Toxicity mechanisms and synergies of silver nanoparticles in 2,4-dichlorophenol degradation by Phanerochaete chrysosporium
[Display omitted] •Synergies of AgNPs at low doses (0–60μM) in 2,4-DCP biodegradation were observed.•Maximum degradation rates of 2,4-DCP were more than 94% at low-level AgNPs.•AgNPs-mediated toxicity to P. chrysosporium arised from the “Trojan-horse” effects.•2,4-DCP was completely degraded into CO...
Saved in:
Published in | Journal of hazardous materials Vol. 321; pp. 37 - 46 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
05.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Synergies of AgNPs at low doses (0–60μM) in 2,4-DCP biodegradation were observed.•Maximum degradation rates of 2,4-DCP were more than 94% at low-level AgNPs.•AgNPs-mediated toxicity to P. chrysosporium arised from the “Trojan-horse” effects.•2,4-DCP was completely degraded into CO2 and H2O at optimum conditions.•Amino, carboxyl, carbonyl and sulfur-containing groups assist in Ag transportation.
Mechanisms of silver nanoparticles-mediated toxicity to Phanerochaete chrysosporium and the influence of silver nanoparticles (AgNPs) on the biodegradation of 2,4-dichlorophenol (2,4-DCP) have been systematically investigated. AgNPs at low doses (0–60μM) have greatly enhanced the degradation ability of P. chrysosporium to 2,4-DCP with the maximum degradation rates of more than 94%, exhibiting excellent synergies between AgNPs and P. chrysosporium in the degradation of 2,4-DCP. Meanwhile, removal of total Ag was also at high levels and highly pH dependent. However, significant inhibition was highlighted on 2,4-DCP biodegradation and Ag removal upon treatment with AgNPs at high doses and AgNO3 at low-level exposure. Results also suggested that AgNPs-induced cytotoxicity could arise from the “Trojan-horse” mechanism executing particle effects, ion effects, or both, ruling out extracellularly released Ag+. Moreover, under relatively low concentrations of AgNPs exposure, 2,4-DCP was broken into linear chain organics, and eventually turned into CO2 and H2O through reductive dechlorination and reaction with hydroxyl radicals. FTIR analysis showed that amino, carboxyl, carbonyl, and sulfur-containing functional groups played crucial roles in Ag transportation and the reduction of Ag+ to Ag0. |
---|---|
AbstractList | Mechanisms of silver nanoparticles-mediated toxicity to Phanerochaete chrysosporium and the influence of silver nanoparticles (AgNPs) on the biodegradation of 2,4-dichlorophenol (2,4-DCP) have been systematically investigated. AgNPs at low doses (0-60μM) have greatly enhanced the degradation ability of P. chrysosporium to 2,4-DCP with the maximum degradation rates of more than 94%, exhibiting excellent synergies between AgNPs and P. chrysosporium in the degradation of 2,4-DCP. Meanwhile, removal of total Ag was also at high levels and highly pH dependent. However, significant inhibition was highlighted on 2,4-DCP biodegradation and Ag removal upon treatment with AgNPs at high doses and AgNO
at low-level exposure. Results also suggested that AgNPs-induced cytotoxicity could arise from the "Trojan-horse" mechanism executing particle effects, ion effects, or both, ruling out extracellularly released Ag
. Moreover, under relatively low concentrations of AgNPs exposure, 2,4-DCP was broken into linear chain organics, and eventually turned into CO
and H
O through reductive dechlorination and reaction with hydroxyl radicals. FTIR analysis showed that amino, carboxyl, carbonyl, and sulfur-containing functional groups played crucial roles in Ag transportation and the reduction of Ag
to Ag
. [Display omitted] •Synergies of AgNPs at low doses (0–60μM) in 2,4-DCP biodegradation were observed.•Maximum degradation rates of 2,4-DCP were more than 94% at low-level AgNPs.•AgNPs-mediated toxicity to P. chrysosporium arised from the “Trojan-horse” effects.•2,4-DCP was completely degraded into CO2 and H2O at optimum conditions.•Amino, carboxyl, carbonyl and sulfur-containing groups assist in Ag transportation. Mechanisms of silver nanoparticles-mediated toxicity to Phanerochaete chrysosporium and the influence of silver nanoparticles (AgNPs) on the biodegradation of 2,4-dichlorophenol (2,4-DCP) have been systematically investigated. AgNPs at low doses (0–60μM) have greatly enhanced the degradation ability of P. chrysosporium to 2,4-DCP with the maximum degradation rates of more than 94%, exhibiting excellent synergies between AgNPs and P. chrysosporium in the degradation of 2,4-DCP. Meanwhile, removal of total Ag was also at high levels and highly pH dependent. However, significant inhibition was highlighted on 2,4-DCP biodegradation and Ag removal upon treatment with AgNPs at high doses and AgNO3 at low-level exposure. Results also suggested that AgNPs-induced cytotoxicity could arise from the “Trojan-horse” mechanism executing particle effects, ion effects, or both, ruling out extracellularly released Ag+. Moreover, under relatively low concentrations of AgNPs exposure, 2,4-DCP was broken into linear chain organics, and eventually turned into CO2 and H2O through reductive dechlorination and reaction with hydroxyl radicals. FTIR analysis showed that amino, carboxyl, carbonyl, and sulfur-containing functional groups played crucial roles in Ag transportation and the reduction of Ag+ to Ag0. Mechanisms of silver nanoparticles-mediated toxicity to Phanerochaete chrysosporium and the influence of silver nanoparticles (AgNPs) on the biodegradation of 2,4-dichlorophenol (2,4-DCP) have been systematically investigated. AgNPs at low doses (0-60 mu M) have greatly enhanced the degradation ability of P. chrysosporium to 2,4-DCP with the maximum degradation rates of more than 94%, exhibiting excellent synergies between AgNPs and P. chrysosporium in the degradation of 2,4-DCP. Meanwhile, removal of total Ag was also at high levels and highly pH dependent. However, significant inhibition was highlighted on 2,4-DCP biodegradation and Ag removal upon treatment with AgNPs at high doses and AgNO3 at low-level exposure. Results also suggested that AgNPs-induced cytotoxicity could arise from the "Trojan-horse" mechanism executing particle effects, ion effects, or both, ruling out extracellularly released Ag+. Moreover, under relatively low concentrations of AgNPs exposure, 2,4-DCP was broken into linear chain organics, and eventually turned into CO2 and H2O through reductive dechlorination and reaction with hydroxyl radicals. FTIR analysis showed that amino, carboxyl, carbonyl, and sulfur-containing functional groups played crucial roles in Ag transportation and the reduction of Ag+ to Ag0. Mechanisms of silver nanoparticles-mediated toxicity to Phanerochaete chrysosporium and the influence of silver nanoparticles (AgNPs) on the biodegradation of 2,4-dichlorophenol (2,4-DCP) have been systematically investigated. AgNPs at low doses (0-60μM) have greatly enhanced the degradation ability of P. chrysosporium to 2,4-DCP with the maximum degradation rates of more than 94%, exhibiting excellent synergies between AgNPs and P. chrysosporium in the degradation of 2,4-DCP. Meanwhile, removal of total Ag was also at high levels and highly pH dependent. However, significant inhibition was highlighted on 2,4-DCP biodegradation and Ag removal upon treatment with AgNPs at high doses and AgNO3 at low-level exposure. Results also suggested that AgNPs-induced cytotoxicity could arise from the "Trojan-horse" mechanism executing particle effects, ion effects, or both, ruling out extracellularly released Ag+. Moreover, under relatively low concentrations of AgNPs exposure, 2,4-DCP was broken into linear chain organics, and eventually turned into CO2 and H2O through reductive dechlorination and reaction with hydroxyl radicals. FTIR analysis showed that amino, carboxyl, carbonyl, and sulfur-containing functional groups played crucial roles in Ag transportation and the reduction of Ag+ to Ag0.Mechanisms of silver nanoparticles-mediated toxicity to Phanerochaete chrysosporium and the influence of silver nanoparticles (AgNPs) on the biodegradation of 2,4-dichlorophenol (2,4-DCP) have been systematically investigated. AgNPs at low doses (0-60μM) have greatly enhanced the degradation ability of P. chrysosporium to 2,4-DCP with the maximum degradation rates of more than 94%, exhibiting excellent synergies between AgNPs and P. chrysosporium in the degradation of 2,4-DCP. Meanwhile, removal of total Ag was also at high levels and highly pH dependent. However, significant inhibition was highlighted on 2,4-DCP biodegradation and Ag removal upon treatment with AgNPs at high doses and AgNO3 at low-level exposure. Results also suggested that AgNPs-induced cytotoxicity could arise from the "Trojan-horse" mechanism executing particle effects, ion effects, or both, ruling out extracellularly released Ag+. Moreover, under relatively low concentrations of AgNPs exposure, 2,4-DCP was broken into linear chain organics, and eventually turned into CO2 and H2O through reductive dechlorination and reaction with hydroxyl radicals. FTIR analysis showed that amino, carboxyl, carbonyl, and sulfur-containing functional groups played crucial roles in Ag transportation and the reduction of Ag+ to Ag0. Mechanisms of silver nanoparticles-mediated toxicity to Phanerochaete chrysosporium and the influence of silver nanoparticles (AgNPs) on the biodegradation of 2,4-dichlorophenol (2,4-DCP) have been systematically investigated. AgNPs at low doses (0–60μM) have greatly enhanced the degradation ability of P. chrysosporium to 2,4-DCP with the maximum degradation rates of more than 94%, exhibiting excellent synergies between AgNPs and P. chrysosporium in the degradation of 2,4-DCP. Meanwhile, removal of total Ag was also at high levels and highly pH dependent. However, significant inhibition was highlighted on 2,4-DCP biodegradation and Ag removal upon treatment with AgNPs at high doses and AgNO3 at low-level exposure. Results also suggested that AgNPs-induced cytotoxicity could arise from the “Trojan-horse” mechanism executing particle effects, ion effects, or both, ruling out extracellularly released Ag⁺. Moreover, under relatively low concentrations of AgNPs exposure, 2,4-DCP was broken into linear chain organics, and eventually turned into CO2 and H2O through reductive dechlorination and reaction with hydroxyl radicals. FTIR analysis showed that amino, carboxyl, carbonyl, and sulfur-containing functional groups played crucial roles in Ag transportation and the reduction of Ag⁺ to Ag⁰. |
Author | Wu, Jing Zhu, Yuan Zeng, Guangming Guo, Zhi He, Kai Chen, Guiqiu Zhang, Lihua Song, Zhongxian Hu, Liang Huang, Zhenzhen |
Author_xml | – sequence: 1 givenname: Zhenzhen surname: Huang fullname: Huang, Zhenzhen organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 2 givenname: Guiqiu surname: Chen fullname: Chen, Guiqiu email: gqchen@hnu.edu.cn organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 3 givenname: Guangming surname: Zeng fullname: Zeng, Guangming email: zgming@hnu.edu.cn organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 4 givenname: Zhi surname: Guo fullname: Guo, Zhi organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 5 givenname: Kai surname: He fullname: He, Kai organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 6 givenname: Liang surname: Hu fullname: Hu, Liang organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 7 givenname: Jing surname: Wu fullname: Wu, Jing organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 8 givenname: Lihua surname: Zhang fullname: Zhang, Lihua organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 9 givenname: Yuan surname: Zhu fullname: Zhu, Yuan organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 10 givenname: Zhongxian surname: Song fullname: Song, Zhongxian organization: Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27607931$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URKeFnwDykgUJfjsRC4QqXlIlWJS15Tg3jUeJPdiZivTX4zLTDZvpyrL1nXOvfM4FOgsxAEKvKakpoer9tt6O9n62S83KtSZNTbR8hja00bzinKsztCGciIo3rThHFzlvCSFUS_ECnTOtiG453aD7m_jHO7-seAY32uDznLENPc5rgHTrIeM44OynO0g42BB3Ni3eTeXdB8zeiar3bpxiirsRQpxwD7fJ9nbxMeBuxT-LJ6RYrGEB7Ma05ph3Mfn9_BI9H-yU4dXxvES_vny-ufpWXf_4-v3q03XlJKFLpZnsuOsGobm1RKuhUaIjglrCNG2dlb0dnFOKK9sPpGcNtZTLruF04LwFxi_R24PvLsXfe8iLmX12ME1ls7jPhlGqWsIa1pxEaZktmdZCPQEVShBZwnkCyjVhohWyoG-O6L6boTe75GebVvMYWAE-HACXYs4JBlPC-_fbS7J-MpSYh3qYrTnWwzzUw5DGlHoUtfxP_TjglO7jQQclpzsPyWTnITjofQK3mD76Ew5_AUnf2G8 |
CitedBy_id | crossref_primary_10_1016_j_cej_2018_11_196 crossref_primary_10_1166_jbn_2022_3299 crossref_primary_10_1016_j_chemosphere_2019_02_190 crossref_primary_10_1016_j_ijbiomac_2018_12_213 crossref_primary_10_1016_j_apcatb_2018_01_061 crossref_primary_10_1016_j_jes_2018_03_019 crossref_primary_10_1016_j_apcatb_2018_11_073 crossref_primary_10_1080_01490451_2019_1627443 crossref_primary_10_1007_s11356_022_21598_9 crossref_primary_10_1016_j_jece_2018_06_032 crossref_primary_10_1016_j_powtec_2019_09_091 crossref_primary_10_1016_j_carbpol_2019_05_032 crossref_primary_10_1016_j_scitotenv_2021_146132 crossref_primary_10_1007_s11356_019_04813_y crossref_primary_10_1007_s11356_022_22430_0 crossref_primary_10_1016_j_chemosphere_2018_03_144 crossref_primary_10_1080_10807039_2018_1562882 crossref_primary_10_1016_j_jhazmat_2021_126902 crossref_primary_10_1016_j_chemosphere_2017_12_185 crossref_primary_10_1021_acssuschemeng_8b05010 crossref_primary_10_1098_rsos_181769 crossref_primary_10_1007_s11356_023_29910_x crossref_primary_10_3390_nano10091764 crossref_primary_10_1016_j_jclepro_2021_126808 crossref_primary_10_1016_j_envpol_2019_113579 crossref_primary_10_1016_j_jhazmat_2019_121153 crossref_primary_10_1016_j_seppur_2023_125979 crossref_primary_10_1039_D0RA01727B crossref_primary_10_1016_j_jtice_2018_09_005 crossref_primary_10_1039_C6RA23675H crossref_primary_10_1016_j_eti_2022_102423 crossref_primary_10_1016_j_jcis_2019_08_013 crossref_primary_10_1155_2020_9789420 crossref_primary_10_1016_j_jcis_2019_02_030 crossref_primary_10_1007_s11356_019_07468_x crossref_primary_10_1007_s00253_017_8328_z crossref_primary_10_1016_j_jece_2022_107883 crossref_primary_10_1016_j_jece_2022_109024 crossref_primary_10_1016_j_biortech_2024_131085 crossref_primary_10_1016_j_colsurfb_2017_08_006 crossref_primary_10_1016_j_snb_2017_02_107 crossref_primary_10_1016_j_jphotochem_2024_116057 crossref_primary_10_1002_slct_202000502 crossref_primary_10_1016_j_clay_2019_02_010 crossref_primary_10_1002_smll_201800871 crossref_primary_10_1016_j_scitotenv_2018_06_302 crossref_primary_10_3390_nano8020120 crossref_primary_10_1016_j_jhazmat_2018_04_040 crossref_primary_10_1016_j_ijbiomac_2018_09_090 crossref_primary_10_1016_j_jcis_2019_01_078 crossref_primary_10_1016_j_envpol_2021_116560 crossref_primary_10_1016_j_jece_2022_107474 crossref_primary_10_1016_j_bej_2021_108212 crossref_primary_10_1080_03067319_2020_1837122 crossref_primary_10_1016_j_jcis_2021_11_024 crossref_primary_10_1088_1742_6596_1818_1_012209 crossref_primary_10_1007_s00449_017_1793_z crossref_primary_10_1016_j_jhazmat_2022_129944 crossref_primary_10_1016_j_snb_2018_12_068 crossref_primary_10_3390_jfb14040221 crossref_primary_10_1016_j_ccr_2022_214811 crossref_primary_10_1016_j_biortech_2022_127311 crossref_primary_10_1016_j_ijbiomac_2024_135556 crossref_primary_10_2174_1574885515999200425234517 crossref_primary_10_3389_fmicb_2022_982611 crossref_primary_10_1016_j_envexpbot_2019_02_018 crossref_primary_10_1016_j_molstruc_2017_10_092 crossref_primary_10_1002_jccs_201700067 crossref_primary_10_2139_ssrn_4005122 crossref_primary_10_1016_j_chemosphere_2022_134776 crossref_primary_10_1016_j_jhazmat_2018_10_088 crossref_primary_10_1002_ppsc_202400043 crossref_primary_10_1515_psr_2021_0060 crossref_primary_10_1007_s42823_021_00286_7 crossref_primary_10_1016_j_jcis_2019_05_067 crossref_primary_10_1016_j_jhazmat_2019_05_068 crossref_primary_10_1016_j_envpol_2021_116936 crossref_primary_10_1016_j_inoche_2023_112001 crossref_primary_10_1016_j_cej_2022_137453 crossref_primary_10_1016_j_chemosphere_2019_01_055 crossref_primary_10_1007_s10661_018_6697_0 crossref_primary_10_1016_j_seppur_2025_131639 crossref_primary_10_1016_j_biombioe_2020_105576 crossref_primary_10_1016_j_scitotenv_2022_157995 crossref_primary_10_1016_j_jece_2020_104622 crossref_primary_10_1007_s13233_020_8050_z crossref_primary_10_1016_j_jhazmat_2019_121350 crossref_primary_10_1080_09593330_2021_1895323 crossref_primary_10_1007_s00216_020_03074_w crossref_primary_10_1016_j_chemosphere_2018_07_192 crossref_primary_10_1016_j_ecoenv_2019_02_066 crossref_primary_10_1016_j_envpol_2023_122697 crossref_primary_10_1016_j_scitotenv_2019_135113 crossref_primary_10_1007_s10311_018_0800_1 crossref_primary_10_1007_s11356_020_09635_x crossref_primary_10_1016_j_envres_2019_04_010 crossref_primary_10_1016_j_jhazmat_2018_02_017 crossref_primary_10_1016_j_ecoenv_2018_03_071 crossref_primary_10_1016_j_jhazmat_2021_128033 crossref_primary_10_1016_j_arabjc_2019_08_007 crossref_primary_10_1108_IJSMS_11_2022_0197 crossref_primary_10_1007_s11244_022_01688_1 crossref_primary_10_3390_catal13040696 crossref_primary_10_1016_j_jiec_2019_04_017 crossref_primary_10_1016_j_molstruc_2019_03_014 crossref_primary_10_1039_C7EN00517B crossref_primary_10_1016_j_scitotenv_2023_168723 crossref_primary_10_1080_09593330_2021_1980829 crossref_primary_10_1016_j_ajps_2019_03_002 crossref_primary_10_1016_j_scitotenv_2019_135129 crossref_primary_10_15406_jabb_2018_05_00116 crossref_primary_10_1016_j_sjbs_2020_09_004 crossref_primary_10_28948_ngumuh_799013 crossref_primary_10_1016_j_chemosphere_2022_137591 crossref_primary_10_1088_1361_6501_aad6f2 |
Cites_doi | 10.1016/j.apsusc.2015.08.051 10.1021/es402046u 10.1080/10408440601177665 10.1016/j.jcis.2015.04.057 10.1016/j.cej.2013.01.093 10.1021/es8026314 10.1007/s00253-011-3313-4 10.1021/es803259g 10.1016/j.ultsonch.2014.03.002 10.1038/nmat2442 10.1016/j.molliq.2016.01.027 10.1016/j.jhazmat.2015.02.043 10.1016/j.jcis.2005.11.063 10.1007/s00418-008-0415-x 10.1016/j.jcat.2014.06.016 10.1021/es9035557 10.1007/s00253-012-4121-1 10.1021/es401219s 10.1038/srep20813 10.1016/j.toxlet.2010.05.012 10.1021/es2037405 10.1186/1743-8977-11-11 10.1021/acsami.5b11859 10.1021/es7029637 10.1016/j.watres.2015.10.025 10.1091/mbc.e07-06-0610 10.2166/wh.2014.197 10.1021/nn800596w 10.1021/nl301934w 10.1039/C5NR01133G 10.1007/s10646-009-0404-4 10.1021/es201918f 10.1021/es103995x 10.1016/j.jhazmat.2014.12.003 10.1016/j.jhazmat.2012.04.061 10.1088/0957-4484/16/10/059 10.1021/nn400594s 10.1016/j.jhazmat.2010.06.022 10.1016/j.envint.2010.10.012 10.1016/S0048-9697(01)01000-2 10.1016/j.aquatox.2009.09.016 10.1016/j.procbio.2014.03.015 10.1016/j.tiv.2009.12.001 10.1039/C3CS60218D 10.1016/j.aca.2015.02.025 10.1016/j.saa.2014.04.065 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. Copyright © 2016 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright © 2016 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7ST 7U7 C1K SOI 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2016.08.075 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Environment Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management Environment Abstracts Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Toxicology Abstracts Environment Abstracts Environmental Sciences and Pollution Management Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Ceramic Abstracts Engineering Research Database METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Materials Research Database Toxicology Abstracts MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
EndPage | 46 |
ExternalDocumentID | 27607931 10_1016_j_jhazmat_2016_08_075 S0304389416307993 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- SCE SEN SEW SSH T9H TAE VH1 WUQ CGR CUY CVF ECM EIF NPM 7X8 7ST 7U7 C1K SOI 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c501t-725b3cbf473aa076f864b041a02719ca5dafcc6636adf0d281a135b831f339e23 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Tue Aug 05 09:56:41 EDT 2025 Thu Jul 10 18:29:10 EDT 2025 Fri Jul 11 02:00:19 EDT 2025 Fri Jul 11 00:58:48 EDT 2025 Wed Feb 19 02:43:29 EST 2025 Tue Jul 01 00:49:09 EDT 2025 Thu Apr 24 23:02:18 EDT 2025 Fri Feb 23 02:29:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biodegradation 2,4-Dichlorophenol Phanerochaete chrysosporium Silver nanoparticles Synergies |
Language | English |
License | Copyright © 2016 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-725b3cbf473aa076f864b041a02719ca5dafcc6636adf0d281a135b831f339e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27607931 |
PQID | 1837024945 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2116902828 proquest_miscellaneous_1864527746 proquest_miscellaneous_1846405201 proquest_miscellaneous_1837024945 pubmed_primary_27607931 crossref_citationtrail_10_1016_j_jhazmat_2016_08_075 crossref_primary_10_1016_j_jhazmat_2016_08_075 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2016_08_075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-05 |
PublicationDateYYYYMMDD | 2017-01-05 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rawajfih, Nsour (bib0010) 2006; 298 Chen, Guan, Zeng, Li, Chen, Shang, Zhou, Li, He (bib0150) 2013; 97 Wang, Zang, Fan, Jia, Li, Deng, Wang (bib0110) 2015; 358 Levard, Hotze, Lowry, Brown (bib0070) 2012; 46 Xiu, Zhang, Puppala, Colvin, Alvarez (bib0135) 2012; 12 Rizzello, Pompa (bib0045) 2014; 43 Loo, Fane, Lim, Krantz, Liang, Liu, Hu (bib0040) 2013; 47 Zhang, Shen, Cissoko, Wo, Xu (bib0015) 2010; 182 Guo, Chen, Liu, Zeng, Huang, Chen, Hu (bib0160) 2016; 6 Nel, Mädler, Velegol, Xia, Hoek, Somasundaran, Klaessig, Castranova, Thompson (bib0230) 2009; 8 Xu, Liu, Lowry, Cao, Zhao, Zhou, Xu (bib0115) 2016; 8 Lansdown (bib0180) 2007; 37 Xu, Lv, Li, Li, Shen, Zhou, Xu (bib0005) 2012; 225–226 Wei, Zhou, Hao, Li, Xu, Lu, Wu, Dai, Pan, Yan (bib0020) 2015; 870 Schüller, Mamnun, Wolfger, Rockwell, Thorner, Kuchler (bib0025) 2007; 18 Muniyappan, Nagarajan (bib0080) 2014; 49 Yin, Cheng, Espinasse, Colman, Auffan, Wiesner, Rose, Liu, Bernhardt (bib0190) 2011; 45 Lubick (bib0215) 2008; 42 Fabrega, Fawcett, Renshaw, Lead (bib0060) 2009; 43 Zhao, Zheng, Li, Baig, Wu, Xu (bib0100) 2014; 21 Zuo, Chen, Zeng, Li, Yan, Chen, Guo, Huang, Tan (bib0165) 2015; 285 Chen, Zeng, Chen, Fan, Zou, Li, Hu, Long (bib0125) 2011; 91 Wang, Liu, Ma, Qu, Wang, Yu, He, Liu, Xia, Jiang (bib0210) 2013; 7 Sinha, Ahmaruzzaman, Sil, Bhattacharjee (bib0095) 2014; 131 Mueller, Nowack (bib0055) 2008; 42 Liu, Tang, Liu (bib0035) 2014; 12 He, Miller, Waite (bib0235) 2014; 317 Farkas, Christian, Urrea, Roos, Hassellöv, Tollefsen, Thomas (bib0030) 2010; 96 Wan, Wan, Ma, Huang, Wang, Ren (bib0120) 2013; 221 Liu, Hurt (bib0140) 2010; 44 Park, Yi, Kim, Choi, Park (bib0220) 2010; 24 Liang, Bradford, Simunek, Heggen, Vereecken, Klumpp (bib0175) 2013; 47 Yu, Yang, Ye, Peng, Wang (bib0085) 2015; 453 Xu, Wang (bib0105) 2012; 123 Gliga, Skoglund, Wallinder, Fadeel, Karlsson (bib0195) 2014; 11 Morones, Elechiguerra, Camacho, Holt, Kouri, Ramírez, Yacaman (bib0050) 2005; 16 Studer, Limbach, Van Duc, Krumeich, Athanassiou, Gerber, Moch, Stark (bib0205) 2010; 197 Zhang, Hu, Deng (bib0225) 2016; 88 Laban, Nies, Turco, Bickham, Sepúlveda (bib0200) 2010; 19 Vanaamudan, Soni, Sudhakar (bib0090) 2016; 215 Huang, Chen, Zeng, Chen, Zuo, Guo, Tan, Song, Niu (bib0145) 2015; 289 Fabrega, Luoma, Tyler, Galloway (bib0065) 2011; 37 Wang, Xia, Liu (bib0155) 2015; 7 Kristiansen, Ifversen, Danscher (bib0185) 2008; 130 AshaRani, Low Kah Mun, Hande, Valiyaveettil (bib0075) 2009; 3 Xiu, Ma, Alvarez (bib0130) 2011; 45 Yin, Impellitteri, You, Allen (bib0170) 2002; 287 Zhang (10.1016/j.jhazmat.2016.08.075_bib0015) 2010; 182 Levard (10.1016/j.jhazmat.2016.08.075_bib0070) 2012; 46 Xu (10.1016/j.jhazmat.2016.08.075_bib0105) 2012; 123 Gliga (10.1016/j.jhazmat.2016.08.075_bib0195) 2014; 11 Wang (10.1016/j.jhazmat.2016.08.075_bib0210) 2013; 7 Lubick (10.1016/j.jhazmat.2016.08.075_bib0215) 2008; 42 Yu (10.1016/j.jhazmat.2016.08.075_bib0085) 2015; 453 Kristiansen (10.1016/j.jhazmat.2016.08.075_bib0185) 2008; 130 Liu (10.1016/j.jhazmat.2016.08.075_bib0035) 2014; 12 Zhao (10.1016/j.jhazmat.2016.08.075_bib0100) 2014; 21 Yin (10.1016/j.jhazmat.2016.08.075_bib0170) 2002; 287 Guo (10.1016/j.jhazmat.2016.08.075_bib0160) 2016; 6 Vanaamudan (10.1016/j.jhazmat.2016.08.075_bib0090) 2016; 215 Chen (10.1016/j.jhazmat.2016.08.075_bib0125) 2011; 91 Yin (10.1016/j.jhazmat.2016.08.075_bib0190) 2011; 45 Studer (10.1016/j.jhazmat.2016.08.075_bib0205) 2010; 197 Xiu (10.1016/j.jhazmat.2016.08.075_bib0135) 2012; 12 Sinha (10.1016/j.jhazmat.2016.08.075_bib0095) 2014; 131 Xu (10.1016/j.jhazmat.2016.08.075_bib0115) 2016; 8 Liu (10.1016/j.jhazmat.2016.08.075_bib0140) 2010; 44 Xu (10.1016/j.jhazmat.2016.08.075_bib0005) 2012; 225–226 Loo (10.1016/j.jhazmat.2016.08.075_bib0040) 2013; 47 Mueller (10.1016/j.jhazmat.2016.08.075_bib0055) 2008; 42 Huang (10.1016/j.jhazmat.2016.08.075_bib0145) 2015; 289 Schüller (10.1016/j.jhazmat.2016.08.075_bib0025) 2007; 18 Wei (10.1016/j.jhazmat.2016.08.075_bib0020) 2015; 870 Liang (10.1016/j.jhazmat.2016.08.075_bib0175) 2013; 47 Fabrega (10.1016/j.jhazmat.2016.08.075_bib0065) 2011; 37 Laban (10.1016/j.jhazmat.2016.08.075_bib0200) 2010; 19 Zuo (10.1016/j.jhazmat.2016.08.075_bib0165) 2015; 285 Wan (10.1016/j.jhazmat.2016.08.075_bib0120) 2013; 221 Park (10.1016/j.jhazmat.2016.08.075_bib0220) 2010; 24 Muniyappan (10.1016/j.jhazmat.2016.08.075_bib0080) 2014; 49 Nel (10.1016/j.jhazmat.2016.08.075_bib0230) 2009; 8 Rizzello (10.1016/j.jhazmat.2016.08.075_bib0045) 2014; 43 Wang (10.1016/j.jhazmat.2016.08.075_bib0110) 2015; 358 Xiu (10.1016/j.jhazmat.2016.08.075_bib0130) 2011; 45 Lansdown (10.1016/j.jhazmat.2016.08.075_bib0180) 2007; 37 He (10.1016/j.jhazmat.2016.08.075_bib0235) 2014; 317 Morones (10.1016/j.jhazmat.2016.08.075_bib0050) 2005; 16 Rawajfih (10.1016/j.jhazmat.2016.08.075_bib0010) 2006; 298 Farkas (10.1016/j.jhazmat.2016.08.075_bib0030) 2010; 96 Fabrega (10.1016/j.jhazmat.2016.08.075_bib0060) 2009; 43 AshaRani (10.1016/j.jhazmat.2016.08.075_bib0075) 2009; 3 Zhang (10.1016/j.jhazmat.2016.08.075_bib0225) 2016; 88 Chen (10.1016/j.jhazmat.2016.08.075_bib0150) 2013; 97 Wang (10.1016/j.jhazmat.2016.08.075_bib0155) 2015; 7 |
References_xml | – volume: 47 start-page: 12229 year: 2013 end-page: 12237 ident: bib0175 article-title: Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil publication-title: Environ. Sci. Technol. – volume: 24 start-page: 872 year: 2010 end-page: 878 ident: bib0220 article-title: Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism publication-title: Toxicol. In Vitro – volume: 358 start-page: 479 year: 2015 end-page: 484 ident: bib0110 article-title: Defect-mediated of Cu@TiO publication-title: Appl. Surf. Sci. – volume: 19 start-page: 185 year: 2010 end-page: 195 ident: bib0200 article-title: The effects of silver nanoparticles on fathead minnow ( publication-title: Ecotoxicology – volume: 131 start-page: 413 year: 2014 end-page: 423 ident: bib0095 article-title: Biomimetic synthesis of silver nanoparticles using the fish scales of Labeo rohita and their application as catalysts for the reduction of aromatic nitro compounds publication-title: Spectrochim. Acta Part A – volume: 37 start-page: 237 year: 2007 end-page: 250 ident: bib0180 article-title: Critical observations on the neurotoxicity of silver publication-title: Crit. Rev. Toxicol. – volume: 21 start-page: 1714 year: 2014 end-page: 1721 ident: bib0100 article-title: Catalytic dechlorination of 2,4-dichlorophenol by Ni/Fe nanoparticles prepared in the presence of ultrasonic irradiation publication-title: Ultrason. Sonochem. – volume: 37 start-page: 517 year: 2011 end-page: 531 ident: bib0065 article-title: Silver nanoparticles: behaviour and effects in the aquatic environment publication-title: Environ. Int. – volume: 42 start-page: 8617 year: 2008 ident: bib0215 article-title: Nanosilver toxicity: ions: nanoparticles-or both? publication-title: Environ. Sci. Technol. – volume: 221 start-page: 300 year: 2013 end-page: 307 ident: bib0120 article-title: Reactivity characteristics of SiO publication-title: Chem. Eng. J. – volume: 123 start-page: 117 year: 2012 end-page: 126 ident: bib0105 article-title: Fenton-like degradation of 2,4-dichlorophenol using Fe publication-title: Appl. Catal. B – volume: 88 start-page: 403 year: 2016 end-page: 427 ident: bib0225 article-title: Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms publication-title: Water Res. – volume: 18 start-page: 4932 year: 2007 end-page: 4944 ident: bib0025 article-title: Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in publication-title: Mol. Biol. Cell – volume: 7 start-page: 7470 year: 2015 end-page: 7481 ident: bib0155 article-title: Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects publication-title: Nanoscale – volume: 317 start-page: 198 year: 2014 end-page: 205 ident: bib0235 article-title: Fenton-like zero-valent silver nanoparticle-mediated hydroxyl radical production publication-title: J. Catal. – volume: 12 start-page: 4271 year: 2012 end-page: 4275 ident: bib0135 article-title: Negligible particle-specific antibacterial activity of silver nanoparticles publication-title: Nano Lett. – volume: 287 start-page: 107 year: 2002 end-page: 119 ident: bib0170 article-title: The importance of organic matter distribution and extract soil: solution ratio on the desorption of heavy metals from soils publication-title: Sci. Total Environ. – volume: 289 start-page: 174 year: 2015 end-page: 183 ident: bib0145 article-title: Polyvinyl alcohol-immobilized publication-title: J. Hazard. Mater. – volume: 16 start-page: 2346 year: 2005 end-page: 2353 ident: bib0050 article-title: The bactericidal effect of silver nanoparticles publication-title: Nanotechnology – volume: 11 start-page: 11 year: 2014 ident: bib0195 article-title: Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release publication-title: Part. Fibre Toxicol. – volume: 44 start-page: 2169 year: 2010 end-page: 2175 ident: bib0140 article-title: Ion release kinetics and particle persistence in aqueous nano-silver colloids publication-title: Environ. Sci. Technol. – volume: 43 start-page: 7285 year: 2009 end-page: 7290 ident: bib0060 article-title: Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter publication-title: Environ. Sci. Technol. – volume: 215 start-page: 787 year: 2016 end-page: 794 ident: bib0090 article-title: Palm shell extract capped silver nanoparticles—As efficient catalysts for degradation of dyes and as SERS substrates publication-title: J. Mol. Liq. – volume: 8 start-page: 543 year: 2009 end-page: 557 ident: bib0230 article-title: Understanding biophysicochemical interactions at the nano–bio interface publication-title: Nat. Mater. – volume: 130 start-page: 177 year: 2008 end-page: 184 ident: bib0185 article-title: Ultrastructural localization and chemical binding of silver ions in human organotypic skin cultures publication-title: Histochem. Cell Biol. – volume: 197 start-page: 169 year: 2010 end-page: 174 ident: bib0205 article-title: Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles publication-title: Toxicol. Lett. – volume: 49 start-page: 1054 year: 2014 end-page: 1061 ident: bib0080 article-title: Green synthesis of silver nanoparticles with publication-title: Process Biochem. – volume: 6 start-page: 20813 year: 2016 end-page: 20818 ident: bib0160 article-title: Activity variation of publication-title: Sci. Rep. – volume: 285 start-page: 236 year: 2015 end-page: 244 ident: bib0165 article-title: Transport fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by publication-title: J. Hazard. Mater. – volume: 45 start-page: 2360 year: 2011 end-page: 2367 ident: bib0190 article-title: More than the ions: the effects of silver nanoparticles on publication-title: Environ. Sci. Technol. – volume: 43 start-page: 1501 year: 2014 end-page: 1518 ident: bib0045 article-title: Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines publication-title: Chem. Soc. Rev. – volume: 3 start-page: 279 year: 2009 end-page: 290 ident: bib0075 article-title: Cytotoxicity and genotoxicity of silver nanoparticles in human cells publication-title: ACS Nano – volume: 97 start-page: 3149 year: 2013 end-page: 3157 ident: bib0150 article-title: Cadmium removal and 2,4-dichlorophenol degradation by immobilized publication-title: Appl. Microbiol. Biotechnol. – volume: 12 start-page: 670 year: 2014 end-page: 677 ident: bib0035 article-title: A novel point-of-use water treatment method by antimicrobial nanosilver textile material publication-title: J. Water Health – volume: 8 start-page: 7333 year: 2016 end-page: 7342 ident: bib0115 article-title: Dechlorination mechanism of 2,4-dichlorophenol by magnetic MWCNTs supported Pd/Fe nanohybrids: rapid adsorption, gradual dechlorination, and desorption of phenol publication-title: ACS Appl. Mater. Interfaces – volume: 91 start-page: 811 year: 2011 end-page: 821 ident: bib0125 article-title: Simultaneous cadmium removal and 2,4-dichlorophenol degradation from aqueous solutions by publication-title: Appl. Microbiol. Biotechnol. – volume: 298 start-page: 39 year: 2006 end-page: 49 ident: bib0010 article-title: Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite publication-title: J. Colloid Interface Sci. – volume: 45 start-page: 9003 year: 2011 end-page: 9008 ident: bib0130 article-title: Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions publication-title: Environ. Sci. Technol. – volume: 42 start-page: 4447 year: 2008 end-page: 4453 ident: bib0055 article-title: Exposure modelling of engineered nanoparticles in the environment publication-title: Environ. Sci. Technol. – volume: 870 start-page: 83 year: 2015 end-page: 91 ident: bib0020 article-title: Highly-controllable imprinted polymer nanoshell at the surface of silica nanoparticles based room-temperature phosphorescence probe for detection of 2,4-dichlorophenol publication-title: Anal. Chim. Acta – volume: 46 start-page: 6900 year: 2012 end-page: 6914 ident: bib0070 article-title: Environmental transformations of silver nanoparticles: impact on stability and toxicity publication-title: Environ. Sci. Technol. – volume: 182 start-page: 252 year: 2010 end-page: 258 ident: bib0015 article-title: Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid publication-title: J. Hazard. Mater. – volume: 47 start-page: 9363 year: 2013 end-page: 9371 ident: bib0040 article-title: Superabsorbent cryogels decorated with silver nanoparticles as a novel water technology for point-of-use disinfection publication-title: Environ. Sci. Technol. – volume: 225–226 start-page: 36 year: 2012 end-page: 45 ident: bib0005 article-title: Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support publication-title: J. Hazard. Mater. – volume: 96 start-page: 44 year: 2010 end-page: 52 ident: bib0030 article-title: Effects of silver and gold nanoparticles on rainbow trout ( publication-title: Aquat. Toxicol. – volume: 7 start-page: 4171 year: 2013 end-page: 4186 ident: bib0210 article-title: Silver nanoparticles induced RNA polymerase-silver binding and RNA transcription inhibition in erythroid progenitor cells publication-title: ACS Nano – volume: 453 start-page: 100 year: 2015 end-page: 106 ident: bib0085 article-title: Silver nanoparticles decorated anatase TiO publication-title: J. Colloid Interface Sci. – volume: 358 start-page: 479 year: 2015 ident: 10.1016/j.jhazmat.2016.08.075_bib0110 article-title: Defect-mediated of Cu@TiO2 core–shell nanoparticles with oxygen vacancies for photocatalytic degradation 2,4-DCP under visible light irradiation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.08.051 – volume: 47 start-page: 12229 year: 2013 ident: 10.1016/j.jhazmat.2016.08.075_bib0175 article-title: Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil publication-title: Environ. Sci. Technol. doi: 10.1021/es402046u – volume: 37 start-page: 237 year: 2007 ident: 10.1016/j.jhazmat.2016.08.075_bib0180 article-title: Critical observations on the neurotoxicity of silver publication-title: Crit. Rev. Toxicol. doi: 10.1080/10408440601177665 – volume: 453 start-page: 100 year: 2015 ident: 10.1016/j.jhazmat.2016.08.075_bib0085 article-title: Silver nanoparticles decorated anatase TiO2 nanotubes for removal of pentachlorophenol from water publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2015.04.057 – volume: 123 start-page: 117 year: 2012 ident: 10.1016/j.jhazmat.2016.08.075_bib0105 article-title: Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles publication-title: Appl. Catal. B – volume: 221 start-page: 300 year: 2013 ident: 10.1016/j.jhazmat.2016.08.075_bib0120 article-title: Reactivity characteristics of SiO2-coated zero-valent iron nanoparticles for 2,4-dichlorophenol degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.01.093 – volume: 42 start-page: 8617 year: 2008 ident: 10.1016/j.jhazmat.2016.08.075_bib0215 article-title: Nanosilver toxicity: ions: nanoparticles-or both? publication-title: Environ. Sci. Technol. doi: 10.1021/es8026314 – volume: 91 start-page: 811 year: 2011 ident: 10.1016/j.jhazmat.2016.08.075_bib0125 article-title: Simultaneous cadmium removal and 2,4-dichlorophenol degradation from aqueous solutions by Phanerochaete chrysosporium publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3313-4 – volume: 43 start-page: 7285 year: 2009 ident: 10.1016/j.jhazmat.2016.08.075_bib0060 article-title: Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter publication-title: Environ. Sci. Technol. doi: 10.1021/es803259g – volume: 21 start-page: 1714 year: 2014 ident: 10.1016/j.jhazmat.2016.08.075_bib0100 article-title: Catalytic dechlorination of 2,4-dichlorophenol by Ni/Fe nanoparticles prepared in the presence of ultrasonic irradiation publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2014.03.002 – volume: 8 start-page: 543 year: 2009 ident: 10.1016/j.jhazmat.2016.08.075_bib0230 article-title: Understanding biophysicochemical interactions at the nano–bio interface publication-title: Nat. Mater. doi: 10.1038/nmat2442 – volume: 215 start-page: 787 year: 2016 ident: 10.1016/j.jhazmat.2016.08.075_bib0090 article-title: Palm shell extract capped silver nanoparticles—As efficient catalysts for degradation of dyes and as SERS substrates publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.01.027 – volume: 289 start-page: 174 year: 2015 ident: 10.1016/j.jhazmat.2016.08.075_bib0145 article-title: Polyvinyl alcohol-immobilized Phanerochaete chrysosporium and its application in the bioremediation of composite-polluted wastewater publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.02.043 – volume: 298 start-page: 39 year: 2006 ident: 10.1016/j.jhazmat.2016.08.075_bib0010 article-title: Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.11.063 – volume: 130 start-page: 177 year: 2008 ident: 10.1016/j.jhazmat.2016.08.075_bib0185 article-title: Ultrastructural localization and chemical binding of silver ions in human organotypic skin cultures publication-title: Histochem. Cell Biol. doi: 10.1007/s00418-008-0415-x – volume: 317 start-page: 198 year: 2014 ident: 10.1016/j.jhazmat.2016.08.075_bib0235 article-title: Fenton-like zero-valent silver nanoparticle-mediated hydroxyl radical production publication-title: J. Catal. doi: 10.1016/j.jcat.2014.06.016 – volume: 44 start-page: 2169 year: 2010 ident: 10.1016/j.jhazmat.2016.08.075_bib0140 article-title: Ion release kinetics and particle persistence in aqueous nano-silver colloids publication-title: Environ. Sci. Technol. doi: 10.1021/es9035557 – volume: 97 start-page: 3149 year: 2013 ident: 10.1016/j.jhazmat.2016.08.075_bib0150 article-title: Cadmium removal and 2,4-dichlorophenol degradation by immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-012-4121-1 – volume: 47 start-page: 9363 year: 2013 ident: 10.1016/j.jhazmat.2016.08.075_bib0040 article-title: Superabsorbent cryogels decorated with silver nanoparticles as a novel water technology for point-of-use disinfection publication-title: Environ. Sci. Technol. doi: 10.1021/es401219s – volume: 6 start-page: 20813 year: 2016 ident: 10.1016/j.jhazmat.2016.08.075_bib0160 article-title: Activity variation of Phanerochaete chrysosporium under nanosilver exposure by controlling of different sulfide sources publication-title: Sci. Rep. doi: 10.1038/srep20813 – volume: 197 start-page: 169 year: 2010 ident: 10.1016/j.jhazmat.2016.08.075_bib0205 article-title: Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2010.05.012 – volume: 46 start-page: 6900 year: 2012 ident: 10.1016/j.jhazmat.2016.08.075_bib0070 article-title: Environmental transformations of silver nanoparticles: impact on stability and toxicity publication-title: Environ. Sci. Technol. doi: 10.1021/es2037405 – volume: 11 start-page: 11 year: 2014 ident: 10.1016/j.jhazmat.2016.08.075_bib0195 article-title: Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release publication-title: Part. Fibre Toxicol. doi: 10.1186/1743-8977-11-11 – volume: 8 start-page: 7333 year: 2016 ident: 10.1016/j.jhazmat.2016.08.075_bib0115 article-title: Dechlorination mechanism of 2,4-dichlorophenol by magnetic MWCNTs supported Pd/Fe nanohybrids: rapid adsorption, gradual dechlorination, and desorption of phenol publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11859 – volume: 42 start-page: 4447 year: 2008 ident: 10.1016/j.jhazmat.2016.08.075_bib0055 article-title: Exposure modelling of engineered nanoparticles in the environment publication-title: Environ. Sci. Technol. doi: 10.1021/es7029637 – volume: 88 start-page: 403 year: 2016 ident: 10.1016/j.jhazmat.2016.08.075_bib0225 article-title: Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms publication-title: Water Res. doi: 10.1016/j.watres.2015.10.025 – volume: 18 start-page: 4932 year: 2007 ident: 10.1016/j.jhazmat.2016.08.075_bib0025 article-title: Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in Saccharomyces cerevisiae publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e07-06-0610 – volume: 12 start-page: 670 year: 2014 ident: 10.1016/j.jhazmat.2016.08.075_bib0035 article-title: A novel point-of-use water treatment method by antimicrobial nanosilver textile material publication-title: J. Water Health doi: 10.2166/wh.2014.197 – volume: 3 start-page: 279 year: 2009 ident: 10.1016/j.jhazmat.2016.08.075_bib0075 article-title: Cytotoxicity and genotoxicity of silver nanoparticles in human cells publication-title: ACS Nano doi: 10.1021/nn800596w – volume: 12 start-page: 4271 year: 2012 ident: 10.1016/j.jhazmat.2016.08.075_bib0135 article-title: Negligible particle-specific antibacterial activity of silver nanoparticles publication-title: Nano Lett. doi: 10.1021/nl301934w – volume: 7 start-page: 7470 year: 2015 ident: 10.1016/j.jhazmat.2016.08.075_bib0155 article-title: Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects publication-title: Nanoscale doi: 10.1039/C5NR01133G – volume: 19 start-page: 185 year: 2010 ident: 10.1016/j.jhazmat.2016.08.075_bib0200 article-title: The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos publication-title: Ecotoxicology doi: 10.1007/s10646-009-0404-4 – volume: 45 start-page: 9003 year: 2011 ident: 10.1016/j.jhazmat.2016.08.075_bib0130 article-title: Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions publication-title: Environ. Sci. Technol. doi: 10.1021/es201918f – volume: 45 start-page: 2360 year: 2011 ident: 10.1016/j.jhazmat.2016.08.075_bib0190 article-title: More than the ions: the effects of silver nanoparticles on Lolium multiflorum publication-title: Environ. Sci. Technol. doi: 10.1021/es103995x – volume: 285 start-page: 236 year: 2015 ident: 10.1016/j.jhazmat.2016.08.075_bib0165 article-title: Transport fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by Phanerochaete chrysosporium in aqueous solutions publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.12.003 – volume: 225–226 start-page: 36 year: 2012 ident: 10.1016/j.jhazmat.2016.08.075_bib0005 article-title: Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.04.061 – volume: 16 start-page: 2346 year: 2005 ident: 10.1016/j.jhazmat.2016.08.075_bib0050 article-title: The bactericidal effect of silver nanoparticles publication-title: Nanotechnology doi: 10.1088/0957-4484/16/10/059 – volume: 7 start-page: 4171 year: 2013 ident: 10.1016/j.jhazmat.2016.08.075_bib0210 article-title: Silver nanoparticles induced RNA polymerase-silver binding and RNA transcription inhibition in erythroid progenitor cells publication-title: ACS Nano doi: 10.1021/nn400594s – volume: 182 start-page: 252 year: 2010 ident: 10.1016/j.jhazmat.2016.08.075_bib0015 article-title: Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.06.022 – volume: 37 start-page: 517 year: 2011 ident: 10.1016/j.jhazmat.2016.08.075_bib0065 article-title: Silver nanoparticles: behaviour and effects in the aquatic environment publication-title: Environ. Int. doi: 10.1016/j.envint.2010.10.012 – volume: 287 start-page: 107 year: 2002 ident: 10.1016/j.jhazmat.2016.08.075_bib0170 article-title: The importance of organic matter distribution and extract soil: solution ratio on the desorption of heavy metals from soils publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(01)01000-2 – volume: 96 start-page: 44 year: 2010 ident: 10.1016/j.jhazmat.2016.08.075_bib0030 article-title: Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2009.09.016 – volume: 49 start-page: 1054 year: 2014 ident: 10.1016/j.jhazmat.2016.08.075_bib0080 article-title: Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities publication-title: Process Biochem. doi: 10.1016/j.procbio.2014.03.015 – volume: 24 start-page: 872 year: 2010 ident: 10.1016/j.jhazmat.2016.08.075_bib0220 article-title: Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism publication-title: Toxicol. In Vitro doi: 10.1016/j.tiv.2009.12.001 – volume: 43 start-page: 1501 year: 2014 ident: 10.1016/j.jhazmat.2016.08.075_bib0045 article-title: Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60218D – volume: 870 start-page: 83 year: 2015 ident: 10.1016/j.jhazmat.2016.08.075_bib0020 article-title: Highly-controllable imprinted polymer nanoshell at the surface of silica nanoparticles based room-temperature phosphorescence probe for detection of 2,4-dichlorophenol publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2015.02.025 – volume: 131 start-page: 413 year: 2014 ident: 10.1016/j.jhazmat.2016.08.075_bib0095 article-title: Biomimetic synthesis of silver nanoparticles using the fish scales of Labeo rohita and their application as catalysts for the reduction of aromatic nitro compounds publication-title: Spectrochim. Acta Part A doi: 10.1016/j.saa.2014.04.065 |
SSID | ssj0001754 |
Score | 2.536644 |
Snippet | [Display omitted]
•Synergies of AgNPs at low doses (0–60μM) in 2,4-DCP biodegradation were observed.•Maximum degradation rates of 2,4-DCP were more than 94% at... Mechanisms of silver nanoparticles-mediated toxicity to Phanerochaete chrysosporium and the influence of silver nanoparticles (AgNPs) on the biodegradation of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 37 |
SubjectTerms | 2,4-Dichlorophenol Biodegradation Biodegradation, Environmental carbon dioxide Chlorophenols - metabolism cytotoxicity dechlorination Degradation Dose-Response Relationship, Drug Drug Synergism Exposure Fourier transform infrared spectroscopy hydroxyl radicals Metal Nanoparticles - toxicity moieties Nanoparticles nanosilver Nanostructure Oxidation-Reduction Phanerochaete - drug effects Phanerochaete - metabolism Phanerochaete chrysosporium Silver Silver - metabolism Silver - pharmacology Silver - toxicity Silver nanoparticles silver nitrate Synergies Toxicity |
Title | Toxicity mechanisms and synergies of silver nanoparticles in 2,4-dichlorophenol degradation by Phanerochaete chrysosporium |
URI | https://dx.doi.org/10.1016/j.jhazmat.2016.08.075 https://www.ncbi.nlm.nih.gov/pubmed/27607931 https://www.proquest.com/docview/1837024945 https://www.proquest.com/docview/1846405201 https://www.proquest.com/docview/1864527746 https://www.proquest.com/docview/2116902828 |
Volume | 321 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKucABQfnoUqiMxJHsxrFjJ8eqotoWqJBopd4s27G1WXWTqtkVbA_97czkowWJthLXyI5ij-15L555Q8jHJObWqCAil6cuErbgEbhh_AEfvOBO5batRfDtWE5PxdFZerZB9odcGAyr7M_-7kxvT-v-yaSfzclFWU5-4KUeuFtEFLECN4sZ7ELhKh9f34Z5gHvsJKTwBgBa32bxTObj-cxcATDECC_ZKnliuOG__dNd-LP1QwfPybMeQNK97htfkA1fbZGnf8gKbpFHX83Pl-TqpP5VOgDZdOExvbdsFg01VUGbNeb7AUOmdaBNiaHRtDIVsOc-SI6WFU0-iago3QzoPCoPVPU5LVBXoivBRO2afod3eiy4ZQB3Uze7XDc1cuRytXhFTg8-n-xPo77SQuTSmC0jlaSWOxuE4sbESoZMChsLZoC0styZtDDBOQAn0hQhLpKMGcZTm3EWOM99wl-Tzaqu_DahiRU-cFaEzCqRA9wJFkBhHjufBWCj8YiIYX6162XIsRrGuR7izea6N4tGs2iskqnSERnfdLvodDge6pANxtN_LSgNvuKhrh8GY2vYbHiDAhNarxrNUCoICKu4t42QAqOL2H1t8D4ZkLe8uw0wc5m3jHhE3nQr7mbkiZIobMje_v8gd8iTBBEK_k1K35HN5eXKvwd8tbS77QbaJY_3Dr9Mj38DgM0mlA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHCspreRoJbmQ3fuR14ICAaku3FRJbqTdjO7E2q92k2uyq3R74U_xBZvJoQaKthNRrZEfxjD3zTWb8DSFvuS-Mjpz0bBJYT5pUeOCG8Qe8y6SwUWLqXgT7B-HwUH49Co42yK_uLgyWVba2v7HptbVunwxaaQ6O83zwHZN64G4RUfgRuNm2snIvW59A3FZ92P0MSn7H-c6X8aeh17YW8Gzgs6UX8cAIa5yMhNYQyrs4lMaXTEOUxhKrg1Q7a8Ebhzp1fspjppkITCyYEyLJkO0A7P5tCeYC2yb0f17UlYA_bjirMOUAn3dxbWgw7U8n-gyQKJaUhTV1KNY3_tshXgZ4a8e3c59stYiVfmyE8oBsZMU2ufcHj-E2uTXSJw_J2bg8zS2gejrP8D5xXs0rqouUVmu8YAghOS0drXKsxaaFLiBcb6vyaF5Q_l56aW4ns3KBVAdFOaMpElk0PZ-oWdNv8M4MO3xpAPrUThbrqsSgPF_NH5HDG5H_Y7JZlEX2lFBuZOYES11sIpkAvnIGUGji2yx2EP76PSI7-Srb8p5j-42Z6grcpqpVi0K1KGzLGQU90j-fdtwQf1w3Ie6Up_7awQqc03VT33TKVnC6MWUDAi1XlWLITQQRsrxyjAwlljOxq8ZgAhugfnj5GM4wZYoheI88aXbc-cp5FCKTInv2_4t8Te4Mx_sjNdo92HtO7nKER_grK3hBNpeLVfYSwN3SvKoPEyU_bvr0_gbUwGG6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toxicity+mechanisms+and+synergies+of+silver+nanoparticles+in+2%2C4-dichlorophenol+degradation+by+Phanerochaete+chrysosporium&rft.jtitle=Journal+of+hazardous+materials&rft.au=Huang%2C+Zhenzhen&rft.au=Chen%2C+Guiqiu&rft.au=Zeng%2C+Guangming&rft.au=Guo%2C+Zhi&rft.date=2017-01-05&rft.pub=Elsevier+B.V&rft.issn=0304-3894&rft.eissn=1873-3336&rft.volume=321&rft.spage=37&rft.epage=46&rft_id=info:doi/10.1016%2Fj.jhazmat.2016.08.075&rft.externalDocID=S0304389416307993 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |