D3R grand challenge 4: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies

The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer-aided molecular design Vol. 34; no. 2; pp. 99 - 119
Main Authors Parks, Conor D., Gaieb, Zied, Chiu, Michael, Yang, Huanwang, Shao, Chenghua, Walters, W. Patrick, Jansen, Johanna M., McGaughey, Georgia, Lewis, Richard A., Bembenek, Scott D., Ameriks, Michael K., Mirzadegan, Tara, Burley, Stephen K., Amaro, Rommie E., Gilson, Michael K.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2020
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN0920-654X
1573-4951
1573-4951
DOI10.1007/s10822-020-00289-y

Cover

Loading…
Abstract The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run in an analogous manner to prior challenges. In Stage 1, participant ability to predict the pose and affinity of BACE1 ligands were assessed. Following the completion of Stage 1, all BACE1 co-crystal structures were released, and Stage 2 tested affinity rankings with co-crystal structures. We provide an analysis of the results and discuss insights into determined best practice methods.
AbstractList The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run in an analogous manner to prior challenges. In Stage 1, participant ability to predict the pose and affinity of BACE1 ligands were assessed. Following the completion of Stage 1, all BACE1 co-crystal structures were released, and Stage 2 tested affinity rankings with co-crystal structures. We provide an analysis of the results and discuss insights into determined best practice methods.
The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run in an analogous manner to prior challenges. In Stage 1, participant ability to predict the pose and affinity of BACE1 ligands were assessed. Following the completion of Stage 1, all BACE1 co-crystal structures were released, and Stage 2 tested affinity rankings with co-crystal structures. We provide an analysis of the results and discuss insights into determined best practice methods.The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run in an analogous manner to prior challenges. In Stage 1, participant ability to predict the pose and affinity of BACE1 ligands were assessed. Following the completion of Stage 1, all BACE1 co-crystal structures were released, and Stage 2 tested affinity rankings with co-crystal structures. We provide an analysis of the results and discuss insights into determined best practice methods.
The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run in an analogous manner to prior challenges. In Stage 1, participant ability to predict the pose and affinity of BACE1 ligands were assessed. Following the completion of Stage 1, all BACE1 co-crystal structures were released, and Stage 2 tested affinity rankings with co-crystal structures. Finally, we provide an analysis of the results and discuss insights into determined best practice methods.
Author Gaieb, Zied
Gilson, Michael K.
Parks, Conor D.
Jansen, Johanna M.
Bembenek, Scott D.
Shao, Chenghua
Lewis, Richard A.
Amaro, Rommie E.
Chiu, Michael
Yang, Huanwang
Walters, W. Patrick
McGaughey, Georgia
Ameriks, Michael K.
Mirzadegan, Tara
Burley, Stephen K.
AuthorAffiliation 3 Relay Therapeutics, Cambridge, MA 20139
7 Janssen Research & Development, San Diego, CA 92121
6 Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland 4002
1 Drug Design Data Resource, University of California, San Diego, La Jolla, CA 92093
4 Novartis Institutes for BioMedical Research, Emeryville, CA 94608
5 Vertex Pharmaceuticals Inc., 50 Northern Ave, Boston, MA 02210
2 RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903 and San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093
AuthorAffiliation_xml – name: 2 RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903 and San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093
– name: 4 Novartis Institutes for BioMedical Research, Emeryville, CA 94608
– name: 1 Drug Design Data Resource, University of California, San Diego, La Jolla, CA 92093
– name: 6 Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland 4002
– name: 7 Janssen Research & Development, San Diego, CA 92121
– name: 3 Relay Therapeutics, Cambridge, MA 20139
– name: 5 Vertex Pharmaceuticals Inc., 50 Northern Ave, Boston, MA 02210
Author_xml – sequence: 1
  givenname: Conor D.
  surname: Parks
  fullname: Parks, Conor D.
  organization: Drug Design Data Resource, University of California, San Diego
– sequence: 2
  givenname: Zied
  surname: Gaieb
  fullname: Gaieb, Zied
  organization: Drug Design Data Resource, University of California, San Diego
– sequence: 3
  givenname: Michael
  surname: Chiu
  fullname: Chiu, Michael
  organization: Drug Design Data Resource, University of California, San Diego
– sequence: 4
  givenname: Huanwang
  surname: Yang
  fullname: Yang, Huanwang
  organization: RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, San Diego Supercomputer Center, University of California, San Diego
– sequence: 5
  givenname: Chenghua
  surname: Shao
  fullname: Shao, Chenghua
  organization: RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, San Diego Supercomputer Center, University of California, San Diego
– sequence: 6
  givenname: W. Patrick
  surname: Walters
  fullname: Walters, W. Patrick
  organization: Relay Therapeutics
– sequence: 7
  givenname: Johanna M.
  surname: Jansen
  fullname: Jansen, Johanna M.
  organization: Novartis Institutes for BioMedical Research
– sequence: 8
  givenname: Georgia
  surname: McGaughey
  fullname: McGaughey, Georgia
  organization: Vertex Pharmaceuticals Inc
– sequence: 9
  givenname: Richard A.
  surname: Lewis
  fullname: Lewis, Richard A.
  organization: Novartis Institutes for BioMedical Research, Novartis Pharma AG
– sequence: 10
  givenname: Scott D.
  surname: Bembenek
  fullname: Bembenek, Scott D.
  organization: Denovicon Therapeutics
– sequence: 11
  givenname: Michael K.
  surname: Ameriks
  fullname: Ameriks, Michael K.
  organization: Janssen Research & Development
– sequence: 12
  givenname: Tara
  surname: Mirzadegan
  fullname: Mirzadegan, Tara
  organization: Janssen Research & Development
– sequence: 13
  givenname: Stephen K.
  surname: Burley
  fullname: Burley, Stephen K.
  organization: RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, San Diego Supercomputer Center, University of California, San Diego
– sequence: 14
  givenname: Rommie E.
  orcidid: 0000-0002-9275-9553
  surname: Amaro
  fullname: Amaro, Rommie E.
  email: drugdesigndata@gmail.com, ramaro@ucsd.edu
  organization: Drug Design Data Resource, University of California, San Diego, Department of Chemistry and Biochemistry, UC San Diego
– sequence: 15
  givenname: Michael K.
  orcidid: 0000-0002-3375-1738
  surname: Gilson
  fullname: Gilson, Michael K.
