The Role of Execution Noise in Movement Variability
1 Institute of Cognitive Neuroscience, University College London, London WC1N 3AR; 2 Sobell Department of Motor Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom; and 3 Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, The Netherlands Submitted...
Saved in:
Published in | Journal of neurophysiology Vol. 91; no. 2; pp. 1050 - 1063 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Am Phys Soc
01.02.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1 Institute of Cognitive Neuroscience, University College London, London WC1N 3AR; 2 Sobell Department of Motor Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom; and 3 Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, The Netherlands
Submitted 8 July 2003;
accepted in final form 10 October 2003
The origin of variability in goal-directed movements is not well understood. Variability can originate from several neural processes such as target localization, movement planning, and movement execution. Here we examine variability resulting from noise in movement execution. In several experiments, subjects moved their unseen hand to visual targets, under conditions which were designed to minimize the variability expected from localization and planning processes. We tested short movements in 32 directions in a center-out reaching task. The variability in the movement endpoints and in the initial movement direction varied systematically with the movement direction, with some directions having up to twice the variability of others. In a second experiment we tested four movements in the same direction but with different extents. Here, the longer movements were systematically curved, and the endpoint ellipses were not aligned with the straight line between starting and end position, but they were roughly aligned with the last part of the trajectory. We show that the variability observed in these experiments cannot be explained by planning noise but is well explained by noise in movement execution. A combination of both signal-dependent and signal-independent noise in the amplitude of the motor commands and temporal noise in their duration can explain the observed variability. Our results suggest that, in general, execution noise accounts for at least a large proportion of movement variability.
Address for reprint requests and other correspondence: R. J. van Beers, Dept. of Neuroscience, Erasmus MC, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands (E-mail: r.vanbeers{at}erasmusmc.nl ). |
---|---|
AbstractList | The origin of variability in goal-directed movements is not well understood. Variability can originate from several neural processes such as target localization, movement planning, and movement execution. Here we examine variability resulting from noise in movement execution. In several experiments, subjects moved their unseen hand to visual targets, under conditions which were designed to minimize the variability expected from localization and planning processes. We tested short movements in 32 directions in a center-out reaching task. The variability in the movement endpoints and in the initial movement direction varied systematically with the movement direction, with some directions having up to twice the variability of others. In a second experiment we tested four movements in the same direction but with different extents. Here, the longer movements were systematically curved, and the endpoint ellipses were not aligned with the straight line between starting and end position, but they were roughly aligned with the last part of the trajectory. We show that the variability observed in these experiments cannot be explained by planning noise but is well explained by noise in movement execution. A combination of both signal-dependent and signal-independent noise in the amplitude of the motor commands and temporal noise in their duration can explain the observed variability. Our results suggest that, in general, execution noise accounts for at least a large proportion of movement variability. 1 Institute of Cognitive Neuroscience, University College London, London WC1N 3AR; 2 Sobell Department of Motor Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom; and 3 Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, The Netherlands Submitted 8 July 2003; accepted in final form 10 October 2003 The origin of variability in goal-directed movements is not well understood. Variability can originate from several neural processes such as target localization, movement planning, and movement execution. Here we examine variability resulting from noise in movement execution. In several experiments, subjects moved their unseen hand to visual targets, under conditions which were designed to minimize the variability expected from localization and planning processes. We tested short movements in 32 directions in a center-out reaching task. The variability in the movement endpoints and in the initial movement direction varied systematically with the movement direction, with some directions having up to twice the variability of others. In a second experiment we tested four movements in the same direction but with different extents. Here, the longer movements were systematically curved, and the endpoint ellipses were not aligned with the straight line between starting and end position, but they were roughly aligned with the last part of the trajectory. We show that the variability observed in these experiments cannot be explained by planning noise but is well explained by noise in movement execution. A combination of both signal-dependent and signal-independent noise in the amplitude of the motor commands and temporal noise in their duration can explain the observed variability. Our results suggest that, in general, execution noise accounts for at least a large proportion of movement variability. Address for reprint requests and other correspondence: R. J. van Beers, Dept. of Neuroscience, Erasmus MC, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands (E-mail: r.vanbeers{at}erasmusmc.nl ). The origin of variability in goal-directed movements is not well understood. Variability can originate from several neural processes such as target localization, movement planning, and movement execution. Here we examine variability resulting from noise in movement execution. In several experiments, subjects moved their unseen hand to visual targets, under conditions which were designed to minimize the variability expected from localization and planning processes. We tested short movements in 32 directions in a center-out reaching task. The variability in the movement endpoints and in the initial movement direction varied systematically with the movement direction, with some directions having up to twice the variability of others. In a second experiment we tested four movements in the same direction but with different extents. Here, the longer movements were systematically curved, and the endpoint ellipses were not aligned with the straight line between starting and end position, but they were roughly aligned with the last part of the trajectory. We show that the variability observed in these experiments cannot be explained by planning noise but is well explained by noise in movement execution. A combination of both signal-dependent and signal-independent noise in the amplitude of the motor commands and temporal noise in their duration can explain the observed variability. Our results suggest that, in general, execution noise accounts for at least a large proportion of movement variability.The origin of variability in goal-directed movements is not well understood. Variability can originate from several neural processes such as target localization, movement planning, and movement execution. Here we examine variability resulting from noise in movement execution. In several experiments, subjects moved their unseen hand to visual targets, under conditions which were designed to minimize the variability expected from localization and planning processes. We tested short movements in 32 directions in a center-out reaching task. The variability in the movement endpoints and in the initial movement direction varied systematically with the movement direction, with some directions having up to twice the variability of others. In a second experiment we tested four movements in the same direction but with different extents. Here, the longer movements were systematically curved, and the endpoint ellipses were not aligned with the straight line between starting and end position, but they were roughly aligned with the last part of the trajectory. We show that the variability observed in these experiments cannot be explained by planning noise but is well explained by noise in movement execution. A combination of both signal-dependent and signal-independent noise in the amplitude of the motor commands and temporal noise in their duration can explain the observed variability. Our results suggest that, in general, execution noise accounts for at least a large proportion of movement variability. |
Author | Wolpert, Daniel M Haggard, Patrick van Beers, Robert J |
Author_xml | – sequence: 1 fullname: van Beers, Robert J – sequence: 2 fullname: Haggard, Patrick – sequence: 3 fullname: Wolpert, Daniel M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/14561687$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtLAzEQgIMoWh9Hr7InPW2dJJvs5ihSH-ADpHoN6XbWpqSbutlV--9NrQ8QxVOG8H3D8G2T9drXSMg-hT6lgh1P6z6AFKzPAPga6cU_llKhinXSA4gzhzzfItshTAEgF8A2yRbNhKSyyHuEDyeY3HmHia-SwSuWXWt9ndx4GzCxdXLtn3GGdZs8mMaakXW2XeySjcq4gHsf7w65PxsMTy_Sq9vzy9OTq7QUQNtUVipTKCUtCoVsVFIhDJNUoTDjcZVzIQtF4xVxVuOKSyUQhOQZFaOiQi75Djlc7Z03_qnD0OqZDSU6Z2r0XdAF0IxJ-T9IFZO5zLMIHnyA3WiGYz1v7Mw0C_3ZIwLpCigbH0KD1TcCetlbT2v93lsve0ee_-BL25plwrYx1v1pHa2siX2cvNgG9XyyCNY7_7hYoopqFlUB3_t_I88654b42kbly9DzmPINzeOghA |
CitedBy_id | crossref_primary_10_1152_jn_00148_2016 crossref_primary_10_1007_s10439_013_0821_7 crossref_primary_10_1146_annurev_neuro_072116_031548 crossref_primary_10_1371_journal_pcbi_1000856 crossref_primary_10_1152_jn_00317_2019 crossref_primary_10_1016_j_cognition_2013_09_009 crossref_primary_10_1155_2016_7641705 crossref_primary_10_3389_fnhum_2021_602405 crossref_primary_10_1371_journal_pone_0002070 crossref_primary_10_1080_00222895_2017_1383226 crossref_primary_10_2466_25_PMS_120v14x3 crossref_primary_10_1016_j_actpsy_2010_01_005 crossref_primary_10_1152_jn_01126_2006 crossref_primary_10_1121_10_0002923 crossref_primary_10_1038_srep17659 crossref_primary_10_1152_jn_00095_2007 crossref_primary_10_1007_s00221_005_0107_x crossref_primary_10_1007_s00221_008_1309_9 crossref_primary_10_1038_nrn1427 crossref_primary_10_1016_j_brainres_2014_06_023 crossref_primary_10_1186_s12984_024_01448_0 crossref_primary_10_1016_j_neuropsychologia_2012_10_008 crossref_primary_10_1038_s41598_025_87331_x crossref_primary_10_1016_j_jbiomech_2014_02_006 crossref_primary_10_1016_j_neuron_2006_10_034 crossref_primary_10_1016_j_neuropsychologia_2010_10_001 crossref_primary_10_1152_jn_01063_2010 crossref_primary_10_1152_jn_00804_2010 crossref_primary_10_1037_0033_295X_112_2_329 crossref_primary_10_1177_00315125211040748 crossref_primary_10_1371_journal_pone_0276308 crossref_primary_10_1146_annurev_psych_010419_051053 crossref_primary_10_1016_j_neuroscience_2016_04_027 crossref_primary_10_1109_JSEN_2024_3440325 crossref_primary_10_1016_j_neuroscience_2012_01_035 crossref_primary_10_1007_s00221_005_2277_y crossref_primary_10_1371_journal_pone_0158606 crossref_primary_10_1080_00222890903397137 crossref_primary_10_1088_1741_2560_11_1_016004 crossref_primary_10_1152_jn_91324_2008 crossref_primary_10_1007_s00422_019_00794_w crossref_primary_10_3390_s23125513 crossref_primary_10_1016_j_humov_2018_04_014 crossref_primary_10_1115_1_3131727 crossref_primary_10_1007_s00221_005_0340_3 crossref_primary_10_1016_j_conb_2005_10_009 crossref_primary_10_1121_1_4802649 crossref_primary_10_1098_rspb_2023_1475 crossref_primary_10_1152_jn_90834_2008 crossref_primary_10_14814_phy2_12650 crossref_primary_10_1038_s41467_018_06726_9 crossref_primary_10_1016_j_neuroscience_2024_01_004 crossref_primary_10_1007_s00221_014_4116_5 crossref_primary_10_1016_j_humov_2021_102918 crossref_primary_10_1016_j_dajour_2023_100218 crossref_primary_10_1155_2019_4251089 crossref_primary_10_1152_jn_00348_2006 crossref_primary_10_1152_jn_00493_2016 crossref_primary_10_3389_fnhum_2018_00331 crossref_primary_10_1016_j_humov_2020_102634 crossref_primary_10_1017_S0952523813000412 crossref_primary_10_1152_jn_00421_2014 crossref_primary_10_1186_s13229_024_00618_0 crossref_primary_10_1007_s00422_005_0041_9 crossref_primary_10_1007_s00422_006_0064_x crossref_primary_10_1152_jn_00440_2012 crossref_primary_10_1152_jn_00011_2024 crossref_primary_10_1016_j_humov_2019_05_010 crossref_primary_10_1038_s41467_022_29457_4 crossref_primary_10_1152_jn_00849_2011 crossref_primary_10_1299_transjsme_21_00218 crossref_primary_10_1016_j_pmrj_2016_06_022 crossref_primary_10_1038_s41598_018_30314_y crossref_primary_10_1038_s41598_018_21545_0 crossref_primary_10_1146_annurev_neuro_062111_150509 crossref_primary_10_1371_journal_pone_0064332 crossref_primary_10_1152_jn_00329_2017 crossref_primary_10_1016_j_chb_2020_106453 crossref_primary_10_1038_srep37181 crossref_primary_10_1093_cercor_bhaa224 crossref_primary_10_1523_JNEUROSCI_1169_08_2009 crossref_primary_10_1016_j_actpsy_2004_04_004 crossref_primary_10_1016_j_humov_2020_102621 crossref_primary_10_1007_s00221_012_3348_5 crossref_primary_10_1016_j_neuron_2011_10_006 crossref_primary_10_1038_s41598_021_88688_5 crossref_primary_10_1016_j_neuroimage_2017_01_017 crossref_primary_10_1523_JNEUROSCI_0968_07_2007 crossref_primary_10_1016_j_isci_2023_107204 crossref_primary_10_1371_journal_pone_0020387 crossref_primary_10_1016_j_humov_2007_11_006 crossref_primary_10_3389_fspor_2023_1131390 crossref_primary_10_1186_1743_0003_10_27 crossref_primary_10_1038_s41598_019_56016_7 crossref_primary_10_1016_j_jphysparis_2012_10_002 crossref_primary_10_1016_j_jht_2016_06_010 crossref_primary_10_1371_journal_pcbi_1012598 crossref_primary_10_7554_eLife_66320 crossref_primary_10_1152_jn_00061_2020 crossref_primary_10_1371_journal_pcbi_1012474 crossref_primary_10_1073_pnas_0607687103 crossref_primary_10_1152_jn_00590_2010 crossref_primary_10_1152_jn_00027_2019 crossref_primary_10_1152_jn_00355_2012 crossref_primary_10_1016_j_neuroscience_2015_01_005 crossref_primary_10_1080_17470210601100472 crossref_primary_10_1113_JP275715 crossref_primary_10_1007_s00221_014_4064_0 crossref_primary_10_1523_JNEUROSCI_2311_07_2007 crossref_primary_10_1016_j_neuroimage_2025_121018 crossref_primary_10_1111_psyp_12519 crossref_primary_10_1145_3524122 crossref_primary_10_1249_JES_0000000000000066 crossref_primary_10_3389_fnhum_2014_00823 crossref_primary_10_1152_jn_00743_2010 crossref_primary_10_1523_JNEUROSCI_1921_15_2016 crossref_primary_10_1007_s00221_022_06376_w crossref_primary_10_1152_jn_00472_2019 crossref_primary_10_1007_s00221_009_2126_5 crossref_primary_10_1152_jn_00706_2012 crossref_primary_10_1152_jn_00787_2017 crossref_primary_10_1080_14763141_2010_535842 crossref_primary_10_1152_jn_00856_2011 crossref_primary_10_1371_journal_pcbi_1005023 crossref_primary_10_1016_j_ics_2006_01_038 crossref_primary_10_1007_s10439_017_1912_7 crossref_primary_10_1080_08990220_2021_1876017 crossref_primary_10_3389_fams_2018_00023 crossref_primary_10_7554_eLife_50654 crossref_primary_10_1152_jn_00290_2007 crossref_primary_10_3389_fnhum_2016_00609 crossref_primary_10_1371_journal_pone_0139988 crossref_primary_10_1007_s00221_017_4894_7 crossref_primary_10_1152_jn_01138_2006 crossref_primary_10_1371_journal_pone_0158466 crossref_primary_10_1523_JNEUROSCI_4747_05_2006 crossref_primary_10_1007_s00221_006_0617_1 crossref_primary_10_2490_jjrmc_57_56 crossref_primary_10_1109_ACCESS_2019_2901814 crossref_primary_10_1080_02699206_2019_1566401 crossref_primary_10_1152_jn_01150_2015 crossref_primary_10_1152_jn_00532_2020 crossref_primary_10_1088_1741_2560_2_3_S10 crossref_primary_10_7554_eLife_52380 crossref_primary_10_1007_s00422_012_0537_z crossref_primary_10_1002_lary_28667 crossref_primary_10_1523_ENEURO_0050_18_2018 crossref_primary_10_1016_j_neuropsychologia_2004_11_009 crossref_primary_10_1007_s00221_016_4828_9 crossref_primary_10_1016_j_visres_2008_12_003 crossref_primary_10_1016_j_humov_2016_06_011 crossref_primary_10_1152_jn_00003_2022 crossref_primary_10_1177_10298649231199853 crossref_primary_10_1152_jn_00857_2013 crossref_primary_10_1080_02699931_2018_1463197 crossref_primary_10_1142_S0129065721500118 crossref_primary_10_1152_jn_00019_2013 crossref_primary_10_3389_fnbeh_2022_871884 crossref_primary_10_1007_s00221_009_1757_x crossref_primary_10_1038_nn0308_248 crossref_primary_10_3389_fnhum_2022_890065 crossref_primary_10_1152_jn_00022_2017 crossref_primary_10_1016_j_cub_2021_01_049 crossref_primary_10_1111_j_1460_9568_2008_06028_x crossref_primary_10_1007_s00221_015_4204_1 crossref_primary_10_1121_1_3531932 crossref_primary_10_1145_1993060_1993063 crossref_primary_10_1007_s40846_018_0439_1 crossref_primary_10_1007_s00221_009_1708_6 crossref_primary_10_1152_jn_00121_2021 crossref_primary_10_3389_fneur_2016_00008 crossref_primary_10_1177_1545968307303401 crossref_primary_10_7554_eLife_76577 crossref_primary_10_1109_LRA_2023_3264767 crossref_primary_10_1016_j_anbehav_2013_12_002 crossref_primary_10_1038_s41598_022_08755_3 crossref_primary_10_1016_j_humov_2011_07_003 crossref_primary_10_1152_jn_00217_2017 crossref_primary_10_1519_JSC_0b013e318298d48f crossref_primary_10_1002_mds_22573 crossref_primary_10_1123_jab_2013_0282 crossref_primary_10_1152_jn_00364_2004 crossref_primary_10_1093_brain_awu006 crossref_primary_10_1162_NECO_a_00830 crossref_primary_10_1371_journal_pcbi_1002080 crossref_primary_10_1016_j_ijhcs_2025_103454 crossref_primary_10_1080_00222895_2011_626812 crossref_primary_10_3389_fnhum_2015_00694 crossref_primary_10_1038_s41598_021_82275_4 crossref_primary_10_1145_3577016 crossref_primary_10_1162_neco_a_01721 crossref_primary_10_1007_s00426_017_0888_0 crossref_primary_10_1016_j_neulet_2006_04_024 crossref_primary_10_1523_JNEUROSCI_0562_04_2004 crossref_primary_10_1088_1741_2560_12_1_016015 crossref_primary_10_1109_THMS_2014_2357178 crossref_primary_10_1007_s00221_015_4476_5 crossref_primary_10_1007_s40815_020_00855_4 crossref_primary_10_3390_app10103436 crossref_primary_10_1080_02701367_2011_10599742 crossref_primary_10_3389_fncom_2015_00143 crossref_primary_10_1016_j_neuron_2009_06_025 crossref_primary_10_1371_journal_pcbi_1003869 crossref_primary_10_1249_MSS_0b013e318210fe03 crossref_primary_10_1007_s00221_004_2106_8 crossref_primary_10_1080_00222895_2017_1400946 crossref_primary_10_1111_ejn_15378 crossref_primary_10_1152_jn_90974_2008 crossref_primary_10_1007_s00221_006_0423_9 crossref_primary_10_1523_ENEURO_0170_18_2018 crossref_primary_10_1152_jn_00222_2005 crossref_primary_10_1177_1541931214581180 crossref_primary_10_1299_transjsme_22_00149 crossref_primary_10_1177_2041669517701458 crossref_primary_10_1007_s00221_007_1192_9 crossref_primary_10_1152_jn_00644_2020 crossref_primary_10_1016_j_humov_2020_102583 crossref_primary_10_1007_s00221_008_1596_1 crossref_primary_10_1371_journal_pcbi_1007414 crossref_primary_10_1007_s00429_019_01923_8 crossref_primary_10_1016_j_brs_2016_12_001 crossref_primary_10_1152_jn_00458_2021 crossref_primary_10_1016_j_clinph_2010_10_003 crossref_primary_10_1080_00140139_2012_697583 crossref_primary_10_1371_journal_pcbi_1009047 crossref_primary_10_1016_j_humov_2010_01_006 crossref_primary_10_1002_mds_29775 crossref_primary_10_1038_s41598_021_93760_1 crossref_primary_10_1038_s41598_025_88396_4 crossref_primary_10_1177_1059712313501347 crossref_primary_10_1371_journal_pcbi_1000419 crossref_primary_10_1007_s00426_009_0229_z crossref_primary_10_24985_kjss_2017_28_4_834 crossref_primary_10_3389_fnhum_2021_785992 crossref_primary_10_1371_journal_pcbi_1002159 crossref_primary_10_1038_nn_2748 crossref_primary_10_1152_jn_00307_2006 crossref_primary_10_1152_jn_91188_2008 crossref_primary_10_2139_ssrn_3919933 crossref_primary_10_1016_j_ijhcs_2007_01_003 crossref_primary_10_1016_j_humov_2005_03_001 crossref_primary_10_1152_jn_00486_2015 crossref_primary_10_1152_jn_00390_2018 crossref_primary_10_1016_j_neuroimage_2015_06_070 crossref_primary_10_1016_j_neuropsychologia_2008_12_039 crossref_primary_10_3389_fnhum_2019_00046 crossref_primary_10_1080_17470218_2015_1083596 crossref_primary_10_1109_TNSRE_2020_2996963 crossref_primary_10_1152_jn_00087_2020 crossref_primary_10_1371_journal_pone_0227913 crossref_primary_10_1242_jeb_243237 crossref_primary_10_1523_JNEUROSCI_2646_19_2020 crossref_primary_10_1016_j_neuroscience_2008_12_038 crossref_primary_10_3389_fncir_2022_836121 crossref_primary_10_1007_s00429_020_02034_5 crossref_primary_10_1371_journal_pone_0049373 crossref_primary_10_1523_JNEUROSCI_1650_17_2017 crossref_primary_10_1016_j_jsams_2009_03_010 crossref_primary_10_1371_journal_pone_0103387 crossref_primary_10_1002_cne_24889 crossref_primary_10_1523_JNEUROSCI_5359_07_2008 crossref_primary_10_3389_fnbot_2018_00076 crossref_primary_10_1016_j_ridd_2013_08_012 crossref_primary_10_1152_jn_00970_2007 crossref_primary_10_1080_10447318_2021_2002054 crossref_primary_10_1371_journal_pone_0097447 crossref_primary_10_1152_jn_00872_2017 crossref_primary_10_1519_JSC_0b013e318240ebf1 crossref_primary_10_2478_v10054_009_0020_5 crossref_primary_10_1007_s00221_004_2147_z crossref_primary_10_1016_j_tics_2021_08_002 crossref_primary_10_1016_j_humov_2019_04_017 crossref_primary_10_1109_JBHI_2024_3453603 crossref_primary_10_1038_s41467_023_43257_4 crossref_primary_10_1371_journal_pone_0153179 crossref_primary_10_3389_fnins_2022_971382 crossref_primary_10_1016_j_humov_2017_11_005 crossref_primary_10_1080_24748668_2017_1352432 crossref_primary_10_1152_jn_00306_2010 crossref_primary_10_1007_s10827_007_0041_y crossref_primary_10_1080_00222895_2020_1772712 crossref_primary_10_1007_s00221_024_06922_8 crossref_primary_10_1523_JNEUROSCI_3011_09_2009 crossref_primary_10_1002_mus_20954 crossref_primary_10_1109_TVCG_2021_3106494 crossref_primary_10_1007_s11357_010_9190_4 crossref_primary_10_1155_2015_842804 crossref_primary_10_1152_jn_00593_2014 crossref_primary_10_1016_j_visres_2010_02_010 crossref_primary_10_1249_JES_0000000000000338 crossref_primary_10_1038_nrn2258 crossref_primary_10_1016_j_humov_2008_04_003 crossref_primary_10_1093_cercor_bht181 crossref_primary_10_1016_j_actpsy_2013_02_011 crossref_primary_10_1007_s00221_011_2822_9 crossref_primary_10_1016_j_ifacol_2022_09_411 crossref_primary_10_1080_02687030701632161 crossref_primary_10_1371_journal_pcbi_1008707 crossref_primary_10_1044_2016_JSLHR_S_15_0367 crossref_primary_10_1093_cercor_bhq231 crossref_primary_10_1152_jn_00284_2009 crossref_primary_10_1152_jn_00167_2022 crossref_primary_10_1123_mc_2018_0077 crossref_primary_10_1016_j_humov_2015_06_009 crossref_primary_10_1016_j_jbiomech_2016_11_048 crossref_primary_10_1016_j_celrep_2022_111849 crossref_primary_10_1016_j_celrep_2022_111608 crossref_primary_10_1080_02640414_2015_1057211 crossref_primary_10_3389_fnhum_2017_00531 crossref_primary_10_1038_s41598_018_32648_z crossref_primary_10_1007_s00221_010_2487_9 crossref_primary_10_1371_journal_pone_0073239 crossref_primary_10_1002_hbm_23972 crossref_primary_10_1038_s41598_022_17485_5 crossref_primary_10_1152_jn_00495_2011 crossref_primary_10_1371_journal_pone_0031075 |
Cites_doi | 10.1080/17470214808416749 10.1006/ccog.1998.0370 10.1037/0096-1523.22.1.42 10.1007/PL00005716 10.1152/jn.1997.77.3.1644 10.1152/jn.01020.2002 10.1007/BF00228753 10.1037/0096-1523.24.2.569 10.1017/CBO9780511564345 10.1037/0033-295X.95.3.340 10.1152/jn.1990.63.1.161 10.1007/s002210100689 10.4135/9781412984928 10.1007/BF00241415 10.1123/mcj.3.4.414 10.1037/0096-1523.21.1.3 10.1152/jn.1991.66.6.2125 10.1037/0096-1523.25.3.837 10.1126/science.7569931 10.1523/JNEUROSCI.05-09-02318.1985 10.1007/BF00227302 10.1152/jn.1999.81.5.2140 10.1007/BF00231981 10.1016/0042-6989(77)90067-0 10.1038/nn963 10.1007/BF00241416 10.1152/jn.2002.88.3.1533 10.1093/biomet/67.1.175 10.1037/h0056952 10.1139/y95-037 10.3758/BF03198607 10.1101/SQB.1990.055.01.079 10.1007/s002210100797 10.1523/JNEUROSCI.18-20-08423.1998 10.1007/BF00353957 10.1007/s002210100834 10.1038/29528 10.1037/0096-1523.9.1.58 10.1016/0167-9457(95)00027-3 10.1007/BF00355754 10.1007/s00221-002-1232-4 10.1007/s002210050890 10.1007/s002210050525 10.1016/S0893-6080(96)00035-4 10.1016/0304-3940(94)90689-0 10.1152/jn.1999.81.3.1355 10.1007/s002210050855 10.1007/BF00204593 10.1037/h0092992 10.1152/jn.1997.78.3.1601 10.1152/jn.1994.71.5.1848 10.1007/s002210050669 10.2466/pms.1980.50.1.239 10.1037/h0055392 10.1037/0033-295X.86.5.415 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 |
DOI | 10.1152/jn.00652.2003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 1063 |
ExternalDocumentID | 14561687 10_1152_jn_00652_2003 jn_91_2_1050 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 0VX 1Z7 2WC 39C 3O- 41 53G 55 5GY 5VS AALRV ABFLS ABIVO ABPTK ABUFD ABZEH ACGFS ACNCT ADACO ADBBV ADBIT ADKLL AENEX AETEA AFFNX ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FH7 FRP GJ GX1 H~9 KQ8 L7B MVM NEJ O0- OHT OK1 P2P RAP RHF RHI RPL SJN UHB UPT UQL WH7 WOQ WOW X X7M ZA5 ZGI ZXP ZY4 --- -DZ -~X .55 .GJ 18M 1CY 29L 4.4 41~ 8M5 AAYXX ABCQX ABHWK ABJNI ABKWE ACGFO ADFNX ADHGD ADIYS AFOSN AI. AIZAD BKKCC BTFSW CITATION EMOBN H13 ITBOX RPRKH TR2 VH1 W8F XJT XOL XSW YBH YQT YSK ABTAH CGR CUY CVF ECM EIF NPM VXZ 7TK 7X8 |
ID | FETCH-LOGICAL-c501t-6f949e661889e2bc155a2619e5addf7356891168df79df3695e0563415b8fe363 |
ISSN | 0022-3077 |
IngestDate | Fri Jul 11 10:36:16 EDT 2025 Fri Jul 11 04:04:20 EDT 2025 Wed Feb 19 01:51:53 EST 2025 Tue Jul 01 01:16:44 EDT 2025 Thu Apr 24 23:06:30 EDT 2025 Tue Jan 05 17:54:12 EST 2021 Mon May 06 12:25:02 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c501t-6f949e661889e2bc155a2619e5addf7356891168df79df3695e0563415b8fe363 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | http://jn.physiology.org/content/91/2/1050.full?sid=2c2a998a-7232-4cd1-9428-242c7d8c57af |
PMID | 14561687 |
PQID | 19267674 |
PQPubID | 23462 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1152_jn_00652_2003 crossref_citationtrail_10_1152_jn_00652_2003 proquest_miscellaneous_19267674 proquest_miscellaneous_80142666 pubmed_primary_14561687 highwire_physiology_jn_91_2_1050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20040201 2004-02-00 2004-Feb |
PublicationDateYYYYMMDD | 2004-02-01 |
PublicationDate_xml | – month: 02 year: 2004 text: 20040201 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2004 |
Publisher | Am Phys Soc |
Publisher_xml | – name: Am Phys Soc |
References | REF9 REF7 REF8 REF5 REF6 REF3 REF4 REF40 REF44 REF43 REF42 REF41 REF48 REF47 REF46 REF45 REF49 REF33 REF32 REF31 REF30 REF37 REF36 REF35 REF34 REF1 REF2 REF39 REF38 REF22 REF21 REF20 REF26 REF25 REF24 REF23 REF29 REF28 REF27 REF51 REF50 REF11 REF55 REF10 REF54 REF53 REF52 REF15 REF59 REF14 REF58 REF13 REF57 REF12 REF56 REF19 REF18 REF17 REF16 |
References_xml | – ident: REF54 doi: 10.1080/17470214808416749 – ident: REF41 doi: 10.1006/ccog.1998.0370 – ident: REF20 doi: 10.1037/0096-1523.22.1.42 – ident: REF33 doi: 10.1007/PL00005716 – ident: REF11 doi: 10.1152/jn.1997.77.3.1644 – ident: REF19 doi: 10.1152/jn.01020.2002 – ident: REF42 doi: 10.1007/BF00228753 – ident: REF28 – ident: REF55 doi: 10.1037/0096-1523.24.2.569 – ident: REF14 doi: 10.1017/CBO9780511564345 – ident: REF35 doi: 10.1037/0033-295X.95.3.340 – ident: REF10 doi: 10.1152/jn.1990.63.1.161 – ident: REF51 doi: 10.1007/s002210100689 – ident: REF13 doi: 10.4135/9781412984928 – ident: REF18 doi: 10.1007/BF00241415 – ident: REF26 doi: 10.1123/mcj.3.4.414 – ident: REF25 doi: 10.1037/0096-1523.21.1.3 – ident: REF40 doi: 10.1152/jn.1991.66.6.2125 – ident: REF44 doi: 10.1037/0096-1523.25.3.837 – ident: REF57 doi: 10.1126/science.7569931 – ident: REF3 doi: 10.1523/JNEUROSCI.05-09-02318.1985 – ident: REF48 doi: 10.1007/BF00227302 – ident: REF38 doi: 10.1152/jn.1999.81.5.2140 – ident: REF4 doi: 10.1007/BF00231981 – ident: REF21 doi: 10.1016/0042-6989(77)90067-0 – ident: REF46 doi: 10.1038/nn963 – ident: REF17 doi: 10.1007/BF00241416 – ident: REF27 doi: 10.1152/jn.2002.88.3.1533 – ident: REF37 doi: 10.1093/biomet/67.1.175 – ident: REF52 – ident: REF59 – ident: REF7 doi: 10.1037/h0056952 – ident: REF12 doi: 10.1139/y95-037 – ident: REF56 doi: 10.3758/BF03198607 – ident: REF16 doi: 10.1101/SQB.1990.055.01.079 – ident: REF45 doi: 10.1007/s002210100797 – ident: REF32 doi: 10.1523/JNEUROSCI.18-20-08423.1998 – ident: REF24 doi: 10.1007/BF00353957 – ident: REF30 doi: 10.1007/s002210100834 – ident: REF22 doi: 10.1038/29528 – ident: REF39 doi: 10.1037/0096-1523.9.1.58 – ident: REF53 doi: 10.1016/0167-9457(95)00027-3 – ident: REF23 doi: 10.1007/BF00355754 – ident: REF6 doi: 10.1007/s00221-002-1232-4 – ident: REF2 – ident: REF5 doi: 10.1007/s002210050890 – ident: REF49 doi: 10.1007/s002210050525 – ident: REF36 doi: 10.1016/S0893-6080(96)00035-4 – ident: REF1 doi: 10.1016/0304-3940(94)90689-0 – ident: REF50 doi: 10.1152/jn.1999.81.3.1355 – ident: REF29 doi: 10.1007/s002210050855 – ident: REF47 doi: 10.1007/BF00204593 – ident: REF58 doi: 10.1037/h0092992 – ident: REF31 doi: 10.1152/jn.1997.78.3.1601 – ident: REF9 doi: 10.1152/jn.1994.71.5.1848 – ident: REF34 doi: 10.1007/s002210050669 – ident: REF8 doi: 10.2466/pms.1980.50.1.239 – ident: REF15 doi: 10.1037/h0055392 – ident: REF43 doi: 10.1037/0033-295X.86.5.415 |
SSID | ssj0007502 |
Score | 2.3229723 |
Snippet | 1 Institute of Cognitive Neuroscience, University College London, London WC1N 3AR; 2 Sobell Department of Motor Neuroscience, Institute of Neurology,... The origin of variability in goal-directed movements is not well understood. Variability can originate from several neural processes such as target... |
SourceID | proquest pubmed crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1050 |
SubjectTerms | Adolescent Adult Arm - physiology Biomechanical Phenomena - methods Electricity Female Humans Male Movement - physiology Photic Stimulation - methods Psychomotor Performance - physiology |
Title | The Role of Execution Noise in Movement Variability |
URI | http://jn.physiology.org/cgi/content/abstract/91/2/1050 https://www.ncbi.nlm.nih.gov/pubmed/14561687 https://www.proquest.com/docview/19267674 https://www.proquest.com/docview/80142666 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLggoDzC0wfUS7uQxHbiHAtqtYJSQMpKe7OcrF21ap1Vm6KWX8_YsZONtCselyiKZr2RP8f-xp75BqF3eU1IouMcEMirCS1SBZ-U1DAZckk0U5pVNt_563E2ndHPczYfCkO67JK2el__WptX8j-owjPA1WbJ_gOyfaPwAO4BX7gCwnD9a4xDeKC6UbX7q13TnF45KZCLxomBt7s_wSHu9LhHh7grZNTJWrpdjtE2u01u-qh8GbUuCHs4R5rKkxN56Xlo28vruzjf86XPBepS2P2ea9hdoCEgWY-i_WNfasXPmEWyMjLSlekPyFq8fl5mVuf1zNgwOub0P8mwAIVD9-Nv4nB2dCTKg3l5F91LgfjbmhRffgz678BvBv13eKugmsrSD6PGxywjKD9v9iIcmygfoge-5_F-h-kjdEeZx2h738i2ubjFO_h7D8U2IgAztjDjRuMeZuxgxqcGB5jxCsxP0OzwoPw0nfhaF5OaxUk7yXRBCwVkifNCpVUNNE9a51YxWIB0TljGYVnKONwXC02ygimgrkBBWMW1Ihl5irZMY9RzhHWugGfSWgMzpyrRnMVULTilGlY-KfMI7YW-EbUXgrf1SM6FcwhZKs6McF1pa5SSCO305stOAWWT4V7oaDEMWGG3UkrAGYyLRKTCjhGxXOgI4XXm0GRvFqG3AS8Bs549ypJGNddXAvwSqzRIN1tYVSQgn1mEnnVADy9vfYaM5y_--NuX6P7wTbxCW-3ltXoNHLSt3rhh-RtxhYdh |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+execution+noise+in+movement+variability&rft.jtitle=Journal+of+neurophysiology&rft.au=van+Beers%2C+Robert+J&rft.au=Haggard%2C+Patrick&rft.au=Wolpert%2C+Daniel+M&rft.date=2004-02-01&rft.issn=0022-3077&rft.volume=91&rft.issue=2&rft.spage=1050&rft_id=info:doi/10.1152%2Fjn.00652.2003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |