Protein Cryoprotective Activity of a Cytosolic Small Heat Shock Protein That Accumulates Constitutively in Chestnut Stems and Is Up-Regulated by Low and High Temperatures
Heat shock, and other stresses that cause protein misfolding and aggregation, trigger the accumulation of heat shock proteins (HSPs) in virtually all organisms. Among the HSPs of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. We anal...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 134; no. 4; pp. 1708 - 1717 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Rockville, MD
American Society of Plant Biologists
01.04.2004
American Society of Plant Physiologists |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heat shock, and other stresses that cause protein misfolding and aggregation, trigger the accumulation of heat shock proteins (HSPs) in virtually all organisms. Among the HSPs of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. We analyzed the occurrence of sHSPs in vegetative organs of Castanea sativa (sweet chestnut), a temperate woody species that exhibits remarkable freezing tolerance. A constitutive sHSP subject to seasonal periodic changes of abundance was immunodetected in stems. This protein was identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry and internal peptide sequencing as CsHSP17.5, a cytosolic class I sHSP previously described in cotyledons. Expression of the corresponding gene in stems was confirmed through cDNA cloning and reverse transcription-PCR. Stem protein and mRNA profiles indicated that CsHSP17.5 is significantly up-regulated in spring and fall, reaching maximal levels in late summer and, especially, in winter. In addition, cold exposure was found to quickly activate shsp gene expression in both stems and roots of chestnut seedlings kept in growth chambers. Our main finding is that purified CsHSP17.5 is very effective in protecting the cold-labile enzyme lactate dehydrogenase from freeze-induced inactivation (on a molar basis, CsHSP17.5 is about 400 times more effective as cryoprotectant than hen egg-white lysozyme). Consistent with these observations, repeated freezing/thawing did not affect appreciably the chaperone activity of diluted CsHSP17.5 nor its ability to form dodecameric complexes in vitro. Taken together, these results substantiate the hypothesis that sHSPs can play relevant roles in the acquisition of freezing tolerance. |
---|---|
AbstractList | Heat shock, and other stresses that cause protein misfolding and aggregation, trigger the accumulation of heat shock proteins (HSPs) in virtually all organisms. Among the HSPs of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. We analyzed the occurrence of sHSPs in vegetative organs of Castanea sativa (sweet chestnut), a temperate woody species that exhibits remarkable freezing tolerance. A constitutive sHSP subject to seasonal periodic changes of abundance was immunodetected in stems. This protein was identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry and internal peptide sequencing as CsHSP17.5, a cytosolic class I sHSP previously described in cotyledons. Expression of the corresponding gene in stems was confirmed through cDNA cloning and reverse transcription-PCR. Stem protein and mRNA profiles indicated that CsHSP17.5 is significantly up-regulated in spring and fall, reaching maximal levels in late summer and, especially, in winter. In addition, cold exposure was found to quickly activate shsp gene expression in both stems and roots of chestnut seedlings kept in growth chambers. Our main finding is that purified CsHSP17.5 is very effective in protecting the cold-labile enzyme lactate dehydrogenase from freeze-induced inactivation (on a molar basis, CsHSP17.5 is about 400 times more effective as cryoprotectant than hen egg-white lysozyme). Consistent with these observations, repeated freezing/thawing did not affect appreciably the chaperone activity of diluted CsHSP17.5 nor its ability to form dodecameric complexes in vitro. Taken together, these results