Toxicity mechanisms and synergies of silver nanoparticles in 2,4-dichlorophenol degradation by Phanerochaete chrysosporium

[Display omitted] •Synergies of AgNPs at low doses (0–60μM) in 2,4-DCP biodegradation were observed.•Maximum degradation rates of 2,4-DCP were more than 94% at low-level AgNPs.•AgNPs-mediated toxicity to P. chrysosporium arised from the “Trojan-horse” effects.•2,4-DCP was completely degraded into CO...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 321; pp. 37 - 46
Main Authors Huang, Zhenzhen, Chen, Guiqiu, Zeng, Guangming, Guo, Zhi, He, Kai, Hu, Liang, Wu, Jing, Zhang, Lihua, Zhu, Yuan, Song, Zhongxian
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 05.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Synergies of AgNPs at low doses (0–60μM) in 2,4-DCP biodegradation were observed.•Maximum degradation rates of 2,4-DCP were more than 94% at low-level AgNPs.•AgNPs-mediated toxicity to P. chrysosporium arised from the “Trojan-horse” effects.•2,4-DCP was completely degraded into CO2 and H2O at optimum conditions.•Amino, carboxyl, carbonyl and sulfur-containing groups assist in Ag transportation. Mechanisms of silver nanoparticles-mediated toxicity to Phanerochaete chrysosporium and the influence of silver nanoparticles (AgNPs) on the biodegradation of 2,4-dichlorophenol (2,4-DCP) have been systematically investigated. AgNPs at low doses (0–60μM) have greatly enhanced the degradation ability of P. chrysosporium to 2,4-DCP with the maximum degradation rates of more than 94%, exhibiting excellent synergies between AgNPs and P. chrysosporium in the degradation of 2,4-DCP. Meanwhile, removal of total Ag was also at high levels and highly pH dependent. However, significant inhibition was highlighted on 2,4-DCP biodegradation and Ag removal upon treatment with AgNPs at high doses and AgNO3 at low-level exposure. Results also suggested that AgNPs-induced cytotoxicity could arise from the “Trojan-horse” mechanism executing particle effects, ion effects, or both, ruling out extracellularly released Ag+. Moreover, under relatively low concentrations of AgNPs exposure, 2,4-DCP was broken into linear chain organics, and eventually turned into CO2 and H2O through reductive dechlorination and reaction with hydroxyl radicals. FTIR analysis showed that amino, carboxyl, carbonyl, and sulfur-containing functional groups played crucial roles in Ag transportation and the reduction of Ag+ to Ag0.
AbstractList Mechanisms of silver nanoparticles-mediated toxicity to Phanerochaete chrysosporium and the influence of silver nanoparticles (AgNPs) on the biodegradation of 2,4-dichlorophenol (2,4-DCP) have been systematically investigated. AgNPs at low doses (0-60μM) have greatly enhanced the degradation ability of P. chrysosporium to 2,4-DCP with the maximum degradation rates of more than 94%, exhibiting excellent synergies between AgNPs and P. chrysosporium in the degradation of 2,4-DCP. Meanwhile, removal of total Ag was also at high levels and highly pH dependent. However, significant inhibition was highlighted on 2,4-DCP biodegradation and Ag removal upon treatment with AgNPs at high doses and AgNO at low-level exposure. Results also suggested that AgNPs-induced cytotoxicity could arise from the "Trojan-horse" mechanism executing particle effects, ion effects, or both, ruling out extracellularly released Ag . Moreover, under relatively low concentrations of AgNPs exposure, 2,4-DCP was broken into linear chain organics, and eventually turned into CO and H O through reductive dechlorination and reaction with hydroxyl radicals. FTIR analysis showed that amino, carboxyl, carbonyl, and sulfur-containing functional groups played crucial roles in Ag transportation and the reduction of Ag to Ag .
[Display omitted] •Synergies of AgNPs at low doses (0–60μM) in 2,4-DCP biodegradation were observed.•Maximum degradation rates of 2,4-DCP were more than 94% at low-level AgNPs.•AgNPs-mediated toxicity to P. chrysosporium arised from the “Trojan-horse” effects.•2,4-DCP was completely degraded into CO2 and H2O at optimum conditions.•Amino, carboxyl, carbonyl and sulfur-containing groups assist in Ag transportation. Mechanisms of silver nanoparticles-mediated toxicity to Phanerochaete chrysosporium and the influence of silver nanoparticles (AgNPs) on the biodegradation of 2,4-dichlorophenol (2,4-DCP) have been systematically investigated. AgNPs at low doses (0–60μM) have greatly enhanced the degradation ability of P. chrysosporium to 2,4-DCP with the maximum degradation rates of more than 94%, exhibiting excellent synergies between AgNPs and P. chrysosporium in the degradation of 2,4-DCP. Meanwhile, removal of total Ag was also at high levels and highly pH dependent. However, significant inhibition was highlighted on 2,4-DCP biodegradation and Ag removal upon treatment with AgNPs at high doses and AgNO3 at low-level exposure. Results also suggested that AgNPs-induced cytotoxicity could arise from the “Trojan-horse” mechanism executing particle effects, ion effects, or both, ruling out extracellularly released Ag+. Moreover, under relatively low concentrations of AgNPs exposure, 2,4-DCP was broken into linear chain organics, and eventually turned into CO2 and H2O through reductive dechlorination and reaction with hydroxyl radicals. FTIR analysis showed that amino, carboxyl, carbonyl, and sulfur-containing functional groups played crucial roles in Ag transportation and the reduction of Ag+ to Ag0.
Mechanisms of silver nanoparticles-mediated toxicity to Phanerochaete chrysosporium and the influence of silver nanoparticles (AgNPs) on the biodegradation of 2,4-dichlorophenol (2,4-DCP) have been systematically investigated. AgNPs at low doses (0-60 mu M) have greatly enhanced the degradation ability of P. chrysosporium to 2,4-DCP with the maximum degradation rates of more than 94%, exhibiting excellent synergies between AgNPs and P. chrysosporium in the degradation of 2,4-DCP. Meanwhile, removal of total Ag was also at high levels and highly pH dependent. However, significant inhibition was highlighted on 2,4-DCP biodegradation and Ag removal upon treatment with AgNPs at high doses and AgNO3 at low-level exposure. Results also suggested that AgNPs-induced cytotoxicity could arise from the "Trojan-horse" mechanism executing particle effects, ion effects, or both, ruling out extracellularly released Ag+. Moreover, under relatively low concentrations of AgNPs exposure, 2,4-DCP was broken into linear chain organics, and eventually turned into CO2 and H2O through reductive dechlorination and reaction with hydroxyl radicals. FTIR analysis showed that amino, carboxyl, carbonyl, and sulfur-containing functional groups played crucial roles in Ag transportation and the reduction of Ag+ to Ag0.
