D3R grand challenge 4: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies
The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run...
Saved in:
Published in | Journal of computer-aided molecular design Vol. 34; no. 2; pp. 99 - 119 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2020
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 0920-654X 1573-4951 1573-4951 |
DOI | 10.1007/s10822-020-00289-y |
Cover
Loading…
Abstract | The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run in an analogous manner to prior challenges. In Stage 1, participant ability to predict the pose and affinity of BACE1 ligands were assessed. Following the completion of Stage 1, all BACE1 co-crystal structures were released, and Stage 2 tested affinity rankings with co-crystal structures. We provide an analysis of the results and discuss insights into determined best practice methods. |
---|---|
AbstractList | The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run in an analogous manner to prior challenges. In Stage 1, participant ability to predict the pose and affinity of BACE1 ligands were assessed. Following the completion of Stage 1, all BACE1 co-crystal structures were released, and Stage 2 tested affinity rankings with co-crystal structures. We provide an analysis of the results and discuss insights into determined best practice methods. The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run in an analogous manner to prior challenges. In Stage 1, participant ability to predict the pose and affinity of BACE1 ligands were assessed. Following the completion of Stage 1, all BACE1 co-crystal structures were released, and Stage 2 tested affinity rankings with co-crystal structures. We provide an analysis of the results and discuss insights into determined best practice methods.The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run in an analogous manner to prior challenges. In Stage 1, participant ability to predict the pose and affinity of BACE1 ligands were assessed. Following the completion of Stage 1, all BACE1 co-crystal structures were released, and Stage 2 tested affinity rankings with co-crystal structures. We provide an analysis of the results and discuss insights into determined best practice methods. The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run in an analogous manner to prior challenges. In Stage 1, participant ability to predict the pose and affinity of BACE1 ligands were assessed. Following the completion of Stage 1, all BACE1 co-crystal structures were released, and Stage 2 tested affinity rankings with co-crystal structures. Finally, we provide an analysis of the results and discuss insights into determined best practice methods. |
Author | Gaieb, Zied Gilson, Michael K. Parks, Conor D. Jansen, Johanna M. Bembenek, Scott D. Shao, Chenghua Lewis, Richard A. Amaro, Rommie E. Chiu, Michael Yang, Huanwang Walters, W. Patrick McGaughey, Georgia Ameriks, Michael K. Mirzadegan, Tara Burley, Stephen K. |
AuthorAffiliation | 3 Relay Therapeutics, Cambridge, MA 20139 7 Janssen Research & Development, San Diego, CA 92121 6 Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland 4002 1 Drug Design Data Resource, University of California, San Diego, La Jolla, CA 92093 4 Novartis Institutes for BioMedical Research, Emeryville, CA 94608 5 Vertex Pharmaceuticals Inc., 50 Northern Ave, Boston, MA 02210 2 RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903 and San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093 |
AuthorAffiliation_xml | – name: 2 RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903 and San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093 – name: 4 Novartis Institutes for BioMedical Research, Emeryville, CA 94608 – name: 1 Drug Design Data Resource, University of California, San Diego, La Jolla, CA 92093 – name: 6 Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland 4002 – name: 7 Janssen Research & Development, San Diego, CA 92121 – name: 3 Relay Therapeutics, Cambridge, MA 20139 – name: 5 Vertex Pharmaceuticals Inc., 50 Northern Ave, Boston, MA 02210 |
Author_xml | – sequence: 1 givenname: Conor D. surname: Parks fullname: Parks, Conor D. organization: Drug Design Data Resource, University of California, San Diego – sequence: 2 givenname: Zied surname: Gaieb fullname: Gaieb, Zied organization: Drug Design Data Resource, University of California, San Diego – sequence: 3 givenname: Michael surname: Chiu fullname: Chiu, Michael organization: Drug Design Data Resource, University of California, San Diego – sequence: 4 givenname: Huanwang surname: Yang fullname: Yang, Huanwang organization: RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, San Diego Supercomputer Center, University of California, San Diego – sequence: 5 givenname: Chenghua surname: Shao fullname: Shao, Chenghua organization: RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, San Diego Supercomputer Center, University of California, San Diego – sequence: 6 givenname: W. Patrick surname: Walters fullname: Walters, W. Patrick organization: Relay Therapeutics – sequence: 7 givenname: Johanna M. surname: Jansen fullname: Jansen, Johanna M. organization: Novartis Institutes for BioMedical Research – sequence: 8 givenname: Georgia surname: McGaughey fullname: McGaughey, Georgia organization: Vertex Pharmaceuticals Inc – sequence: 9 givenname: Richard A. surname: Lewis fullname: Lewis, Richard A. organization: Novartis Institutes for BioMedical Research, Novartis Pharma AG – sequence: 10 givenname: Scott D. surname: Bembenek fullname: Bembenek, Scott D. organization: Denovicon Therapeutics – sequence: 11 givenname: Michael K. surname: Ameriks fullname: Ameriks, Michael K. organization: Janssen Research & Development – sequence: 12 givenname: Tara surname: Mirzadegan fullname: Mirzadegan, Tara organization: Janssen Research & Development – sequence: 13 givenname: Stephen K. surname: Burley fullname: Burley, Stephen K. organization: RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, San Diego Supercomputer Center, University of California, San Diego – sequence: 14 givenname: Rommie E. orcidid: 0000-0002-9275-9553 surname: Amaro fullname: Amaro, Rommie E. email: drugdesigndata@gmail.com, ramaro@ucsd.edu organization: Drug Design Data Resource, University of California, San Diego, Department of Chemistry and Biochemistry, UC San Diego – sequence: 15 givenname: Michael K. orcidid: 0000-0002-3375-1738 surname: Gilson fullname: Gilson, Michael K. email: mgilson@ucsd.edu organization: Drug Design Data Resource, University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31974851$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1803880$$D View this record in Osti.gov |
BookMark | eNp9Ustu1DAUtVARnQ78AAsUwaYLAn4nYYGEylOqhIRAYmd5nJuMS8ae2pmqs-Mf-EO-hBvS8uiii8jKueece-17jshBiAEIecjoM0Zp9TwzWnNeUk5LSnndlPs7ZMFUJUrZKHZAFrTBklby6yE5yvmMoqjR9B45FKypZK3Ygly-Fp-KPtnQFm5thwFCD4V8UawGj9A2Qevd6GMoYod_cQQffn7_Mfh-Umxjhvy0sF3ngx_3Bdp886GfIKwmGOzoL6BYoRXCRZcACgiQeg_5Prnb2SHDg6tzSb68ffP55H15-vHdh5NXp6VTlI1lJax1WtZU6RUwrZRuuWttDbWUQilaK6Eq2umVclQg2nZcMtdI3XSVZIKLJXk5-253qw20DsKY7GC2yW9s2ptovfm_Evza9PHCVFwz2Qg0eDwbxDx6k50fwa1dDAHcaFiNXfFbkuOrLime7yCPZuOzg2GwAeIuGy6k5LpWtELqkxvUs7hLAd8AWQrXyFk1dX3079h_5r3eHBLqmeBSzDlBZ3AyO60Kb-EHw6iZQmLmkBgMifkdErNHKb8hvXa_VSRmUUYyhiT9HfsW1S_18M_h |
CitedBy_id | crossref_primary_10_1002_prot_26617 crossref_primary_10_1002_prot_26535 crossref_primary_10_1080_17460441_2023_2221025 crossref_primary_10_1002_wcms_1705 crossref_primary_10_1021_acs_jpclett_4c02332 crossref_primary_10_1039_D0CP00305K crossref_primary_10_1021_acs_jcim_0c01382 crossref_primary_10_1002_wcms_1544 crossref_primary_10_1111_febs_15366 crossref_primary_10_1038_s44386_024_00001_2 crossref_primary_10_1021_acs_jcim_4c01902 crossref_primary_10_1002_prot_26587 crossref_primary_10_1038_s41570_022_00363_z crossref_primary_10_1021_acs_jpcb_0c10263 crossref_primary_10_1021_acs_jcim_1c00796 crossref_primary_10_1021_acs_jcim_2c00485 crossref_primary_10_1007_s10822_022_00448_3 crossref_primary_10_1073_pnas_2304308120 crossref_primary_10_3390_molecules27144568 crossref_primary_10_1016_j_aichem_2023_100020 crossref_primary_10_1021_acs_jcim_4c00391 crossref_primary_10_1021_acs_jcim_0c00600 crossref_primary_10_1021_acs_jcim_3c01573 crossref_primary_10_1021_acs_jmedchem_0c02227 crossref_primary_10_1021_acs_jcim_3c00645 crossref_primary_10_1021_acs_jcim_4c02296 crossref_primary_10_1007_s10822_024_00571_3 crossref_primary_10_1039_D2MD00441K crossref_primary_10_1021_acs_jctc_5c00038 crossref_primary_10_1021_acs_jcim_2c01149 crossref_primary_10_1007_s10822_021_00432_3 crossref_primary_10_1016_j_str_2021_04_010 crossref_primary_10_1039_D3CP02197A crossref_primary_10_1007_s10822_022_00452_7 crossref_primary_10_1016_j_csbj_2022_09_002 crossref_primary_10_3389_fmolb_2020_00106 crossref_primary_10_1007_s10822_020_00363_5 crossref_primary_10_1016_j_compbiomed_2023_107250 crossref_primary_10_1016_j_ailsci_2021_100014 crossref_primary_10_1002_jcc_26525 crossref_primary_10_1039_D0RA10359D crossref_primary_10_1002_prot_26515 crossref_primary_10_1039_D3CP05347D crossref_primary_10_1038_s41598_024_77106_1 crossref_primary_10_1021_acs_jcim_4c02108 crossref_primary_10_1016_j_jmgm_2021_108119 crossref_primary_10_1021_acs_jcim_0c00474 crossref_primary_10_1021_acs_jcim_1c00292 crossref_primary_10_1021_acs_jctc_1c00948 crossref_primary_10_3389_fbinf_2022_885983 crossref_primary_10_1186_s13321_025_00955_z crossref_primary_10_1017_qrd_2022_18 crossref_primary_10_1016_j_sbi_2023_102548 crossref_primary_10_1021_acs_jcim_1c00737 crossref_primary_10_1093_nar_gkae1075 crossref_primary_10_3390_ijms25136876 crossref_primary_10_1016_j_ejmech_2020_112713 crossref_primary_10_1021_acs_jctc_1c00214 crossref_primary_10_1002_prot_26601 crossref_primary_10_1093_bioinformatics_btaa748 crossref_primary_10_1093_bib_bbad126 crossref_primary_10_1002_wcms_1716 crossref_primary_10_1021_acs_jcim_4c01223 crossref_primary_10_1021_acs_jcim_2c00751 crossref_primary_10_3390_ijms22094435 crossref_primary_10_1126_science_aaz3041 crossref_primary_10_1002_wcms_1513 crossref_primary_10_1007_s10822_021_00433_2 crossref_primary_10_3390_ijms222212320 crossref_primary_10_1002_prot_26213 crossref_primary_10_1021_acs_jcim_1c01537 crossref_primary_10_1021_acs_jcim_1c00203 crossref_primary_10_1038_s41586_023_05905_z crossref_primary_10_1016_j_ailsci_2022_100056 crossref_primary_10_1107_S2059798321006513 crossref_primary_10_3389_fmolb_2022_899805 |
Cites_doi | 10.2307/2332303 10.1093/nar/gkw1074 10.1007/s10822-018-0143-9 10.1007/s10822-017-0083-9 10.1007/s10822-017-0069-7 10.1007/s10822-017-0062-1 10.1021/ci400025f 10.1021/acs.jcim.7b00650 10.1021/ci990307l 10.1186/s40035-017-0093-5 10.1006/jmbi.1994.1052 10.1007/s10822-017-0082-x 10.1016/j.bpj.2018.02.038 10.1007/s10822-017-0088-4 10.4155/fmc.11.63 10.1021/acs.jcim.5b00387 10.1201/9781420050264 10.1007/s10822-017-0046-1 10.1063/1.5016562 10.1007/s10822-017-0081-y 10.1007/s10822-017-0064-z 10.1007/s10822-017-0071-0 10.1007/s12272-015-0640-5 10.1007/s10822-018-0176-0 10.1021/acs.jcim.5b00523 10.1016/j.bmcl.2009.01.055 10.1002/prot.10613 10.1007/s10822-017-0048-z 10.1007/s10822-017-0056-z 10.1021/ci100161z 10.1007/s10822-017-0051-4 10.1371/journal.pcbi.1005690 10.1002/jcc.21256 10.1007/s10822-017-0074-x 10.1021/acs.jctc.6b00250 10.1007/s10822-018-0148-4 10.1002/cnm.2914 10.1007/s10822-018-0146-6 10.2307/2332226 10.1021/ci4004199 10.1007/s10822-018-0162-6 10.1007/s10822-017-0050-5 10.1124/jpet.103.056879 10.1021/acs.jcim.7b00226 10.1021/jm020017n 10.1021/acs.jmedchem.5b02008 10.1007/s10822-018-0161-7 10.1021/ct800011m 10.1007/s10822-018-0133-y 10.1002/prot.10465 10.1007/s10822-017-0058-x 10.1007/s10822-017-0065-y 10.1146/annurev-biophys-070816-033654 10.1021/ci00017a013 10.1124/pr.112.007336 10.1007/s10822-018-0139-5 10.1186/1758-2946-3-33 10.1007/s10822-017-0054-1 10.1006/jmbi.1996.0897 10.1007/s10822-017-0049-y 10.1016/S0169-409X(96)00423-1 10.1016/j.sbi.2011.01.011 10.1371/journal.pcbi.1005929 10.1002/jcc.540150503 10.1007/s10822-016-9946-8 10.1007/s10822-017-0055-0 10.1007/s10822-017-0085-7 10.1021/jm030644s 10.1021/acs.jcim.7b00564 10.1007/s10822-017-0075-9 10.1007/s10822-017-0063-0 10.1023/A:1010933404324 10.1016/j.jmb.2008.05.042 10.1007/s10822-017-0053-2 10.1002/jcc.21334 10.1021/acs.jcim.6b00182 10.1021/acs.jctc.7b00885 10.1021/jm060154a 10.1007/s10822-007-9159-2 10.1021/acs.jcim.7b00403 10.1007/s10822-018-0180-4 10.1007/s10822-005-8694-y 10.1021/jm0306430 10.1002/minf.201300143 10.1007/s10822-017-0072-z 10.1021/ci900238a 10.1126/science.1096361 10.1063/1.4769292 10.1007/s10822-018-0142-x 10.1021/ci2005934 10.1145/299432.299509 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2020 Journal of Computer-Aided Molecular Design is a copyright of Springer, (2020). All Rights Reserved. |
Copyright_xml | – notice: Springer Nature Switzerland AG 2020 – notice: Journal of Computer-Aided Molecular Design is a copyright of Springer, (2020). All Rights Reserved. |
CorporateAuthor | Rutgers Univ., Piscataway, NJ (United States) |
CorporateAuthor_xml | – name: Rutgers Univ., Piscataway, NJ (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7SC 7X7 7XB 88E 88I 8AL 8AO 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. KB. L7M L~C L~D M0N M0S M1P M2P P5Z P62 PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 OIOZB OTOTI 5PM |
DOI | 10.1007/s10822-020-00289-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Computer Science Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Computer Science |
EISSN | 1573-4951 |
EndPage | 119 |
ExternalDocumentID | PMC7261493 1803880 31974851 10_1007_s10822_020_00289_y |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of General Medical Sciences (US) grantid: 1U01GM111528 – fundername: NIGMS NIH HHS grantid: U01 GM111528 – fundername: NIGMS NIH HHS grantid: R01 GM133198 |
GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C .4S .86 .DC .GJ .VR 06C 06D 0R~ 0VY 186 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D-I D1I DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBS EDO EIOEI EJD EMB EMK EMOBN EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KB. KDC KOV KOW LAK LK5 LLZTM M0N M1P M2P M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9N PCBAR PDBOC PF0 PKN PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 Y6R YLTOR Z45 Z7U Z7V Z7W Z7X Z83 Z87 Z8O Z91 ZMTXR ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 K9. L7M L~C L~D PKEHL PQEST PQUKI Q9U 7X8 AAFGU ABFGW ABKAS ABPTK ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ADMDM AEFTE AESTI AEVTX AGGBP AIMYW AJDOV AKQUC OIOZB OTOTI SQXTU UNUBA 5PM |
ID | FETCH-LOGICAL-c501t-73aac648056be16556d2cda8e8443550853570f6b5c038e8df241c9469f741323 |
IEDL.DBID | 7X7 |
ISSN | 0920-654X 1573-4951 |
IngestDate | Thu Aug 21 14:02:09 EDT 2025 Thu May 18 22:20:22 EDT 2023 Fri Jul 11 06:58:33 EDT 2025 Fri Jul 25 19:13:44 EDT 2025 Mon Jul 21 05:50:48 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Tue Jul 01 04:24:26 EDT 2025 Fri Feb 21 02:34:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Ligand ranking Docking Scoring D3R Free-energy Blinded prediction challenge |
Language | English |
License | Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. https://www.springer.com/aam-terms-v1 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-73aac648056be16556d2cda8e8443550853570f6b5c038e8df241c9469f741323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0019749; 1U01GM111528; R01GM133198; DBI-1832184 USDOE Office of Science (SC) National Science Foundation (NSF) National Institutes of Health (NIH) Shared first authorship |
ORCID | 0000-0002-9275-9553 0000-0002-3375-1738 0000000292759553 0000000233751738 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1803880 |
PMID | 31974851 |
PQID | 2352892173 |
PQPubID | 54123 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7261493 osti_scitechconnect_1803880 proquest_miscellaneous_2344268507 proquest_journals_2352892173 pubmed_primary_31974851 crossref_citationtrail_10_1007_s10822_020_00289_y crossref_primary_10_1007_s10822_020_00289_y springer_journals_10_1007_s10822_020_00289_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Netherlands – name: Dordrecht – name: United States |
PublicationSubtitle | Incorporating Perspectives in Drug Discovery and Design |
PublicationTitle | Journal of computer-aided molecular design |
PublicationTitleAbbrev | J Comput Aided Mol Des |
PublicationTitleAlternate | J Comput Aided Mol Des |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Nature B.V Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
References | Macalino, Gosu, Hong, Choi (CR1) 2015; 38 Padhorny, Hall, Mirzaei (CR22) 2018; 32 O’Boyle, Banck, James (CR73) 2011; 3 Lam, Abagyan, Totrov (CR32) 2019; 33 Jorgensen, Thomas (CR90) 2008; 4 Lipinski, Lombardo, Dominy, Feeney (CR46) 1997; 23 Gaulton, Hersey, Nowotka (CR61) 2017; 45 Jorgensen (CR2) 2004; 303 Kumar, Zhang (CR33) 2019; 33 Thurmond, Sun, Sehon (CR52) 2004; 308 Tuccinardi, Botta, Giordano, Martinelli (CR80) 2010; 50 Xie, Minh (CR34) 2019; 33 Yakovenko, Jones (CR29) 2017; 32 Bramer, Wei (CR85) 2018; 148 Verdonk, Cole, Hartshorn (CR68) 2003; 52 Rifai, van Dijk, Vermeulen, Geerke (CR24) 2018; 32 Ihlenfeldt, Takahashi, Abe, Sasaki (CR69) 1994; 34 He, Man, Ji (CR38) 2019; 33 Liao, Sitzmann, Pugliese, Nicklaus (CR5) 2011; 3 Smith, Damm-Ganamet, Dunbar (CR44) 2016; 56 CR74 Salmaso, Sturlese, Cuzzolin, Moro (CR25) 2018; 32 Das, Yan (CR62) 2017; 6 Damm-Ganamet, Smith, Dunbar (CR43) 2013; 53 Bonnet, Agrafiotis, Zhu, Martin (CR75) 2009; 49 Selwa, Elisée, Zavala, Iorga (CR27) 2018; 32 Jacobson, Pincus, Rapp, Day, Honig, Shaw, Friesner (CR53) 2004; 55 Breiman (CR58) 2001; 45 Wingert, Oerlemans, Camacho (CR28) 2018; 32 Nguyen, Cang, Wu (CR35) 2019; 33 Gathiaka, Liu, Chiu (CR45) 2016; 30 Schindler, Rippmann, Kuhn (CR26) 2018; 32 Cang, Wei (CR88) 2017; 13 Gomes, Da Silva, Bret, Rognan (CR10) 2018; 32 CR48 Mobley, Gilson (CR95) 2017; 46 Ignatov, Liu, Alekseenko (CR39) 2019; 33 Zwillinger, Kokoska (CR56) 1999 Friesner, Banks, Murphy (CR64) 2004; 47 Mobley, Klimovich (CR91) 2012; 137 Gaieb, Parks, Chiu (CR30) 2019 Pedregosa, Varoquaux, Gramfort (CR59) 2011; 12 Jones, Willett, Glen (CR81) 1997; 267 Cournia, Allen, Sherman (CR93) 2017; 57 Gaieb, Liu, Gathiaka (CR6) 2018; 32 CR84 Nguyen, Xiao, Wang, Wei (CR86) 2017; 57 Kendall (CR55) 1945; 33 Yu, Deng, Wu (CR49) 2017; 13 Cang, Mu, Wei (CR89) 2018; 14 Morris, Huey, Lindstrom (CR76) 2009; 30 Carlson, Smith, Damm-Ganamet (CR42) 2016; 56 Tetko, Gasteiger, Todeschini (CR67) 2005; 19 Chodera, Mobley, Shirts (CR92) 2011; 21 Trott, Olson (CR63) 2010; 31 Amaro, Baudry, Chodera (CR77) 2018; 114 Hogues, Sulea, Gaudreault (CR15) 2018; 32 Cang, Wei (CR87) 2018; 34 Sliwoski, Kothiwale, Meiler, Lowe (CR3) 2013; 66 Halgren, Murphy, Friesner (CR65) 2004; 47 Feinstein, Brylinski (CR71) 2014; 33 Olsson, García-Sosa, Ryde (CR21) 2018; 32 Athanasiou, Vasilakaki, Dellis, Cournia (CR7) 2018; 32 Baumgartner, Evans (CR8) 2018; 32 Abagyan, Totrov (CR83) 1994; 235 Kurkcuoglu, Koukos, Citro (CR18) 2018; 32 Lam, Abagyan, Totrov (CR19) 2018; 32 Kadukova, Grudinin (CR16) 2018; 32 Koukos, Xue, Bonvin (CR36) 2019; 33 Chaudhury, Gray (CR70) 2008; 381 Jiménez, Škalič, Martínez-Rosell, De Fabritiis (CR82) 2018; 58 Sunseri, King, Francoeur, Koes (CR31) 2019; 33 Coutsias, Lexa, Wester (CR72) 2016; 12 Réau, Langenfeld, Zagury, Montes (CR23) 2018; 32 Gao, Hu, Crespo (CR14) 2018; 32 Hanessian, Yang, Rondeau (CR51) 2006; 49 Fradera, Verras, Hu (CR13) 2018; 32 Kumar, Zhang (CR17) 2018; 32 Veber, Johnson, Cheng (CR47) 2002; 45 Machauer, Laumen, Veenstra (CR50) 2009; 19 Ding, Hayes, Vilseck (CR11) 2018; 32 Wallach, Heifets (CR40) 2018; 58 Kendall (CR54) 1938; 30 Irwin, Shoichet (CR4) 2016; 59 Amaro, Baron, McCammon (CR78) 2008; 22 Carlson (CR41) 2016; 56 Chaput, Selwa, Elisée, Iorga (CR37) 2019; 33 Wildman, Crippen (CR57) 1999; 39 Abagyan, Totrov, Kuznetsov (CR66) 1994; 15 CR60 Mey, Jiménez, Michel (CR20) 2018; 32 Christ, Fox (CR94) 2014; 54 Bhakat, Åberg, Söderhjelm (CR9) 2018; 32 Korb, Olsson, Bowden (CR79) 2012; 52 Duan, Xu, Zou (CR12) 2018; 32 CD Christ (289_CR94) 2014; 54 S Hanessian (289_CR51) 2006; 49 289_CR60 G Jones (289_CR81) 1997; 267 C Athanasiou (289_CR7) 2018; 32 DF Veber (289_CR47) 2002; 45 HS Yu (289_CR49) 2017; 13 E Selwa (289_CR27) 2018; 32 R Duan (289_CR12) 2018; 32 I Wallach (289_CR40) 2018; 58 EA Coutsias (289_CR72) 2016; 12 MG Kendall (289_CR54) 1938; 30 A Kumar (289_CR33) 2019; 33 DD Nguyen (289_CR86) 2017; 57 X Ding (289_CR11) 2018; 32 R Machauer (289_CR50) 2009; 19 D Zwillinger (289_CR56) 1999 L Breiman (289_CR58) 2001; 45 RE Amaro (289_CR78) 2008; 22 R Abagyan (289_CR66) 1994; 15 WP Feinstein (289_CR71) 2014; 33 L Chaput (289_CR37) 2019; 33 PC-H Lam (289_CR32) 2019; 33 BM Wingert (289_CR28) 2018; 32 O Yakovenko (289_CR29) 2017; 32 S Gathiaka (289_CR45) 2016; 30 T Tuccinardi (289_CR80) 2010; 50 J Jiménez (289_CR82) 2018; 58 Z Gaieb (289_CR30) 2019 TA Halgren (289_CR65) 2004; 47 WD Ihlenfeldt (289_CR69) 1994; 34 A Kumar (289_CR17) 2018; 32 MP Jacobson (289_CR53) 2004; 55 RA Friesner (289_CR64) 2004; 47 D Bramer (289_CR85) 2018; 148 DD Nguyen (289_CR35) 2019; 33 DL Mobley (289_CR95) 2017; 46 MA Olsson (289_CR21) 2018; 32 J Sunseri (289_CR31) 2019; 33 DL Mobley (289_CR91) 2012; 137 R Abagyan (289_CR83) 1994; 235 HA Carlson (289_CR41) 2016; 56 ML Verdonk (289_CR68) 2003; 52 M Réau (289_CR23) 2018; 32 WL Jorgensen (289_CR90) 2008; 4 X He (289_CR38) 2019; 33 RD Smith (289_CR44) 2016; 56 Z Cang (289_CR87) 2018; 34 D Padhorny (289_CR22) 2018; 32 Z Cang (289_CR89) 2018; 14 CA Lipinski (289_CR46) 1997; 23 289_CR84 JD Chodera (289_CR92) 2011; 21 V Salmaso (289_CR25) 2018; 32 C Schindler (289_CR26) 2018; 32 WL Jorgensen (289_CR2) 2004; 303 Z Cang (289_CR88) 2017; 13 289_CR48 GM Morris (289_CR76) 2009; 30 RE Amaro (289_CR77) 2018; 114 A Gaulton (289_CR61) 2017; 45 S Chaudhury (289_CR70) 2008; 381 Z Kurkcuoglu (289_CR18) 2018; 32 EA Rifai (289_CR24) 2018; 32 M Ignatov (289_CR39) 2019; 33 HA Carlson (289_CR42) 2016; 56 B Das (289_CR62) 2017; 6 C Liao (289_CR5) 2011; 3 F Pedregosa (289_CR59) 2011; 12 SA Wildman (289_CR57) 1999; 39 M Kadukova (289_CR16) 2018; 32 PI Koukos (289_CR36) 2019; 33 X Fradera (289_CR13) 2018; 32 JJ Irwin (289_CR4) 2016; 59 Y-D Gao (289_CR14) 2018; 32 B Xie (289_CR34) 2019; 33 KL Damm-Ganamet (289_CR43) 2013; 53 G Sliwoski (289_CR3) 2013; 66 MP Baumgartner (289_CR8) 2018; 32 H Hogues (289_CR15) 2018; 32 IV Tetko (289_CR67) 2005; 19 289_CR74 NM O’Boyle (289_CR73) 2011; 3 P Bonnet (289_CR75) 2009; 49 Z Gaieb (289_CR6) 2018; 32 PC-H Lam (289_CR19) 2018; 32 ASJS Mey (289_CR20) 2018; 32 RL Thurmond (289_CR52) 2004; 308 Z Cournia (289_CR93) 2017; 57 S Bhakat (289_CR9) 2018; 32 O Trott (289_CR63) 2010; 31 SJY Macalino (289_CR1) 2015; 38 P Gomes (289_CR10) 2018; 32 MG Kendall (289_CR55) 1945; 33 O Korb (289_CR79) 2012; 52 |
References_xml | – volume: 33 start-page: 239 year: 1945 end-page: 251 ident: CR55 article-title: The treatment of ties in ranking problems publication-title: Biometrika doi: 10.2307/2332303 – volume: 45 start-page: D945 year: 2017 end-page: D954 ident: CR61 article-title: The ChEMBL database in 2017 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1074 – volume: 33 start-page: 61 year: 2019 end-page: 69 ident: CR34 article-title: Alchemical Grid Dock (AlGDock) calculations in the D3R Grand Challenge 3 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0143-9 – ident: CR74 – volume: 32 start-page: 199 year: 2018 end-page: 210 ident: CR20 article-title: Impact of domain knowledge on blinded predictions of binding energies by alchemical free energy calculations publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0083-9 – volume: 32 start-page: 225 year: 2018 end-page: 230 ident: CR22 article-title: Protein–ligand docking using FFT based sampling: D3R case study publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0069-7 – volume: 32 start-page: 151 year: 2018 end-page: 162 ident: CR16 article-title: Docking of small molecules to farnesoid X receptors using AutoDock Vina with the Convex-PL potential: lessons learned from D3R Grand Challenge 2 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0062-1 – volume: 53 start-page: 1853 year: 2013 end-page: 1870 ident: CR43 article-title: CSAR benchmark exercise 2011–2012: evaluation of results from docking and relative ranking of blinded congeneric series publication-title: J Chem Inf Model doi: 10.1021/ci400025f – volume: 58 start-page: 287 year: 2018 end-page: 296 ident: CR82 article-title: KDEEP: protein–ligand absolute binding affinity prediction via 3D-convolutional neural networks publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00650 – volume: 39 start-page: 868 year: 1999 end-page: 873 ident: CR57 article-title: Prediction of physicochemical parameters by atomic contributions publication-title: J Chem Inf Comput Sci doi: 10.1021/ci990307l – volume: 6 start-page: 23 year: 2017 ident: CR62 article-title: Role of BACE1 in Alzheimer’s synaptic function publication-title: Transl Neurodegener doi: 10.1186/s40035-017-0093-5 – volume: 235 start-page: 983 year: 1994 end-page: 1002 ident: CR83 article-title: Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins publication-title: J Mol Biol doi: 10.1006/jmbi.1994.1052 – volume: 32 start-page: 103 year: 2018 end-page: 111 ident: CR12 article-title: Lessons learned from participating in D3R 2016 Grand Challenge 2: compounds targeting the farnesoid X receptor publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0082-x – volume: 114 start-page: 2271 year: 2018 end-page: 2278 ident: CR77 article-title: Ensemble docking in drug discovery publication-title: Biophys J doi: 10.1016/j.bpj.2018.02.038 – volume: 32 start-page: 1 year: 2018 end-page: 20 ident: CR6 article-title: D3R Grand Challenge 2: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0088-4 – ident: CR84 – volume: 3 start-page: 1057 year: 2011 end-page: 1085 ident: CR5 article-title: Software and resources for computational medicinal chemistry publication-title: Fut Med Chem doi: 10.4155/fmc.11.63 – volume: 56 start-page: 1022 year: 2016 end-page: 1031 ident: CR44 article-title: CSAR benchmark exercise 2013: evaluation of results from a combined computational protein design, docking, and scoring/ranking challenge publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.5b00387 – year: 1999 ident: CR56 publication-title: CRC standard probability and statistics tables and formulae doi: 10.1201/9781420050264 – volume: 32 start-page: 75 year: 2018 end-page: 87 ident: CR10 article-title: Ranking docking poses by graph matching of protein–ligand interactions: lessons learned from the D3R Grand Challenge 2 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0046-1 – volume: 148 start-page: 054103 year: 2018 ident: CR85 article-title: Multiscale weighted colored graphs for protein flexibility and rigidity analysis publication-title: J Chem Phys doi: 10.1063/1.5016562 – volume: 32 start-page: 45 year: 2018 end-page: 58 ident: CR8 article-title: Lessons learned in induced fit docking and metadynamics in the Drug Design Data Resource Grand Challenge 2 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0081-y – volume: 32 start-page: 265 year: 2018 end-page: 272 ident: CR26 article-title: Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP+ publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0064-z – volume: 32 start-page: 143 year: 2018 end-page: 150 ident: CR15 article-title: Binding pose and affinity prediction in the 2016 D3R Grand Challenge 2 using the Wilma-SIE method publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0071-0 – volume: 38 start-page: 1686 year: 2015 end-page: 1701 ident: CR1 article-title: Role of computer-aided drug design in modern drug discovery publication-title: Arch Pharm Res doi: 10.1007/s12272-015-0640-5 – volume: 33 start-page: 119 year: 2019 end-page: 127 ident: CR39 article-title: Monte Carlo on the manifold and MD refinement for binding pose prediction of protein–ligand complexes: 2017 D3R Grand Challenge publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0176-0 – volume: 56 start-page: 1063 year: 2016 end-page: 1077 ident: CR42 article-title: CSAR 2014: a benchmark exercise using unpublished data from pharma publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.5b00523 – volume: 19 start-page: 1366 year: 2009 end-page: 1370 ident: CR50 article-title: Macrocyclic peptidomimetic β-secretase (BACE-1) inhibitors with activity in vivo publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2009.01.055 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR59 article-title: Scikit-learn: machine learning in Python publication-title: J Mach Learn Res – volume: 55 start-page: 351 year: 2004 end-page: 367 ident: CR53 article-title: A hierarchical approach to all-atom protein loop prediction publication-title: Proteins doi: 10.1002/prot.10613 – volume: 32 start-page: 163 year: 2018 end-page: 173 ident: CR17 article-title: A cross docking pipeline for improving pose prediction and virtual screening performance publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0048-z – volume: 32 start-page: 211 year: 2018 end-page: 224 ident: CR21 article-title: Binding affinities of the farnesoid X receptor in the D3R Grand Challenge 2 estimated by free-energy perturbation and docking publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0056-z – volume: 50 start-page: 1432 year: 2010 end-page: 1441 ident: CR80 article-title: Protein kinases: docking and homology modeling reliability publication-title: J Chem Inf Model doi: 10.1021/ci100161z – volume: 32 start-page: 251 year: 2018 end-page: 264 ident: CR25 article-title: Combining self- and cross-docking as benchmark tools: the performance of DockBench in the D3R Grand Challenge 2 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0051-4 – volume: 13 start-page: e1005690 year: 2017 ident: CR88 article-title: TopologyNet: topology based deep convolutional and multi-task neural networks for biomolecular property predictions publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005690 – volume: 30 start-page: 2785 year: 2009 end-page: 2791 ident: CR76 article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility publication-title: J Comput Chem doi: 10.1002/jcc.21256 – volume: 32 start-page: 59 year: 2018 end-page: 73 ident: CR9 article-title: Prediction of binding poses to FXR using multi-targeted docking combined with molecular dynamics and enhanced sampling publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0074-x – ident: CR60 – volume: 12 start-page: 4674 year: 2016 end-page: 4687 ident: CR72 article-title: Exhaustive conformational sampling of complex fused ring macrocycles using inverse kinematics publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.6b00250 – volume: 33 start-page: 83 year: 2019 end-page: 91 ident: CR36 article-title: Protein–ligand pose and affinity prediction: lessons from D3R Grand Challenge 3 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0148-4 – volume: 34 start-page: e2914 year: 2018 ident: CR87 article-title: Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction publication-title: Int J Numer Methods Biomed Eng doi: 10.1002/cnm.2914 – volume: 33 start-page: 71 year: 2019 end-page: 82 ident: CR35 article-title: Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0146-6 – volume: 30 start-page: 81 year: 1938 end-page: 93 ident: CR54 article-title: A new measure of rank correlation publication-title: Biometrika doi: 10.2307/2332226 – volume: 54 start-page: 108 year: 2014 end-page: 120 ident: CR94 article-title: Accuracy assessment and automation of free energy calculations for drug design publication-title: J Chem Inf Model doi: 10.1021/ci4004199 – volume: 33 start-page: 105 year: 2019 end-page: 117 ident: CR38 article-title: Calculate protein–ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0162-6 – volume: 32 start-page: 89 year: 2018 end-page: 102 ident: CR11 article-title: CDOCKER and λ-dynamics for prospective prediction in D3R Grand Challenge 2 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0050-5 – volume: 308 start-page: 268 year: 2004 end-page: 276 ident: CR52 article-title: Identification of a potent and selective noncovalent cathepsin S inhibitor publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.103.056879 – volume: 57 start-page: 1715 year: 2017 end-page: 1721 ident: CR86 article-title: Rigidity strengthening: a mechanism for protein–ligand binding publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00226 – volume: 45 start-page: 2615 year: 2002 end-page: 2623 ident: CR47 article-title: Molecular properties that influence the oral bioavailability of drug candidates publication-title: J Med Chem doi: 10.1021/jm020017n – volume: 59 start-page: 4103 year: 2016 end-page: 4120 ident: CR4 article-title: Docking screens for novel ligands conferring new biology publication-title: J Med Chem doi: 10.1021/acs.jmedchem.5b02008 – volume: 33 start-page: 93 year: 2019 end-page: 103 ident: CR37 article-title: Blinded evaluation of cathepsin S inhibitors from the D3RGC3 dataset using molecular docking and free energy calculations publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0161-7 – volume: 4 start-page: 869 year: 2008 end-page: 876 ident: CR90 article-title: Perspective on free-energy perturbation calculations for chemical equilibria publication-title: J Chem Theory Comput doi: 10.1021/ct800011m – volume: 33 start-page: 19 year: 2019 end-page: 34 ident: CR31 article-title: Convolutional neural network scoring and minimization in the D3R 2017 community challenge publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0133-y – volume: 52 start-page: 609 year: 2003 end-page: 623 ident: CR68 article-title: Improved protein–ligand docking using GOLD publication-title: Proteins doi: 10.1002/prot.10465 – volume: 32 start-page: 187 year: 2018 end-page: 198 ident: CR19 article-title: Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0058-x – volume: 32 start-page: 287 year: 2018 end-page: 297 ident: CR28 article-title: Optimal affinity ranking for automated virtual screening validated in prospective D3R grand challenges publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0065-y – volume: 46 start-page: 531 year: 2017 end-page: 558 ident: CR95 article-title: Predicting binding free energies: frontiers and benchmarks publication-title: Annu Rev Biophys doi: 10.1146/annurev-biophys-070816-033654 – volume: 34 start-page: 109 year: 1994 end-page: 116 ident: CR69 article-title: Computation and management of chemical properties in CACTVS: an extensible networked approach toward modularity and compatibility publication-title: J Chem Inf Model doi: 10.1021/ci00017a013 – volume: 66 start-page: 334 year: 2013 end-page: 395 ident: CR3 article-title: Computational methods in drug discovery publication-title: Pharmacol Rev doi: 10.1124/pr.112.007336 – volume: 33 start-page: 35 year: 2019 end-page: 46 ident: CR32 article-title: Hybrid receptor structure/ligand-based docking and activity prediction in ICM: development and evaluation in D3R Grand Challenge 3 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0139-5 – volume: 3 start-page: 33 year: 2011 ident: CR73 article-title: Open babel: an open chemical toolbox publication-title: J Cheminform doi: 10.1186/1758-2946-3-33 – volume: 32 start-page: 273 year: 2018 end-page: 286 ident: CR27 article-title: Blinded evaluation of farnesoid X receptor (FXR) ligands binding using molecular docking and free energy calculations publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0054-1 – volume: 267 start-page: 727 year: 1997 end-page: 748 ident: CR81 article-title: Development and validation of a genetic algorithm for flexible docking publication-title: J Mol Biol doi: 10.1006/jmbi.1996.0897 – volume: 32 start-page: 175 year: 2018 end-page: 185 ident: CR18 article-title: Performance of HADDOCK and a simple contact-based protein–ligand binding affinity predictor in the D3R Grand Challenge 2 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0049-y – volume: 23 start-page: 3 year: 1997 end-page: 25 ident: CR46 article-title: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(96)00423-1 – volume: 21 start-page: 150 year: 2011 end-page: 160 ident: CR92 article-title: Alchemical free energy methods for drug discovery: progress and challenges publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2011.01.011 – volume: 14 start-page: e1005929 year: 2018 ident: CR89 article-title: Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005929 – volume: 15 start-page: 488 year: 1994 end-page: 506 ident: CR66 article-title: ICM—a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation publication-title: J Comput Chem doi: 10.1002/jcc.540150503 – volume: 30 start-page: 651 year: 2016 end-page: 668 ident: CR45 article-title: D3R grand challenge 2015: evaluation of protein–ligand pose and affinity predictions publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9946-8 – volume: 32 start-page: 239 year: 2018 end-page: 249 ident: CR24 article-title: Binding free energy predictions of farnesoid X receptor (FXR) agonists using a linear interaction energy (LIE) approach with reliability estimation: application to the D3R Grand Challenge 2 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0055-0 – volume: 32 start-page: 299 year: 2017 end-page: 311 ident: CR29 article-title: Modern drug design: the implication of using artificial neuronal networks and multiple molecular dynamic simulations publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0085-7 – volume: 47 start-page: 1750 year: 2004 end-page: 1759 ident: CR65 article-title: Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening publication-title: J Med Chem doi: 10.1021/jm030644s – volume: 57 start-page: 2911 year: 2017 end-page: 2937 ident: CR93 article-title: Relative binding free energy calculations in drug discovery: recent advances and practical considerations publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00564 – ident: CR48 – volume: 32 start-page: 21 year: 2018 end-page: 44 ident: CR7 article-title: Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0075-9 – volume: 32 start-page: 231 year: 2018 end-page: 238 ident: CR23 article-title: Predicting the affinity of Farnesoid X receptor ligands through a hierarchical ranking protocol: a D3R Grand Challenge 2 case study publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0063-0 – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR58 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 381 start-page: 1068 year: 2008 end-page: 1087 ident: CR70 article-title: Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles publication-title: J Mol Biol doi: 10.1016/j.jmb.2008.05.042 – volume: 32 start-page: 113 year: 2018 end-page: 127 ident: CR13 article-title: Performance of multiple docking and refinement methods in the pose prediction D3R prospective Grand Challenge 2016 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0053-2 – volume: 31 start-page: 455 year: 2010 end-page: 461 ident: CR63 article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: J Comput Chem doi: 10.1002/jcc.21334 – volume: 56 start-page: 951 year: 2016 end-page: 954 ident: CR41 article-title: Lessons learned over four benchmark exercises from the community structure–activity resource publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.6b00182 – volume: 13 start-page: 6290 year: 2017 end-page: 6300 ident: CR49 article-title: Accurate and reliable prediction of the binding affinities of macrocycles to their protein targets publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.7b00885 – volume: 49 start-page: 4544 year: 2006 end-page: 4567 ident: CR51 article-title: Structure-based design and synthesis of macroheterocyclic peptidomimetic inhibitors of the aspartic protease β-site amyloid precursor protein cleaving enzyme (BACE) publication-title: J Med Chem doi: 10.1021/jm060154a – volume: 22 start-page: 693 year: 2008 end-page: 705 ident: CR78 article-title: An improved relaxed complex scheme for receptor flexibility in computer-aided drug design publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-007-9159-2 – volume: 58 start-page: 916 year: 2018 end-page: 932 ident: CR40 article-title: Most ligand-based classification benchmarks reward memorization rather than generalization publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00403 – year: 2019 ident: CR30 article-title: D3R Grand Challenge 3: blind prediction of protein–ligand poses and affinity rankings publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0180-4 – volume: 19 start-page: 453 year: 2005 end-page: 463 ident: CR67 article-title: Virtual computational chemistry laboratory—design and description publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-005-8694-y – volume: 47 start-page: 1739 year: 2004 end-page: 1749 ident: CR64 article-title: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy publication-title: J Med Chem doi: 10.1021/jm0306430 – volume: 33 start-page: 135 year: 2014 end-page: 150 ident: CR71 article-title: e FindSite: enhanced fingerprint-based virtual screening against predicted ligand binding sites in protein models publication-title: Mol Inform doi: 10.1002/minf.201300143 – volume: 32 start-page: 129 year: 2018 end-page: 142 ident: CR14 article-title: Workflows and performances in the ranking prediction of 2016 D3R Grand Challenge 2: lessons learned from a collaborative effort publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0072-z – volume: 49 start-page: 2242 year: 2009 end-page: 2259 ident: CR75 article-title: Conformational analysis of macrocycles: finding what common search methods miss publication-title: J Chem Inf Model doi: 10.1021/ci900238a – volume: 303 start-page: 1813 year: 2004 end-page: 1818 ident: CR2 article-title: The many roles of computation in drug discovery publication-title: Science doi: 10.1126/science.1096361 – volume: 137 start-page: 230901 year: 2012 ident: CR91 article-title: Perspective: alchemical free energy calculations for drug discovery publication-title: J Chem Phys doi: 10.1063/1.4769292 – volume: 33 start-page: 47 year: 2019 end-page: 59 ident: CR33 article-title: Shape similarity guided pose prediction: lessons from D3R Grand Challenge 3 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0142-x – volume: 52 start-page: 1262 year: 2012 end-page: 1274 ident: CR79 article-title: Potential and limitations of ensemble docking publication-title: J Chem Inf Model doi: 10.1021/ci2005934 – volume: 56 start-page: 1063 year: 2016 ident: 289_CR42 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.5b00523 – volume: 32 start-page: 143 year: 2018 ident: 289_CR15 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0071-0 – volume: 14 start-page: e1005929 year: 2018 ident: 289_CR89 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005929 – volume: 137 start-page: 230901 year: 2012 ident: 289_CR91 publication-title: J Chem Phys doi: 10.1063/1.4769292 – volume: 52 start-page: 1262 year: 2012 ident: 289_CR79 publication-title: J Chem Inf Model doi: 10.1021/ci2005934 – volume: 66 start-page: 334 year: 2013 ident: 289_CR3 publication-title: Pharmacol Rev doi: 10.1124/pr.112.007336 – ident: 289_CR60 – volume: 38 start-page: 1686 year: 2015 ident: 289_CR1 publication-title: Arch Pharm Res doi: 10.1007/s12272-015-0640-5 – volume: 32 start-page: 231 year: 2018 ident: 289_CR23 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0063-0 – volume: 33 start-page: 93 year: 2019 ident: 289_CR37 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0161-7 – volume: 33 start-page: 83 year: 2019 ident: 289_CR36 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0148-4 – volume: 49 start-page: 4544 year: 2006 ident: 289_CR51 publication-title: J Med Chem doi: 10.1021/jm060154a – volume: 33 start-page: 135 year: 2014 ident: 289_CR71 publication-title: Mol Inform doi: 10.1002/minf.201300143 – volume: 46 start-page: 531 year: 2017 ident: 289_CR95 publication-title: Annu Rev Biophys doi: 10.1146/annurev-biophys-070816-033654 – volume: 55 start-page: 351 year: 2004 ident: 289_CR53 publication-title: Proteins doi: 10.1002/prot.10613 – volume: 45 start-page: D945 year: 2017 ident: 289_CR61 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1074 – volume: 114 start-page: 2271 year: 2018 ident: 289_CR77 publication-title: Biophys J doi: 10.1016/j.bpj.2018.02.038 – volume: 12 start-page: 4674 year: 2016 ident: 289_CR72 publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.6b00250 – volume: 34 start-page: 109 year: 1994 ident: 289_CR69 publication-title: J Chem Inf Model doi: 10.1021/ci00017a013 – volume: 235 start-page: 983 year: 1994 ident: 289_CR83 publication-title: J Mol Biol doi: 10.1006/jmbi.1994.1052 – volume: 59 start-page: 4103 year: 2016 ident: 289_CR4 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.5b02008 – volume: 33 start-page: 19 year: 2019 ident: 289_CR31 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0133-y – volume: 32 start-page: 45 year: 2018 ident: 289_CR8 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0081-y – volume: 13 start-page: 6290 year: 2017 ident: 289_CR49 publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.7b00885 – volume: 33 start-page: 61 year: 2019 ident: 289_CR34 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0143-9 – volume: 19 start-page: 453 year: 2005 ident: 289_CR67 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-005-8694-y – volume: 32 start-page: 21 year: 2018 ident: 289_CR7 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0075-9 – volume: 45 start-page: 2615 year: 2002 ident: 289_CR47 publication-title: J Med Chem doi: 10.1021/jm020017n – volume: 3 start-page: 1057 year: 2011 ident: 289_CR5 publication-title: Fut Med Chem doi: 10.4155/fmc.11.63 – volume: 32 start-page: 187 year: 2018 ident: 289_CR19 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0058-x – volume: 47 start-page: 1739 year: 2004 ident: 289_CR64 publication-title: J Med Chem doi: 10.1021/jm0306430 – volume: 47 start-page: 1750 year: 2004 ident: 289_CR65 publication-title: J Med Chem doi: 10.1021/jm030644s – volume: 58 start-page: 916 year: 2018 ident: 289_CR40 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00403 – year: 2019 ident: 289_CR30 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0180-4 – ident: 289_CR74 – volume: 50 start-page: 1432 year: 2010 ident: 289_CR80 publication-title: J Chem Inf Model doi: 10.1021/ci100161z – volume: 32 start-page: 251 year: 2018 ident: 289_CR25 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0051-4 – volume: 33 start-page: 71 year: 2019 ident: 289_CR35 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0146-6 – volume: 32 start-page: 175 year: 2018 ident: 289_CR18 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0049-y – volume: 32 start-page: 211 year: 2018 ident: 289_CR21 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0056-z – volume: 52 start-page: 609 year: 2003 ident: 289_CR68 publication-title: Proteins doi: 10.1002/prot.10465 – ident: 289_CR84 doi: 10.1145/299432.299509 – volume: 32 start-page: 239 year: 2018 ident: 289_CR24 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0055-0 – volume: 58 start-page: 287 year: 2018 ident: 289_CR82 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00650 – volume: 32 start-page: 265 year: 2018 ident: 289_CR26 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0064-z – volume: 53 start-page: 1853 year: 2013 ident: 289_CR43 publication-title: J Chem Inf Model doi: 10.1021/ci400025f – volume: 33 start-page: 105 year: 2019 ident: 289_CR38 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0162-6 – volume: 31 start-page: 455 year: 2010 ident: 289_CR63 publication-title: J Comput Chem doi: 10.1002/jcc.21334 – volume: 267 start-page: 727 year: 1997 ident: 289_CR81 publication-title: J Mol Biol doi: 10.1006/jmbi.1996.0897 – volume: 148 start-page: 054103 year: 2018 ident: 289_CR85 publication-title: J Chem Phys doi: 10.1063/1.5016562 – volume: 32 start-page: 199 year: 2018 ident: 289_CR20 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0083-9 – volume: 33 start-page: 47 year: 2019 ident: 289_CR33 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0142-x – volume: 56 start-page: 1022 year: 2016 ident: 289_CR44 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.5b00387 – volume: 56 start-page: 951 year: 2016 ident: 289_CR41 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.6b00182 – volume: 23 start-page: 3 year: 1997 ident: 289_CR46 publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(96)00423-1 – volume: 32 start-page: 163 year: 2018 ident: 289_CR17 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0048-z – volume-title: CRC standard probability and statistics tables and formulae year: 1999 ident: 289_CR56 doi: 10.1201/9781420050264 – volume: 3 start-page: 33 year: 2011 ident: 289_CR73 publication-title: J Cheminform doi: 10.1186/1758-2946-3-33 – volume: 32 start-page: 113 year: 2018 ident: 289_CR13 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0053-2 – volume: 32 start-page: 299 year: 2017 ident: 289_CR29 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0085-7 – volume: 32 start-page: 151 year: 2018 ident: 289_CR16 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0062-1 – volume: 13 start-page: e1005690 year: 2017 ident: 289_CR88 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005690 – volume: 32 start-page: 225 year: 2018 ident: 289_CR22 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0069-7 – volume: 30 start-page: 2785 year: 2009 ident: 289_CR76 publication-title: J Comput Chem doi: 10.1002/jcc.21256 – volume: 39 start-page: 868 year: 1999 ident: 289_CR57 publication-title: J Chem Inf Comput Sci doi: 10.1021/ci990307l – volume: 32 start-page: 1 year: 2018 ident: 289_CR6 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0088-4 – volume: 12 start-page: 2825 year: 2011 ident: 289_CR59 publication-title: J Mach Learn Res – volume: 15 start-page: 488 year: 1994 ident: 289_CR66 publication-title: J Comput Chem doi: 10.1002/jcc.540150503 – volume: 54 start-page: 108 year: 2014 ident: 289_CR94 publication-title: J Chem Inf Model doi: 10.1021/ci4004199 – volume: 45 start-page: 5 year: 2001 ident: 289_CR58 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 22 start-page: 693 year: 2008 ident: 289_CR78 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-007-9159-2 – volume: 34 start-page: e2914 year: 2018 ident: 289_CR87 publication-title: Int J Numer Methods Biomed Eng doi: 10.1002/cnm.2914 – volume: 21 start-page: 150 year: 2011 ident: 289_CR92 publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2011.01.011 – volume: 32 start-page: 75 year: 2018 ident: 289_CR10 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0046-1 – volume: 32 start-page: 273 year: 2018 ident: 289_CR27 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0054-1 – volume: 19 start-page: 1366 year: 2009 ident: 289_CR50 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2009.01.055 – volume: 4 start-page: 869 year: 2008 ident: 289_CR90 publication-title: J Chem Theory Comput doi: 10.1021/ct800011m – volume: 57 start-page: 1715 year: 2017 ident: 289_CR86 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00226 – volume: 49 start-page: 2242 year: 2009 ident: 289_CR75 publication-title: J Chem Inf Model doi: 10.1021/ci900238a – volume: 30 start-page: 651 year: 2016 ident: 289_CR45 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9946-8 – volume: 32 start-page: 89 year: 2018 ident: 289_CR11 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0050-5 – volume: 32 start-page: 287 year: 2018 ident: 289_CR28 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0065-y – volume: 33 start-page: 35 year: 2019 ident: 289_CR32 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0139-5 – volume: 381 start-page: 1068 year: 2008 ident: 289_CR70 publication-title: J Mol Biol doi: 10.1016/j.jmb.2008.05.042 – volume: 303 start-page: 1813 year: 2004 ident: 289_CR2 publication-title: Science doi: 10.1126/science.1096361 – volume: 308 start-page: 268 year: 2004 ident: 289_CR52 publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.103.056879 – volume: 57 start-page: 2911 year: 2017 ident: 289_CR93 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00564 – volume: 33 start-page: 239 year: 1945 ident: 289_CR55 publication-title: Biometrika doi: 10.2307/2332303 – volume: 32 start-page: 59 year: 2018 ident: 289_CR9 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0074-x – volume: 32 start-page: 103 year: 2018 ident: 289_CR12 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0082-x – ident: 289_CR48 – volume: 32 start-page: 129 year: 2018 ident: 289_CR14 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-017-0072-z – volume: 30 start-page: 81 year: 1938 ident: 289_CR54 publication-title: Biometrika doi: 10.2307/2332226 – volume: 6 start-page: 23 year: 2017 ident: 289_CR62 publication-title: Transl Neurodegener doi: 10.1186/s40035-017-0093-5 – volume: 33 start-page: 119 year: 2019 ident: 289_CR39 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0176-0 |
SSID | ssj0007960 |
Score | 2.5606039 |
Snippet | The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity... |
SourceID | pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 99 |
SubjectTerms | Affinity Amyloid Precursor Protein Secretases - antagonists & inhibitors Amyloid Precursor Protein Secretases - metabolism Animal Anatomy Aspartic Acid Endopeptidases - antagonists & inhibitors Aspartic Acid Endopeptidases - metabolism BASIC BIOLOGICAL SCIENCES Best practice Biochemistry & molecular biology Biophysics Blinded prediction challenge CAD Chemistry Chemistry and Materials Science Computer aided design Computer Applications in Chemistry Computer science Crystal structure D3R Docking Drug Design Enzyme Inhibitors - chemistry Enzyme Inhibitors - pharmacology Free-energy Histology Humans Identification methods Ligand ranking Ligands Machine Learning Molecular Docking Simulation Morphology Physical Chemistry Proteins Scoring Small Molecule Libraries - chemistry Small Molecule Libraries - pharmacology Thermodynamics |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BcgAOFZRXaEFG4kYj5WU76a0qVBUSHBAr7c1y_CiRqmS1u0Xsjf_Qf9hfwow3SbtQkLj6kTiesf1NxvMNwFupk9I44WMrOUcDRcu4SrSItayskdZ5XVKA86fP4nRafJzxWR8Uthxuuw8uybBT3wh2w8MsJnMnuMfi9V24x9F2J72eZkfj_iurEBucVGQY8WLWh8rc_oyt42jS4bK6DWr-eWPyN7dpOI1OHsFODyPZ0Ubuj-GOa3fh_vGQvW0XHt4gGnwCP97nX9gZHkuWmSF7CisOWY0TYdl8Qd4akhDrPAvMDU179fPyvDmjHvNu6ZYHTHvf4PpfM0rzTv_XsQhrN8Ew3x2rmxAgw_zCOUZk1kRA8RSmJx--Hp_Gfc6F2PAkXcUy19qIokRcVLtUcC5sZqwuXVkgsEI0x3MuEy9qbpIcS61HCGAqNLI9YpM8y5_BpO1a9wJY7uvcpt4KghCmEloaRGPGJYXjCFpsBOkw9cr0hOSUF-NcXVMpk7gUiksFcal1BO_GPvMNHcc_W--RRBWCCWLENXR1yKxUWgYKnAj2B0GrfuEuVUZsNxXaaXkEb8ZqlB35UXTrugtqUyCuKRFJR_B8oxfjYHBHkwWi2AjklsaMDYjOe7umbb4FWm-JxmxR4XsPBt26Htbfv_Hl_zXfgwdZUH-6kLMPk9Xiwr1CWLWqX4dV9At97xqE priority: 102 providerName: Springer Nature |
Title | D3R grand challenge 4: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies |
URI | https://link.springer.com/article/10.1007/s10822-020-00289-y https://www.ncbi.nlm.nih.gov/pubmed/31974851 https://www.proquest.com/docview/2352892173 https://www.proquest.com/docview/2344268507 https://www.osti.gov/servlets/purl/1803880 https://pubmed.ncbi.nlm.nih.gov/PMC7261493 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gAcEJRXaKmMxI1G5OU44YKWstsKRIUqVlpOkeNHiVQly-4WsTf-A_-QX8KMN8myPHpJJNtRnMzY_sbj-QbgmZBBpkxqfS04RwNFCj8PZOpLkWsltLEyowDn96fpySR5O-XTdsNt0R6r7OZEN1HrRtEe-YuIaEhyBNDxq9kXn7JGkXe1TaFxHXaIuoyMLzHtDa5A5C5KOMjJROLJtA2aaUPncGn0yXhyzjZ_tbUwDRocYP8CnX-fnfzDgerWpfEduN0CSjZca8BduGbqXbhx1OVx24Vbv1EO3oNvb-Izdo4LlGaqy6PCkpesRLip2WxOfhuSFWsscxwOVf3z-4-L6pyemDULszhk0toKZ4IVo4TvtNOORVi7Dov5alhZuVAZZufGMKK1JiqK-zAZjz4enfht9gVf8SBc-iKWUqVJhgipNGHKeaojpWVmsgQhFuI6HnMR2LTkKoixVFsEAypHc9siSomj-AEM6qY2j4DFtox1aHVKYELlqRQKcZkyQWI4whftQdj9-kK11OSUIeOi2JAqk7gKFFfhxFWsPHjePzNbE3Nc2XqPJFogrCBuXEWHiNSyCDNHhuPBfifooh3Ci2KjcB487atRduRRkbVpLqlNgggnQ0ztwcO1XvSdwblNJIhnPRBbGtM3IGLv7Zq6-uwIvgWatUmO7z3sdGvTrf9_4-Orv2IPbkZO3ekozj4MlvNL8wQB1bI8cKMGr9n4-AB2hsef3o3w_np0-uEMSyfR8BfHcyIe |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V4VA4ICgv0wKLBCdq4dd6bSSEUEtI6eOAWik3s95HsVTZIUmB3PgP_A9-FL-EmY2dEB699epdK3ZmduYbz8w3AE-EDDJlUutrwTkGKFL4eSBTX4pcK6GNlRk1OB8epYOT5N2QD9fgR9cLQ2WVnU10hlo3ir6RP4-IhiRHAB2_Gn3yaWoUZVe7ERpztdg3sy8Ysk1e7u2ifJ9GUf_N8c7Ab6cK-IoH4dQXsZQqTTL0_KUJU85THSktM5MlCB0Qr_CYi8CmJVdBjFe1RSencgwjLXrfmIgO0ORfSeI4pxLCrP92YflF7rqSg5xCMp4M2yadtlUPXbFPwZpL7vmzFUfYa_BA_wvk_l2r-UfC1vnB_g243gJY9nqucTdhzdQbsL7TzY3bgGu_URzegq-78Xt2ig5RM9XNbWHJC1YivNVsNKY8EekGayxznBFV_fPb97PqlO4YNRMz2WbS2gotz4zRgHn6so-XcHXehvPZsLJyrTnMjo1hRKNN1Be34eRS5HIHenVTm3vAYlvGOrQ6JfCi8lQKhThQmSAxHOGS9iDs_vpCtVToNJHjrFiSOJO4ChRX4cRVzDx4trhnNCcCuXD3Jkm0QBhDXLyKipbUtAgzR77jwVYn6KI1GZNiqeAePF4so-wogyNr05zTngQRVYYY3oO7c71YPAzaUpEgfvZArGjMYgMRia-u1NVHRyguMIxOcvzd7U63lo_1_3e8f_FbPIL1wfHhQXGwd7S_CVcjp_pUBrQFven43DxAMDctH7oTxODDZR_ZXzTEV5k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB1VQeLygKDcTAssEjxRq3bs9dpICKGG0FKoEKJS3tz1Xkqkyg5JCuSNf-Bv-By-hJn1JYRL3_rqXSt2ZnbmjGfmDMAjIYNUmcT6WnCOAYoUfhbIxJci00poY2VKDc5vD5Ldw_j1iI_W4EfbC0Nlla1NdIZaV4q-kW_3iYYkQwAdbdumLOLdYPh88smnCVKUaW3HadQqsm8WXzB8mz3bG6CsH_f7w5cfdnb9ZsKAr3gQzn0RSamSOEUUUJgw4TzRfaVlatIYYQRiFx5xEdik4CqI8Kq26PBUhiGlRU8cEekBmv8LIkoDmp6QDl91XkBkrkM5yCg84_Goadhp2vbQLfsUuLlEn79YcYq9Cg_3vwDv33WbfyRvnU8cXoOrDZhlL2rtuw5rplyHSzvtDLl1uPIb3eEN-DqI3rNjdI6aqXaGC4ufsgKhrmaTKeWMSE9YZZnjjxiXP799Pxkf0x2TamZmW0xaO0YrtGA0bJ6-8uMlXK1bcj4bVoxdmw6zU2MYUWoTDcZNODwXudyCXlmV5g6wyBaRDq1OCMioLJFCISZUJogNR-ikPQjbvz5XDS06Tec4yZeEziSuHMWVO3HlCw-edPdMalKQM3dvkERzhDTEy6uogEnN8zB1RDwebLaCzhvzMcuXyu7Bw24ZZUfZHFma6pT2xIiuUsTzHtyu9aJ7GLSrIkYs7YFY0ZhuA5GKr66U44-OXFxgSB1n-LtbrW4tH-v_73j37Ld4ABfxsOZv9g72N-By32k-VQRtQm8-PTX3ENfNi_vuADE4Ou8T-wtZ_VvG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D3R+Grand+Challenge+4%3A+Blind+Prediction+of+Protein-Ligand+Poses%2C+Affinity+Rankings%2C+and+Relative+Binding+Free+Energies&rft.jtitle=Journal+of+computer-aided+molecular+design&rft.au=Parks%2C+Conor+D.&rft.au=Gaieb%2C+Zied&rft.au=Chiu%2C+Michael&rft.au=Yang%2C+Huanwang&rft.date=2020-02-01&rft.issn=0920-654X&rft.eissn=1573-4951&rft.volume=34&rft.issue=2&rft.spage=99&rft.epage=119&rft_id=info:doi/10.1007%2Fs10822-020-00289-y&rft_id=info%3Apmid%2F31974851&rft.externalDocID=PMC7261493 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-654X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-654X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-654X&client=summon |