substantiate the hypothesis that sHSPs can play relevant roles in the acquisition of freezing tolerance. Heat shock, and other stresses that cause protein misfolding and aggregation, trigger the accumulation of heat shock proteins (HSPs) in virtually all organisms. Among the HSPs of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. We analyzed the occurrence of sHSPs in vegetative organs of Castanea sativa (sweet chestnut), a temperate woody species that exhibits remarkable freezing tolerance. A constitutive sHSP subject to seasonal periodic changes of abundance was immunodetected in stems. This protein was identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry and internal peptide sequencing as CsHSP17.5, a cytosolic class I sHSP previously described in cotyledons. Expression of the corresponding gene in stems was confirmed through cDNA cloning and reverse transcription-PCR. Stem protein and mRNA profiles indicated that CsHSP17.5 is significantly up-regulated in spring and fall, reaching maximal levels in late summer and, especially, in winter. In addition, cold exposure was found to quickly activate shsp gene expression in both stems and roots of chestnut seedlings kept in growth chambers. Our main finding is that purified CsHSP17.5 is very effective in protecting the cold-labile enzyme lactate dehydrogenase from freeze-induced inactivation (on a molar basis, CsHSP17.5 is about 400 times more effective as cryoprotectant than hen egg-white lysozyme). Consistent with these observations, repeated freezing/thawing did not affect appreciably the chaperone activity of diluted CsHSP17.5 nor its ability to form dodecameric complexes in vitro. Taken together, these results substantiate the hypothesis that sHSPs can play relevant roles in the acquisition of freezing tolerance.Heat shock, and other stresses that cause protein misfolding and aggregation, trigger the accumulation of heat shock proteins (HSPs) in virtually all organisms. Among the HSPs of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. We analyzed the occurrence of sHSPs in vegetative organs of Castanea sativa (sweet chestnut), a temperate woody species that exhibits remarkable freezing tolerance. A constitutive sHSP subject to seasonal periodic changes of abundance was immunodetected in stems. This protein was identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry and internal peptide sequencing as CsHSP17.5, a cytosolic class I sHSP previously described in cotyledons. Expression of the corresponding gene in stems was confirmed through cDNA cloning and reverse transcription-PCR. Stem protein and mRNA profiles indicated that CsHSP17.5 is significantly up-regulated in spring and fall, reaching maximal levels in late summer and, especially, in winter. In addition, cold exposure was found to quickly activate shsp gene expression in both stems and roots of chestnut seedlings kept in growth chambers. Our main finding is that purified CsHSP17.5 is very effective in protecting the cold-labile enzyme lactate dehydrogenase from freeze-induced inactivation (on a molar basis, CsHSP17.5 is about 400 times more effective as cryoprotectant than hen egg-white lysozyme). Consistent with these observations, repeated freezing/thawing did not affect appreciably the chaperone activity of diluted CsHSP17.5 nor its ability to form dodecameric complexes in vitro. Taken together, these results substantiate the hypothesis that sHSPs can play relevant roles in the acquisition of freezing tolerance. Heat shock, and other stresses that cause protein misfolding and aggregation, trigger the accumulation of heat shock proteins (HSPs) in virtually all organisms. Among the HSPs of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. We analyzed the occurrence of sHSPs in vegetative organs of Castanea sativa (sweet chestnut), a temperate woody species that exhibits remarkable freezing tolerance. A constitutive sHSP subject to seasonal periodic changes of abundance was immunodetected in stems. This protein was identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry and internal peptide sequencing as CsHSP17.5, a cytosolic class I sHSP previously described in cotyledons. Expression of the corresponding gene in stems was confirmed through cDNA cloning and reverse transcription-PCR. Stem protein and mRNA profiles indicated that CsHSP17.5 is significantly up-regulated in spring and fall, reaching maximal levels in late summer and, especially, in winter. In addition, cold exposure was found to quickly activate shsp gene expression in both stems and roots of chestnut seedlings kept in growth chambers. Our main finding is that purified CsHSP17.5 is very effective in protecting the cold-labile enzyme lactate dehydrogenase from freeze-induced inactivation (on a molar basis, CsHSP17.5 is about 400 times more effective as cryoprotectant than hen egg-white lysozyme). Consistent with these observations, repeated freezing/thawing did not affect appreciably the chaperone activity of diluted CsHSP17.5 nor its ability to form dodecameric complexes in vitro. Taken together, these results substantiate the hypothesis that sHSPs can play relevant roles in the acquisition of freezing tolerance. |
Author | Alvaro Soto Paulina Nuñez Maria-Angeles Guevara Gomez, Luis Collada, Carmen Allona, Isabel Aragoncillo, Cipriano Casado, Rosa Maria-Angeles Lopez-Matas |
AuthorAffiliation | Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros de Montes, Universidad Politecnica de Madrid, E–28040 Madrid, Spain |
AuthorAffiliation_xml | – name: Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros de Montes, Universidad Politecnica de Madrid, E–28040 Madrid, Spain |
Author_xml | – sequence: 1 fullname: Maria-Angeles Lopez-Matas – sequence: 2 fullname: Paulina Nuñez – sequence: 3 fullname: Alvaro Soto – sequence: 4 givenname: Isabel surname: Allona fullname: Allona, Isabel – sequence: 5 givenname: Rosa surname: Casado fullname: Casado, Rosa – sequence: 6 givenname: Carmen surname: Collada fullname: Collada, Carmen – sequence: 7 fullname: Maria-Angeles Guevara – sequence: 8 givenname: Cipriano surname: Aragoncillo fullname: Aragoncillo, Cipriano – sequence: 9 givenname: Luis surname: Gomez fullname: Gomez, Luis |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15653469$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15064380$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9v0zAYxi00xLrBkRtCvoxbih07sXPgUFVAJ1UCse5suY7TejhxsJ2hfCU-Jc7aVQMJcXof-f097x_5vQBnnes0AK8xmmOM6Pu-n2NE5ogUvGDPwAwXJM_ygvIzMEMoacR5dQ4uQrhDCGGC6QtwjgtUUsLRDPz66l3UpoNLP7p-0iqaew0XUzBxhK6BEi7H6IKzRsGbVloLV1pGeLN36jt89G_26Wmh1NAOVkYd4NJ1IZo4TOXsCKcWex1iNyRn1G2AsqvhdYC3ffZN7x5MNdyOcO1-PqRWZreHG9322ss4eB1egueNtEG_OsZLcPvp42a5ytZfPl8vF-tMFQjHjGnFGlKzRjKKK8bzbVXyRuKmUjmti4bpukEM021VN6VkRY4kZ4ozwmm5Lagml-DDoW4_bFtdK91FL63ovWmlH4WTRvyZ6cxe7Ny9SO04pcn_7uj37seQVhatCUpbKzvthiAY5nlZVey_IK1wiQqOEvj26USnUR6_MQFXR0AGJW3jZadMeMKVBaFllThy4JR3IXjdCGWijMZNixgrMBLTUYm-T5KIw1ElV_aX61T4H_ybA38XovMnmOYcM0TIb6WP2r8 |
CODEN | PPHYA5 |
CitedBy_id | crossref_primary_10_1007_s11240_020_01798_2 crossref_primary_10_1016_j_scienta_2013_05_020 crossref_primary_10_1038_s41598_020_58395_8 crossref_primary_10_1002_pro_534 crossref_primary_10_1016_j_postharvbio_2020_111442 crossref_primary_10_1104_pp_108_117812 crossref_primary_10_1007_s10535_011_0104_9 crossref_primary_10_1017_S0021859613000804 crossref_primary_10_1002_jsfa_3468 crossref_primary_10_3390_plants9040431 crossref_primary_10_1007_s10811_022_02897_7 crossref_primary_10_3390_ijms13055768 crossref_primary_10_1089_cmb_2019_0166 crossref_primary_10_1093_treephys_tpp125 crossref_primary_10_1016_j_phytochem_2015_06_003 crossref_primary_10_1093_jxb_eru252 crossref_primary_10_1371_journal_pone_0140522 crossref_primary_10_1007_s10265_008_0148_x crossref_primary_10_1016_j_foreco_2021_119171 crossref_primary_10_1016_j_jprot_2008_07_005 crossref_primary_10_1111_j_1365_3040_2009_01987_x crossref_primary_10_1016_j_jplph_2008_11_007 crossref_primary_10_1016_j_stress_2023_100189 crossref_primary_10_3389_fpls_2023_1091077 crossref_primary_10_17475_kastorman_289759 crossref_primary_10_1007_s12374_009_9072_4 crossref_primary_10_1016_j_fbio_2020_100622 crossref_primary_10_1111_j_1365_313X_2008_03732_x crossref_primary_10_3390_horticulturae10030287 crossref_primary_10_1007_s11056_021_09857_y crossref_primary_10_1007_s11105_016_0974_2 crossref_primary_10_1016_j_plantsci_2006_04_007 crossref_primary_10_1016_j_gene_2008_12_012 crossref_primary_10_1007_s00344_020_10152_x crossref_primary_10_1016_j_plgene_2017_05_006 crossref_primary_10_1016_j_cryobiol_2007_01_008 crossref_primary_10_1016_j_plantsci_2020_110568 crossref_primary_10_1016_j_lwt_2020_109067 crossref_primary_10_1016_j_plaphy_2016_11_002 crossref_primary_10_1111_pce_15339 crossref_primary_10_1007_s00114_024_01903_x crossref_primary_10_1155_2015_132635 crossref_primary_10_1007_s11295_010_0316_8 crossref_primary_10_1111_j_1399_3054_2006_00672_x crossref_primary_10_1111_j_1399_3054_2006_00617_x crossref_primary_10_1007_BF02931347 crossref_primary_10_1016_j_postharvbio_2018_06_006 crossref_primary_10_1016_j_scienta_2008_04_012 crossref_primary_10_1002_pmic_200900650 crossref_primary_10_3390_molecules25040954 crossref_primary_10_1016_j_bbrc_2015_06_089 crossref_primary_10_1186_s12870_020_02664_1 crossref_primary_10_3390_ijms21010097 crossref_primary_10_48130_OPR_2023_0022 crossref_primary_10_1007_s40626_019_00140_2 crossref_primary_10_1104_pp_113_225730 crossref_primary_10_1007_s13595_011_0103_1 crossref_primary_10_1371_journal_pntd_0001208 crossref_primary_10_1016_j_ygeno_2006_02_008 crossref_primary_10_3390_horticulturae7060149 crossref_primary_10_1111_ppl_12491 crossref_primary_10_1002_pmic_200700992 crossref_primary_10_3389_fpls_2015_00773 |
Cites_doi | 10.1016/S0006-291X(05)80304-3 10.1074/jbc.270.18.10432 10.1104/pp.117.2.651 10.1104/pp.126.2.789 10.1007/BF00014981 10.1152/ajpregu.1995.269.1.R38 10.1073/pnas.192468399 10.1016/0968-0004(90)90124-T 10.1016/S1369-5266(03)00092-X 10.1104/pp.100.2.778 10.1007/BF00043653 10.21273/HORTSCI.34.7.1174b 10.1104/pp.120.2.481 10.1093/glycob/8.10.1021 10.1104/pp.107.3.915 10.1128/mcb.8.8.3550-3552.1988 10.1104/pp.003814 10.1104/pp.001925 10.1146/annurev.arplant.50.1.571 10.1007/BF00391854 10.1104/pp.115.1.71 10.1002/1522-2683(200105)22:8<1545::AID-ELPS1545>3.0.CO;2-5 10.1007/978-3-642-71745-1 10.1104/pp.112.2.747 10.1023/A:1005787909506 10.1046/j.1365-313X.1993.04060947.x 10.1104/pp.104.4.1359 10.1073/pnas.051619498 10.1007/BF00196963 10.1104/pp.104.2.445 10.1034/j.1399-3054.1996.960321.x 10.1093/jxb/47.3.325 10.1006/jmbi.1999.2794 10.1073/pnas.93.23.13404 10.1074/jbc.M208926200 10.1104/pp.99.4.1362 10.1104/pp.120.2.521 10.1126/science.169.3952.1269 10.1006/cryo.1998.2089 10.1073/pnas.95.24.14570 10.3109/10409239009090612 10.1016/S0021-9258(18)53711-X 10.1007/s00425-002-0745-1 10.1098/rstb.2002.1073 10.1016/S0065-3233(01)59004-X 10.1073/pnas.94.20.10967 10.1146/annurev.pp.42.060191.003051 |
ContentType | Journal Article |
Copyright | Copyright 2004 American Society of Plant Biologists 2004 INIST-CNRS Copyright © 2004, American Society of Plant Biologists 2004 |
Copyright_xml | – notice: Copyright 2004 American Society of Plant Biologists – notice: 2004 INIST-CNRS – notice: Copyright © 2004, American Society of Plant Biologists 2004 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 5PM |
DOI | 10.1104/pp.103.035857 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Chemistry |
EISSN | 1532-2548 |
EndPage | 1717 |
ExternalDocumentID | PMC419844 15064380 15653469 10_1104_pp_103_035857 4281703 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2WC 2~F 4.4 53G 5VS 5WD 7X2 7X7 85S 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN AAYJJ ABBHK ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABUWG ABVGC ABXSQ ABXVV ABXZS ACBTR ACGOD ACHIC ACNCT ACPRK ACUFI ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADXHL AEEJZ AENEX AEUPB AEUYN AFAZZ AFFZL AFGWE AFKRA AFRAH AGORE AGUYK AHMBA AHXOZ AICQM AIDBO AJBYB AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX AQVQM AS~ ATCPS ATGXG AZQEC BAWUL BBNVY BCRHZ BENPR BEYMZ BHPHI BPHCQ BTFSW BVXVI C1A CBGCD CCPQU CS3 D1J DATOO DIK DU5 DWQXO E3Z EBS EJD F5P FLUFQ FOEOM FYUFA GNUQQ GTFYD GUQSH H13 HCIFZ HMCUK HTVGU IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN LK8 M0K M1P M2O M2P M2Q M7P MV1 MVM NOMLY NU- OBOKY OJZSN OK1 OWPYF P2P PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RHI ROX RPB RWL RXW S0X SA0 TAE TN5 TR2 UKHRP W8F WH7 WHG WOQ XSW Y6R YBU YKV YNT YSK YZZ ZCA ZCG ZCN ~02 ~KM AAYXX CITATION AAWDT ABIME ABPIB ABZEO ACFRR ACIPB ACUTJ ACVCV ACZBC ADYHW AFFDN AFYAG AGMDO AHGBF AIDAL AJDVS ANFBD APJGH AQDSO ECGQY IQODW LU7 P0- PJZUB PPXIY PQGLB QZG TCN UBC UKR XOL 3V. 88A ADYWZ CGR CUY CVF DOOOF ECM EIF ISR JSODD M0L NPM RHF RPM VQA VXZ 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c501t-7ec7f3d7fa7419782b968fa1f9c24d5f7edf0714b9df6a7520a87c873846b54e3 |
ISSN | 0032-0889 |
IngestDate | Thu Aug 21 14:23:09 EDT 2025 Fri Jul 11 06:07:24 EDT 2025 Fri Jul 11 16:41:06 EDT 2025 Wed Feb 19 01:37:37 EST 2025 Mon Jul 21 09:12:09 EDT 2025 Tue Jul 01 02:53:41 EDT 2025 Thu Apr 24 23:09:31 EDT 2025 Fri Jun 20 02:19:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Temperature Cotyledon Cold Root Transcription Enzyme Growth Tolerance Fagaceae Gene expression Castanea sativa L-Lactate dehydrogenase Stress Stem Complementary DNA Gene Dicotyledones Angiospermae Heat shock protein Spermatophyta Oxidoreductases Low temperature |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c501t-7ec7f3d7fa7419782b968fa1f9c24d5f7edf0714b9df6a7520a87c873846b54e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Corresponding author; e-mail lgomez@montes.upm.es; fax 34–91–3366387. Article, publication date, and citation information can be found at www.plantphysiol.org/cgi/doi/10.1104/pp.103.035857. Present address: Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Chile, Santiago, Chile. This work was supported by Plan Nacional de Biotecnología, Ministerio de Ciencia y Tecnología, Spain (grant no. BIO99–0931) and by Comunidad Autónoma de Madrid (grant no. 07M/0047/2000). Present address: Centro de Investigación Forestal-CIFOR, Instituto Nacional de Investigaciones Agrarias, Ministerio de Agricultura, Pesca y Alimentación, E–28040 Madrid, Spain. Present address: Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, E–28049 Madrid, Spain. |
OpenAccessLink | https://academic.oup.com/plphys/article-pdf/134/4/1708/38702349/plphys_v134_4_1708.pdf |
PMID | 15064380 |
PQID | 49160580 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_419844 proquest_miscellaneous_71826997 proquest_miscellaneous_49160580 pubmed_primary_15064380 pascalfrancis_primary_15653469 crossref_citationtrail_10_1104_pp_103_035857 crossref_primary_10_1104_pp_103_035857 jstor_primary_4281703 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-04-01 |
PublicationDateYYYYMMDD | 2004-04-01 |
PublicationDate_xml | – month: 04 year: 2004 text: 2004-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Rockville, MD |
PublicationPlace_xml | – name: Rockville, MD – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2004 |
Publisher | American Society of Plant Biologists American Society of Plant Physiologists |
Publisher_xml | – name: American Society of Plant Biologists – name: American Society of Plant Physiologists |
References | 2021062711062488600_R29 2021062711062488600_R1 2021062711062488600_R17 2021062711062488600_R39 2021062711062488600_R2 2021062711062488600_R16 2021062711062488600_R38 2021062711062488600_R3 2021062711062488600_R15 2021062711062488600_R37 2021062711062488600_R4 2021062711062488600_R14 2021062711062488600_R36 2021062711062488600_R5 2021062711062488600_R13 2021062711062488600_R35 2021062711062488600_R6 2021062711062488600_R12 2021062711062488600_R34 2021062711062488600_R7 2021062711062488600_R11 2021062711062488600_R33 2021062711062488600_R8 2021062711062488600_R10 2021062711062488600_R32 2021062711062488600_R31 2021062711062488600_R30 2021062711062488600_R9 2021062711062488600_R19 2021062711062488600_R18 2021062711062488600_R28 2021062711062488600_R27 2021062711062488600_R26 2021062711062488600_R25 2021062711062488600_R47 2021062711062488600_R24 2021062711062488600_R46 2021062711062488600_R23 2021062711062488600_R45 2021062711062488600_R22 2021062711062488600_R44 2021062711062488600_R21 2021062711062488600_R43 2021062711062488600_R20 2021062711062488600_R42 2021062711062488600_R41 2021062711062488600_R40 8429018 - J Biol Chem. 1993 Feb 15;268(5):3420-9 11386668 - Electrophoresis. 2001 May;22(8):1545-52 24212893 - Planta. 1989 Jun;178(3):275-81 16669045 - Plant Physiol. 1992 Aug;99(4):1362-9 9306691 - Plant Physiol. 1997 Sep;115(1):71-7 12114590 - Plant Physiol. 2002 Jul;129(3):1368-81 11038526 - Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13404-9 8016266 - Plant Physiol. 1994 Apr;104(4):1359-70 17772511 - Science. 1970 Sep 25;169(3952):1269-78 7763662 - Planta. 1993;190(3):346-53 11868270 - Adv Protein Chem. 2001;59:105-56 11402207 - Plant Physiol. 2001 Jun;126(2):789-800 11248038 - Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3098-103 15012220 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:571-599 12972040 - Curr Opin Plant Biol. 2003 Oct;6(5):410-7 16653058 - Plant Physiol. 1992 Oct;100(2):778-83 9826741 - Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14570-5 8883386 - Plant Physiol. 1996 Oct;112(2):747-57 2107612 - Trends Biochem Sci. 1990 Jan;15(1):14-7 12228411 - Plant Physiol. 1995 Mar;107(3):915-923 7909163 - Plant Physiol. 1994 Feb;104(2):445-52 10364403 - Plant Physiol. 1999 Jun;120(2):521-8 9380743 - Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10967-72 1567390 - Biochem Biophys Res Commun. 1992 Mar 31;183(3):1103-8 3145413 - Mol Cell Biol. 1988 Aug;8(8):3550-2 10356335 - J Mol Biol. 1999 Jun 11;289(3):645-57 8555452 - Plant Mol Biol. 1995 Dec;29(5):1093-9 9625718 - Plant Physiol. 1998 Jun;117(2):651-8 7579180 - Plant Mol Biol. 1995 Oct;29(2):293-301 10364399 - Plant Physiol. 1999 Jun;120(2):481-90 9719683 - Glycobiology. 1998 Oct;8(10):1021-8 12297515 - J Biol Chem. 2002 Nov 29;277(48):46310-8 7737977 - J Biol Chem. 1995 May 5;270(18):10432-8 12368478 - Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13504-9 12029471 - Planta. 2002 Jun;215(2):220-8 2225910 - Crit Rev Biochem Mol Biol. 1990;25(4):281-305 12177476 - Plant Physiol. 2002 Aug;129(4):1633-41 12171647 - Philos Trans R Soc Lond B Biol Sci. 2002 Jul 29;357(1423):831-47 9037159 - Plant Mol Biol. 1997 Jan;33(1):61-70 7631901 - Am J Physiol. 1995 Jul;269(1 Pt 2):R38-47 |
References_xml | – ident: 2021062711062488600_R17 doi: 10.1016/S0006-291X(05)80304-3 – ident: 2021062711062488600_R16 doi: 10.1074/jbc.270.18.10432 – ident: 2021062711062488600_R26 doi: 10.1104/pp.117.2.651 – ident: 2021062711062488600_R32 doi: 10.1104/pp.126.2.789 – ident: 2021062711062488600_R1 doi: 10.1007/BF00014981 – ident: 2021062711062488600_R19 doi: 10.1152/ajpregu.1995.269.1.R38 – ident: 2021062711062488600_R35 doi: 10.1073/pnas.192468399 – ident: 2021062711062488600_R22 doi: 10.1016/0968-0004(90)90124-T – ident: 2021062711062488600_R28 doi: 10.1016/S1369-5266(03)00092-X – ident: 2021062711062488600_R8 doi: 10.1104/pp.100.2.778 – ident: 2021062711062488600_R23 doi: 10.1007/BF00043653 – ident: 2021062711062488600_R13 doi: 10.21273/HORTSCI.34.7.1174b – ident: 2021062711062488600_R36 doi: 10.1104/pp.120.2.481 – ident: 2021062711062488600_R10 doi: 10.1093/glycob/8.10.1021 – ident: 2021062711062488600_R14 doi: 10.1104/pp.107.3.915 – ident: 2021062711062488600_R6 doi: 10.1128/mcb.8.8.3550-3552.1988 – ident: 2021062711062488600_R43 doi: 10.1104/pp.003814 – ident: 2021062711062488600_R20 doi: 10.1104/pp.001925 – ident: 2021062711062488600_R34 doi: 10.1146/annurev.arplant.50.1.571 – ident: 2021062711062488600_R44 doi: 10.1007/BF00391854 – ident: 2021062711062488600_R9 doi: 10.1104/pp.115.1.71 – ident: 2021062711062488600_R24 doi: 10.1002/1522-2683(200105)22:8<1545::AID-ELPS1545>3.0.CO;2-5 – ident: 2021062711062488600_R27 doi: 10.1007/978-3-642-71745-1 – ident: 2021062711062488600_R41 doi: 10.1104/pp.112.2.747 – ident: 2021062711062488600_R4 doi: 10.1023/A:1005787909506 – ident: 2021062711062488600_R2 doi: 10.1046/j.1365-313X.1993.04060947.x – ident: 2021062711062488600_R3 doi: 10.1104/pp.104.4.1359 – ident: 2021062711062488600_R33 doi: 10.1073/pnas.051619498 – ident: 2021062711062488600_R7 doi: 10.1007/BF00196963 – ident: 2021062711062488600_R37 doi: 10.1104/pp.104.2.445 – ident: 2021062711062488600_R46 doi: 10.1034/j.1399-3054.1996.960321.x – ident: 2021062711062488600_R40 doi: 10.1093/jxb/47.3.325 – ident: 2021062711062488600_R45 doi: 10.1006/jmbi.1999.2794 – ident: 2021062711062488600_R5 doi: 10.1073/pnas.93.23.13404 – ident: 2021062711062488600_R11 doi: 10.1074/jbc.M208926200 – ident: 2021062711062488600_R21 doi: 10.1104/pp.99.4.1362 – ident: 2021062711062488600_R30 doi: 10.1104/pp.120.2.521 – ident: 2021062711062488600_R42 doi: 10.1126/science.169.3952.1269 – ident: 2021062711062488600_R12 doi: 10.1006/cryo.1998.2089 – ident: 2021062711062488600_R31 doi: 10.1073/pnas.95.24.14570 – ident: 2021062711062488600_R25 doi: 10.3109/10409239009090612 – ident: 2021062711062488600_R15 doi: 10.1016/S0021-9258(18)53711-X – ident: 2021062711062488600_R18 doi: 10.1007/s00425-002-0745-1 – ident: 2021062711062488600_R29 doi: 10.1098/rstb.2002.1073 – ident: 2021062711062488600_R38 doi: 10.1016/S0065-3233(01)59004-X – ident: 2021062711062488600_R47 doi: 10.1073/pnas.94.20.10967 – ident: 2021062711062488600_R39 doi: 10.1146/annurev.pp.42.060191.003051 – reference: 11038526 - Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13404-9 – reference: 12171647 - Philos Trans R Soc Lond B Biol Sci. 2002 Jul 29;357(1423):831-47 – reference: 12177476 - Plant Physiol. 2002 Aug;129(4):1633-41 – reference: 10364403 - Plant Physiol. 1999 Jun;120(2):521-8 – reference: 7631901 - Am J Physiol. 1995 Jul;269(1 Pt 2):R38-47 – reference: 7737977 - J Biol Chem. 1995 May 5;270(18):10432-8 – reference: 9625718 - Plant Physiol. 1998 Jun;117(2):651-8 – reference: 12114590 - Plant Physiol. 2002 Jul;129(3):1368-81 – reference: 9826741 - Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14570-5 – reference: 2107612 - Trends Biochem Sci. 1990 Jan;15(1):14-7 – reference: 7909163 - Plant Physiol. 1994 Feb;104(2):445-52 – reference: 8429018 - J Biol Chem. 1993 Feb 15;268(5):3420-9 – reference: 24212893 - Planta. 1989 Jun;178(3):275-81 – reference: 11868270 - Adv Protein Chem. 2001;59:105-56 – reference: 2225910 - Crit Rev Biochem Mol Biol. 1990;25(4):281-305 – reference: 12228411 - Plant Physiol. 1995 Mar;107(3):915-923 – reference: 8555452 - Plant Mol Biol. 1995 Dec;29(5):1093-9 – reference: 9306691 - Plant Physiol. 1997 Sep;115(1):71-7 – reference: 8016266 - Plant Physiol. 1994 Apr;104(4):1359-70 – reference: 12972040 - Curr Opin Plant Biol. 2003 Oct;6(5):410-7 – reference: 9380743 - Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10967-72 – reference: 12029471 - Planta. 2002 Jun;215(2):220-8 – reference: 12368478 - Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13504-9 – reference: 9719683 - Glycobiology. 1998 Oct;8(10):1021-8 – reference: 7579180 - Plant Mol Biol. 1995 Oct;29(2):293-301 – reference: 17772511 - Science. 1970 Sep 25;169(3952):1269-78 – reference: 9037159 - Plant Mol Biol. 1997 Jan;33(1):61-70 – reference: 16653058 - Plant Physiol. 1992 Oct;100(2):778-83 – reference: 10364399 - Plant Physiol. 1999 Jun;120(2):481-90 – reference: 1567390 - Biochem Biophys Res Commun. 1992 Mar 31;183(3):1103-8 – reference: 11402207 - Plant Physiol. 2001 Jun;126(2):789-800 – reference: 11386668 - Electrophoresis. 2001 May;22(8):1545-52 – reference: 16669045 - Plant Physiol. 1992 Aug;99(4):1362-9 – reference: 15012220 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:571-599 – reference: 7763662 - Planta. 1993;190(3):346-53 – reference: 10356335 - J Mol Biol. 1999 Jun 11;289(3):645-57 – reference: 8883386 - Plant Physiol. 1996 Oct;112(2):747-57 – reference: 12297515 - J Biol Chem. 2002 Nov 29;277(48):46310-8 – reference: 11248038 - Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3098-103 – reference: 3145413 - Mol Cell Biol. 1988 Aug;8(8):3550-2 |
SSID | ssj0001314 |
Score | 2.0713954 |
Snippet | Heat shock, and other stresses that cause protein misfolding and aggregation, trigger the accumulation of heat shock proteins (HSPs) in virtually all... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1708 |
SubjectTerms | Acclimatization Acclimatization - genetics Acclimatization - physiology Agricultural and forest climatology and meteorology. Irrigation. Drainage Agricultural and forest meteorology Agronomy. Soil science and plant productions Amino Acid Sequence amino acid sequences Analytical, structural and metabolic biochemistry Binding and carrier proteins bioaccumulation Biological and medical sciences Castanea sativa Cell biochemistry Cell physiology chemistry chestnuts Climatic adaptation. Acclimatization Cloning, Molecular cold cold stress Complementary DNA cytosol DNA, Complementary DNA, Complementary - chemistry DNA, Complementary - genetics Environmental Stress and Adaptation enzyme activity Fagaceae Fagaceae - genetics Fagaceae - metabolism Fagaceae - physiology Freezing Fundamental and applied biological sciences. Psychology gene expression regulation Gene Expression Regulation, Plant General agronomy. Plant production genetics Heat-Shock Proteins Heat-Shock Proteins - genetics Heat-Shock Proteins - metabolism lactate dehydrogenase Low temperature messenger RNA Metabolism Molecular Sequence Data Nitrogen metabolism nucleotide sequences physiology Plant physiology and development plant proteins Plant Proteins - genetics Plant Proteins - metabolism plant response Plant Stems Plant Stems - genetics Plant Stems - metabolism Plant Stems - physiology Plants Proteins RNA RNA, Messenger RNA, Messenger - genetics RNA, Messenger - metabolism seasonal variation Seedlings Sequence Analysis, DNA Small heat shock proteins Stems Temperature |
Title | Protein Cryoprotective Activity of a Cytosolic Small Heat Shock Protein That Accumulates Constitutively in Chestnut Stems and Is Up-Regulated by Low and High Temperatures |
URI | https://www.jstor.org/stable/4281703 https://www.ncbi.nlm.nih.gov/pubmed/15064380 https://www.proquest.com/docview/49160580 https://www.proquest.com/docview/71826997 https://pubmed.ncbi.nlm.nih.gov/PMC419844 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db5swFLXSdg97mfbRbdlH5odpLxkdARPDY1J1arY26ppE6ltkG6NUSiEqZFL6k_bf9h92LwYCWyNte4kQGEN0j-17zbnnEvLe9ThKgGiLeTq0WOT3LWErBgMPJgYRacd2McH5fNw_nbEvV95Vq_WzxlpaZ_JI3d2bV_I_VoVzYFfMkv0Hy1adwgk4BvvCL1gYfv_KxhcosoBpe7ebpBBcQCLQQBUlIfLcx-NNlqSo_tud3OB36FPcE5gsYB7slvdPF3BqoNT6Bot5aVPGM-cQQHdLkxmIdbXidYa0sBuj6zxKu7OVdWmK2RtH9iwxBGNkj3SnGlxyI9mc1n1grJOUmS0VIwAFTu4Q847TUNQ2Js4hihfWAEm38EZnyUrfWeciE1UQgKTG61h0x2v82j_s6bsKvcvv4jbpTpIs2Z5aJib9bZQKWeQJlLsddZLMNsEAZ76C04pEwfytTelOGBr1PU7bdSzkcZnFrpzhHQuiYr-xBBQbqtf1DY58Qu9x2685Bz1uMk3_XHhshtWSVyhicGS7EITx7Qpb8R4h1oMO3T1y4EBUgwU3vn7bitv3XCNFX751JQnLPjU6brhQhkWLlF6RwqiOTDmW--Kl32m_NT9q-pg8KgIgOjBofkJaOn5KHgwTCFI2z8iPApK0CWlaQpomERW0gjTNIU0R0jSHNC3vR0jTGqRpE9IUH1FAmuaQpoBbOkppHdJUbihAOr-EkKZ1SB-S2eeT6fGpVZQTsZRn9zKLa8UjN-SRAC86AM9YBn0_Er0oUA4LvYjrMMJ0PhmEUV9wz7GFz5XPXXDRpce0-5zsx0msXxKqZCBR18mRtmTKUbBSe570Q6k5FlhgbfKxtNBcFVr7WPJlOc9jbpvNVys4dOfGoG3yoWq-MiIzuxoe5uauWhWAapNOw_zbXiBec1k_aJN3JR7msH7gR0ER62SdzhnEh7bn27tbcNyCCAJ4-AuDn1rvGNDgvf0GsqoGqF3fvBJfL3INe7CAz9irHf_nNXm4HfxvyH52u9ZvwfnPZIfs8SveIQfDk_HFZScfQL8AvpYQ9w |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+Cryoprotective+Activity+of+a+Cytosolic+Small+Heat+Shock+Protein+That+Accumulates+Constitutively+in+Chestnut+Stems+and+Is+Up-Regulated+by+Low+and+High+Temperatures&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Maria-Angeles+Lopez-Matas&rft.au=Paulina+Nu%C3%B1ez&rft.au=Alvaro+Soto&rft.au=Allona%2C+Isabel&rft.date=2004-04-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=134&rft.issue=4&rft.spage=1708&rft.epage=1717&rft_id=info:doi/10.1104%2Fpp.103.035857&rft.externalDocID=4281703 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |