The Role of Execution Noise in Movement Variability

1 Institute of Cognitive Neuroscience, University College London, London WC1N 3AR; 2 Sobell Department of Motor Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom; and 3 Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, The Netherlands Submitted...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 91; no. 2; pp. 1050 - 1063
Main Authors van Beers, Robert J, Haggard, Patrick, Wolpert, Daniel M
Format Journal Article
LanguageEnglish
Published United States Am Phys Soc 01.02.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1 Institute of Cognitive Neuroscience, University College London, London WC1N 3AR; 2 Sobell Department of Motor Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom; and 3 Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, The Netherlands Submitted 8 July 2003; accepted in final form 10 October 2003 The origin of variability in goal-directed movements is not well understood. Variability can originate from several neural processes such as target localization, movement planning, and movement execution. Here we examine variability resulting from noise in movement execution. In several experiments, subjects moved their unseen hand to visual targets, under conditions which were designed to minimize the variability expected from localization and planning processes. We tested short movements in 32 directions in a center-out reaching task. The variability in the movement endpoints and in the initial movement direction varied systematically with the movement direction, with some directions having up to twice the variability of others. In a second experiment we tested four movements in the same direction but with different extents. Here, the longer movements were systematically curved, and the endpoint ellipses were not aligned with the straight line between starting and end position, but they were roughly aligned with the last part of the trajectory. We show that the variability observed in these experiments cannot be explained by planning noise but is well explained by noise in movement execution. A combination of both signal-dependent and signal-independent noise in the amplitude of the motor commands and temporal noise in their duration can explain the observed variability. Our results suggest that, in general, execution noise accounts for at least a large proportion of movement variability. Address for reprint requests and other correspondence: R. J. van Beers, Dept. of Neuroscience, Erasmus MC, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands (E-mail: r.vanbeers{at}erasmusmc.nl ).
AbstractList The origin of variability in goal-directed movements is not well understood. Variability can originate from several neural processes such as target localization, movement planning, and movement execution. Here we examine variability resulting from noise in movement execution. In several experiments, subjects moved their unseen hand to visual targets, under conditions which were designed to minimize the variability expected from localization and planning processes. We tested short movements in 32 directions in a center-out reaching task. The variability in the movement endpoints and in the initial movement direction varied systematically with the movement direction, with some directions having up to twice the variability of others. In a second experiment we tested four movements in the same direction but with different extents. Here, the longer movements were systematically curved, and the endpoint ellipses were not aligned with the straight line between starting and end position, but they were roughly aligned with the last part of the trajectory. We show that the variability observed in these experiments cannot be explained by planning noise but is well explained by noise in movement execution. A combination of both signal-dependent and signal-independent noise in the amplitude of the motor commands and temporal noise in their duration can explain the observed variability. Our results suggest that, in general, execution noise accounts for at least a large proportion of movement variability.
1 Institute of Cognitive Neuroscience, University College London, London WC1N 3AR; 2 Sobell Department of Motor Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom; and 3 Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, The Netherlands Submitted 8 July 2003; accepted in final form 10 October 2003 The origin of variability in goal-directed movements is not well understood. Variability can originate from several neural processes such as target localization, movement planning, and movement execution. Here we examine variability resulting from noise in movement execution. In several experiments, subjects moved their unseen hand to visual targets, under conditions which were designed to minimize the variability expected from localization and planning processes. We tested short movements in 32 directions in a center-out reaching task. The variability in the movement endpoints and in the initial movement direction varied systematically with the movement direction, with some directions having up to twice the variability of others. In a second experiment we tested four movements in the same direction but with different extents. Here, the longer movements were systematically curved, and the endpoint ellipses were not aligned with the straight line between starting and end position, but they were roughly aligned with the last part of the trajectory. We show that the variability observed in these experiments cannot be explained by planning noise but is well explained by noise in movement execution. A combination of both signal-dependent and signal-independent noise in the amplitude of the motor commands and temporal noise in their duration can explain the observed variability. Our results suggest that, in general, execution noise accounts for at least a large proportion of movement variability. Address for reprint requests and other correspondence: R. J. van Beers, Dept. of Neuroscience, Erasmus MC, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands (E-mail: r.vanbeers{at}erasmusmc.nl ).
The origin of variability in goal-directed movements is not well understood. Variability can originate from several neural processes such as target localization, movement planning, and movement execution. Here we examine variability resulting from noise in movement execution. In several experiments, subjects moved their unseen hand to visual targets, under conditions which were designed to minimize the variability expected from localization and planning processes. We tested short movements in 32 directions in a center-out reaching task. The variability in the movement endpoints and in the initial movement direction varied systematically with the movement direction, with some directions having up to twice the variability of others. In a second experiment we tested four movements in the same direction but with different extents. Here, the longer movements were systematically curved, and the endpoint ellipses were not aligned with the straight line between starting and end position, but they were roughly aligned with the last part of the trajectory. We show that the variability observed in these experiments cannot be explained by planning noise but is well explained by noise in movement execution. A combination of both signal-dependent and signal-independent noise in the amplitude of the motor commands and temporal noise in their duration can explain the observed variability. Our results suggest that, in general, execution noise accounts for at least a large proportion of movement variability.The origin of variability in goal-directed movements is not well understood. Variability can originate from several neural processes such as target localization, movement planning, and movement execution. Here we examine variability resulting from noise in movement execution. In several experiments, subjects moved their unseen hand to visual targets, under conditions which were designed to minimize the variability expected from localization and planning processes. We tested short movements in 32 directions in a center-out reaching task. The variability in the movement endpoints and in the initial movement direction varied systematically with the movement direction, with some directions having up to twice the variability of others. In a second experiment we tested four movements in the same direction but with different extents. Here, the longer movements were systematically curved, and the endpoint ellipses were not aligned with the straight line between starting and end position, but they were roughly aligned with the last part of the trajectory. We show that the variability observed in these experiments cannot be explained by planning noise but is well explained by noise in movement execution. A combination of both signal-dependent and signal-independent noise in the amplitude of the motor commands and temporal noise in their duration can explain the observed variability. Our results suggest that, in general, execution noise accounts for at least a large proportion of movement variability.
Author Wolpert, Daniel M
Haggard, Patrick
van Beers, Robert J
Author_xml – sequence: 1
  fullname: van Beers, Robert J
– sequence: 2
  fullname: Haggard, Patrick
– sequence: 3
  fullname: Wolpert, Daniel M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/14561687$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLAzEQgIMoWh9Hr7InPW2dJJvs5ihSH-ADpHoN6XbWpqSbutlV--9NrQ8QxVOG8H3D8G2T9drXSMg-hT6lgh1P6z6AFKzPAPga6cU_llKhinXSA4gzhzzfItshTAEgF8A2yRbNhKSyyHuEDyeY3HmHia-SwSuWXWt9ndx4GzCxdXLtn3GGdZs8mMaakXW2XeySjcq4gHsf7w65PxsMTy_Sq9vzy9OTq7QUQNtUVipTKCUtCoVsVFIhDJNUoTDjcZVzIQtF4xVxVuOKSyUQhOQZFaOiQi75Djlc7Z03_qnD0OqZDSU6Z2r0XdAF0IxJ-T9IFZO5zLMIHnyA3WiGYz1v7Mw0C_3ZIwLpCigbH0KD1TcCetlbT2v93lsve0ee_-BL25plwrYx1v1pHa2siX2cvNgG9XyyCNY7_7hYoopqFlUB3_t_I88654b42kbly9DzmPINzeOghA
CitedBy_id crossref_primary_10_1152_jn_00148_2016
crossref_primary_10_1007_s10439_013_0821_7
crossref_primary_10_1146_annurev_neuro_072116_031548
crossref_primary_10_1371_journal_pcbi_1000856
crossref_primary_10_1152_jn_00317_2019
crossref_primary_10_1016_j_cognition_2013_09_009
crossref_primary_10_1155_2016_7641705
crossref_primary_10_3389_fnhum_2021_602405
crossref_primary_10_1371_journal_pone_0002070
crossref_primary_10_1080_00222895_2017_1383226
crossref_primary_10_2466_25_PMS_120v14x3
crossref_primary_10_1016_j_actpsy_2010_01_005
crossref_primary_10_1152_jn_01126_2006
crossref_primary_10_1121_10_0002923
crossref_primary_10_1038_srep17659
crossref_primary_10_1152_jn_00095_2007
crossref_primary_10_1007_s00221_005_0107_x
crossref_primary_10_1007_s00221_008_1309_9
crossref_primary_10_1038_nrn1427
crossref_primary_10_1016_j_brainres_2014_06_023
crossref_primary_10_1186_s12984_024_01448_0
crossref_primary_10_1016_j_neuropsychologia_2012_10_008
crossref_primary_10_1038_s41598_025_87331_x
crossref_primary_10_1016_j_jbiomech_2014_02_006
crossref_primary_10_1016_j_neuron_2006_10_034
crossref_primary_10_1016_j_neuropsychologia_2010_10_001
crossref_primary_10_1152_jn_01063_2010
crossref_primary_10_1152_jn_00804_2010
crossref_primary_10_1037_0033_295X_112_2_329
crossref_primary_10_1177_00315125211040748
crossref_primary_10_1371_journal_pone_0276308
crossref_primary_10_1146_annurev_psych_010419_051053
crossref_primary_10_1016_j_neuroscience_2016_04_027
crossref_primary_10_1109_JSEN_2024_3440325
crossref_primary_10_1016_j_neuroscience_2012_01_035
crossref_primary_10_1007_s00221_005_2277_y
crossref_primary_10_1371_journal_pone_0158606
crossref_primary_10_1080_00222890903397137
crossref_primary_10_1088_1741_2560_11_1_016004
crossref_primary_10_1152_jn_91324_2008
crossref_primary_10_1007_s00422_019_00794_w
crossref_primary_10_3390_s23125513
crossref_primary_10_1016_j_humov_2018_04_014
crossref_primary_10_1115_1_3131727
crossref_primary_10_1007_s00221_005_0340_3
crossref_primary_10_1016_j_conb_2005_10_009
crossref_primary_10_1121_1_4802649
crossref_primary_10_1098_rspb_2023_1475
crossref_primary_10_1152_jn_90834_2008
crossref_primary_10_14814_phy2_12650
crossref_primary_10_1038_s41467_018_06726_9
crossref_primary_10_1016_j_neuroscience_2024_01_004
crossref_primary_10_1007_s00221_014_4116_5
crossref_primary_10_1016_j_humov_2021_102918
crossref_primary_10_1016_j_dajour_2023_100218
crossref_primary_10_1155_2019_4251089
crossref_primary_10_1152_jn_00348_2006
crossref_primary_10_1152_jn_00493_2016
crossref_primary_10_3389_fnhum_2018_00331
crossref_primary_10_1016_j_humov_2020_102634
crossref_primary_10_1017_S0952523813000412
crossref_primary_10_1152_jn_00421_2014
crossref_primary_10_1186_s13229_024_00618_0
crossref_primary_10_1007_s00422_005_0041_9
crossref_primary_10_1007_s00422_006_0064_x
crossref_primary_10_1152_jn_00440_2012
crossref_primary_10_1152_jn_00011_2024
crossref_primary_10_1016_j_humov_2019_05_010
crossref_primary_10_1038_s41467_022_29457_4
crossref_primary_10_1152_jn_00849_2011
crossref_primary_10_1299_transjsme_21_00218
crossref_primary_10_1016_j_pmrj_2016_06_022
crossref_primary_10_1038_s41598_018_30314_y
crossref_primary_10_1038_s41598_018_21545_0
crossref_primary_10_1146_annurev_neuro_062111_150509
crossref_primary_10_1371_journal_pone_0064332
crossref_primary_10_1152_jn_00329_2017
crossref_primary_10_1016_j_chb_2020_106453
crossref_primary_10_1038_srep37181
crossref_primary_10_1093_cercor_bhaa224
crossref_primary_10_1523_JNEUROSCI_1169_08_2009
crossref_primary_10_1016_j_actpsy_2004_04_004
crossref_primary_10_1016_j_humov_2020_102621
crossref_primary_10_1007_s00221_012_3348_5
crossref_primary_10_1016_j_neuron_2011_10_006
crossref_primary_10_1038_s41598_021_88688_5
crossref_primary_10_1016_j_neuroimage_2017_01_017
crossref_primary_10_1523_JNEUROSCI_0968_07_2007
crossref_primary_10_1016_j_isci_2023_107204
crossref_primary_10_1371_journal_pone_0020387
crossref_primary_10_1016_j_humov_2007_11_006
crossref_primary_10_3389_fspor_2023_1131390
crossref_primary_10_1186_1743_0003_10_27
crossref_primary_10_1038_s41598_019_56016_7
crossref_primary_10_1016_j_jphysparis_2012_10_002
crossref_primary_10_1016_j_jht_2016_06_010
crossref_primary_10_1371_journal_pcbi_1012598
crossref_primary_10_7554_eLife_66320
crossref_primary_10_1152_jn_00061_2020
crossref_primary_10_1371_journal_pcbi_1012474
crossref_primary_10_1073_pnas_0607687103
crossref_primary_10_1152_jn_00590_2010
crossref_primary_10_1152_jn_00027_2019
crossref_primary_10_1152_jn_00355_2012
crossref_primary_10_1016_j_neuroscience_2015_01_005
crossref_primary_10_1080_17470210601100472
crossref_primary_10_1113_JP275715
crossref_primary_10_1007_s00221_014_4064_0
crossref_primary_10_1523_JNEUROSCI_2311_07_2007
crossref_primary_10_1016_j_neuroimage_2025_121018
crossref_primary_10_1111_psyp_12519
crossref_primary_10_1145_3524122
crossref_primary_10_1249_JES_0000000000000066
crossref_primary_10_3389_fnhum_2014_00823
crossref_primary_10_1152_jn_00743_2010
crossref_primary_10_1523_JNEUROSCI_1921_15_2016
crossref_primary_10_1007_s00221_022_06376_w
crossref_primary_10_1152_jn_00472_2019
crossref_primary_10_1007_s00221_009_2126_5
crossref_primary_10_1152_jn_00706_2012
crossref_primary_10_1152_jn_00787_2017
crossref_primary_10_1080_14763141_2010_535842
crossref_primary_10_1152_jn_00856_2011
crossref_primary_10_1371_journal_pcbi_1005023
crossref_primary_10_1016_j_ics_2006_01_038
crossref_primary_10_1007_s10439_017_1912_7
crossref_primary_10_1080_08990220_2021_1876017
crossref_primary_10_3389_fams_2018_00023
crossref_primary_10_7554_eLife_50654
crossref_primary_10_1152_jn_00290_2007
crossref_primary_10_3389_fnhum_2016_00609
crossref_primary_10_1371_journal_pone_0139988
crossref_primary_10_1007_s00221_017_4894_7
crossref_primary_10_1152_jn_01138_2006
crossref_primary_10_1371_journal_pone_0158466
crossref_primary_10_1523_JNEUROSCI_4747_05_2006
crossref_primary_10_1007_s00221_006_0617_1
crossref_primary_10_2490_jjrmc_57_56
crossref_primary_10_1109_ACCESS_2019_2901814
crossref_primary_10_1080_02699206_2019_1566401
crossref_primary_10_1152_jn_01150_2015
crossref_primary_10_1152_jn_00532_2020
crossref_primary_10_1088_1741_2560_2_3_S10
crossref_primary_10_7554_eLife_52380
crossref_primary_10_1007_s00422_012_0537_z
crossref_primary_10_1002_lary_28667
crossref_primary_10_1523_ENEURO_0050_18_2018
crossref_primary_10_1016_j_neuropsychologia_2004_11_009
crossref_primary_10_1007_s00221_016_4828_9
crossref_primary_10_1016_j_visres_2008_12_003
crossref_primary_10_1016_j_humov_2016_06_011
crossref_primary_10_1152_jn_00003_2022
crossref_primary_10_1177_10298649231199853
crossref_primary_10_1152_jn_00857_2013
crossref_primary_10_1080_02699931_2018_1463197
crossref_primary_10_1142_S0129065721500118
crossref_primary_10_1152_jn_00019_2013
crossref_primary_10_3389_fnbeh_2022_871884
crossref_primary_10_1007_s00221_009_1757_x
crossref_primary_10_1038_nn0308_248
crossref_primary_10_3389_fnhum_2022_890065
crossref_primary_10_1152_jn_00022_2017
crossref_primary_10_1016_j_cub_2021_01_049
crossref_primary_10_1111_j_1460_9568_2008_06028_x
crossref_primary_10_1007_s00221_015_4204_1
crossref_primary_10_1121_1_3531932
crossref_primary_10_1145_1993060_1993063
crossref_primary_10_1007_s40846_018_0439_1
crossref_primary_10_1007_s00221_009_1708_6
crossref_primary_10_1152_jn_00121_2021
crossref_primary_10_3389_fneur_2016_00008
crossref_primary_10_1177_1545968307303401
crossref_primary_10_7554_eLife_76577
crossref_primary_10_1109_LRA_2023_3264767
crossref_primary_10_1016_j_anbehav_2013_12_002
crossref_primary_10_1038_s41598_022_08755_3
crossref_primary_10_1016_j_humov_2011_07_003
crossref_primary_10_1152_jn_00217_2017
crossref_primary_10_1519_JSC_0b013e318298d48f
crossref_primary_10_1002_mds_22573
crossref_primary_10_1123_jab_2013_0282
crossref_primary_10_1152_jn_00364_2004
crossref_primary_10_1093_brain_awu006
crossref_primary_10_1162_NECO_a_00830
crossref_primary_10_1371_journal_pcbi_1002080
crossref_primary_10_1016_j_ijhcs_2025_103454
crossref_primary_10_1080_00222895_2011_626812
crossref_primary_10_3389_fnhum_2015_00694
crossref_primary_10_1038_s41598_021_82275_4
crossref_primary_10_1145_3577016
crossref_primary_10_1162_neco_a_01721
crossref_primary_10_1007_s00426_017_0888_0
crossref_primary_10_1016_j_neulet_2006_04_024
crossref_primary_10_1523_JNEUROSCI_0562_04_2004
crossref_primary_10_1088_1741_2560_12_1_016015
crossref_primary_10_1109_THMS_2014_2357178
crossref_primary_10_1007_s00221_015_4476_5
crossref_primary_10_1007_s40815_020_00855_4
crossref_primary_10_3390_app10103436
crossref_primary_10_1080_02701367_2011_10599742
crossref_primary_10_3389_fncom_2015_00143
crossref_primary_10_1016_j_neuron_2009_06_025
crossref_primary_10_1371_journal_pcbi_1003869
crossref_primary_10_1249_MSS_0b013e318210fe03
crossref_primary_10_1007_s00221_004_2106_8
crossref_primary_10_1080_00222895_2017_1400946
crossref_primary_10_1111_ejn_15378
crossref_primary_10_1152_jn_90974_2008
crossref_primary_10_1007_s00221_006_0423_9
crossref_primary_10_1523_ENEURO_0170_18_2018
crossref_primary_10_1152_jn_00222_2005
crossref_primary_10_1177_1541931214581180
crossref_primary_10_1299_transjsme_22_00149
crossref_primary_10_1177_2041669517701458
crossref_primary_10_1007_s00221_007_1192_9
crossref_primary_10_1152_jn_00644_2020
crossref_primary_10_1016_j_humov_2020_102583
crossref_primary_10_1007_s00221_008_1596_1
crossref_primary_10_1371_journal_pcbi_1007414
crossref_primary_10_1007_s00429_019_01923_8
crossref_primary_10_1016_j_brs_2016_12_001
crossref_primary_10_1152_jn_00458_2021
crossref_primary_10_1016_j_clinph_2010_10_003
crossref_primary_10_1080_00140139_2012_697583
crossref_primary_10_1371_journal_pcbi_1009047
crossref_primary_10_1016_j_humov_2010_01_006
crossref_primary_10_1002_mds_29775
crossref_primary_10_1038_s41598_021_93760_1
crossref_primary_10_1038_s41598_025_88396_4
crossref_primary_10_1177_1059712313501347
crossref_primary_10_1371_journal_pcbi_1000419
crossref_primary_10_1007_s00426_009_0229_z
crossref_primary_10_24985_kjss_2017_28_4_834
crossref_primary_10_3389_fnhum_2021_785992
crossref_primary_10_1371_journal_pcbi_1002159
crossref_primary_10_1038_nn_2748
crossref_primary_10_1152_jn_00307_2006
crossref_primary_10_1152_jn_91188_2008
crossref_primary_10_2139_ssrn_3919933
crossref_primary_10_1016_j_ijhcs_2007_01_003
crossref_primary_10_1016_j_humov_2005_03_001
crossref_primary_10_1152_jn_00486_2015
crossref_primary_10_1152_jn_00390_2018
crossref_primary_10_1016_j_neuroimage_2015_06_070
crossref_primary_10_1016_j_neuropsychologia_2008_12_039
crossref_primary_10_3389_fnhum_2019_00046
crossref_primary_10_1080_17470218_2015_1083596
crossref_primary_10_1109_TNSRE_2020_2996963
crossref_primary_10_1152_jn_00087_2020
crossref_primary_10_1371_journal_pone_0227913
crossref_primary_10_1242_jeb_243237
crossref_primary_10_1523_JNEUROSCI_2646_19_2020
crossref_primary_10_1016_j_neuroscience_2008_12_038
crossref_primary_10_3389_fncir_2022_836121
crossref_primary_10_1007_s00429_020_02034_5
crossref_primary_10_1371_journal_pone_0049373
crossref_primary_10_1523_JNEUROSCI_1650_17_2017
crossref_primary_10_1016_j_jsams_2009_03_010
crossref_primary_10_1371_journal_pone_0103387
crossref_primary_10_1002_cne_24889
crossref_primary_10_1523_JNEUROSCI_5359_07_2008
crossref_primary_10_3389_fnbot_2018_00076
crossref_primary_10_1016_j_ridd_2013_08_012
crossref_primary_10_1152_jn_00970_2007
crossref_primary_10_1080_10447318_2021_2002054
crossref_primary_10_1371_journal_pone_0097447
crossref_primary_10_1152_jn_00872_2017
crossref_primary_10_1519_JSC_0b013e318240ebf1
crossref_primary_10_2478_v10054_009_0020_5
crossref_primary_10_1007_s00221_004_2147_z
crossref_primary_10_1016_j_tics_2021_08_002
crossref_primary_10_1016_j_humov_2019_04_017
crossref_primary_10_1109_JBHI_2024_3453603
crossref_primary_10_1038_s41467_023_43257_4
crossref_primary_10_1371_journal_pone_0153179
crossref_primary_10_3389_fnins_2022_971382
crossref_primary_10_1016_j_humov_2017_11_005
crossref_primary_10_1080_24748668_2017_1352432
crossref_primary_10_1152_jn_00306_2010
crossref_primary_10_1007_s10827_007_0041_y
crossref_primary_10_1080_00222895_2020_1772712
crossref_primary_10_1007_s00221_024_06922_8
crossref_primary_10_1523_JNEUROSCI_3011_09_2009
crossref_primary_10_1002_mus_20954
crossref_primary_10_1109_TVCG_2021_3106494
crossref_primary_10_1007_s11357_010_9190_4
crossref_primary_10_1155_2015_842804
crossref_primary_10_1152_jn_00593_2014
crossref_primary_10_1016_j_visres_2010_02_010
crossref_primary_10_1249_JES_0000000000000338
crossref_primary_10_1038_nrn2258
crossref_primary_10_1016_j_humov_2008_04_003
crossref_primary_10_1093_cercor_bht181
crossref_primary_10_1016_j_actpsy_2013_02_011
crossref_primary_10_1007_s00221_011_2822_9
crossref_primary_10_1016_j_ifacol_2022_09_411
crossref_primary_10_1080_02687030701632161
crossref_primary_10_1371_journal_pcbi_1008707
crossref_primary_10_1044_2016_JSLHR_S_15_0367
crossref_primary_10_1093_cercor_bhq231
crossref_primary_10_1152_jn_00284_2009
crossref_primary_10_1152_jn_00167_2022
crossref_primary_10_1123_mc_2018_0077
crossref_primary_10_1016_j_humov_2015_06_009
crossref_primary_10_1016_j_jbiomech_2016_11_048
crossref_primary_10_1016_j_celrep_2022_111849
crossref_primary_10_1016_j_celrep_2022_111608
crossref_primary_10_1080_02640414_2015_1057211
crossref_primary_10_3389_fnhum_2017_00531
crossref_primary_10_1038_s41598_018_32648_z
crossref_primary_10_1007_s00221_010_2487_9
crossref_primary_10_1371_journal_pone_0073239
crossref_primary_10_1002_hbm_23972
crossref_primary_10_1038_s41598_022_17485_5
crossref_primary_10_1152_jn_00495_2011
crossref_primary_10_1371_journal_pone_0031075
Cites_doi 10.1080/17470214808416749
10.1006/ccog.1998.0370
10.1037/0096-1523.22.1.42
10.1007/PL00005716
10.1152/jn.1997.77.3.1644
10.1152/jn.01020.2002
10.1007/BF00228753
10.1037/0096-1523.24.2.569
10.1017/CBO9780511564345
10.1037/0033-295X.95.3.340
10.1152/jn.1990.63.1.161
10.1007/s002210100689
10.4135/9781412984928
10.1007/BF00241415
10.1123/mcj.3.4.414
10.1037/0096-1523.21.1.3
10.1152/jn.1991.66.6.2125
10.1037/0096-1523.25.3.837
10.1126/science.7569931
10.1523/JNEUROSCI.05-09-02318.1985
10.1007/BF00227302
10.1152/jn.1999.81.5.2140
10.1007/BF00231981
10.1016/0042-6989(77)90067-0
10.1038/nn963
10.1007/BF00241416
10.1152/jn.2002.88.3.1533
10.1093/biomet/67.1.175
10.1037/h0056952
10.1139/y95-037
10.3758/BF03198607
10.1101/SQB.1990.055.01.079
10.1007/s002210100797
10.1523/JNEUROSCI.18-20-08423.1998
10.1007/BF00353957
10.1007/s002210100834
10.1038/29528
10.1037/0096-1523.9.1.58
10.1016/0167-9457(95)00027-3
10.1007/BF00355754
10.1007/s00221-002-1232-4
10.1007/s002210050890
10.1007/s002210050525
10.1016/S0893-6080(96)00035-4
10.1016/0304-3940(94)90689-0
10.1152/jn.1999.81.3.1355
10.1007/s002210050855
10.1007/BF00204593
10.1037/h0092992
10.1152/jn.1997.78.3.1601
10.1152/jn.1994.71.5.1848
10.1007/s002210050669
10.2466/pms.1980.50.1.239
10.1037/h0055392
10.1037/0033-295X.86.5.415
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1152/jn.00652.2003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 1063
ExternalDocumentID 14561687
10_1152_jn_00652_2003
jn_91_2_1050
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
0VX
1Z7
2WC
39C
3O-
41
53G
55
5GY
5VS
AALRV
ABFLS
ABIVO
ABPTK
ABUFD
ABZEH
ACGFS
ACNCT
ADACO
ADBBV
ADBIT
ADKLL
AENEX
AETEA
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FH7
FRP
GJ
GX1
H~9
KQ8
L7B
MVM
NEJ
O0-
OHT
OK1
P2P
RAP
RHF
RHI
RPL
SJN
UHB
UPT
UQL
WH7
WOQ
WOW
X
X7M
ZA5
ZGI
ZXP
ZY4
---
-DZ
-~X
.55
.GJ
18M
1CY
29L
4.4
41~
8M5
AAYXX
ABCQX
ABHWK
ABJNI
ABKWE
ACGFO
ADFNX
ADHGD
ADIYS
AFOSN
AI.
AIZAD
BKKCC
BTFSW
CITATION
EMOBN
H13
ITBOX
RPRKH
TR2
VH1
W8F
XJT
XOL
XSW
YBH
YQT
YSK
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7TK
7X8
ID FETCH-LOGICAL-c501t-6f949e661889e2bc155a2619e5addf7356891168df79df3695e0563415b8fe363
ISSN 0022-3077
IngestDate Fri Jul 11 10:36:16 EDT 2025
Fri Jul 11 04:04:20 EDT 2025
Wed Feb 19 01:51:53 EST 2025
Tue Jul 01 01:16:44 EDT 2025
Thu Apr 24 23:06:30 EDT 2025
Tue Jan 05 17:54:12 EST 2021
Mon May 06 12:25:02 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c501t-6f949e661889e2bc155a2619e5addf7356891168df79df3695e0563415b8fe363
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://jn.physiology.org/content/91/2/1050.full?sid=2c2a998a-7232-4cd1-9428-242c7d8c57af
PMID 14561687
PQID 19267674
PQPubID 23462
PageCount 14
ParticipantIDs crossref_primary_10_1152_jn_00652_2003
crossref_citationtrail_10_1152_jn_00652_2003
proquest_miscellaneous_19267674
proquest_miscellaneous_80142666
pubmed_primary_14561687
highwire_physiology_jn_91_2_1050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20040201
2004-02-00
2004-Feb
PublicationDateYYYYMMDD 2004-02-01
PublicationDate_xml – month: 02
  year: 2004
  text: 20040201
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2004
Publisher Am Phys Soc
Publisher_xml – name: Am Phys Soc
References REF9
REF7
REF8
REF5
REF6
REF3
REF4
REF40
REF44
REF43
REF42
REF41
REF48
REF47
REF46
REF45
REF49
REF33
REF32
REF31
REF30
REF37
REF36
REF35
REF34
REF1
REF2
REF39
REF38
REF22
REF21
REF20
REF26
REF25
REF24
REF23
REF29
REF28
REF27
REF51
REF50
REF11
REF55
REF10
REF54
REF53
REF52
REF15
REF59
REF14
REF58
REF13
REF57
REF12
REF56
REF19
REF18
REF17
REF16
References_xml – ident: REF54
  doi: 10.1080/17470214808416749
– ident: REF41
  doi: 10.1006/ccog.1998.0370
– ident: REF20
  doi: 10.1037/0096-1523.22.1.42
– ident: REF33
  doi: 10.1007/PL00005716
– ident: REF11
  doi: 10.1152/jn.1997.77.3.1644
– ident: REF19
  doi: 10.1152/jn.01020.2002
– ident: REF42
  doi: 10.1007/BF00228753
– ident: REF28
– ident: REF55
  doi: 10.1037/0096-1523.24.2.569
– ident: REF14
  doi: 10.1017/CBO9780511564345
– ident: REF35
  doi: 10.1037/0033-295X.95.3.340
– ident: REF10
  doi: 10.1152/jn.1990.63.1.161
– ident: REF51
  doi: 10.1007/s002210100689
– ident: REF13
  doi: 10.4135/9781412984928
– ident: REF18
  doi: 10.1007/BF00241415
– ident: REF26
  doi: 10.1123/mcj.3.4.414
– ident: REF25
  doi: 10.1037/0096-1523.21.1.3
– ident: REF40
  doi: 10.1152/jn.1991.66.6.2125
– ident: REF44
  doi: 10.1037/0096-1523.25.3.837
– ident: REF57
  doi: 10.1126/science.7569931
– ident: REF3
  doi: 10.1523/JNEUROSCI.05-09-02318.1985
– ident: REF48
  doi: 10.1007/BF00227302
– ident: REF38
  doi: 10.1152/jn.1999.81.5.2140
– ident: REF4
  doi: 10.1007/BF00231981
– ident: REF21
  doi: 10.1016/0042-6989(77)90067-0
– ident: REF46
  doi: 10.1038/nn963
– ident: REF17
  doi: 10.1007/BF00241416
– ident: REF27
  doi: 10.1152/jn.2002.88.3.1533
– ident: REF37
  doi: 10.1093/biomet/67.1.175
– ident: REF52
– ident: REF59
– ident: REF7
  doi: 10.1037/h0056952
– ident: REF12
  doi: 10.1139/y95-037
– ident: REF56
  doi: 10.3758/BF03198607
– ident: REF16
  doi: 10.1101/SQB.1990.055.01.079
– ident: REF45
  doi: 10.1007/s002210100797
– ident: REF32
  doi: 10.1523/JNEUROSCI.18-20-08423.1998
– ident: REF24
  doi: 10.1007/BF00353957
– ident: REF30
  doi: 10.1007/s002210100834
– ident: REF22
  doi: 10.1038/29528
– ident: REF39
  doi: 10.1037/0096-1523.9.1.58
– ident: REF53
  doi: 10.1016/0167-9457(95)00027-3
– ident: REF23
  doi: 10.1007/BF00355754
– ident: REF6
  doi: 10.1007/s00221-002-1232-4
– ident: REF2
– ident: REF5
  doi: 10.1007/s002210050890
– ident: REF49
  doi: 10.1007/s002210050525
– ident: REF36
  doi: 10.1016/S0893-6080(96)00035-4
– ident: REF1
  doi: 10.1016/0304-3940(94)90689-0
– ident: REF50
  doi: 10.1152/jn.1999.81.3.1355
– ident: REF29
  doi: 10.1007/s002210050855
– ident: REF47
  doi: 10.1007/BF00204593
– ident: REF58
  doi: 10.1037/h0092992
– ident: REF31
  doi: 10.1152/jn.1997.78.3.1601
– ident: REF9
  doi: 10.1152/jn.1994.71.5.1848
– ident: REF34
  doi: 10.1007/s002210050669
– ident: REF8
  doi: 10.2466/pms.1980.50.1.239
– ident: REF15
  doi: 10.1037/h0055392
– ident: REF43
  doi: 10.1037/0033-295X.86.5.415
SSID ssj0007502
Score 2.3229723
Snippet 1 Institute of Cognitive Neuroscience, University College London, London WC1N 3AR; 2 Sobell Department of Motor Neuroscience, Institute of Neurology,...
The origin of variability in goal-directed movements is not well understood. Variability can originate from several neural processes such as target...
SourceID proquest
pubmed
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1050
SubjectTerms Adolescent
Adult
Arm - physiology
Biomechanical Phenomena - methods
Electricity
Female
Humans
Male
Movement - physiology
Photic Stimulation - methods
Psychomotor Performance - physiology
Title The Role of Execution Noise in Movement Variability
URI http://jn.physiology.org/cgi/content/abstract/91/2/1050
https://www.ncbi.nlm.nih.gov/pubmed/14561687
https://www.proquest.com/docview/19267674
https://www.proquest.com/docview/80142666
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLggoDzC0wfUS7uQxHbiHAtqtYJSQMpKe7OcrF21ap1Vm6KWX8_YsZONtCselyiKZr2RP8f-xp75BqF3eU1IouMcEMirCS1SBZ-U1DAZckk0U5pVNt_563E2ndHPczYfCkO67JK2el__WptX8j-owjPA1WbJ_gOyfaPwAO4BX7gCwnD9a4xDeKC6UbX7q13TnF45KZCLxomBt7s_wSHu9LhHh7grZNTJWrpdjtE2u01u-qh8GbUuCHs4R5rKkxN56Xlo28vruzjf86XPBepS2P2ea9hdoCEgWY-i_WNfasXPmEWyMjLSlekPyFq8fl5mVuf1zNgwOub0P8mwAIVD9-Nv4nB2dCTKg3l5F91LgfjbmhRffgz678BvBv13eKugmsrSD6PGxywjKD9v9iIcmygfoge-5_F-h-kjdEeZx2h738i2ubjFO_h7D8U2IgAztjDjRuMeZuxgxqcGB5jxCsxP0OzwoPw0nfhaF5OaxUk7yXRBCwVkifNCpVUNNE9a51YxWIB0TljGYVnKONwXC02ygimgrkBBWMW1Ihl5irZMY9RzhHWugGfSWgMzpyrRnMVULTilGlY-KfMI7YW-EbUXgrf1SM6FcwhZKs6McF1pa5SSCO305stOAWWT4V7oaDEMWGG3UkrAGYyLRKTCjhGxXOgI4XXm0GRvFqG3AS8Bs549ypJGNddXAvwSqzRIN1tYVSQgn1mEnnVADy9vfYaM5y_--NuX6P7wTbxCW-3ltXoNHLSt3rhh-RtxhYdh
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+execution+noise+in+movement+variability&rft.jtitle=Journal+of+neurophysiology&rft.au=van+Beers%2C+Robert+J&rft.au=Haggard%2C+Patrick&rft.au=Wolpert%2C+Daniel+M&rft.date=2004-02-01&rft.issn=0022-3077&rft.volume=91&rft.issue=2&rft.spage=1050&rft_id=info:doi/10.1152%2Fjn.00652.2003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon