; 8 Stephan (10.1016/j.neurobiolaging.2023.02.009_bib0047) 1978; 22 Plautz (10.1016/j.neurobiolaging.2023.02.009_bib0036) 1997; 278 Woodruff (10.1016/j.neurobiolaging.2023.02.009_bib0061) 2018; 5 Eckel-Mahan (10.1016/j.neurobiolaging.2023.02.009_bib0016) 2008; 11 Kwapis (10.1016/j.neurobiolaging.2023.02.009_bib0023) 2019; 39 Antoniadis (10.1016/j.neurobiolaging.2023.02.009_bib0003) 2000; 111 Vann (10.1016/j.neurobiolaging.2023.02.009_bib0054) 2003; 140 Davies (10.1016/j.neurobiolaging.2023.02.009_bib0014) 1973; 32 Chaudhury (10.1016/j.neurobiolaging.2023.02.009_bib0008) 2002; 133 Zhou (10.1016/j.neurobiolaging.2023.02.009_bib0067) 2009; 12 Neave (10.1016/j.neurobiolaging.2023.02.009_bib0031) 1994; 65 10.1016/j.neurobiolaging.2023.02.009_bib0004 Phan (10.1016/j.neurobiolaging.2023.02.009_bib0035) 2011; 31 Nelson (10.1016/j.neurobiolaging.2023.02.009_bib0032) 2015; 9 Rawashdeh (10.1016/j.neurobiolaging.2023.02.009_bib0037) 2014; 24 Moyer (10.1016/j.neurobiolaging.2023.02.009_bib0028) 2006; 120 Chaudhury (10.1016/j.neurobiolaging.2023.02.009_bib0009) 2005; 20 Jilg (10.1016/j.neurobiolaging.2023.02.009_bib0020) 2010; 20 Weitzman (10.1016/j.neurobiolaging.2023.02.009_bib0057) 1982; 3 Abarca (10.1016/j.neurobiolaging.2023.02.009_bib0001) 2002; 99 Cain (10.1016/j.neurobiolaging.2023.02.009_bib0006) 2012; 230 Pang (10.1016/j.neurobiolaging.2023.02.009_bib0034) 2006; 28 Inouye (10.1016/j.neurobiolaging.2023.02.009_bib0019) 1979; 76 Yin (10.1016/j.neurobiolaging.2023.02.009_bib0063) 1995; 81 Corcoran (10.1016/j.neurobiolaging.2023.02.009_bib0011) 2011; 31 Yin (10.1016/j.neurobiolaging.2023.02.009_bib0064) 1994; 79 Kwapis (10.1016/j.neurobiolaging.2023.02.009_bib0024) 2015; 123 Vann (10.1016/j.neurobiolaging.2023.02.009_bib0052) 2004; 155 Youngjohn (10.1016/j.neurobiolaging.2023.02.009_bib0066) 1993; 15 Smies (10.1016/j.neurobiolaging.2023.02.009_bib0044) 2022; 193 Cermakian (10.1016/j.neurobiolaging.2023.02.009_bib0007) 2001; 20 Mulder (10.1016/j.neurobiolaging.2023.02.009_bib0030) 2014; 31 Neve (10.1016/j.neurobiolaging.2023.02.009_bib0033) 2005; 39 Shibata (10.1016/j.neurobiolaging.2023.02.009_bib0041) 2004; 49 Trask (10.1016/j.neurobiolaging.2023.02.009_bib0048) 2021; 185 Wiggs (10.1016/j.neurobiolaging.2023.02.009_bib0058) 1998; 37 Lorsch (10.1016/j.neurobiolaging.2023.02.009_bib0026) 2019; 22 Spencer (10.1016/j.neurobiolaging.2023.02.009_bib0046) 2013; 37 Vogel-Ciernia (10.1016/j.neurobiolaging.2023.02.009_bib0055) 2014; 69 Snider (10.1016/j.neurobiolaging.2023.02.009_bib0045) 2016; 308 Yoo (10.1016/j.neurobiolaging.2023.02.009_bib0065) 2004; 101 Mukherjee (10.1016/j.neurobiolaging.2023.02.009_bib0029) 2010; 68 Vann (10.1016/j.neurobiolaging.2023.02.009_bib0053) 2000; 101 Craik (10.1016/j.neurobiolaging.2023.02.009_bib0013) 1987; 13 Fernandez (10.1016/j.neurobiolaging.2023.02.009_bib0017) 2014; 346 Shigeyoshi (10.1016/j.neurobiolaging.2023.02.009_bib0042) 1997; 91 Renfrew (10.1016/j.neurobiolaging.2023.02.009_bib0039) 1987; 41 Yamazaki (10.1016/j.neurobiolaging.2023.02.009_bib0062) 2000; 288 Abe (10.1016/j.neurobiolaging.2023.02.009_bib0002) 2002; 22 Ruby (10.1016/j.neurobiolaging.2023.02.009_bib0040) 2021; 15 Witting (10.1016/j.neurobiolaging.2023.02.009_bib0060) 1990; 27 Wang (10.1016/j.neurobiolaging.2023.02.009_bib0056) 2016; 11 Shimizu (10.1016/j.neurobiolaging.2023.02.009_bib0043) 2016; 7 Bohnslav (10.1016/j.neurobiolaging.2023.02.009_bib0005) 2021; 10 Craik (10.1016/j.neurobiolaging.2023.02.009_bib0012) 2002 Wimmer (10.1016/j.neurobiolaging.2023.02.009_bib0059) 2012; 33 Trask (10.1016/j.neurobiolaging.2023.02.009_bib0049) 2022; 189 Rawashdeh (10.1016/j.neurobiolaging.2023.02.009_bib0038) 2016; 138 Trask (10.1016/j.neurobiolaging.2023.02.009_bib0050) 2021; 46 Kornhauser (10.1016/j.neurobiolaging.2023.02.009_bib0021) 1990; 5 Kwapis (10.1016/j.neurobiolaging.2023.02.009_bib0022) 2018; 9 |
References_xml | – volume: 120 start-page: 612 year: 2006 ident: bib0028 article-title: Impaired trace and contextual fear conditioning in aged rats publication-title: Behav. Neurosci. – volume: 81 start-page: 107 year: 1995 end-page: 115 ident: bib0063 article-title: CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in drosophila publication-title: Cell – volume: 8 start-page: 2180 year: 2013 end-page: 2196 ident: bib0025 article-title: CRISPR interference (CRISPRi) for sequence-specific control of gene expression publication-title: Nat. Protoc. – volume: 133 start-page: 95 year: 2002 end-page: 108 ident: bib0008 article-title: Circadian modulation of learning and memory in fear-conditioned mice publication-title: Behav. Brain Res. – volume: 5 start-page: 127 year: 1990 end-page: 134 ident: bib0021 article-title: Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus publication-title: Neuron – volume: 37 start-page: 103 year: 1998 end-page: 118 ident: bib0058 article-title: Neural correlates of semantic and episodic memory retrieval publication-title: Neuropsychologia – volume: 46 start-page: 1386 year: 2021 end-page: 1392 ident: bib0050 article-title: The anterior retrosplenial cortex encodes event-related information and the posterior retrosplenial cortex encodes context-related information during memory formation publication-title: Neuropsychopharmacology – volume: 230 start-page: 288 year: 2012 end-page: 290 ident: bib0006 article-title: Circadian modulation of passive avoidance is not eliminated in arrhythmic hamsters with suprachiasmatic nucleus lesions publication-title: Behav. Brain Res. – volume: 13 start-page: 474 year: 1987 end-page: 479 ident: bib0013 article-title: Age differences in recall and recognition publication-title: J. Exp. Psychol. – volume: 39 start-page: 381 year: 2005 end-page: 391 ident: bib0033 article-title: Use of herpes virus amplicon vectors to study brain disorders publication-title: Bio.Techniques – volume: 31 start-page: 11655 year: 2011 end-page: 11659 ident: bib0011 article-title: NMDA receptors in retrosplenial cortex are necessary for retrieval of recent and remote context fear memory publication-title: J. Neurosci. – volume: 140 start-page: 107 year: 2003 end-page: 118 ident: bib0054 article-title: Testing the importance of the caudal retrosplenial cortex for spatial memory in rats publication-title: Behav. Brain Res. – volume: 37 start-page: 242 year: 2013 end-page: 250 ident: bib0046 article-title: Circadian genes Period 1 and Period 2 in the nucleus accumbens regulate anxiety-related behavior publication-title: Eur. J. Neurosci. – volume: 79 start-page: 49 year: 1994 end-page: 58 ident: bib0064 article-title: Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila publication-title: Cell – volume: 49 start-page: 1 year: 2004 end-page: 11 ident: bib0041 article-title: Organization of retrosplenial cortical projections to the anterior cingulate, motor, and prefrontal cortices in the rat publication-title: Neurosci. Res. – volume: 189 year: 2022 ident: bib0049 article-title: Examining a role for the retrosplenial cortex in age-related memory impairment publication-title: Neurobiol. Learning Memory – volume: 39 start-page: 4999 year: 2019 end-page: 5009 ident: bib0023 article-title: HDAC3-Mediated Repression of the Nr4a Family Contributes to Age-Related Impairments in Long-Term Memory publication-title: J. Neurosci. – volume: 22 start-page: 1155 year: 2002 end-page: 1164 ident: bib0018 article-title: Impaired spatial performance in rats with retrosplenial lesions: importance of the spatial problem and the rat strain in identifying lesion effects in a swimming pool publication-title: J. Neurosci. – volume: 31 start-page: 1075 year: 2014 end-page: 1092 ident: bib0030 article-title: Neither the SCN nor the adrenals are required for circadian time-place learning in mice publication-title: Chronobiol. Int. – volume: 278 start-page: 1632 year: 1997 end-page: 1635 ident: bib0036 article-title: Independent photoreceptive circadian clocks throughout drosophila publication-title: Science – volume: 24 start-page: 712 year: 2014 end-page: 723 ident: bib0037 article-title: PERIOD1 coordinates hippocampal rhythms and memory processing with daytime publication-title: Hippocampus – volume: 5 year: 2018 ident: bib0061 article-title: Coordination between prefrontal cortex clock gene expression and corticosterone contributes to enhanced conditioned fear extinction recall publication-title: eNeuro – volume: 346 start-page: 854 year: 2014 end-page: 857 ident: bib0017 article-title: Dysrhythmia in the suprachiasmatic nucleus inhibits memory processing publication-title: Science – volume: 288 start-page: 682 year: 2000 end-page: 685 ident: bib0062 article-title: Resetting central and peripheral circadian oscillators in transgenic rats publication-title: Science – volume: 11 start-page: 1074 year: 2008 end-page: 1082 ident: bib0016 article-title: Circadian oscillation of hippocampal MAPK activity and cAMP: implications for memory persistence publication-title: Nat. Neurosci. – volume: 111 start-page: 25 year: 2000 end-page: 37 ident: bib0003 article-title: Circadian rhythms, aging and memory publication-title: Behav. Brain Res. – volume: 101 start-page: 5339 year: 2004 end-page: 5346 ident: bib0065 article-title: PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues publication-title: Proc. Natl. Acad. Sci. U S A – volume: 31 start-page: 10640 year: 2011 end-page: 10647 ident: bib0035 article-title: The Diurnal Oscillation of MAP (Mitogen-Activated Protein) Kinase and Adenylyl Cyclase activities in the hippocampus depends on the suprachiasmatic nucleus publication-title: J. Neurosci. – volume: 76 start-page: 5962 year: 1979 end-page: 5966 ident: bib0019 article-title: Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus publication-title: Proc. Natl. Acad. Sci. U S A – volume: 15 start-page: 447 year: 1993 end-page: 460 ident: bib0066 article-title: Learning, forgetting, and retrieval of everyday material across the adult life span publication-title: J. Clin. Exp. Neuropsychol. – volume: 123 start-page: 110 year: 2015 end-page: 116 ident: bib0024 article-title: The retrosplenial cortex is involved in the formation of memory for context and trace fear conditioning publication-title: Neurobiol. Learn Mem. – volume: 9 start-page: 11 year: 2015 ident: bib0032 article-title: The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning publication-title: Front Behav. Neurosci. – volume: 12 start-page: 1438 year: 2009 end-page: 1443 ident: bib0067 article-title: CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala publication-title: Nat. Neurosci. – volume: 138 start-page: 731 year: 2016 end-page: 745 ident: bib0038 article-title: gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK publication-title: J. Neurochem. – reference: Bellfy, L., Smies, C.W., Bernhardt, A.R., Bodinayake, K.K., Sebastian, A., Stuart, E.M., Wright, D.S., Lo, C.-Y., Murakami, S., Boyd, H.M., von Abo, M.J., Albert, I., Kwapis, J.L., 2022. The clock gene Per1 expression may exert diurnal control over hippocampal memory consolidation. bioRxiv 2022.10.11.511798. doi: – volume: 69 year: 2014 ident: bib0055 article-title: Examining Object Location and Object Recognition Memory in Mice publication-title: Curr. Prot. Neurosci. – volume: 32 start-page: 211 year: 1973 end-page: 214 ident: bib0014 article-title: A 24-hour rhythm in passive-avoidance behaviour in rats publication-title: Psychopharmacologia – volume: 155 start-page: 97 year: 2004 end-page: 108 ident: bib0052 article-title: Testing the importance of the retrosplenial guidance system: effects of different sized retrosplenial cortex lesions on heading direction and spatial working memory publication-title: Behav. Brain Res. – volume: 20 start-page: 225 year: 2005 end-page: 236 ident: bib0009 article-title: Circadian regulation of hippocampal long-term potentiation publication-title: J. Biol. Rhythms – volume: 41 start-page: 627 year: 1987 end-page: 634 ident: bib0039 article-title: Motor activity and sleep duration as a function of age in healthy men publication-title: Physiol. Behav. – volume: 65 start-page: 89 year: 1994 end-page: 101 ident: bib0031 article-title: Lack of effect of lesions in the anterior cingulate cortex and retrosplenial cortex on certain tests of spatial memory in the rat publication-title: Behavioural Brain Research – volume: 20 start-page: 3967 year: 2001 end-page: 3974 ident: bib0007 article-title: Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene publication-title: EMBO J. – volume: 12 start-page: 326 year: 2015 end-page: 328 ident: bib0010 article-title: Highly-efficient Cas9-mediated transcriptional programming publication-title: Nat. Methods – volume: 11 year: 2016 ident: bib0056 article-title: Functionally Brain Network Connected to the Retrosplenial Cortex of Rats Revealed by 7T fMRI publication-title: PLoS One – volume: 15 year: 2021 ident: bib0040 article-title: Suppression of Circadian Timing and Its Impact on the Hippocampus publication-title: Front Neurosci. – volume: 193 year: 2022 ident: bib0044 article-title: Time to learn: The role of the molecular circadian clock in learning and memory publication-title: Neurobiol. Learning and Memory – volume: 22 start-page: 456 year: 1978 end-page: 462 ident: bib0047 article-title: Multiple retention deficit in passive avoidance in rats is eliminated by suprachiasmatic lesions publication-title: Behav. Biol. – volume: 101 start-page: 983 year: 2000 end-page: 991 ident: bib0053 article-title: Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatial memory tests publication-title: Neuroscience – volume: 22 start-page: 350 year: 2002 end-page: 356 ident: bib0002 article-title: Circadian rhythms in isolated brain regions publication-title: J. Neurosci. – volume: 7 start-page: 12926 year: 2016 ident: bib0043 article-title: SCOP/PHLPP1β mediates circadian regulation of long-term recognition memory publication-title: Nat. Commun. – volume: 20 start-page: 377 year: 2010 end-page: 388 ident: bib0020 article-title: Temporal dynamics of mouse hippocampal clock gene expression support memory processing publication-title: Hippocampus – year: 2002 ident: bib0012 article-title: Aging, Memory, and Frontal Lobe Functioning publication-title: Principles of Frontal Lobe Function – volume: 10 start-page: e63377 year: 2021 ident: bib0005 article-title: DeepEthogram, a machine learning pipeline for supervised behavior classification from raw pixels publication-title: eLife – volume: 9 start-page: 3323 year: 2018 ident: bib0022 article-title: Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory publication-title: Nat. Commun. – volume: 27 start-page: 563 year: 1990 end-page: 572 ident: bib0060 article-title: Alterations in the circadian rest-activity rhythm in aging and Alzheimer's disease publication-title: Biol. Psychiatr. – volume: 22 start-page: 1413 year: 2019 end-page: 1423 ident: bib0026 article-title: Stress resilience is promoted by a Zfp189-driven transcriptional network in prefrontal cortex publication-title: Nat. Neurosci. – reference: . – volume: 10 start-page: 4002 year: 2020 ident: bib0015 article-title: Anterior retrosplenial cortex is required for long-term object recognition memory publication-title: Sci. Rep. – volume: 33 start-page: 2220 year: 2012 end-page: 2224 ident: bib0059 article-title: Aging impairs hippocampus-dependent long-term memory for object location in mice publication-title: Neurobiol. Aging – volume: 28 start-page: 283 year: 2006 end-page: 296 ident: bib0034 article-title: Age-related disruptions of circadian rhythm and memory in the senescence-accelerated mouse (SAMP8) publication-title: AGE – volume: 3 start-page: 299 year: 1982 end-page: 309 ident: bib0057 article-title: Chronobiology of aging: Temperature, sleep-wake rhythms and entrainment publication-title: Neurobiol. Aging – volume: 91 start-page: 1043 year: 1997 end-page: 1053 ident: bib0042 article-title: Light-Induced Resetting of a Mammalian Circadian Clock Is Associated with Rapid Induction of the mPer1 Transcript publication-title: Cell – volume: 185 year: 2021 ident: bib0048 article-title: Optogenetic inhibition of either the anterior or posterior retrosplenial cortex disrupts retrieval of a trace, but not delay, fear memory publication-title: Neurobiol.Learning Memory – volume: 102 start-page: 9377 year: 2005 end-page: 9381 ident: bib0027 article-title: Regulation of dopaminergic transmission and cocaine reward by the Clock gene publication-title: Proc. Nat. Acad. Sci. – volume: 99 start-page: 9026 year: 2002 end-page: 9030 ident: bib0001 article-title: Cocaine sensitization and reward are under the influence of circadian genes and rhythm publication-title: Proceed. Nat. Acad. Sci. – volume: 308 start-page: 222 year: 2016 end-page: 235 ident: bib0045 article-title: Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits publication-title: Behav. Brain Res. – volume: 68 start-page: 503 year: 2010 end-page: 511 ident: bib0029 article-title: Knockdown of clock in the ventral tegmental area through rna interference results in a mixed state of mania and depression-like behavior publication-title: Biol. Psychiatr. – volume: 185 year: 2021 ident: bib0051 article-title: The circadian clock gene Per1 modulates context fear memory formation within the retrosplenial cortex in a sex-specific manner publication-title: Neurobiol. Learning Memory – volume: 278 start-page: 1632 year: 1997 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0036 article-title: Independent photoreceptive circadian clocks throughout drosophila publication-title: Science doi: 10.1126/science.278.5343.1632 – volume: 185 year: 2021 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0051 article-title: The circadian clock gene Per1 modulates context fear memory formation within the retrosplenial cortex in a sex-specific manner publication-title: Neurobiol. Learning Memory doi: 10.1016/j.nlm.2021.107535 – volume: 20 start-page: 377 year: 2010 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0020 article-title: Temporal dynamics of mouse hippocampal clock gene expression support memory processing publication-title: Hippocampus doi: 10.1002/hipo.20637 – volume: 193 year: 2022 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0044 article-title: Time to learn: The role of the molecular circadian clock in learning and memory publication-title: Neurobiol. Learning and Memory doi: 10.1016/j.nlm.2022.107651 – volume: 8 start-page: 2180 year: 2013 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0025 article-title: CRISPR interference (CRISPRi) for sequence-specific control of gene expression publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.132 – volume: 91 start-page: 1043 year: 1997 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0042 article-title: Light-Induced Resetting of a Mammalian Circadian Clock Is Associated with Rapid Induction of the mPer1 Transcript publication-title: Cell doi: 10.1016/S0092-8674(00)80494-8 – volume: 11 year: 2016 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0056 article-title: Functionally Brain Network Connected to the Retrosplenial Cortex of Rats Revealed by 7T fMRI publication-title: PLoS One – volume: 10 start-page: 4002 year: 2020 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0015 article-title: Anterior retrosplenial cortex is required for long-term object recognition memory publication-title: Sci. Rep. doi: 10.1038/s41598-020-60937-z – volume: 49 start-page: 1 year: 2004 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0041 article-title: Organization of retrosplenial cortical projections to the anterior cingulate, motor, and prefrontal cortices in the rat publication-title: Neurosci. Res. doi: 10.1016/j.neures.2004.01.005 – volume: 33 start-page: 2220 year: 2012 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0059 article-title: Aging impairs hippocampus-dependent long-term memory for object location in mice publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2011.07.007 – volume: 120 start-page: 612 year: 2006 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0028 article-title: Impaired trace and contextual fear conditioning in aged rats publication-title: Behav. Neurosci. doi: 10.1037/0735-7044.120.3.612 – volume: 15 year: 2021 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0040 article-title: Suppression of Circadian Timing and Its Impact on the Hippocampus publication-title: Front Neurosci. doi: 10.3389/fnins.2021.642376 – volume: 101 start-page: 983 year: 2000 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0053 article-title: Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatial memory tests publication-title: Neuroscience doi: 10.1016/S0306-4522(00)00288-8 – volume: 5 start-page: 127 year: 1990 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0021 article-title: Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus publication-title: Neuron doi: 10.1016/0896-6273(90)90303-W – volume: 101 start-page: 5339 year: 2004 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0065 article-title: PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0308709101 – volume: 189 year: 2022 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0049 article-title: Examining a role for the retrosplenial cortex in age-related memory impairment publication-title: Neurobiol. Learning Memory doi: 10.1016/j.nlm.2022.107601 – ident: 10.1016/j.neurobiolaging.2023.02.009_bib0004 doi: 10.1101/2022.10.11.511798 – volume: 185 year: 2021 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0048 article-title: Optogenetic inhibition of either the anterior or posterior retrosplenial cortex disrupts retrieval of a trace, but not delay, fear memory publication-title: Neurobiol.Learning Memory doi: 10.1016/j.nlm.2021.107530 – volume: 10 start-page: e63377 year: 2021 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0005 article-title: DeepEthogram, a machine learning pipeline for supervised behavior classification from raw pixels publication-title: eLife doi: 10.7554/eLife.63377 – volume: 15 start-page: 447 year: 1993 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0066 article-title: Learning, forgetting, and retrieval of everyday material across the adult life span publication-title: J. Clin. Exp. Neuropsychol. doi: 10.1080/01688639308402570 – volume: 3 start-page: 299 year: 1982 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0057 article-title: Chronobiology of aging: Temperature, sleep-wake rhythms and entrainment publication-title: Neurobiol. Aging doi: 10.1016/0197-4580(82)90018-5 – year: 2002 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0012 article-title: Aging, Memory, and Frontal Lobe Functioning – volume: 39 start-page: 4999 year: 2019 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0023 article-title: HDAC3-Mediated Repression of the Nr4a Family Contributes to Age-Related Impairments in Long-Term Memory publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2799-18.2019 – volume: 37 start-page: 242 year: 2013 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0046 article-title: Circadian genes Period 1 and Period 2 in the nucleus accumbens regulate anxiety-related behavior publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.12010 – volume: 22 start-page: 1155 year: 2002 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0018 article-title: Impaired spatial performance in rats with retrosplenial lesions: importance of the spatial problem and the rat strain in identifying lesion effects in a swimming pool publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-03-01155.2002 – volume: 31 start-page: 11655 year: 2011 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0011 article-title: NMDA receptors in retrosplenial cortex are necessary for retrieval of recent and remote context fear memory publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2107-11.2011 – volume: 22 start-page: 1413 year: 2019 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0026 article-title: Stress resilience is promoted by a Zfp189-driven transcriptional network in prefrontal cortex publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0462-8 – volume: 138 start-page: 731 year: 2016 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0038 article-title: Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK publication-title: J. Neurochem. doi: 10.1111/jnc.13689 – volume: 27 start-page: 563 year: 1990 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0060 article-title: Alterations in the circadian rest-activity rhythm in aging and Alzheimer's disease publication-title: Biol. Psychiatr. doi: 10.1016/0006-3223(90)90523-5 – volume: 99 start-page: 9026 year: 2002 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0001 article-title: Cocaine sensitization and reward are under the influence of circadian genes and rhythm publication-title: Proceed. Nat. Acad. Sci. doi: 10.1073/pnas.142039099 – volume: 140 start-page: 107 year: 2003 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0054 article-title: Testing the importance of the caudal retrosplenial cortex for spatial memory in rats publication-title: Behav. Brain Res. doi: 10.1016/S0166-4328(02)00274-7 – volume: 111 start-page: 25 year: 2000 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0003 article-title: Circadian rhythms, aging and memory publication-title: Behav. Brain Res. doi: 10.1016/S0166-4328(00)00145-5 – volume: 12 start-page: 1438 year: 2009 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0067 article-title: CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala publication-title: Nat. Neurosci. doi: 10.1038/nn.2405 – volume: 9 start-page: 11 year: 2015 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0032 article-title: The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning publication-title: Front Behav. Neurosci. doi: 10.3389/fnbeh.2015.00011 – volume: 24 start-page: 712 year: 2014 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0037 article-title: PERIOD1 coordinates hippocampal rhythms and memory processing with daytime publication-title: Hippocampus doi: 10.1002/hipo.22262 – volume: 230 start-page: 288 year: 2012 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0006 article-title: Circadian modulation of passive avoidance is not eliminated in arrhythmic hamsters with suprachiasmatic nucleus lesions publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2012.02.022 – volume: 12 start-page: 326 year: 2015 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0010 article-title: Highly-efficient Cas9-mediated transcriptional programming publication-title: Nat. Methods doi: 10.1038/nmeth.3312 – volume: 28 start-page: 283 issue: 2006 year: 2006 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0034 article-title: Age-related disruptions of circadian rhythm and memory in the senescence-accelerated mouse (SAMP8) publication-title: AGE doi: 10.1007/s11357-006-9013-9 – volume: 346 start-page: 854 year: 2014 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0017 article-title: Dysrhythmia in the suprachiasmatic nucleus inhibits memory processing publication-title: Science doi: 10.1126/science.1259652 – volume: 46 start-page: 1386 year: 2021 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0050 article-title: The anterior retrosplenial cortex encodes event-related information and the posterior retrosplenial cortex encodes context-related information during memory formation publication-title: Neuropsychopharmacology doi: 10.1038/s41386-021-00959-x – volume: 288 start-page: 682 year: 2000 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0062 article-title: Resetting central and peripheral circadian oscillators in transgenic rats publication-title: Science doi: 10.1126/science.288.5466.682 – volume: 9 start-page: 3323 year: 2018 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0022 article-title: Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory publication-title: Nat. Commun. doi: 10.1038/s41467-018-05868-0 – volume: 79 start-page: 49 year: 1994 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0064 article-title: Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila publication-title: Cell doi: 10.1016/0092-8674(94)90399-9 – volume: 31 start-page: 10640 year: 2011 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0035 article-title: The Diurnal Oscillation of MAP (Mitogen-Activated Protein) Kinase and Adenylyl Cyclase activities in the hippocampus depends on the suprachiasmatic nucleus publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6535-10.2011 – volume: 155 start-page: 97 year: 2004 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0052 article-title: Testing the importance of the retrosplenial guidance system: effects of different sized retrosplenial cortex lesions on heading direction and spatial working memory publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2004.04.005 – volume: 22 start-page: 456 year: 1978 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0047 article-title: Multiple retention deficit in passive avoidance in rats is eliminated by suprachiasmatic lesions publication-title: Behav. Biol. doi: 10.1016/S0091-6773(78)92565-8 – volume: 32 start-page: 211 year: 1973 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0014 article-title: A 24-hour rhythm in passive-avoidance behaviour in rats publication-title: Psychopharmacologia doi: 10.1007/BF00428692 – volume: 7 start-page: 12926 year: 2016 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0043 article-title: SCOP/PHLPP1β mediates circadian regulation of long-term recognition memory publication-title: Nat. Commun. doi: 10.1038/ncomms12926 – volume: 5 year: 2018 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0061 article-title: Coordination between prefrontal cortex clock gene expression and corticosterone contributes to enhanced conditioned fear extinction recall publication-title: eNeuro doi: 10.1523/ENEURO.0455-18.2018 – volume: 31 start-page: 1075 year: 2014 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0030 article-title: Neither the SCN nor the adrenals are required for circadian time-place learning in mice publication-title: Chronobiol. Int. doi: 10.3109/07420528.2014.944975 – volume: 20 start-page: 225 year: 2005 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0009 article-title: Circadian regulation of hippocampal long-term potentiation publication-title: J. Biol. Rhythms doi: 10.1177/0748730405276352 – volume: 102 start-page: 9377 year: 2005 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0027 article-title: Regulation of dopaminergic transmission and cocaine reward by the Clock gene publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.0503584102 – volume: 308 start-page: 222 year: 2016 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0045 article-title: Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2016.04.027 – volume: 11 start-page: 1074 year: 2008 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0016 article-title: Circadian oscillation of hippocampal MAPK activity and cAMP: implications for memory persistence publication-title: Nat. Neurosci. doi: 10.1038/nn.2174 – volume: 22 start-page: 350 year: 2002 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0002 article-title: Circadian rhythms in isolated brain regions publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-01-00350.2002 – volume: 41 start-page: 627 year: 1987 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0039 article-title: Motor activity and sleep duration as a function of age in healthy men publication-title: Physiol. Behav. doi: 10.1016/0031-9384(87)90321-0 – volume: 69 year: 2014 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0055 article-title: Examining Object Location and Object Recognition Memory in Mice publication-title: Curr. Prot. Neurosci. – volume: 81 start-page: 107 year: 1995 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0063 article-title: CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in drosophila publication-title: Cell doi: 10.1016/0092-8674(95)90375-5 – volume: 76 start-page: 5962 year: 1979 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0019 article-title: Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.76.11.5962 – volume: 37 start-page: 103 year: 1998 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0058 article-title: Neural correlates of semantic and episodic memory retrieval publication-title: Neuropsychologia doi: 10.1016/S0028-3932(98)00044-X – volume: 133 start-page: 95 year: 2002 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0008 article-title: Circadian modulation of learning and memory in fear-conditioned mice publication-title: Behav. Brain Res. doi: 10.1016/S0166-4328(01)00471-5 – volume: 123 start-page: 110 year: 2015 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0024 article-title: The retrosplenial cortex is involved in the formation of memory for context and trace fear conditioning publication-title: Neurobiol. Learn Mem. doi: 10.1016/j.nlm.2015.06.007 – volume: 20 start-page: 3967 year: 2001 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0007 article-title: Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene publication-title: EMBO J. doi: 10.1093/emboj/20.15.3967 – volume: 39 start-page: 381 year: 2005 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0033 article-title: Use of herpes virus amplicon vectors to study brain disorders publication-title: Bio.Techniques – volume: 65 start-page: 89 year: 1994 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0031 article-title: Lack of effect of lesions in the anterior cingulate cortex and retrosplenial cortex on certain tests of spatial memory in the rat publication-title: Behavioural Brain Research doi: 10.1016/0166-4328(94)90077-9 – volume: 13 start-page: 474 year: 1987 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0013 article-title: Age differences in recall and recognition publication-title: J. Exp. Psychol. – volume: 68 start-page: 503 year: 2010 ident: 10.1016/j.neurobiolaging.2023.02.009_bib0029 article-title: Knockdown of clock in the ventral tegmental area through rna interference results in a mixed state of mania and depression-like behavior publication-title: Biol. Psychiatr. doi: 10.1016/j.biopsych.2010.04.031 |
SSID | ssj0007476 |
Score | 2.4535513 |
Snippet | •Learning induces Per1 expression within the RSC of young and aging mice.•This RSC Per1 induction rhythmically cycles in young and aging mice.•Bidirectional... Aging impairs both circadian rhythms and memory, though the relationship between these impairments is not fully understood. Circadian rhythms are largely... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 77 |
SubjectTerms | Aging Aging - genetics Animals Brain - metabolism Circadian Clocks - genetics Circadian Rhythm - genetics Cognitive decline Gyrus Cinguli - metabolism Incidental learning Male Mice Per1 Period Circadian Proteins - genetics Period Circadian Proteins - metabolism Retrosplenial cortex Suprachiasmatic nucleus Suprachiasmatic Nucleus - metabolism Transcription Factors - metabolism |
Title | The clock gene Per1 is necessary in the retrosplenial cortex—but not in the suprachiasmatic nucleus—for incidental learning in young and aging male mice |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0197458023000428 https://dx.doi.org/10.1016/j.neurobiolaging.2023.02.009 https://www.ncbi.nlm.nih.gov/pubmed/36958103 https://www.proquest.com/docview/2791370916 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RQED6UCuKLqPWyXsoIxbd0Ty4nOUFElmJZFYughb4dcpnU6O7ZZTcB90X8ET766_wlzpwkW_pQqPi4IZNNMpNvvpzMfCPEQZ7kKUqMvaBSpUeAF3ppHsRepvNCo9ZRhdwo_OEknp5G787U2Y44GnphuKyyx_4O0x1a91vG_d0cL-t6_InISRIpFjCTjvlzB3uUcJQf_rgo8yC6HHct06zvreVNcXBR4-U0I1ntyE0EOuRR4p2CZ3pVmrqKhrp0dHxH3O55JEy6U70rdtDeE3sTS-_Q8w28AFfZ6ZbM98RvigUoKGt9AwoXhI-48qFeg0XuEchWG6gtEBGEFTZ0NssZF-DNoOA63O9_fv7K2wbsohn2WrfcWvWlztZO7hUsSyK3a9qRCDDw2n3peiyhn0hxzoYbRhXIbAnuJsCcEhPMCaXui9PjN5-Ppl4_lcErlPQbSmmhT2hdpKhCRXha6kqGEVbSfTUsUo1xXChUGFH-DbSf6TD3McnKoJCYlzJ8IHbtwuIjAUkWYynLoMp1QK_pfqairJJphbritepwJF4OTjBFL1nOkzNmZqhN-2ouu9CwC40MDLlwJNTWetlJd1zT7tXgbzO0pxKgGsox17R_vbW_FMr_cITnQ5gZetr5E05mcdGuTZCkfpgQx4tH4mEXf9trC-NUaV-Gj__7_5-IW_yrq4h7KnabVYvPiHs1-b57uPbFjcnb99OTvzimN2s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6VVAIuFVAoKa9BqriZrB9rr4UQiiqqlLYREq3U28qPMRiSTRTbErnxIzjy6_glzK7toB4qFXGNPY7tGX_zeT3zDWMHaZTGyDF0vELkDgGe78SpFzqJTDOJUgYFmkbhs2k4uQg-XIrLLXbY98KYssoO-1tMt2jd_TLq7uZoWZajT0ROokAYATNumf8ttm3UqcSAbY-PTybTDSATYw7brmkj8S35bXbwt8zLykYawSM7FOi1mSbeinjG12Wq65iozUhH99hORyVh3J7tfbaF-gHbHWt6jZ6v4RXY4k67ar7LflE4QEaJ6xtQxCB8xJULZQUaTZtAslpDqYG4IKywprNZzkwN3gwyU4r7_fePn2lTg17U_V5VY7qrvpRJZRVfQRtV5KaiHYkDg1m-z22bJXRDKT4bw7UBFkh0DvYmwJxyE8wJqB6yi6P354cTpxvM4GSCuzVlNd8lwM5iFL4gSM1lwf0AC24_HGaxxDDMBAoMKAV70k2kn7oYJbmXcUxz7j9iA73Q-JhBlISY89wrUunRm7qbiCApeFygLMxytT9kb3onqKxTLTfDM2aqL0_7qq66UBkXKu4pcuGQiY31slXvuKHd297fqu9QJUxVlGZuaP9uY38lmv_hCC_7MFP0wJuvOInGRVMpL4pdPyKaFw7ZXht_m2vzw1hIl_v7__3_L9idyfnZqTo9np48YXfNlrZA7ikb1KsGnxEVq9Pn3aP2B7FqOhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+clock+gene+Per1+is+necessary+in+the+retrosplenial+cortex%E2%80%94but+not+in+the+suprachiasmatic+nucleus%E2%80%94for+incidental+learning+in+young+and+aging+male+mice&rft.jtitle=Neurobiology+of+aging&rft.au=Brunswick%2C+Chad+A.&rft.au=Baldwin%2C+Derek+J.&rft.au=Bodinayake%2C+Kasuni+K.&rft.au=McKenna%2C+Alexandria+R.&rft.date=2023-06-01&rft.pub=Elsevier+Inc&rft.issn=0197-4580&rft.volume=126&rft.spage=77&rft.epage=90&rft_id=info:doi/10.1016%2Fj.neurobiolaging.2023.02.009&rft.externalDocID=S0197458023000428 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-4580&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-4580&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-4580&client=summon |