Mechanisms of silver nanoparticles-mediated toxicity to Phanerochaete chrysosporium and the influence of silver nanoparticles (AgNPs) on the biodegradation of 2,4-dichlorophenol (2,4-DCP) have been systematically investigated. AgNPs at low doses (0-60μM) have greatly enhanced the degradation ability of P. chrysosporium to 2,4-DCP with the maximum degradation rates of more than 94%, exhibiting excellent synergies between AgNPs and P. chrysosporium in the degradation of 2,4-DCP. Meanwhile, removal of total Ag was also at high levels and highly pH dependent. However, significant inhibition was highlighted on 2,4-DCP biodegradation and Ag removal upon treatment with AgNPs at high doses and AgNO3 at low-level exposure. Results also suggested that AgNPs-induced cytotoxicity could arise from the "Trojan-horse" mechanism executing particle effects, ion effects, or both, ruling out extracellularly released Ag+. Moreover, under relatively low concentrations of AgNPs exposure, 2,4-DCP was broken into linear chain organics, and eventually turned into CO2 and H2O through reductive dechlorination and reaction with hydroxyl radicals. FTIR analysis showed that amino, carboxyl, carbonyl, and sulfur-containing functional groups played crucial roles in Ag transportation and the reduction of Ag+ to Ag0.Mechanisms of silver nanoparticles-mediated toxicity to Phanerochaete chrysosporium and the influence of silver nanoparticles (AgNPs) on the biodegradation of 2,4-dichlorophenol (2,4-DCP) have been systematically investigated. AgNPs at low doses (0-60μM) have greatly enhanced the degradation ability of P. chrysosporium to 2,4-DCP with the maximum degradation rates of more than 94%, exhibiting excellent synergies between AgNPs and P. chrysosporium in the degradation of 2,4-DCP. Meanwhile, removal of total Ag was also at high levels and highly pH dependent. However, significant inhibition was highlighted on 2,4-DCP biodegradation and Ag removal upon treatment with AgNPs at high doses and AgNO3 at low-level exposure. Results also suggested that AgNPs-induced cytotoxicity could arise from the "Trojan-horse" mechanism executing particle effects, ion effects, or both, ruling out extracellularly released Ag+. Moreover, under relatively low concentrations of AgNPs exposure, 2,4-DCP was broken into linear chain organics, and eventually turned into CO2 and H2O through reductive dechlorination and reaction with hydroxyl radicals. FTIR analysis showed that amino, carboxyl, carbonyl, and sulfur-containing functional groups played crucial roles in Ag transportation and the reduction of Ag+ to Ag0.
Mechanisms of silver nanoparticles-mediated toxicity to Phanerochaete chrysosporium and the influence of silver nanoparticles (AgNPs) on the biodegradation of 2,4-dichlorophenol (2,4-DCP) have been systematically investigated. AgNPs at low doses (0–60μM) have greatly enhanced the degradation ability of P. chrysosporium to 2,4-DCP with the maximum degradation rates of more than 94%, exhibiting excellent synergies between AgNPs and P. chrysosporium in the degradation of 2,4-DCP. Meanwhile, removal of total Ag was also at high levels and highly pH dependent. However, significant inhibition was highlighted on 2,4-DCP biodegradation and Ag removal upon treatment with AgNPs at high doses and AgNO3 at low-level exposure. Results also suggested that AgNPs-induced cytotoxicity could arise from the “Trojan-horse” mechanism executing particle effects, ion effects, or both, ruling out extracellularly released Ag⁺. Moreover, under relatively low concentrations of AgNPs exposure, 2,4-DCP was broken into linear chain organics, and eventually turned into CO2 and H2O through reductive dechlorination and reaction with hydroxyl radicals. FTIR analysis showed that amino, carboxyl, carbonyl, and sulfur-containing functional groups played crucial roles in Ag transportation and the reduction of Ag⁺ to Ag⁰.
Author Wu, Jing
Zhu, Yuan
Zeng, Guangming
Guo, Zhi
He, Kai
Chen, Guiqiu
Zhang, Lihua
Song, Zhongxian
Hu, Liang
Huang, Zhenzhen
Author_xml – sequence: 1
  givenname: Zhenzhen
  surname: Huang
  fullname: Huang, Zhenzhen
  organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
– sequence: 2
  givenname: Guiqiu
  surname: Chen
  fullname: Chen, Guiqiu
  email: gqchen@hnu.edu.cn
  organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
– sequence: 3
  givenname: Guangming
  surname: Zeng
  fullname: Zeng, Guangming
  email: zgming@hnu.edu.cn
  organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
– sequence: 4
  givenname: Zhi
  surname: Guo
  fullname: Guo, Zhi
  organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
– sequence: 5
  givenname: Kai
  surname: He
  fullname: He, Kai
  organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
– sequence: 6
  givenname: Liang
  surname: Hu
  fullname: Hu, Liang
  organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
– sequence: 7
  givenname: Jing
  surname: Wu
  fullname: Wu, Jing
  organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
– sequence: 8
  givenname: Lihua
  surname: Zhang
  fullname: Zhang, Lihua
  organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
– sequence: 9
  givenname: Yuan
  surname: Zhu
  fullname: Zhu, Yuan
  organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
– sequence: 10
  givenname: Zhongxian
  surname: Song
  fullname: Song, Zhongxian
  organization: Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27607931$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URKeFnwDykgUJfjsRC4QqXlIlWJS15Tg3jUeJPdiZivTX4zLTDZvpyrL1nXOvfM4FOgsxAEKvKakpoer9tt6O9n62S83KtSZNTbR8hja00bzinKsztCGciIo3rThHFzlvCSFUS_ECnTOtiG453aD7m_jHO7-seAY32uDznLENPc5rgHTrIeM44OynO0g42BB3Ni3eTeXdB8zeiar3bpxiirsRQpxwD7fJ9nbxMeBuxT-LJ6RYrGEB7Ma05ph3Mfn9_BI9H-yU4dXxvES_vny-ufpWXf_4-v3q03XlJKFLpZnsuOsGobm1RKuhUaIjglrCNG2dlb0dnFOKK9sPpGcNtZTLruF04LwFxi_R24PvLsXfe8iLmX12ME1ls7jPhlGqWsIa1pxEaZktmdZCPQEVShBZwnkCyjVhohWyoG-O6L6boTe75GebVvMYWAE-HACXYs4JBlPC-_fbS7J-MpSYh3qYrTnWwzzUw5DGlHoUtfxP_TjglO7jQQclpzsPyWTnITjofQK3mD76Ew5_AUnf2G8