  email: mgilson@ucsd.edu
  organization: Drug Design Data Resource, University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31974851$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1803880$$D View this record in Osti.gov
BookMark eNp9Ustu1DAUtVARnQ78AAsUwaYLAn4nYYGEylOqhIRAYmd5nJuMS8ae2pmqs-Mf-EO-hBvS8uiii8jKueece-17jshBiAEIecjoM0Zp9TwzWnNeUk5LSnndlPs7ZMFUJUrZKHZAFrTBklby6yE5yvmMoqjR9B45FKypZK3Ygly-Fp-KPtnQFm5thwFCD4V8UawGj9A2Qevd6GMoYod_cQQffn7_Mfh-Umxjhvy0sF3ngx_3Bdp886GfIKwmGOzoL6BYoRXCRZcACgiQeg_5Prnb2SHDg6tzSb68ffP55H15-vHdh5NXp6VTlI1lJax1WtZU6RUwrZRuuWttDbWUQilaK6Eq2umVclQg2nZcMtdI3XSVZIKLJXk5-253qw20DsKY7GC2yW9s2ptovfm_Evza9PHCVFwz2Qg0eDwbxDx6k50fwa1dDAHcaFiNXfFbkuOrLime7yCPZuOzg2GwAeIuGy6k5LpWtELqkxvUs7hLAd8AWQrXyFk1dX3079h_5r3eHBLqmeBSzDlBZ3AyO60Kb-EHw6iZQmLmkBgMifkdErNHKb8hvXa_VSRmUUYyhiT9HfsW1S_18M_h
CitedBy_id crossref_primary_10_1002_prot_26617
crossref_primary_10_1002_prot_26535
crossref_primary_10_1080_17460441_2023_2221025
crossref_primary_10_1002_wcms_1705
crossref_primary_10_1021_acs_jpclett_4c02332
crossref_primary_10_1039_D0CP00305K
crossref_primary_10_1021_acs_jcim_0c01382
crossref_primary_10_1002_wcms_1544
crossref_primary_10_1111_febs_15366
crossref_primary_10_1038_s44386_024_00001_2
crossref_primary_10_1021_acs_jcim_4c01902
crossref_primary_10_1002_prot_26587
crossref_primary_10_1038_s41570_022_00363_z
crossref_primary_10_1021_acs_jpcb_0c10263
crossref_primary_10_1021_acs_jcim_1c00796
crossref_primary_10_1021_acs_jcim_2c00485
crossref_primary_10_1007_s10822_022_00448_3
crossref_primary_10_1073_pnas_2304308120
crossref_primary_10_3390_molecules27144568
crossref_primary_10_1016_j_aichem_2023_100020
crossref_primary_10_1021_acs_jcim_4c00391
crossref_primary_10_1021_acs_jcim_0c00600
crossref_primary_10_1021_acs_jcim_3c01573
crossref_primary_10_1021_acs_jmedchem_0c02227
crossref_primary_10_1021_acs_jcim_3c00645
crossref_primary_10_1021_acs_jcim_4c02296
crossref_primary_10_1007_s10822_024_00571_3
crossref_primary_10_1039_D2MD00441K
crossref_primary_10_1021_acs_jctc_5c00038
crossref_primary_10_1021_acs_jcim_2c01149
crossref_primary_10_1007_s10822_021_00432_3
crossref_primary_10_1016_j_str_2021_04_010
crossref_primary_10_1039_D3CP02197A
crossref_primary_10_1007_s10822_022_00452_7
crossref_primary_10_1016_j_csbj_2022_09_002
crossref_primary_10_3389_fmolb_2020_00106
crossref_primary_10_1007_s10822_020_00363_5
crossref_primary_10_1016_j_compbiomed_2023_107250
crossref_primary_10_1016_j_ailsci_2021_100014
crossref_primary_10_1002_jcc_26525
crossref_primary_10_1039_D0RA10359D
crossref_primary_10_1002_prot_26515
crossref_primary_10_1039_D3CP05347D
crossref_primary_10_1038_s41598_024_77106_1
crossref_primary_10_1021_acs_jcim_4c02108
crossref_primary_10_1016_j_jmgm_2021_108119
crossref_primary_10_1021_acs_jcim_0c00474
crossref_primary_10_1021_acs_jcim_1c00292
crossref_primary_10_1021_acs_jctc_1c00948
crossref_primary_10_3389_fbinf_2022_885983
crossref_primary_10_1186_s13321_025_00955_z
crossref_primary_10_1017_qrd_2022_18
crossref_primary_10_1016_j_sbi_2023_102548
crossref_primary_10_1021_acs_jcim_1c00737
crossref_primary_10_1093_nar_gkae1075
crossref_primary_10_3390_ijms25136876
crossref_primary_10_1016_j_ejmech_2020_112713
crossref_primary_10_1021_acs_jctc_1c00214
crossref_primary_10_1002_prot_26601
crossref_primary_10_1093_bioinformatics_btaa748
crossref_primary_10_1093_bib_bbad126
crossref_primary_10_1002_wcms_1716
crossref_primary_10_1021_acs_jcim_4c01223
crossref_primary_10_1021_acs_jcim_2c00751
crossref_primary_10_3390_ijms22094435
crossref_primary_10_1126_science_aaz3041
crossref_primary_10_1002_wcms_1513
crossref_primary_10_1007_s10822_021_00433_2
crossref_primary_10_3390_ijms222212320
crossref_primary_10_1002_prot_26213
crossref_primary_10_1021_acs_jcim_1c01537
crossref_primary_10_1021_acs_jcim_1c00203
crossref_primary_10_1038_s41586_023_05905_z
crossref_primary_10_1016_j_ailsci_2022_100056
crossref_primary_10_1107_S2059798321006513
crossref_primary_10_3389_fmolb_2022_899805
Cites_doi 10.2307/2332303
10.1093/nar/gkw1074
10.1007/s10822-018-0143-9
10.1007/s10822-017-0083-9
10.1007/s10822-017-0069-7
10.1007/s10822-017-0062-1
10.1021/ci400025f
10.1021/acs.jcim.7b00650
10.1021/ci990307l
10.1186/s40035-017-0093-5
10.1006/jmbi.1994.1052
10.1007/s10822-017-0082-x
10.1016/j.bpj.2018.02.038
10.1007/s10822-017-0088-4
10.4155/fmc.11.63
10.1021/acs.jcim.5b00387
10.1201/9781420050264
10.1007/s10822-017-0046-1
10.1063/1.5016562
10.1007/s10822-017-0081-y
10.1007/s10822-017-0064-z
10.1007/s10822-017-0071-0
10.1007/s12272-015-0640-5
10.1007/s10822-018-0176-0
10.1021/acs.jcim.5b00523
10.1016/j.bmcl.2009.01.055
10.1002/prot.10613
10.1007/s10822-017-0048-z
10.1007/s10822-017-0056-z
10.1021/ci100161z
10.1007/s10822-017-0051-4
10.1371/journal.pcbi.1005690
10.1002/jcc.21256
10.1007/s10822-017-0074-x
10.1021/acs.jctc.6b00250
10.1007/s10822-018-0148-4
10.1002/cnm.2914
10.1007/s10822-018-0146-6
10.2307/2332226
10.1021/ci4004199
10.1007/s10822-018-0162-6
10.1007/s10822-017-0050-5
10.1124/jpet.103.056879
10.1021/acs.jcim.7b00226
10.1021/jm020017n
10.1021/acs.jmedchem.5b02008
10.1007/s10822-018-0161-7
10.1021/ct800011m
10.1007/s10822-018-0133-y
10.1002/prot.10465
10.1007/s10822-017-0058-x
10.1007/s10822-017-0065-y
10.1146/annurev-biophys-070816-033654
10.1021/ci00017a013
10.1124/pr.112.007336
10.1007/s10822-018-0139-5
10.1186/1758-2946-3-33
10.1007/s10822-017-0054-1
10.1006/jmbi.1996.0897
10.1007/s10822-017-0049-y
10.1016/S0169-409X(96)00423-1
10.1016/j.sbi.2011.01.011
10.1371/journal.pcbi.1005929
10.1002/jcc.540150503
10.1007/s10822-016-9946-8
10.1007/s10822-017-0055-0
10.1007/s10822-017-0085-7
10.1021/jm030644s
10.1021/acs.jcim.7b00564
10.1007/s10822-017-0075-9
10.1007/s10822-017-0063-0
10.1023/A:1010933404324
10.1016/j.jmb.2008.05.042
10.1007/s10822-017-0053-2
10.1002/jcc.21334
10.1021/acs.jcim.6b00182
10.1021/acs.jctc.7b00885
10.1021/jm060154a
10.1007/s10822-007-9159-2
10.1021/acs.jcim.7b00403
10.1007/s10822-018-0180-4
10.1007/s10822-005-8694-y
10.1021/jm0306430
10.1002/minf.201300143
10.1007/s10822-017-0072-z
10.1021/ci900238a
10.1126/science.1096361
10.1063/1.4769292
10.1007/s10822-018-0142-x
10.1021/ci2005934
10.1145/299432.299509
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
Journal of Computer-Aided Molecular Design is a copyright of Springer, (2020). All Rights Reserved.
Copyright_xml – notice: Springer Nature Switzerland AG 2020
– notice: Journal of Computer-Aided Molecular Design is a copyright of Springer, (2020). All Rights Reserved.
CorporateAuthor Rutgers Univ., Piscataway, NJ (United States)
CorporateAuthor_xml – name: Rutgers Univ., Piscataway, NJ (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7SC
7X7
7XB
88E
88I
8AL
8AO
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
KB.
L7M
L~C
L~D
M0N
M0S
M1P
M2P
P5Z
P62
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
OIOZB
OTOTI
5PM
DOI 10.1007/s10822-020-00289-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Computer Science Database
MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Computer Science
EISSN 1573-4951
EndPage 119
ExternalDocumentID PMC7261493
1803880
31974851
10_1007_s10822_020_00289_y
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of General Medical Sciences (US)
  grantid: 1U01GM111528
– fundername: NIGMS NIH HHS
  grantid: U01 GM111528
– fundername: NIGMS NIH HHS
  grantid: R01 GM133198
GroupedDBID ---
-4Y
-58
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.GJ
.VR
06C
06D
0R~
0VY
186
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D-I
D1I
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMB
EMK
EMOBN
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KB.
KDC
KOV
KOW
LAK
LK5
LLZTM
M0N
M1P
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9N
PCBAR
PDBOC
PF0
PKN
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z7U
Z7V
Z7W
Z7X
Z83
Z87
Z8O
Z91
ZMTXR
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
K9.
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
7X8
AAFGU
ABFGW
ABKAS
ABPTK
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
AEFTE
AESTI
AEVTX
AGGBP
AIMYW
AJDOV
AKQUC
OIOZB
OTOTI
SQXTU
UNUBA
5PM
ID FETCH-LOGICAL-c501t-73aac648056be16556d2cda8e8443550853570f6b5c038e8df241c9469f741323
IEDL.DBID 7X7
ISSN 0920-654X
1573-4951
IngestDate Thu Aug 21 14:02:09 EDT 2025
Thu May 18 22:20:22 EDT 2023
Fri Jul 11 06:58:33 EDT 2025
Fri Jul 25 19:13:44 EDT 2025
Mon Jul 21 05:50:48 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Tue Jul 01 04:24:26 EDT 2025
Fri Feb 21 02:34:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Ligand ranking
Docking
Scoring
D3R
Free-energy
Blinded prediction challenge
Language English
License Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. https://www.springer.com/aam-terms-v1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-73aac648056be16556d2cda8e8443550853570f6b5c038e8df241c9469f741323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0019749; 1U01GM111528; R01GM133198; DBI-1832184
USDOE Office of Science (SC)
National Science Foundation (NSF)
National Institutes of Health (NIH)
Shared first authorship
ORCID 0000-0002-9275-9553
0000-0002-3375-1738
0000000292759553
0000000233751738
OpenAccessLink https://www.osti.gov/servlets/purl/1803880
PMID 31974851
PQID 2352892173
PQPubID 54123
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7261493
osti_scitechconnect_1803880
proquest_miscellaneous_2344268507
proquest_journals_2352892173
pubmed_primary_31974851
crossref_citationtrail_10_1007_s10822_020_00289_y
crossref_primary_10_1007_s10822_020_00289_y
springer_journals_10_1007_s10822_020_00289_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Netherlands
– name: Dordrecht
– name: United States
PublicationSubtitle Incorporating Perspectives in Drug Discovery and Design
PublicationTitle Journal of computer-aided molecular design
PublicationTitleAbbrev J Comput Aided Mol Des
PublicationTitleAlternate J Comput Aided Mol Des
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References Macalino, Gosu, Hong, Choi (CR1) 2015; 38
Padhorny, Hall, Mirzaei (CR22) 2018; 32
O’Boyle, Banck, James (CR73) 2011; 3
Lam, Abagyan, Totrov (CR32) 2019; 33
Jorgensen, Thomas (CR90) 2008; 4
Lipinski, Lombardo, Dominy, Feeney (CR46) 1997; 23
Gaulton, Hersey, Nowotka (CR61) 2017; 45
Jorgensen (CR2) 2004; 303
Kumar, Zhang (CR33) 2019; 33
Thurmond, Sun, Sehon (CR52) 2004; 308
Tuccinardi, Botta, Giordano, Martinelli (CR80) 2010; 50
Xie, Minh (CR34) 2019; 33
Yakovenko, Jones (CR29) 2017; 32
Bramer, Wei (CR85) 2018; 148
Verdonk, Cole, Hartshorn (CR68) 2003; 52
Rifai, van Dijk, Vermeulen, Geerke (CR24) 2018; 32
Ihlenfeldt, Takahashi, Abe, Sasaki (CR69) 1994; 34
He, Man, Ji (CR38) 2019; 33
Liao, Sitzmann, Pugliese, Nicklaus (CR5) 2011; 3
Smith, Damm-Ganamet, Dunbar (CR44) 2016; 56
CR74
Salmaso, Sturlese, Cuzzolin, Moro (CR25) 2018; 32
Das, Yan (CR62) 2017; 6
Damm-Ganamet, Smith, Dunbar (CR43) 2013; 53
Bonnet, Agrafiotis, Zhu, Martin (CR75) 2009; 49
Selwa, Elisée, Zavala, Iorga (CR27) 2018; 32
Jacobson, Pincus, Rapp, Day, Honig, Shaw, Friesner (CR53) 2004; 55
Breiman (CR58) 2001; 45
Wingert, Oerlemans, Camacho (CR28) 2018; 32
Nguyen, Cang, Wu (CR35) 2019; 33
Gathiaka, Liu, Chiu (CR45) 2016; 30
Schindler, Rippmann, Kuhn (CR26) 2018; 32
Cang, Wei (CR88) 2017; 13
Gomes, Da Silva, Bret, Rognan (CR10) 2018; 32
CR48
Mobley, Gilson (CR95) 2017; 46
Ignatov, Liu, Alekseenko (CR39) 2019; 33
Zwillinger, Kokoska (CR56) 1999
Friesner, Banks, Murphy (CR64) 2004; 47
Mobley, Klimovich (CR91) 2012; 137
Gaieb, Parks, Chiu (CR30) 2019
Pedregosa, Varoquaux, Gramfort (CR59) 2011; 12
Jones, Willett, Glen (CR81) 1997; 267
Cournia, Allen, Sherman (CR93) 2017; 57
Gaieb, Liu, Gathiaka (CR6) 2018; 32
CR84
Nguyen, Xiao, Wang, Wei (CR86) 2017; 57
Kendall (CR55) 1945; 33
Yu, Deng, Wu (CR49) 2017; 13
Cang, Mu, Wei (CR89) 2018; 14
Morris, Huey, Lindstrom (CR76) 2009; 30
Carlson, Smith, Damm-Ganamet (CR42) 2016; 56
Tetko, Gasteiger, Todeschini (CR67) 2005; 19
Chodera, Mobley, Shirts (CR92) 2011; 21
Trott, Olson (CR63) 2010; 31
Amaro, Baudry, Chodera (CR77) 2018; 114
Hogues, Sulea, Gaudreault (CR15) 2018; 32
Cang, Wei (CR87) 2018; 34
Sliwoski, Kothiwale, Meiler, Lowe (CR3) 2013; 66
Halgren, Murphy, Friesner (CR65) 2004; 47
Feinstein, Brylinski (CR71) 2014; 33
Olsson, García-Sosa, Ryde (CR21) 2018; 32
Athanasiou, Vasilakaki, Dellis, Cournia (CR7) 2018; 32
Baumgartner, Evans (CR8) 2018; 32
Abagyan, Totrov (CR83) 1994; 235
Kurkcuoglu, Koukos, Citro (CR18) 2018; 32
Lam, Abagyan, Totrov (CR19) 2018; 32
Kadukova, Grudinin (CR16) 2018; 32
Koukos, Xue, Bonvin (CR36) 2019; 33
Chaudhury, Gray (CR70) 2008; 381
Jiménez, Škalič, Martínez-Rosell, De Fabritiis (CR82) 2018; 58
Sunseri, King, Francoeur, Koes (CR31) 2019; 33
Coutsias, Lexa, Wester (CR72) 2016; 12
Réau, Langenfeld, Zagury, Montes (CR23) 2018; 32
Gao, Hu, Crespo (CR14) 2018; 32
Hanessian, Yang, Rondeau (CR51) 2006; 49
Fradera, Verras, Hu (CR13) 2018; 32
Kumar, Zhang (CR17) 2018; 32
Veber, Johnson, Cheng (CR47) 2002; 45
Machauer, Laumen, Veenstra (CR50) 2009; 19
Ding, Hayes, Vilseck (CR11) 2018; 32
Wallach, Heifets (CR40) 2018; 58
Kendall (CR54) 1938; 30
Irwin, Shoichet (CR4) 2016; 59
Amaro, Baron, McCammon (CR78) 2008; 22
Carlson (CR41) 2016; 56
Chaput, Selwa, Elisée, Iorga (CR37) 2019; 33
Wildman, Crippen (CR57) 1999; 39
Abagyan, Totrov, Kuznetsov (CR66) 1994; 15
CR60
Mey, Jiménez, Michel (CR20) 2018; 32
Christ, Fox (CR94) 2014; 54
Bhakat, Åberg, Söderhjelm (CR9) 2018; 32
Korb, Olsson, Bowden (CR79) 2012; 52
Duan, Xu, Zou (CR12) 2018; 32
CD Christ (289_CR94) 2014; 54
S Hanessian (289_CR51) 2006; 49
289_CR60
G Jones (289_CR81) 1997; 267
C Athanasiou (289_CR7) 2018; 32
DF Veber (289_CR47) 2002; 45
HS Yu (289_CR49) 2017; 13
E Selwa (289_CR27) 2018; 32
R Duan (289_CR12) 2018; 32
I Wallach (289_CR40) 2018; 58
EA Coutsias (289_CR72) 2016; 12
MG Kendall (289_CR54) 1938; 30
A Kumar (289_CR33) 2019; 33
DD Nguyen (289_CR86) 2017; 57
X Ding (289_CR11) 2018; 32
R Machauer (289_CR50) 2009; 19
D Zwillinger (289_CR56) 1999
L Breiman (289_CR58) 2001; 45
RE Amaro (289_CR78) 2008; 22
R Abagyan (289_CR66) 1994; 15
WP Feinstein (289_CR71) 2014; 33
L Chaput (289_CR37) 2019; 33
PC-H Lam (289_CR32) 2019; 33
BM Wingert (289_CR28) 2018; 32
O Yakovenko (289_CR29) 2017; 32
S Gathiaka (289_CR45) 2016; 30
T Tuccinardi (289_CR80) 2010; 50
J Jiménez (289_CR82) 2018; 58
Z Gaieb (289_CR30) 2019
TA Halgren (289_CR65) 2004; 47
WD Ihlenfeldt (289_CR69) 1994; 34
A Kumar (289_CR17) 2018; 32
MP Jacobson (289_CR53) 2004; 55
RA Friesner (289_CR64) 2004; 47
D Bramer (289_CR85) 2018; 148
DD Nguyen (289_CR35) 2019; 33
DL Mobley (289_CR95) 2017; 46
MA Olsson (289_CR21) 2018; 32
J Sunseri (289_CR31) 2019; 33
DL Mobley (289_CR91) 2012; 137
R Abagyan (289_CR83) 1994; 235
HA Carlson (289_CR41) 2016; 56
ML Verdonk (289_CR68) 2003; 52
M Réau (289_CR23) 2018; 32
WL Jorgensen (289_CR90) 2008; 4
X He (289_CR38) 2019; 33
RD Smith (289_CR44) 2016; 56
Z Cang (289_CR87) 2018; 34
D Padhorny (289_CR22) 2018; 32
Z Cang (289_CR89) 2018; 14
CA Lipinski (289_CR46) 1997; 23
289_CR84
JD Chodera (289_CR92) 2011; 21
V Salmaso (289_CR25) 2018; 32
C Schindler (289_CR26) 2018; 32
WL Jorgensen (289_CR2) 2004; 303
Z Cang (289_CR88) 2017; 13
289_CR48
GM Morris (289_CR76) 2009; 30
RE Amaro (289_CR77) 2018; 114
A Gaulton (289_CR61) 2017; 45
S Chaudhury (289_CR70) 2008; 381
Z Kurkcuoglu (289_CR18) 2018; 32
EA Rifai (289_CR24) 2018; 32
M Ignatov (289_CR39) 2019; 33
HA Carlson (289_CR42) 2016; 56
B Das (289_CR62) 2017; 6
C Liao (289_CR5) 2011; 3
F Pedregosa (289_CR59) 2011; 12
SA Wildman (289_CR57) 1999; 39
M Kadukova (289_CR16) 2018; 32
PI Koukos (289_CR36) 2019; 33
X Fradera (289_CR13) 2018; 32
JJ Irwin (289_CR4) 2016; 59
Y-D Gao (289_CR14) 2018; 32
B Xie (289_CR34) 2019; 33
KL Damm-Ganamet (289_CR43) 2013; 53
G Sliwoski (289_CR3) 2013; 66
MP Baumgartner (289_CR8) 2018; 32
H Hogues (289_CR15) 2018; 32
IV Tetko (289_CR67) 2005; 19
289_CR74
NM O’Boyle (289_CR73) 2011; 3
P Bonnet (289_CR75) 2009; 49
Z Gaieb (289_CR6) 2018; 32
PC-H Lam (289_CR19) 2018; 32
ASJS Mey (289_CR20) 2018; 32
RL Thurmond (289_CR52) 2004; 308
Z Cournia (289_CR93) 2017; 57
S Bhakat (289_CR9) 2018; 32
O Trott (289_CR63) 2010; 31
SJY Macalino (289_CR1) 2015; 38
P Gomes (289_CR10) 2018; 32
MG Kendall (289_CR55) 1945; 33
O Korb (289_CR79) 2012; 52
References_xml – volume: 33
  start-page: 239
  year: 1945
  end-page: 251
  ident: CR55
  article-title: The treatment of ties in ranking problems
  publication-title: Biometrika
  doi: 10.2307/2332303
– volume: 45
  start-page: D945
  year: 2017
  end-page: D954
  ident: CR61
  article-title: The ChEMBL database in 2017
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1074
– volume: 33
  start-page: 61
  year: 2019
  end-page: 69
  ident: CR34
  article-title: Alchemical Grid Dock (AlGDock) calculations in the D3R Grand Challenge 3
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0143-9
– ident: CR74
– volume: 32
  start-page: 199
  year: 2018
  end-page: 210
  ident: CR20
  article-title: Impact of domain knowledge on blinded predictions of binding energies by alchemical free energy calculations
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0083-9
– volume: 32
  start-page: 225
  year: 2018
  end-page: 230
  ident: CR22
  article-title: Protein–ligand docking using FFT based sampling: D3R case study
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0069-7
– volume: 32
  start-page: 151
  year: 2018
  end-page: 162
  ident: CR16
  article-title: Docking of small molecules to farnesoid X receptors using AutoDock Vina with the Convex-PL potential: lessons learned from D3R Grand Challenge 2
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0062-1
– volume: 53
  start-page: 1853
  year: 2013
  end-page: 1870
  ident: CR43
  article-title: CSAR benchmark exercise 2011–2012: evaluation of results from docking and relative ranking of blinded congeneric series
  publication-title: J Chem Inf Model
  doi: 10.1021/ci400025f
– volume: 58
  start-page: 287
  year: 2018
  end-page: 296
  ident: CR82
  article-title: KDEEP: protein–ligand absolute binding affinity prediction via 3D-convolutional neural networks
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00650
– volume: 39
  start-page: 868
  year: 1999
  end-page: 873
  ident: CR57
  article-title: Prediction of physicochemical parameters by atomic contributions
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci990307l
– volume: 6
  start-page: 23
  year: 2017
  ident: CR62
  article-title: Role of BACE1 in Alzheimer’s synaptic function
  publication-title: Transl Neurodegener
  doi: 10.1186/s40035-017-0093-5
– volume: 235
  start-page: 983
  year: 1994
  end-page: 1002
  ident: CR83
  article-title: Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1994.1052
– volume: 32
  start-page: 103
  year: 2018
  end-page: 111
  ident: CR12
  article-title: Lessons learned from participating in D3R 2016 Grand Challenge 2: compounds targeting the farnesoid X receptor
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0082-x
– volume: 114
  start-page: 2271
  year: 2018
  end-page: 2278
  ident: CR77
  article-title: Ensemble docking in drug discovery
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2018.02.038
– volume: 32
  start-page: 1
  year: 2018
  end-page: 20
  ident: CR6
  article-title: D3R Grand Challenge 2: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0088-4
– ident: CR84
– volume: 3
  start-page: 1057
  year: 2011
  end-page: 1085
  ident: CR5
  article-title: Software and resources for computational medicinal chemistry
  publication-title: Fut Med Chem
  doi: 10.4155/fmc.11.63
– volume: 56
  start-page: 1022
  year: 2016
  end-page: 1031
  ident: CR44
  article-title: CSAR benchmark exercise 2013: evaluation of results from a combined computational protein design, docking, and scoring/ranking challenge
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00387
– year: 1999
  ident: CR56
  publication-title: CRC standard probability and statistics tables and formulae
  doi: 10.1201/9781420050264
– volume: 32
  start-page: 75
  year: 2018
  end-page: 87
  ident: CR10
  article-title: Ranking docking poses by graph matching of protein–ligand interactions: lessons learned from the D3R Grand Challenge 2
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0046-1
– volume: 148
  start-page: 054103
  year: 2018
  ident: CR85
  article-title: Multiscale weighted colored graphs for protein flexibility and rigidity analysis
  publication-title: J Chem Phys
  doi: 10.1063/1.5016562
– volume: 32
  start-page: 45
  year: 2018
  end-page: 58
  ident: CR8
  article-title: Lessons learned in induced fit docking and metadynamics in the Drug Design Data Resource Grand Challenge 2
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0081-y
– volume: 32
  start-page: 265
  year: 2018
  end-page: 272
  ident: CR26
  article-title: Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP+
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0064-z
– volume: 32
  start-page: 143
  year: 2018
  end-page: 150
  ident: CR15
  article-title: Binding pose and affinity prediction in the 2016 D3R Grand Challenge 2 using the Wilma-SIE method
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0071-0
– volume: 38
  start-page: 1686
  year: 2015
  end-page: 1701
  ident: CR1
  article-title: Role of computer-aided drug design in modern drug discovery
  publication-title: Arch Pharm Res
  doi: 10.1007/s12272-015-0640-5
– volume: 33
  start-page: 119
  year: 2019
  end-page: 127
  ident: CR39
  article-title: Monte Carlo on the manifold and MD refinement for binding pose prediction of protein–ligand complexes: 2017 D3R Grand Challenge
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0176-0
– volume: 56
  start-page: 1063
  year: 2016
  end-page: 1077
  ident: CR42
  article-title: CSAR 2014: a benchmark exercise using unpublished data from pharma
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00523
– volume: 19
  start-page: 1366
  year: 2009
  end-page: 1370
  ident: CR50
  article-title: Macrocyclic peptidomimetic β-secretase (BACE-1) inhibitors with activity in vivo
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2009.01.055
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR59
  article-title: Scikit-learn: machine learning in Python
  publication-title: J Mach Learn Res
– volume: 55
  start-page: 351
  year: 2004
  end-page: 367
  ident: CR53
  article-title: A hierarchical approach to all-atom protein loop prediction
  publication-title: Proteins
  doi: 10.1002/prot.10613
– volume: 32
  start-page: 163
  year: 2018
  end-page: 173
  ident: CR17
  article-title: A cross docking pipeline for improving pose prediction and virtual screening performance
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0048-z
– volume: 32
  start-page: 211
  year: 2018
  end-page: 224
  ident: CR21
  article-title: Binding affinities of the farnesoid X receptor in the D3R Grand Challenge 2 estimated by free-energy perturbation and docking
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0056-z
– volume: 50
  start-page: 1432
  year: 2010
  end-page: 1441
  ident: CR80
  article-title: Protein kinases: docking and homology modeling reliability
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100161z
– volume: 32
  start-page: 251
  year: 2018
  end-page: 264
  ident: CR25
  article-title: Combining self- and cross-docking as benchmark tools: the performance of DockBench in the D3R Grand Challenge 2
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0051-4
– volume: 13
  start-page: e1005690
  year: 2017
  ident: CR88
  article-title: TopologyNet: topology based deep convolutional and multi-task neural networks for biomolecular property predictions
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005690
– volume: 30
  start-page: 2785
  year: 2009
  end-page: 2791
  ident: CR76
  article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21256
– volume: 32
  start-page: 59
  year: 2018
  end-page: 73
  ident: CR9
  article-title: Prediction of binding poses to FXR using multi-targeted docking combined with molecular dynamics and enhanced sampling
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0074-x
– ident: CR60
– volume: 12
  start-page: 4674
  year: 2016
  end-page: 4687
  ident: CR72
  article-title: Exhaustive conformational sampling of complex fused ring macrocycles using inverse kinematics
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.6b00250
– volume: 33
  start-page: 83
  year: 2019
  end-page: 91
  ident: CR36
  article-title: Protein–ligand pose and affinity prediction: lessons from D3R Grand Challenge 3
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0148-4
– volume: 34
  start-page: e2914
  year: 2018
  ident: CR87
  article-title: Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction
  publication-title: Int J Numer Methods Biomed Eng
  doi: 10.1002/cnm.2914
– volume: 33
  start-page: 71
  year: 2019
  end-page: 82
  ident: CR35
  article-title: Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0146-6
– volume: 30
  start-page: 81
  year: 1938
  end-page: 93
  ident: CR54
  article-title: A new measure of rank correlation
  publication-title: Biometrika
  doi: 10.2307/2332226
– volume: 54
  start-page: 108
  year: 2014
  end-page: 120
  ident: CR94
  article-title: Accuracy assessment and automation of free energy calculations for drug design
  publication-title: J Chem Inf Model
  doi: 10.1021/ci4004199
– volume: 33
  start-page: 105
  year: 2019
  end-page: 117
  ident: CR38
  article-title: Calculate protein–ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0162-6
– volume: 32
  start-page: 89
  year: 2018
  end-page: 102
  ident: CR11
  article-title: CDOCKER and λ-dynamics for prospective prediction in D3R Grand Challenge 2
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0050-5
– volume: 308
  start-page: 268
  year: 2004
  end-page: 276
  ident: CR52
  article-title: Identification of a potent and selective noncovalent cathepsin S inhibitor
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.103.056879
– volume: 57
  start-page: 1715
  year: 2017
  end-page: 1721
  ident: CR86
  article-title: Rigidity strengthening: a mechanism for protein–ligand binding
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00226
– volume: 45
  start-page: 2615
  year: 2002
  end-page: 2623
  ident: CR47
  article-title: Molecular properties that influence the oral bioavailability of drug candidates
  publication-title: J Med Chem
  doi: 10.1021/jm020017n
– volume: 59
  start-page: 4103
  year: 2016
  end-page: 4120
  ident: CR4
  article-title: Docking screens for novel ligands conferring new biology
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.5b02008
– volume: 33
  start-page: 93
  year: 2019
  end-page: 103
  ident: CR37
  article-title: Blinded evaluation of cathepsin S inhibitors from the D3RGC3 dataset using molecular docking and free energy calculations
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0161-7
– volume: 4
  start-page: 869
  year: 2008
  end-page: 876
  ident: CR90
  article-title: Perspective on free-energy perturbation calculations for chemical equilibria
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct800011m
– volume: 33
  start-page: 19
  year: 2019
  end-page: 34
  ident: CR31
  article-title: Convolutional neural network scoring and minimization in the D3R 2017 community challenge
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0133-y
– volume: 52
  start-page: 609
  year: 2003
  end-page: 623
  ident: CR68
  article-title: Improved protein–ligand docking using GOLD
  publication-title: Proteins
  doi: 10.1002/prot.10465
– volume: 32
  start-page: 187
  year: 2018
  end-page: 198
  ident: CR19
  article-title: Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0058-x
– volume: 32
  start-page: 287
  year: 2018
  end-page: 297
  ident: CR28
  article-title: Optimal affinity ranking for automated virtual screening validated in prospective D3R grand challenges
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0065-y
– volume: 46
  start-page: 531
  year: 2017
  end-page: 558
  ident: CR95
  article-title: Predicting binding free energies: frontiers and benchmarks
  publication-title: Annu Rev Biophys
  doi: 10.1146/annurev-biophys-070816-033654
– volume: 34
  start-page: 109
  year: 1994
  end-page: 116
  ident: CR69
  article-title: Computation and management of chemical properties in CACTVS: an extensible networked approach toward modularity and compatibility
  publication-title: J Chem Inf Model
  doi: 10.1021/ci00017a013
– volume: 66
  start-page: 334
  year: 2013
  end-page: 395
  ident: CR3
  article-title: Computational methods in drug discovery
  publication-title: Pharmacol Rev
  doi: 10.1124/pr.112.007336
– volume: 33
  start-page: 35
  year: 2019
  end-page: 46
  ident: CR32
  article-title: Hybrid receptor structure/ligand-based docking and activity prediction in ICM: development and evaluation in D3R Grand Challenge 3
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0139-5
– volume: 3
  start-page: 33
  year: 2011
  ident: CR73
  article-title: Open babel: an open chemical toolbox
  publication-title: J Cheminform
  doi: 10.1186/1758-2946-3-33
– volume: 32
  start-page: 273
  year: 2018
  end-page: 286
  ident: CR27
  article-title: Blinded evaluation of farnesoid X receptor (FXR) ligands binding using molecular docking and free energy calculations
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0054-1
– volume: 267
  start-page: 727
  year: 1997
  end-page: 748
  ident: CR81
  article-title: Development and validation of a genetic algorithm for flexible docking
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1996.0897
– volume: 32
  start-page: 175
  year: 2018
  end-page: 185
  ident: CR18
  article-title: Performance of HADDOCK and a simple contact-based protein–ligand binding affinity predictor in the D3R Grand Challenge 2
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0049-y
– volume: 23
  start-page: 3
  year: 1997
  end-page: 25
  ident: CR46
  article-title: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(96)00423-1
– volume: 21
  start-page: 150
  year: 2011
  end-page: 160
  ident: CR92
  article-title: Alchemical free energy methods for drug discovery: progress and challenges
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2011.01.011
– volume: 14
  start-page: e1005929
  year: 2018
  ident: CR89
  article-title: Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005929
– volume: 15
  start-page: 488
  year: 1994
  end-page: 506
  ident: CR66
  article-title: ICM—a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation
  publication-title: J Comput Chem
  doi: 10.1002/jcc.540150503
– volume: 30
  start-page: 651
  year: 2016
  end-page: 668
  ident: CR45
  article-title: D3R grand challenge 2015: evaluation of protein–ligand pose and affinity predictions
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9946-8
– volume: 32
  start-page: 239
  year: 2018
  end-page: 249
  ident: CR24
  article-title: Binding free energy predictions of farnesoid X receptor (FXR) agonists using a linear interaction energy (LIE) approach with reliability estimation: application to the D3R Grand Challenge 2
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0055-0
– volume: 32
  start-page: 299
  year: 2017
  end-page: 311
  ident: CR29
  article-title: Modern drug design: the implication of using artificial neuronal networks and multiple molecular dynamic simulations
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0085-7
– volume: 47
  start-page: 1750
  year: 2004
  end-page: 1759
  ident: CR65
  article-title: Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening
  publication-title: J Med Chem
  doi: 10.1021/jm030644s
– volume: 57
  start-page: 2911
  year: 2017
  end-page: 2937
  ident: CR93
  article-title: Relative binding free energy calculations in drug discovery: recent advances and practical considerations
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00564
– ident: CR48
– volume: 32
  start-page: 21
  year: 2018
  end-page: 44
  ident: CR7
  article-title: Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0075-9
– volume: 32
  start-page: 231
  year: 2018
  end-page: 238
  ident: CR23
  article-title: Predicting the affinity of Farnesoid X receptor ligands through a hierarchical ranking protocol: a D3R Grand Challenge 2 case study
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0063-0
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR58
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 381
  start-page: 1068
  year: 2008
  end-page: 1087
  ident: CR70
  article-title: Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2008.05.042
– volume: 32
  start-page: 113
  year: 2018
  end-page: 127
  ident: CR13
  article-title: Performance of multiple docking and refinement methods in the pose prediction D3R prospective Grand Challenge 2016
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0053-2
– volume: 31
  start-page: 455
  year: 2010
  end-page: 461
  ident: CR63
  article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21334
– volume: 56
  start-page: 951
  year: 2016
  end-page: 954
  ident: CR41
  article-title: Lessons learned over four benchmark exercises from the community structure–activity resource
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.6b00182
– volume: 13
  start-page: 6290
  year: 2017
  end-page: 6300
  ident: CR49
  article-title: Accurate and reliable prediction of the binding affinities of macrocycles to their protein targets
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.7b00885
– volume: 49
  start-page: 4544
  year: 2006
  end-page: 4567
  ident: CR51
  article-title: Structure-based design and synthesis of macroheterocyclic peptidomimetic inhibitors of the aspartic protease β-site amyloid precursor protein cleaving enzyme (BACE)
  publication-title: J Med Chem
  doi: 10.1021/jm060154a
– volume: 22
  start-page: 693
  year: 2008
  end-page: 705
  ident: CR78
  article-title: An improved relaxed complex scheme for receptor flexibility in computer-aided drug design
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-007-9159-2
– volume: 58
  start-page: 916
  year: 2018
  end-page: 932
  ident: CR40
  article-title: Most ligand-based classification benchmarks reward memorization rather than generalization
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00403
– year: 2019
  ident: CR30
  article-title: D3R Grand Challenge 3: blind prediction of protein–ligand poses and affinity rankings
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0180-4
– volume: 19
  start-page: 453
  year: 2005
  end-page: 463
  ident: CR67
  article-title: Virtual computational chemistry laboratory—design and description
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-005-8694-y
– volume: 47
  start-page: 1739
  year: 2004
  end-page: 1749
  ident: CR64
  article-title: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy
  publication-title: J Med Chem
  doi: 10.1021/jm0306430
– volume: 33
  start-page: 135
  year: 2014
  end-page: 150
  ident: CR71
  article-title: e FindSite: enhanced fingerprint-based virtual screening against predicted ligand binding sites in protein models
  publication-title: Mol Inform
  doi: 10.1002/minf.201300143
– volume: 32
  start-page: 129
  year: 2018
  end-page: 142
  ident: CR14
  article-title: Workflows and performances in the ranking prediction of 2016 D3R Grand Challenge 2: lessons learned from a collaborative effort
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0072-z
– volume: 49
  start-page: 2242
  year: 2009
  end-page: 2259
  ident: CR75
  article-title: Conformational analysis of macrocycles: finding what common search methods miss
  publication-title: J Chem Inf Model
  doi: 10.1021/ci900238a
– volume: 303
  start-page: 1813
  year: 2004
  end-page: 1818
  ident: CR2
  article-title: The many roles of computation in drug discovery
  publication-title: Science
  doi: 10.1126/science.1096361
– volume: 137
  start-page: 230901
  year: 2012
  ident: CR91
  article-title: Perspective: alchemical free energy calculations for drug discovery
  publication-title: J Chem Phys
  doi: 10.1063/1.4769292
– volume: 33
  start-page: 47
  year: 2019
  end-page: 59
  ident: CR33
  article-title: Shape similarity guided pose prediction: lessons from D3R Grand Challenge 3
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0142-x
– volume: 52
  start-page: 1262
  year: 2012
  end-page: 1274
  ident: CR79
  article-title: Potential and limitations of ensemble docking
  publication-title: J Chem Inf Model
  doi: 10.1021/ci2005934
– volume: 56
  start-page: 1063
  year: 2016
  ident: 289_CR42
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00523
– volume: 32
  start-page: 143
  year: 2018
  ident: 289_CR15
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0071-0
– volume: 14
  start-page: e1005929
  year: 2018
  ident: 289_CR89
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005929
– volume: 137
  start-page: 230901
  year: 2012
  ident: 289_CR91
  publication-title: J Chem Phys
  doi: 10.1063/1.4769292
– volume: 52
  start-page: 1262
  year: 2012
  ident: 289_CR79
  publication-title: J Chem Inf Model
  doi: 10.1021/ci2005934
– volume: 66
  start-page: 334
  year: 2013
  ident: 289_CR3
  publication-title: Pharmacol Rev
  doi: 10.1124/pr.112.007336
– ident: 289_CR60
– volume: 38
  start-page: 1686
  year: 2015
  ident: 289_CR1
  publication-title: Arch Pharm Res
  doi: 10.1007/s12272-015-0640-5
– volume: 32
  start-page: 231
  year: 2018
  ident: 289_CR23
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0063-0
– volume: 33
  start-page: 93
  year: 2019
  ident: 289_CR37
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0161-7
– volume: 33
  start-page: 83
  year: 2019
  ident: 289_CR36
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0148-4
– volume: 49
  start-page: 4544
  year: 2006
  ident: 289_CR51
  publication-title: J Med Chem
  doi: 10.1021/jm060154a
– volume: 33
  start-page: 135
  year: 2014
  ident: 289_CR71
  publication-title: Mol Inform
  doi: 10.1002/minf.201300143
– volume: 46
  start-page: 531
  year: 2017
  ident: 289_CR95
  publication-title: Annu Rev Biophys
  doi: 10.1146/annurev-biophys-070816-033654
– volume: 55
  start-page: 351
  year: 2004
  ident: 289_CR53
  publication-title: Proteins
  doi: 10.1002/prot.10613
– volume: 45
  start-page: D945
  year: 2017
  ident: 289_CR61
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1074
– volume: 114
  start-page: 2271
  year: 2018
  ident: 289_CR77
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2018.02.038
– volume: 12
  start-page: 4674
  year: 2016
  ident: 289_CR72
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.6b00250
– volume: 34
  start-page: 109
  year: 1994
  ident: 289_CR69
  publication-title: J Chem Inf Model
  doi: 10.1021/ci00017a013
– volume: 235
  start-page: 983
  year: 1994
  ident: 289_CR83
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1994.1052
– volume: 59
  start-page: 4103
  year: 2016
  ident: 289_CR4
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.5b02008
– volume: 33
  start-page: 19
  year: 2019
  ident: 289_CR31
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0133-y
– volume: 32
  start-page: 45
  year: 2018
  ident: 289_CR8
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0081-y
– volume: 13
  start-page: 6290
  year: 2017
  ident: 289_CR49
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.7b00885
– volume: 33
  start-page: 61
  year: 2019
  ident: 289_CR34
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0143-9
– volume: 19
  start-page: 453
  year: 2005
  ident: 289_CR67
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-005-8694-y
– volume: 32
  start-page: 21
  year: 2018
  ident: 289_CR7
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0075-9
– volume: 45
  start-page: 2615
  year: 2002
  ident: 289_CR47
  publication-title: J Med Chem
  doi: 10.1021/jm020017n
– volume: 3
  start-page: 1057
  year: 2011
  ident: 289_CR5
  publication-title: Fut Med Chem
  doi: 10.4155/fmc.11.63
– volume: 32
  start-page: 187
  year: 2018
  ident: 289_CR19
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0058-x
– volume: 47
  start-page: 1739
  year: 2004
  ident: 289_CR64
  publication-title: J Med Chem
  doi: 10.1021/jm0306430
– volume: 47
  start-page: 1750
  year: 2004
  ident: 289_CR65
  publication-title: J Med Chem
  doi: 10.1021/jm030644s
– volume: 58
  start-page: 916
  year: 2018
  ident: 289_CR40
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00403
– year: 2019
  ident: 289_CR30
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0180-4
– ident: 289_CR74
– volume: 50
  start-page: 1432
  year: 2010
  ident: 289_CR80
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100161z
– volume: 32
  start-page: 251
  year: 2018
  ident: 289_CR25
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0051-4
– volume: 33
  start-page: 71
  year: 2019
  ident: 289_CR35
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0146-6
– volume: 32
  start-page: 175
  year: 2018
  ident: 289_CR18
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0049-y
– volume: 32
  start-page: 211
  year: 2018
  ident: 289_CR21
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0056-z
– volume: 52
  start-page: 609
  year: 2003
  ident: 289_CR68
  publication-title: Proteins
  doi: 10.1002/prot.10465
– ident: 289_CR84
  doi: 10.1145/299432.299509
– volume: 32
  start-page: 239
  year: 2018
  ident: 289_CR24
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0055-0
– volume: 58
  start-page: 287
  year: 2018
  ident: 289_CR82
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00650
– volume: 32
  start-page: 265
  year: 2018
  ident: 289_CR26
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0064-z
– volume: 53
  start-page: 1853
  year: 2013
  ident: 289_CR43
  publication-title: J Chem Inf Model
  doi: 10.1021/ci400025f
– volume: 33
  start-page: 105
  year: 2019
  ident: 289_CR38
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0162-6
– volume: 31
  start-page: 455
  year: 2010
  ident: 289_CR63
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21334
– volume: 267
  start-page: 727
  year: 1997
  ident: 289_CR81
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1996.0897
– volume: 148
  start-page: 054103
  year: 2018
  ident: 289_CR85
  publication-title: J Chem Phys
  doi: 10.1063/1.5016562
– volume: 32
  start-page: 199
  year: 2018
  ident: 289_CR20
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0083-9
– volume: 33
  start-page: 47
  year: 2019
  ident: 289_CR33
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0142-x
– volume: 56
  start-page: 1022
  year: 2016
  ident: 289_CR44
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00387
– volume: 56
  start-page: 951
  year: 2016
  ident: 289_CR41
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.6b00182
– volume: 23
  start-page: 3
  year: 1997
  ident: 289_CR46
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(96)00423-1
– volume: 32
  start-page: 163
  year: 2018
  ident: 289_CR17
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0048-z
– volume-title: CRC standard probability and statistics tables and formulae
  year: 1999
  ident: 289_CR56
  doi: 10.1201/9781420050264
– volume: 3
  start-page: 33
  year: 2011
  ident: 289_CR73
  publication-title: J Cheminform
  doi: 10.1186/1758-2946-3-33
– volume: 32
  start-page: 113
  year: 2018
  ident: 289_CR13
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0053-2
– volume: 32
  start-page: 299
  year: 2017
  ident: 289_CR29
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0085-7
– volume: 32
  start-page: 151
  year: 2018
  ident: 289_CR16
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0062-1
– volume: 13
  start-page: e1005690
  year: 2017
  ident: 289_CR88
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005690
– volume: 32
  start-page: 225
  year: 2018
  ident: 289_CR22
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0069-7
– volume: 30
  start-page: 2785
  year: 2009
  ident: 289_CR76
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21256
– volume: 39
  start-page: 868
  year: 1999
  ident: 289_CR57
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci990307l
– volume: 32
  start-page: 1
  year: 2018
  ident: 289_CR6
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0088-4
– volume: 12
  start-page: 2825
  year: 2011
  ident: 289_CR59
  publication-title: J Mach Learn Res
– volume: 15
  start-page: 488
  year: 1994
  ident: 289_CR66
  publication-title: J Comput Chem
  doi: 10.1002/jcc.540150503
– volume: 54
  start-page: 108
  year: 2014
  ident: 289_CR94
  publication-title: J Chem Inf Model
  doi: 10.1021/ci4004199
– volume: 45
  start-page: 5
  year: 2001
  ident: 289_CR58
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 22
  start-page: 693
  year: 2008
  ident: 289_CR78
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-007-9159-2
– volume: 34
  start-page: e2914
  year: 2018
  ident: 289_CR87
  publication-title: Int J Numer Methods Biomed Eng
  doi: 10.1002/cnm.2914
– volume: 21
  start-page: 150
  year: 2011
  ident: 289_CR92
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2011.01.011
– volume: 32
  start-page: 75
  year: 2018
  ident: 289_CR10
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0046-1
– volume: 32
  start-page: 273
  year: 2018
  ident: 289_CR27
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0054-1
– volume: 19
  start-page: 1366
  year: 2009
  ident: 289_CR50
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2009.01.055
– volume: 4
  start-page: 869
  year: 2008
  ident: 289_CR90
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct800011m
– volume: 57
  start-page: 1715
  year: 2017
  ident: 289_CR86
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00226
– volume: 49
  start-page: 2242
  year: 2009
  ident: 289_CR75
  publication-title: J Chem Inf Model
  doi: 10.1021/ci900238a
– volume: 30
  start-page: 651
  year: 2016
  ident: 289_CR45
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9946-8
– volume: 32
  start-page: 89
  year: 2018
  ident: 289_CR11
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0050-5
– volume: 32
  start-page: 287
  year: 2018
  ident: 289_CR28
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0065-y
– volume: 33
  start-page: 35
  year: 2019
  ident: 289_CR32
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0139-5
– volume: 381
  start-page: 1068
  year: 2008
  ident: 289_CR70
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2008.05.042
– volume: 303
  start-page: 1813
  year: 2004
  ident: 289_CR2
  publication-title: Science
  doi: 10.1126/science.1096361
– volume: 308
  start-page: 268
  year: 2004
  ident: 289_CR52
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.103.056879
– volume: 57
  start-page: 2911
  year: 2017
  ident: 289_CR93
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00564
– volume: 33
  start-page: 239
  year: 1945
  ident: 289_CR55
  publication-title: Biometrika
  doi: 10.2307/2332303
– volume: 32
  start-page: 59
  year: 2018
  ident: 289_CR9
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0074-x
– volume: 32
  start-page: 103
  year: 2018
  ident: 289_CR12
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0082-x
– ident: 289_CR48
– volume: 32
  start-page: 129
  year: 2018
  ident: 289_CR14
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-017-0072-z
– volume: 30
  start-page: 81
  year: 1938
  ident: 289_CR54
  publication-title: Biometrika
  doi: 10.2307/2332226
– volume: 6
  start-page: 23
  year: 2017
  ident: 289_CR62
  publication-title: Transl Neurodegener
  doi: 10.1186/s40035-017-0093-5
– volume: 33
  start-page: 119
  year: 2019
  ident: 289_CR39
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0176-0
SSID ssj0007960
Score 2.5606039
Snippet The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 99
SubjectTerms Affinity
Amyloid Precursor Protein Secretases - antagonists & inhibitors
Amyloid Precursor Protein Secretases - metabolism
Animal Anatomy
Aspartic Acid Endopeptidases - antagonists & inhibitors
Aspartic Acid Endopeptidases - metabolism
BASIC BIOLOGICAL SCIENCES
Best practice
Biochemistry & molecular biology
Biophysics
Blinded prediction challenge
CAD
Chemistry
Chemistry and Materials Science
Computer aided design
Computer Applications in Chemistry
Computer science
Crystal structure
D3R
Docking
Drug Design
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - pharmacology
Free-energy
Histology
Humans
Identification methods
Ligand ranking
Ligands
Machine Learning
Molecular Docking Simulation
Morphology
Physical Chemistry
Proteins
Scoring
Small Molecule Libraries - chemistry
Small Molecule Libraries - pharmacology
Thermodynamics
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BcgAOFZRXaEFG4kYj5WU76a0qVBUSHBAr7c1y_CiRqmS1u0Xsjf_Qf9hfwow3SbtQkLj6kTiesf1NxvMNwFupk9I44WMrOUcDRcu4SrSItayskdZ5XVKA86fP4nRafJzxWR8Uthxuuw8uybBT3wh2w8MsJnMnuMfi9V24x9F2J72eZkfj_iurEBucVGQY8WLWh8rc_oyt42jS4bK6DWr-eWPyN7dpOI1OHsFODyPZ0Ubuj-GOa3fh_vGQvW0XHt4gGnwCP97nX9gZHkuWmSF7CisOWY0TYdl8Qd4akhDrPAvMDU179fPyvDmjHvNu6ZYHTHvf4PpfM0rzTv_XsQhrN8Ew3x2rmxAgw_zCOUZk1kRA8RSmJx--Hp_Gfc6F2PAkXcUy19qIokRcVLtUcC5sZqwuXVkgsEI0x3MuEy9qbpIcS61HCGAqNLI9YpM8y5_BpO1a9wJY7uvcpt4KghCmEloaRGPGJYXjCFpsBOkw9cr0hOSUF-NcXVMpk7gUiksFcal1BO_GPvMNHcc_W--RRBWCCWLENXR1yKxUWgYKnAj2B0GrfuEuVUZsNxXaaXkEb8ZqlB35UXTrugtqUyCuKRFJR_B8oxfjYHBHkwWi2AjklsaMDYjOe7umbb4FWm-JxmxR4XsPBt26Htbfv_Hl_zXfgwdZUH-6kLMPk9Xiwr1CWLWqX4dV9At97xqE
  priority: 102
  providerName: Springer Nature
Title D3R grand challenge 4: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies
URI https://link.springer.com/article/10.1007/s10822-020-00289-y
https://www.ncbi.nlm.nih.gov/pubmed/31974851
https://www.proquest.com/docview/2352892173
https://www.proquest.com/docview/2344268507
https://www.osti.gov/servlets/purl/1803880
https://pubmed.ncbi.nlm.nih.gov/PMC7261493
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gAcEJRXaKmMxI1G5OU44YKWstsKRIUqVlpOkeNHiVQly-4WsTf-A_-QX8KMN8myPHpJJNtRnMzY_sbj-QbgmZBBpkxqfS04RwNFCj8PZOpLkWsltLEyowDn96fpySR5O-XTdsNt0R6r7OZEN1HrRtEe-YuIaEhyBNDxq9kXn7JGkXe1TaFxHXaIuoyMLzHtDa5A5C5KOMjJROLJtA2aaUPncGn0yXhyzjZ_tbUwDRocYP8CnX-fnfzDgerWpfEduN0CSjZca8BduGbqXbhx1OVx24Vbv1EO3oNvb-Izdo4LlGaqy6PCkpesRLip2WxOfhuSFWsscxwOVf3z-4-L6pyemDULszhk0toKZ4IVo4TvtNOORVi7Dov5alhZuVAZZufGMKK1JiqK-zAZjz4enfht9gVf8SBc-iKWUqVJhgipNGHKeaojpWVmsgQhFuI6HnMR2LTkKoixVFsEAypHc9siSomj-AEM6qY2j4DFtox1aHVKYELlqRQKcZkyQWI4whftQdj9-kK11OSUIeOi2JAqk7gKFFfhxFWsPHjePzNbE3Nc2XqPJFogrCBuXEWHiNSyCDNHhuPBfifooh3Ci2KjcB487atRduRRkbVpLqlNgggnQ0ztwcO1XvSdwblNJIhnPRBbGtM3IGLv7Zq6-uwIvgWatUmO7z3sdGvTrf9_4-Orv2IPbkZO3ekozj4MlvNL8wQB1bI8cKMGr9n4-AB2hsef3o3w_np0-uEMSyfR8BfHcyIe
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V4VA4ICgv0wKLBCdq4dd6bSSEUEtI6eOAWik3s95HsVTZIUmB3PgP_A9-FL-EmY2dEB699epdK3ZmduYbz8w3AE-EDDJlUutrwTkGKFL4eSBTX4pcK6GNlRk1OB8epYOT5N2QD9fgR9cLQ2WVnU10hlo3ir6RP4-IhiRHAB2_Gn3yaWoUZVe7ERpztdg3sy8Ysk1e7u2ifJ9GUf_N8c7Ab6cK-IoH4dQXsZQqTTL0_KUJU85THSktM5MlCB0Qr_CYi8CmJVdBjFe1RSencgwjLXrfmIgO0ORfSeI4pxLCrP92YflF7rqSg5xCMp4M2yadtlUPXbFPwZpL7vmzFUfYa_BA_wvk_l2r-UfC1vnB_g243gJY9nqucTdhzdQbsL7TzY3bgGu_URzegq-78Xt2ig5RM9XNbWHJC1YivNVsNKY8EekGayxznBFV_fPb97PqlO4YNRMz2WbS2gotz4zRgHn6so-XcHXehvPZsLJyrTnMjo1hRKNN1Be34eRS5HIHenVTm3vAYlvGOrQ6JfCi8lQKhThQmSAxHOGS9iDs_vpCtVToNJHjrFiSOJO4ChRX4cRVzDx4trhnNCcCuXD3Jkm0QBhDXLyKipbUtAgzR77jwVYn6KI1GZNiqeAePF4so-wogyNr05zTngQRVYYY3oO7c71YPAzaUpEgfvZArGjMYgMRia-u1NVHRyguMIxOcvzd7U63lo_1_3e8f_FbPIL1wfHhQXGwd7S_CVcjp_pUBrQFven43DxAMDctH7oTxODDZR_ZXzTEV5k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB1VQeLygKDcTAssEjxRq3bs9dpICKGG0FKoEKJS3tz1Xkqkyg5JCuSNf-Bv-By-hJn1JYRL3_rqXSt2ZnbmjGfmDMAjIYNUmcT6WnCOAYoUfhbIxJci00poY2VKDc5vD5Ldw_j1iI_W4EfbC0Nlla1NdIZaV4q-kW_3iYYkQwAdbdumLOLdYPh88smnCVKUaW3HadQqsm8WXzB8mz3bG6CsH_f7w5cfdnb9ZsKAr3gQzn0RSamSOEUUUJgw4TzRfaVlatIYYQRiFx5xEdik4CqI8Kq26PBUhiGlRU8cEekBmv8LIkoDmp6QDl91XkBkrkM5yCg84_Goadhp2vbQLfsUuLlEn79YcYq9Cg_3vwDv33WbfyRvnU8cXoOrDZhlL2rtuw5rplyHSzvtDLl1uPIb3eEN-DqI3rNjdI6aqXaGC4ufsgKhrmaTKeWMSE9YZZnjjxiXP799Pxkf0x2TamZmW0xaO0YrtGA0bJ6-8uMlXK1bcj4bVoxdmw6zU2MYUWoTDcZNODwXudyCXlmV5g6wyBaRDq1OCMioLJFCISZUJogNR-ikPQjbvz5XDS06Tec4yZeEziSuHMWVO3HlCw-edPdMalKQM3dvkERzhDTEy6uogEnN8zB1RDwebLaCzhvzMcuXyu7Bw24ZZUfZHFma6pT2xIiuUsTzHtyu9aJ7GLSrIkYs7YFY0ZhuA5GKr66U44-OXFxgSB1n-LtbrW4tH-v_73j37Ld4ABfxsOZv9g72N-By32k-VQRtQm8-PTX3ENfNi_vuADE4Ou8T-wtZ_VvG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D3R+Grand+Challenge+4%3A+Blind+Prediction+of+Protein-Ligand+Poses%2C+Affinity+Rankings%2C+and+Relative+Binding+Free+Energies&rft.jtitle=Journal+of+computer-aided+molecular+design&rft.au=Parks%2C+Conor+D.&rft.au=Gaieb%2C+Zied&rft.au=Chiu%2C+Michael&rft.au=Yang%2C+Huanwang&rft.date=2020-02-01&rft.issn=0920-654X&rft.eissn=1573-4951&rft.volume=34&rft.issue=2&rft.spage=99&rft.epage=119&rft_id=info:doi/10.1007%2Fs10822-020-00289-y&rft_id=info%3Apmid%2F31974851&rft.externalDocID=PMC7261493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-654X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-654X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-654X&client=summon