CitedBy_id crossref_primary_10_1016_j_cej_2018_11_196
crossref_primary_10_1166_jbn_2022_3299
crossref_primary_10_1016_j_chemosphere_2019_02_190
crossref_primary_10_1016_j_ijbiomac_2018_12_213
crossref_primary_10_1016_j_apcatb_2018_01_061
crossref_primary_10_1016_j_jes_2018_03_019
crossref_primary_10_1016_j_apcatb_2018_11_073
crossref_primary_10_1080_01490451_2019_1627443
crossref_primary_10_1007_s11356_022_21598_9
crossref_primary_10_1016_j_jece_2018_06_032
crossref_primary_10_1016_j_powtec_2019_09_091
crossref_primary_10_1016_j_carbpol_2019_05_032
crossref_primary_10_1016_j_scitotenv_2021_146132
crossref_primary_10_1007_s11356_019_04813_y
crossref_primary_10_1007_s11356_022_22430_0
crossref_primary_10_1016_j_chemosphere_2018_03_144
crossref_primary_10_1080_10807039_2018_1562882
crossref_primary_10_1016_j_jhazmat_2021_126902
crossref_primary_10_1016_j_chemosphere_2017_12_185
crossref_primary_10_1021_acssuschemeng_8b05010
crossref_primary_10_1098_rsos_181769
crossref_primary_10_1007_s11356_023_29910_x
crossref_primary_10_3390_nano10091764
crossref_primary_10_1016_j_jclepro_2021_126808
crossref_primary_10_1016_j_envpol_2019_113579
crossref_primary_10_1016_j_jhazmat_2019_121153
crossref_primary_10_1016_j_seppur_2023_125979
crossref_primary_10_1039_D0RA01727B
crossref_primary_10_1016_j_jtice_2018_09_005
crossref_primary_10_1039_C6RA23675H
crossref_primary_10_1016_j_eti_2022_102423
crossref_primary_10_1016_j_jcis_2019_08_013
crossref_primary_10_1155_2020_9789420
crossref_primary_10_1016_j_jcis_2019_02_030
crossref_primary_10_1007_s11356_019_07468_x
crossref_primary_10_1007_s00253_017_8328_z
crossref_primary_10_1016_j_jece_2022_107883
crossref_primary_10_1016_j_jece_2022_109024
crossref_primary_10_1016_j_biortech_2024_131085
crossref_primary_10_1016_j_colsurfb_2017_08_006
crossref_primary_10_1016_j_snb_2017_02_107
crossref_primary_10_1016_j_jphotochem_2024_116057
crossref_primary_10_1002_slct_202000502
crossref_primary_10_1016_j_clay_2019_02_010
crossref_primary_10_1002_smll_201800871
crossref_primary_10_1016_j_scitotenv_2018_06_302
crossref_primary_10_3390_nano8020120
crossref_primary_10_1016_j_jhazmat_2018_04_040
crossref_primary_10_1016_j_ijbiomac_2018_09_090
crossref_primary_10_1016_j_jcis_2019_01_078
crossref_primary_10_1016_j_envpol_2021_116560
crossref_primary_10_1016_j_jece_2022_107474
crossref_primary_10_1016_j_bej_2021_108212
crossref_primary_10_1080_03067319_2020_1837122
crossref_primary_10_1016_j_jcis_2021_11_024
crossref_primary_10_1088_1742_6596_1818_1_012209
crossref_primary_10_1007_s00449_017_1793_z
crossref_primary_10_1016_j_jhazmat_2022_129944
crossref_primary_10_1016_j_snb_2018_12_068
crossref_primary_10_3390_jfb14040221
crossref_primary_10_1016_j_ccr_2022_214811
crossref_primary_10_1016_j_biortech_2022_127311
crossref_primary_10_1016_j_ijbiomac_2024_135556
crossref_primary_10_2174_1574885515999200425234517
crossref_primary_10_3389_fmicb_2022_982611
crossref_primary_10_1016_j_envexpbot_2019_02_018
crossref_primary_10_1016_j_molstruc_2017_10_092
crossref_primary_10_1002_jccs_201700067
crossref_primary_10_2139_ssrn_4005122
crossref_primary_10_1016_j_chemosphere_2022_134776
crossref_primary_10_1016_j_jhazmat_2018_10_088
crossref_primary_10_1002_ppsc_202400043
crossref_primary_10_1515_psr_2021_0060
crossref_primary_10_1007_s42823_021_00286_7
crossref_primary_10_1016_j_jcis_2019_05_067
crossref_primary_10_1016_j_jhazmat_2019_05_068
crossref_primary_10_1016_j_envpol_2021_116936
crossref_primary_10_1016_j_inoche_2023_112001
crossref_primary_10_1016_j_cej_2022_137453
crossref_primary_10_1016_j_chemosphere_2019_01_055
crossref_primary_10_1007_s10661_018_6697_0
crossref_primary_10_1016_j_seppur_2025_131639
crossref_primary_10_1016_j_biombioe_2020_105576
crossref_primary_10_1016_j_scitotenv_2022_157995
crossref_primary_10_1016_j_jece_2020_104622
crossref_primary_10_1007_s13233_020_8050_z
crossref_primary_10_1016_j_jhazmat_2019_121350
crossref_primary_10_1080_09593330_2021_1895323
crossref_primary_10_1007_s00216_020_03074_w
crossref_primary_10_1016_j_chemosphere_2018_07_192
crossref_primary_10_1016_j_ecoenv_2019_02_066
crossref_primary_10_1016_j_envpol_2023_122697
crossref_primary_10_1016_j_scitotenv_2019_135113
crossref_primary_10_1007_s10311_018_0800_1
crossref_primary_10_1007_s11356_020_09635_x
crossref_primary_10_1016_j_envres_2019_04_010
crossref_primary_10_1016_j_jhazmat_2018_02_017
crossref_primary_10_1016_j_ecoenv_2018_03_071
crossref_primary_10_1016_j_jhazmat_2021_128033
crossref_primary_10_1016_j_arabjc_2019_08_007
crossref_primary_10_1108_IJSMS_11_2022_0197
crossref_primary_10_1007_s11244_022_01688_1
crossref_primary_10_3390_catal13040696
crossref_primary_10_1016_j_jiec_2019_04_017
crossref_primary_10_1016_j_molstruc_2019_03_014
crossref_primary_10_1039_C7EN00517B
crossref_primary_10_1016_j_scitotenv_2023_168723
crossref_primary_10_1080_09593330_2021_1980829
crossref_primary_10_1016_j_ajps_2019_03_002
crossref_primary_10_1016_j_scitotenv_2019_135129
crossref_primary_10_15406_jabb_2018_05_00116
crossref_primary_10_1016_j_sjbs_2020_09_004
crossref_primary_10_28948_ngumuh_799013
crossref_primary_10_1016_j_chemosphere_2022_137591
crossref_primary_10_1088_1361_6501_aad6f2
Cites_doi 10.1016/j.apsusc.2015.08.051
10.1021/es402046u
10.1080/10408440601177665
10.1016/j.jcis.2015.04.057
10.1016/j.cej.2013.01.093
10.1021/es8026314
10.1007/s00253-011-3313-4
10.1021/es803259g
10.1016/j.ultsonch.2014.03.002
10.1038/nmat2442
10.1016/j.molliq.2016.01.027
10.1016/j.jhazmat.2015.02.043
10.1016/j.jcis.2005.11.063
10.1007/s00418-008-0415-x
10.1016/j.jcat.2014.06.016
10.1021/es9035557
10.1007/s00253-012-4121-1
10.1021/es401219s
10.1038/srep20813
10.1016/j.toxlet.2010.05.012
10.1021/es2037405
10.1186/1743-8977-11-11
10.1021/acsami.5b11859
10.1021/es7029637
10.1016/j.watres.2015.10.025
10.1091/mbc.e07-06-0610
10.2166/wh.2014.197
10.1021/nn800596w
10.1021/nl301934w
10.1039/C5NR01133G
10.1007/s10646-009-0404-4
10.1021/es201918f
10.1021/es103995x
10.1016/j.jhazmat.2014.12.003
10.1016/j.jhazmat.2012.04.061
10.1088/0957-4484/16/10/059
10.1021/nn400594s
10.1016/j.jhazmat.2010.06.022
10.1016/j.envint.2010.10.012
10.1016/S0048-9697(01)01000-2
10.1016/j.aquatox.2009.09.016
10.1016/j.procbio.2014.03.015
10.1016/j.tiv.2009.12.001
10.1039/C3CS60218D
10.1016/j.aca.2015.02.025
10.1016/j.saa.2014.04.065
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright © 2016 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright © 2016 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7ST
7U7
C1K
SOI
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
7S9
L.6
DOI 10.1016/j.jhazmat.2016.08.075
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Environment Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Toxicology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Ceramic Abstracts
Engineering Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

Materials Research Database
Toxicology Abstracts
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
EISSN 1873-3336
EndPage 46
ExternalDocumentID 27607931
10_1016_j_jhazmat_2016_08_075
S0304389416307993
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
..I
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
XPP
ZMT
~02
~G-
.HR
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
FEDTE
FGOYB
G-2
HLY
HMC
HVGLF
HZ~
NDZJH
R2-
SCE
SEN
SEW
SSH
T9H
TAE
VH1
WUQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7ST
7U7
C1K
SOI
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c501t-725b3cbf473aa076f864b041a02719ca5dafcc6636adf0d281a135b831f339e23
IEDL.DBID .~1
ISSN 0304-3894
1873-3336
IngestDate Tue Aug 05 09:56:41 EDT 2025
Thu Jul 10 18:29:10 EDT 2025
Fri Jul 11 02:00:19 EDT 2025
Fri Jul 11 00:58:48 EDT 2025
Wed Feb 19 02:43:29 EST 2025
Tue Jul 01 00:49:09 EDT 2025
Thu Apr 24 23:02:18 EDT 2025
Fri Feb 23 02:29:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Biodegradation
2,4-Dichlorophenol
Phanerochaete chrysosporium
Silver nanoparticles
Synergies
Language English
License Copyright © 2016 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-725b3cbf473aa076f864b041a02719ca5dafcc6636adf0d281a135b831f339e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27607931
PQID 1837024945
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2116902828
proquest_miscellaneous_1864527746
proquest_miscellaneous_1846405201
proquest_miscellaneous_1837024945
pubmed_primary_27607931
crossref_citationtrail_10_1016_j_jhazmat_2016_08_075
crossref_primary_10_1016_j_jhazmat_2016_08_075
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2016_08_075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-05
PublicationDateYYYYMMDD 2017-01-05
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-05
  day: 05
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rawajfih, Nsour (bib0010) 2006; 298
Chen, Guan, Zeng, Li, Chen, Shang, Zhou, Li, He (bib0150) 2013; 97
Wang, Zang, Fan, Jia, Li, Deng, Wang (bib0110) 2015; 358
Levard, Hotze, Lowry, Brown (bib0070) 2012; 46
Xiu, Zhang, Puppala, Colvin, Alvarez (bib0135) 2012; 12
Rizzello, Pompa (bib0045) 2014; 43
Loo, Fane, Lim, Krantz, Liang, Liu, Hu (bib0040) 2013; 47
Zhang, Shen, Cissoko, Wo, Xu (bib0015) 2010; 182
Guo, Chen, Liu, Zeng, Huang, Chen, Hu (bib0160) 2016; 6
Nel, Mädler, Velegol, Xia, Hoek, Somasundaran, Klaessig, Castranova, Thompson (bib0230) 2009; 8
Xu, Liu, Lowry, Cao, Zhao, Zhou, Xu (bib0115) 2016; 8
Lansdown (bib0180) 2007; 37
Xu, Lv, Li, Li, Shen, Zhou, Xu (bib0005) 2012; 225–226
Wei, Zhou, Hao, Li, Xu, Lu, Wu, Dai, Pan, Yan (bib0020) 2015; 870
Schüller, Mamnun, Wolfger, Rockwell, Thorner, Kuchler (bib0025) 2007; 18
Muniyappan, Nagarajan (bib0080) 2014; 49
Yin, Cheng, Espinasse, Colman, Auffan, Wiesner, Rose, Liu, Bernhardt (bib0190) 2011; 45
Lubick (bib0215) 2008; 42
Fabrega, Fawcett, Renshaw, Lead (bib0060) 2009; 43
Zhao, Zheng, Li, Baig, Wu, Xu (bib0100) 2014; 21
Zuo, Chen, Zeng, Li, Yan, Chen, Guo, Huang, Tan (bib0165) 2015; 285
Chen, Zeng, Chen, Fan, Zou, Li, Hu, Long (bib0125) 2011; 91
Wang, Liu, Ma, Qu, Wang, Yu, He, Liu, Xia, Jiang (bib0210) 2013; 7
Sinha, Ahmaruzzaman, Sil, Bhattacharjee (bib0095) 2014; 131
Mueller, Nowack (bib0055) 2008; 42
Liu, Tang, Liu (bib0035) 2014; 12
He, Miller, Waite (bib0235) 2014; 317
Farkas, Christian, Urrea, Roos, Hassellöv, Tollefsen, Thomas (bib0030) 2010; 96
Wan, Wan, Ma, Huang, Wang, Ren (bib0120) 2013; 221
Liu, Hurt (bib0140) 2010; 44
Park, Yi, Kim, Choi, Park (bib0220) 2010; 24
Liang, Bradford, Simunek, Heggen, Vereecken, Klumpp (bib0175) 2013; 47
Yu, Yang, Ye, Peng, Wang (bib0085) 2015; 453
Xu, Wang (bib0105) 2012; 123
Gliga, Skoglund, Wallinder, Fadeel, Karlsson (bib0195) 2014; 11
Morones, Elechiguerra, Camacho, Holt, Kouri, Ramírez, Yacaman (bib0050) 2005; 16
Studer, Limbach, Van Duc, Krumeich, Athanassiou, Gerber, Moch, Stark (bib0205) 2010; 197
Zhang, Hu, Deng (bib0225) 2016; 88
Laban, Nies, Turco, Bickham, Sepúlveda (bib0200) 2010; 19
Vanaamudan, Soni, Sudhakar (bib0090) 2016; 215
Huang, Chen, Zeng, Chen, Zuo, Guo, Tan, Song, Niu (bib0145) 2015; 289
Fabrega, Luoma, Tyler, Galloway (bib0065) 2011; 37
Wang, Xia, Liu (bib0155) 2015; 7
Kristiansen, Ifversen, Danscher (bib0185) 2008; 130
AshaRani, Low Kah Mun, Hande, Valiyaveettil (bib0075) 2009; 3
Xiu, Ma, Alvarez (bib0130) 2011; 45
Yin, Impellitteri, You, Allen (bib0170) 2002; 287
Zhang (10.1016/j.jhazmat.2016.08.075_bib0015) 2010; 182
Levard (10.1016/j.jhazmat.2016.08.075_bib0070) 2012; 46
Xu (10.1016/j.jhazmat.2016.08.075_bib0105) 2012; 123
Gliga (10.1016/j.jhazmat.2016.08.075_bib0195) 2014; 11
Wang (10.1016/j.jhazmat.2016.08.075_bib0210) 2013; 7
Lubick (10.1016/j.jhazmat.2016.08.075_bib0215) 2008; 42
Yu (10.1016/j.jhazmat.2016.08.075_bib0085) 2015; 453
Kristiansen (10.1016/j.jhazmat.2016.08.075_bib0185) 2008; 130
Liu (10.1016/j.jhazmat.2016.08.075_bib0035) 2014; 12
Zhao (10.1016/j.jhazmat.2016.08.075_bib0100) 2014; 21
Yin (10.1016/j.jhazmat.2016.08.075_bib0170) 2002; 287
Guo (10.1016/j.jhazmat.2016.08.075_bib0160) 2016; 6
Vanaamudan (10.1016/j.jhazmat.2016.08.075_bib0090) 2016; 215
Chen (10.1016/j.jhazmat.2016.08.075_bib0125) 2011; 91
Yin (10.1016/j.jhazmat.2016.08.075_bib0190) 2011; 45
Studer (10.1016/j.jhazmat.2016.08.075_bib0205) 2010; 197
Xiu (10.1016/j.jhazmat.2016.08.075_bib0135) 2012; 12
Sinha (10.1016/j.jhazmat.2016.08.075_bib0095) 2014; 131
Xu (10.1016/j.jhazmat.2016.08.075_bib0115) 2016; 8
Liu (10.1016/j.jhazmat.2016.08.075_bib0140) 2010; 44
Xu (10.1016/j.jhazmat.2016.08.075_bib0005) 2012; 225–226
Loo (10.1016/j.jhazmat.2016.08.075_bib0040) 2013; 47
Mueller (10.1016/j.jhazmat.2016.08.075_bib0055) 2008; 42
Huang (10.1016/j.jhazmat.2016.08.075_bib0145) 2015; 289
Schüller (10.1016/j.jhazmat.2016.08.075_bib0025) 2007; 18
Wei (10.1016/j.jhazmat.2016.08.075_bib0020) 2015; 870
Liang (10.1016/j.jhazmat.2016.08.075_bib0175) 2013; 47
Fabrega (10.1016/j.jhazmat.2016.08.075_bib0065) 2011; 37
Laban (10.1016/j.jhazmat.2016.08.075_bib0200) 2010; 19
Zuo (10.1016/j.jhazmat.2016.08.075_bib0165) 2015; 285
Wan (10.1016/j.jhazmat.2016.08.075_bib0120) 2013; 221
Park (10.1016/j.jhazmat.2016.08.075_bib0220) 2010; 24
Muniyappan (10.1016/j.jhazmat.2016.08.075_bib0080) 2014; 49
Nel (10.1016/j.jhazmat.2016.08.075_bib0230) 2009; 8
Rizzello (10.1016/j.jhazmat.2016.08.075_bib0045) 2014; 43
Wang (10.1016/j.jhazmat.2016.08.075_bib0110) 2015; 358
Xiu (10.1016/j.jhazmat.2016.08.075_bib0130) 2011; 45
Lansdown (10.1016/j.jhazmat.2016.08.075_bib0180) 2007; 37
He (10.1016/j.jhazmat.2016.08.075_bib0235) 2014; 317
Morones (10.1016/j.jhazmat.2016.08.075_bib0050) 2005; 16
Rawajfih (10.1016/j.jhazmat.2016.08.075_bib0010) 2006; 298
Farkas (10.1016/j.jhazmat.2016.08.075_bib0030) 2010; 96
Fabrega (10.1016/j.jhazmat.2016.08.075_bib0060) 2009; 43
AshaRani (10.1016/j.jhazmat.2016.08.075_bib0075) 2009; 3
Zhang (10.1016/j.jhazmat.2016.08.075_bib0225) 2016; 88
Chen (10.1016/j.jhazmat.2016.08.075_bib0150) 2013; 97
Wang (10.1016/j.jhazmat.2016.08.075_bib0155) 2015; 7
References_xml – volume: 47
  start-page: 12229
  year: 2013
  end-page: 12237
  ident: bib0175
  article-title: Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil
  publication-title: Environ. Sci. Technol.
– volume: 24
  start-page: 872
  year: 2010
  end-page: 878
  ident: bib0220
  article-title: Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism
  publication-title: Toxicol. In Vitro
– volume: 358
  start-page: 479
  year: 2015
  end-page: 484
  ident: bib0110
  article-title: Defect-mediated of Cu@TiO
  publication-title: Appl. Surf. Sci.
– volume: 19
  start-page: 185
  year: 2010
  end-page: 195
  ident: bib0200
  article-title: The effects of silver nanoparticles on fathead minnow (
  publication-title: Ecotoxicology
– volume: 131
  start-page: 413
  year: 2014
  end-page: 423
  ident: bib0095
  article-title: Biomimetic synthesis of silver nanoparticles using the fish scales of Labeo rohita and their application as catalysts for the reduction of aromatic nitro compounds
  publication-title: Spectrochim. Acta Part A
– volume: 37
  start-page: 237
  year: 2007
  end-page: 250
  ident: bib0180
  article-title: Critical observations on the neurotoxicity of silver
  publication-title: Crit. Rev. Toxicol.
– volume: 21
  start-page: 1714
  year: 2014
  end-page: 1721
  ident: bib0100
  article-title: Catalytic dechlorination of 2,4-dichlorophenol by Ni/Fe nanoparticles prepared in the presence of ultrasonic irradiation
  publication-title: Ultrason. Sonochem.
– volume: 37
  start-page: 517
  year: 2011
  end-page: 531
  ident: bib0065
  article-title: Silver nanoparticles: behaviour and effects in the aquatic environment
  publication-title: Environ. Int.
– volume: 42
  start-page: 8617
  year: 2008
  ident: bib0215
  article-title: Nanosilver toxicity: ions: nanoparticles-or both?
  publication-title: Environ. Sci. Technol.
– volume: 221
  start-page: 300
  year: 2013
  end-page: 307
  ident: bib0120
  article-title: Reactivity characteristics of SiO
  publication-title: Chem. Eng. J.
– volume: 123
  start-page: 117
  year: 2012
  end-page: 126
  ident: bib0105
  article-title: Fenton-like degradation of 2,4-dichlorophenol using Fe
  publication-title: Appl. Catal. B
– volume: 88
  start-page: 403
  year: 2016
  end-page: 427
  ident: bib0225
  article-title: Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms
  publication-title: Water Res.
– volume: 18
  start-page: 4932
  year: 2007
  end-page: 4944
  ident: bib0025
  article-title: Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in
  publication-title: Mol. Biol. Cell
– volume: 7
  start-page: 7470
  year: 2015
  end-page: 7481
  ident: bib0155
  article-title: Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects
  publication-title: Nanoscale
– volume: 317
  start-page: 198
  year: 2014
  end-page: 205
  ident: bib0235
  article-title: Fenton-like zero-valent silver nanoparticle-mediated hydroxyl radical production
  publication-title: J. Catal.
– volume: 12
  start-page: 4271
  year: 2012
  end-page: 4275
  ident: bib0135
  article-title: Negligible particle-specific antibacterial activity of silver nanoparticles
  publication-title: Nano Lett.
– volume: 287
  start-page: 107
  year: 2002
  end-page: 119
  ident: bib0170
  article-title: The importance of organic matter distribution and extract soil: solution ratio on the desorption of heavy metals from soils
  publication-title: Sci. Total Environ.
– volume: 289
  start-page: 174
  year: 2015
  end-page: 183
  ident: bib0145
  article-title: Polyvinyl alcohol-immobilized
  publication-title: J. Hazard. Mater.
– volume: 16
  start-page: 2346
  year: 2005
  end-page: 2353
  ident: bib0050
  article-title: The bactericidal effect of silver nanoparticles
  publication-title: Nanotechnology
– volume: 11
  start-page: 11
  year: 2014
  ident: bib0195
  article-title: Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release
  publication-title: Part. Fibre Toxicol.
– volume: 44
  start-page: 2169
  year: 2010
  end-page: 2175
  ident: bib0140
  article-title: Ion release kinetics and particle persistence in aqueous nano-silver colloids
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 7285
  year: 2009
  end-page: 7290
  ident: bib0060
  article-title: Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter
  publication-title: Environ. Sci. Technol.
– volume: 215
  start-page: 787
  year: 2016
  end-page: 794
  ident: bib0090
  article-title: Palm shell extract capped silver nanoparticles—As efficient catalysts for degradation of dyes and as SERS substrates
  publication-title: J. Mol. Liq.
– volume: 8
  start-page: 543
  year: 2009
  end-page: 557
  ident: bib0230
  article-title: Understanding biophysicochemical interactions at the nano–bio interface
  publication-title: Nat. Mater.
– volume: 130
  start-page: 177
  year: 2008
  end-page: 184
  ident: bib0185
  article-title: Ultrastructural localization and chemical binding of silver ions in human organotypic skin cultures
  publication-title: Histochem. Cell Biol.
– volume: 197
  start-page: 169
  year: 2010
  end-page: 174
  ident: bib0205
  article-title: Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles
  publication-title: Toxicol. Lett.
– volume: 49
  start-page: 1054
  year: 2014
  end-page: 1061
  ident: bib0080
  article-title: Green synthesis of silver nanoparticles with
  publication-title: Process Biochem.
– volume: 6
  start-page: 20813
  year: 2016
  end-page: 20818
  ident: bib0160
  article-title: Activity variation of
  publication-title: Sci. Rep.
– volume: 285
  start-page: 236
  year: 2015
  end-page: 244
  ident: bib0165
  article-title: Transport fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by
  publication-title: J. Hazard. Mater.
– volume: 45
  start-page: 2360
  year: 2011
  end-page: 2367
  ident: bib0190
  article-title: More than the ions: the effects of silver nanoparticles on
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 1501
  year: 2014
  end-page: 1518
  ident: bib0045
  article-title: Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 279
  year: 2009
  end-page: 290
  ident: bib0075
  article-title: Cytotoxicity and genotoxicity of silver nanoparticles in human cells
  publication-title: ACS Nano
– volume: 97
  start-page: 3149
  year: 2013
  end-page: 3157
  ident: bib0150
  article-title: Cadmium removal and 2,4-dichlorophenol degradation by immobilized
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 12
  start-page: 670
  year: 2014
  end-page: 677
  ident: bib0035
  article-title: A novel point-of-use water treatment method by antimicrobial nanosilver textile material
  publication-title: J. Water Health
– volume: 8
  start-page: 7333
  year: 2016
  end-page: 7342
  ident: bib0115
  article-title: Dechlorination mechanism of 2,4-dichlorophenol by magnetic MWCNTs supported Pd/Fe nanohybrids: rapid adsorption, gradual dechlorination, and desorption of phenol
  publication-title: ACS Appl. Mater. Interfaces
– volume: 91
  start-page: 811
  year: 2011
  end-page: 821
  ident: bib0125
  article-title: Simultaneous cadmium removal and 2,4-dichlorophenol degradation from aqueous solutions by
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 298
  start-page: 39
  year: 2006
  end-page: 49
  ident: bib0010
  article-title: Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite
  publication-title: J. Colloid Interface Sci.
– volume: 45
  start-page: 9003
  year: 2011
  end-page: 9008
  ident: bib0130
  article-title: Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions
  publication-title: Environ. Sci. Technol.
– volume: 42
  start-page: 4447
  year: 2008
  end-page: 4453
  ident: bib0055
  article-title: Exposure modelling of engineered nanoparticles in the environment
  publication-title: Environ. Sci. Technol.
– volume: 870
  start-page: 83
  year: 2015
  end-page: 91
  ident: bib0020
  article-title: Highly-controllable imprinted polymer nanoshell at the surface of silica nanoparticles based room-temperature phosphorescence probe for detection of 2,4-dichlorophenol
  publication-title: Anal. Chim. Acta
– volume: 46
  start-page: 6900
  year: 2012
  end-page: 6914
  ident: bib0070
  article-title: Environmental transformations of silver nanoparticles: impact on stability and toxicity
  publication-title: Environ. Sci. Technol.
– volume: 182
  start-page: 252
  year: 2010
  end-page: 258
  ident: bib0015
  article-title: Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid
  publication-title: J. Hazard. Mater.
– volume: 47
  start-page: 9363
  year: 2013
  end-page: 9371
  ident: bib0040
  article-title: Superabsorbent cryogels decorated with silver nanoparticles as a novel water technology for point-of-use disinfection
  publication-title: Environ. Sci. Technol.
– volume: 225–226
  start-page: 36
  year: 2012
  end-page: 45
  ident: bib0005
  article-title: Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support
  publication-title: J. Hazard. Mater.
– volume: 96
  start-page: 44
  year: 2010
  end-page: 52
  ident: bib0030
  article-title: Effects of silver and gold nanoparticles on rainbow trout (
  publication-title: Aquat. Toxicol.
– volume: 7
  start-page: 4171
  year: 2013
  end-page: 4186
  ident: bib0210
  article-title: Silver nanoparticles induced RNA polymerase-silver binding and RNA transcription inhibition in erythroid progenitor cells
  publication-title: ACS Nano
– volume: 453
  start-page: 100
  year: 2015
  end-page: 106
  ident: bib0085
  article-title: Silver nanoparticles decorated anatase TiO
  publication-title: J. Colloid Interface Sci.
– volume: 358
  start-page: 479
  year: 2015
  ident: 10.1016/j.jhazmat.2016.08.075_bib0110
  article-title: Defect-mediated of Cu@TiO2 core–shell nanoparticles with oxygen vacancies for photocatalytic degradation 2,4-DCP under visible light irradiation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.08.051
– volume: 47
  start-page: 12229
  year: 2013
  ident: 10.1016/j.jhazmat.2016.08.075_bib0175
  article-title: Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es402046u
– volume: 37
  start-page: 237
  year: 2007
  ident: 10.1016/j.jhazmat.2016.08.075_bib0180
  article-title: Critical observations on the neurotoxicity of silver
  publication-title: Crit. Rev. Toxicol.
  doi: 10.1080/10408440601177665
– volume: 453
  start-page: 100
  year: 2015
  ident: 10.1016/j.jhazmat.2016.08.075_bib0085
  article-title: Silver nanoparticles decorated anatase TiO2 nanotubes for removal of pentachlorophenol from water
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2015.04.057
– volume: 123
  start-page: 117
  year: 2012
  ident: 10.1016/j.jhazmat.2016.08.075_bib0105
  article-title: Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles
  publication-title: Appl. Catal. B
– volume: 221
  start-page: 300
  year: 2013
  ident: 10.1016/j.jhazmat.2016.08.075_bib0120
  article-title: Reactivity characteristics of SiO2-coated zero-valent iron nanoparticles for 2,4-dichlorophenol degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.01.093
– volume: 42
  start-page: 8617
  year: 2008
  ident: 10.1016/j.jhazmat.2016.08.075_bib0215
  article-title: Nanosilver toxicity: ions: nanoparticles-or both?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8026314
– volume: 91
  start-page: 811
  year: 2011
  ident: 10.1016/j.jhazmat.2016.08.075_bib0125
  article-title: Simultaneous cadmium removal and 2,4-dichlorophenol degradation from aqueous solutions by Phanerochaete chrysosporium
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3313-4
– volume: 43
  start-page: 7285
  year: 2009
  ident: 10.1016/j.jhazmat.2016.08.075_bib0060
  article-title: Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803259g
– volume: 21
  start-page: 1714
  year: 2014
  ident: 10.1016/j.jhazmat.2016.08.075_bib0100
  article-title: Catalytic dechlorination of 2,4-dichlorophenol by Ni/Fe nanoparticles prepared in the presence of ultrasonic irradiation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2014.03.002
– volume: 8
  start-page: 543
  year: 2009
  ident: 10.1016/j.jhazmat.2016.08.075_bib0230
  article-title: Understanding biophysicochemical interactions at the nano–bio interface
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2442
– volume: 215
  start-page: 787
  year: 2016
  ident: 10.1016/j.jhazmat.2016.08.075_bib0090
  article-title: Palm shell extract capped silver nanoparticles—As efficient catalysts for degradation of dyes and as SERS substrates
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.01.027
– volume: 289
  start-page: 174
  year: 2015
  ident: 10.1016/j.jhazmat.2016.08.075_bib0145
  article-title: Polyvinyl alcohol-immobilized Phanerochaete chrysosporium and its application in the bioremediation of composite-polluted wastewater
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.02.043
– volume: 298
  start-page: 39
  year: 2006
  ident: 10.1016/j.jhazmat.2016.08.075_bib0010
  article-title: Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.11.063
– volume: 130
  start-page: 177
  year: 2008
  ident: 10.1016/j.jhazmat.2016.08.075_bib0185
  article-title: Ultrastructural localization and chemical binding of silver ions in human organotypic skin cultures
  publication-title: Histochem. Cell Biol.
  doi: 10.1007/s00418-008-0415-x
– volume: 317
  start-page: 198
  year: 2014
  ident: 10.1016/j.jhazmat.2016.08.075_bib0235
  article-title: Fenton-like zero-valent silver nanoparticle-mediated hydroxyl radical production
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.06.016
– volume: 44
  start-page: 2169
  year: 2010
  ident: 10.1016/j.jhazmat.2016.08.075_bib0140
  article-title: Ion release kinetics and particle persistence in aqueous nano-silver colloids
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9035557
– volume: 97
  start-page: 3149
  year: 2013
  ident: 10.1016/j.jhazmat.2016.08.075_bib0150
  article-title: Cadmium removal and 2,4-dichlorophenol degradation by immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-012-4121-1
– volume: 47
  start-page: 9363
  year: 2013
  ident: 10.1016/j.jhazmat.2016.08.075_bib0040
  article-title: Superabsorbent cryogels decorated with silver nanoparticles as a novel water technology for point-of-use disinfection
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401219s
– volume: 6
  start-page: 20813
  year: 2016
  ident: 10.1016/j.jhazmat.2016.08.075_bib0160
  article-title: Activity variation of Phanerochaete chrysosporium under nanosilver exposure by controlling of different sulfide sources
  publication-title: Sci. Rep.
  doi: 10.1038/srep20813
– volume: 197
  start-page: 169
  year: 2010
  ident: 10.1016/j.jhazmat.2016.08.075_bib0205
  article-title: Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2010.05.012
– volume: 46
  start-page: 6900
  year: 2012
  ident: 10.1016/j.jhazmat.2016.08.075_bib0070
  article-title: Environmental transformations of silver nanoparticles: impact on stability and toxicity
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2037405
– volume: 11
  start-page: 11
  year: 2014
  ident: 10.1016/j.jhazmat.2016.08.075_bib0195
  article-title: Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-11-11
– volume: 8
  start-page: 7333
  year: 2016
  ident: 10.1016/j.jhazmat.2016.08.075_bib0115
  article-title: Dechlorination mechanism of 2,4-dichlorophenol by magnetic MWCNTs supported Pd/Fe nanohybrids: rapid adsorption, gradual dechlorination, and desorption of phenol
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11859
– volume: 42
  start-page: 4447
  year: 2008
  ident: 10.1016/j.jhazmat.2016.08.075_bib0055
  article-title: Exposure modelling of engineered nanoparticles in the environment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es7029637
– volume: 88
  start-page: 403
  year: 2016
  ident: 10.1016/j.jhazmat.2016.08.075_bib0225
  article-title: Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.10.025
– volume: 18
  start-page: 4932
  year: 2007
  ident: 10.1016/j.jhazmat.2016.08.075_bib0025
  article-title: Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in Saccharomyces cerevisiae
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e07-06-0610
– volume: 12
  start-page: 670
  year: 2014
  ident: 10.1016/j.jhazmat.2016.08.075_bib0035
  article-title: A novel point-of-use water treatment method by antimicrobial nanosilver textile material
  publication-title: J. Water Health
  doi: 10.2166/wh.2014.197
– volume: 3
  start-page: 279
  year: 2009
  ident: 10.1016/j.jhazmat.2016.08.075_bib0075
  article-title: Cytotoxicity and genotoxicity of silver nanoparticles in human cells
  publication-title: ACS Nano
  doi: 10.1021/nn800596w
– volume: 12
  start-page: 4271
  year: 2012
  ident: 10.1016/j.jhazmat.2016.08.075_bib0135
  article-title: Negligible particle-specific antibacterial activity of silver nanoparticles
  publication-title: Nano Lett.
  doi: 10.1021/nl301934w
– volume: 7
  start-page: 7470
  year: 2015
  ident: 10.1016/j.jhazmat.2016.08.075_bib0155
  article-title: Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects
  publication-title: Nanoscale
  doi: 10.1039/C5NR01133G
– volume: 19
  start-page: 185
  year: 2010
  ident: 10.1016/j.jhazmat.2016.08.075_bib0200
  article-title: The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-009-0404-4
– volume: 45
  start-page: 9003
  year: 2011
  ident: 10.1016/j.jhazmat.2016.08.075_bib0130
  article-title: Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es201918f
– volume: 45
  start-page: 2360
  year: 2011
  ident: 10.1016/j.jhazmat.2016.08.075_bib0190
  article-title: More than the ions: the effects of silver nanoparticles on Lolium multiflorum
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es103995x
– volume: 285
  start-page: 236
  year: 2015
  ident: 10.1016/j.jhazmat.2016.08.075_bib0165
  article-title: Transport fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by Phanerochaete chrysosporium in aqueous solutions
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.12.003
– volume: 225–226
  start-page: 36
  year: 2012
  ident: 10.1016/j.jhazmat.2016.08.075_bib0005
  article-title: Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.04.061
– volume: 16
  start-page: 2346
  year: 2005
  ident: 10.1016/j.jhazmat.2016.08.075_bib0050
  article-title: The bactericidal effect of silver nanoparticles
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/16/10/059
– volume: 7
  start-page: 4171
  year: 2013
  ident: 10.1016/j.jhazmat.2016.08.075_bib0210
  article-title: Silver nanoparticles induced RNA polymerase-silver binding and RNA transcription inhibition in erythroid progenitor cells
  publication-title: ACS Nano
  doi: 10.1021/nn400594s
– volume: 182
  start-page: 252
  year: 2010
  ident: 10.1016/j.jhazmat.2016.08.075_bib0015
  article-title: Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.06.022
– volume: 37
  start-page: 517
  year: 2011
  ident: 10.1016/j.jhazmat.2016.08.075_bib0065
  article-title: Silver nanoparticles: behaviour and effects in the aquatic environment
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2010.10.012
– volume: 287
  start-page: 107
  year: 2002
  ident: 10.1016/j.jhazmat.2016.08.075_bib0170
  article-title: The importance of organic matter distribution and extract soil: solution ratio on the desorption of heavy metals from soils
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(01)01000-2
– volume: 96
  start-page: 44
  year: 2010
  ident: 10.1016/j.jhazmat.2016.08.075_bib0030
  article-title: Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2009.09.016
– volume: 49
  start-page: 1054
  year: 2014
  ident: 10.1016/j.jhazmat.2016.08.075_bib0080
  article-title: Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2014.03.015
– volume: 24
  start-page: 872
  year: 2010
  ident: 10.1016/j.jhazmat.2016.08.075_bib0220
  article-title: Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism
  publication-title: Toxicol. In Vitro
  doi: 10.1016/j.tiv.2009.12.001
– volume: 43
  start-page: 1501
  year: 2014
  ident: 10.1016/j.jhazmat.2016.08.075_bib0045
  article-title: Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60218D
– volume: 870
  start-page: 83
  year: 2015
  ident: 10.1016/j.jhazmat.2016.08.075_bib0020
  article-title: Highly-controllable imprinted polymer nanoshell at the surface of silica nanoparticles based room-temperature phosphorescence probe for detection of 2,4-dichlorophenol
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2015.02.025
– volume: 131
  start-page: 413
  year: 2014
  ident: 10.1016/j.jhazmat.2016.08.075_bib0095
  article-title: Biomimetic synthesis of silver nanoparticles using the fish scales of Labeo rohita and their application as catalysts for the reduction of aromatic nitro compounds
  publication-title: Spectrochim. Acta Part A
  doi: 10.1016/j.saa.2014.04.065
SSID ssj0001754
Score 2.536644
Snippet [Display omitted] •Synergies of AgNPs at low doses (0–60μM) in 2,4-DCP biodegradation were observed.•Maximum degradation rates of 2,4-DCP were more than 94% at...
Mechanisms of silver nanoparticles-mediated toxicity to Phanerochaete chrysosporium and the influence of silver nanoparticles (AgNPs) on the biodegradation of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 37
SubjectTerms 2,4-Dichlorophenol
Biodegradation
Biodegradation, Environmental
carbon dioxide
Chlorophenols - metabolism
cytotoxicity
dechlorination
Degradation
Dose-Response Relationship, Drug
Drug Synergism
Exposure
Fourier transform infrared spectroscopy
hydroxyl radicals
Metal Nanoparticles - toxicity
moieties
Nanoparticles
nanosilver
Nanostructure
Oxidation-Reduction
Phanerochaete - drug effects
Phanerochaete - metabolism
Phanerochaete chrysosporium
Silver
Silver - metabolism
Silver - pharmacology
Silver - toxicity
Silver nanoparticles
silver nitrate
Synergies
Toxicity
Title Toxicity mechanisms and synergies of silver nanoparticles in 2,4-dichlorophenol degradation by Phanerochaete chrysosporium
URI https://dx.doi.org/10.1016/j.jhazmat.2016.08.075
https://www.ncbi.nlm.nih.gov/pubmed/27607931
https://www.proquest.com/docview/1837024945
https://www.proquest.com/docview/1846405201
https://www.proquest.com/docview/1864527746
https://www.proquest.com/docview/2116902828
Volume 321
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKucABQfnoUqiMxJHsxrFjJ8eqotoWqJBopd4s27G1WXWTqtkVbA_97czkowWJthLXyI5ij-15L555Q8jHJObWqCAil6cuErbgEbhh_AEfvOBO5batRfDtWE5PxdFZerZB9odcGAyr7M_-7kxvT-v-yaSfzclFWU5-4KUeuFtEFLECN4sZ7ELhKh9f34Z5gHvsJKTwBgBa32bxTObj-cxcATDECC_ZKnliuOG__dNd-LP1QwfPybMeQNK97htfkA1fbZGnf8gKbpFHX83Pl-TqpP5VOgDZdOExvbdsFg01VUGbNeb7AUOmdaBNiaHRtDIVsOc-SI6WFU0-iago3QzoPCoPVPU5LVBXoivBRO2afod3eiy4ZQB3Uze7XDc1cuRytXhFTg8-n-xPo77SQuTSmC0jlaSWOxuE4sbESoZMChsLZoC0styZtDDBOQAn0hQhLpKMGcZTm3EWOM99wl-Tzaqu_DahiRU-cFaEzCqRA9wJFkBhHjufBWCj8YiIYX6162XIsRrGuR7izea6N4tGs2iskqnSERnfdLvodDge6pANxtN_LSgNvuKhrh8GY2vYbHiDAhNarxrNUCoICKu4t42QAqOL2H1t8D4ZkLe8uw0wc5m3jHhE3nQr7mbkiZIobMje_v8gd8iTBBEK_k1K35HN5eXKvwd8tbS77QbaJY_3Dr9Mj38DgM0mlA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHCspreRoJbmQ3fuR14ICAaku3FRJbqTdjO7E2q92k2uyq3R74U_xBZvJoQaKthNRrZEfxjD3zTWb8DSFvuS-Mjpz0bBJYT5pUeOCG8Qe8y6SwUWLqXgT7B-HwUH49Co42yK_uLgyWVba2v7HptbVunwxaaQ6O83zwHZN64G4RUfgRuNm2snIvW59A3FZ92P0MSn7H-c6X8aeh17YW8Gzgs6UX8cAIa5yMhNYQyrs4lMaXTEOUxhKrg1Q7a8Ebhzp1fspjppkITCyYEyLJkO0A7P5tCeYC2yb0f17UlYA_bjirMOUAn3dxbWgw7U8n-gyQKJaUhTV1KNY3_tshXgZ4a8e3c59stYiVfmyE8oBsZMU2ufcHj-E2uTXSJw_J2bg8zS2gejrP8D5xXs0rqouUVmu8YAghOS0drXKsxaaFLiBcb6vyaF5Q_l56aW4ns3KBVAdFOaMpElk0PZ-oWdNv8M4MO3xpAPrUThbrqsSgPF_NH5HDG5H_Y7JZlEX2lFBuZOYES11sIpkAvnIGUGji2yx2EP76PSI7-Srb8p5j-42Z6grcpqpVi0K1KGzLGQU90j-fdtwQf1w3Ie6Up_7awQqc03VT33TKVnC6MWUDAi1XlWLITQQRsrxyjAwlljOxq8ZgAhugfnj5GM4wZYoheI88aXbc-cp5FCKTInv2_4t8Te4Mx_sjNdo92HtO7nKER_grK3hBNpeLVfYSwN3SvKoPEyU_bvr0_gbUwGG6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toxicity+mechanisms+and+synergies+of+silver+nanoparticles+in+2%2C4-dichlorophenol+degradation+by+Phanerochaete+chrysosporium&rft.jtitle=Journal+of+hazardous+materials&rft.au=Huang%2C+Zhenzhen&rft.au=Chen%2C+Guiqiu&rft.au=Zeng%2C+Guangming&rft.au=Guo%2C+Zhi&rft.date=2017-01-05&rft.pub=Elsevier+B.V&rft.issn=0304-3894&rft.eissn=1873-3336&rft.volume=321&rft.spage=37&rft.epage=46&rft_id=info:doi/10.1016%2Fj.jhazmat.2016.08.075&rft.externalDocID=S0304389416307993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon