Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate-copper complex loaded into hyaluronic acid decorated liposomes
Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1863; no. 1; pp. 61 - 72 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches.
Hyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate‑copper (Cu(DDC)2), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC)2 liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed.
Liposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu(DDC)2 crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu(DDC)2.
The obtained results show that the encapsulation of Cu(DDC)2 complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs.
This paper describes for the first time the use of HA decorated liposomes containing Cu(DDC)2 against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches.
[Display omitted]
•Cu(DDC)2 has a stronger anti-proliferative activity than DSF, Zn(DDC)2 and Fe(DDC)2.•Cu(DDC)2 containing HA coated liposomes have a strong anti-proliferative activity on CSCs.•Cu(DDC)2 complexes precipitated inside the aqueous core of liposomes in the form of crystals.•Anti-proliferative activity of Cu(DDC)2 containing liposomes is ROS mediated. |
---|---|
AbstractList | Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches.
Hyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate‑copper (Cu(DDC)2), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC)2 liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed.
Liposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu(DDC)2 crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu(DDC)2.
The obtained results show that the encapsulation of Cu(DDC)2 complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs.
This paper describes for the first time the use of HA decorated liposomes containing Cu(DDC)2 against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches.
[Display omitted]
•Cu(DDC)2 has a stronger anti-proliferative activity than DSF, Zn(DDC)2 and Fe(DDC)2.•Cu(DDC)2 containing HA coated liposomes have a strong anti-proliferative activity on CSCs.•Cu(DDC)2 complexes precipitated inside the aqueous core of liposomes in the form of crystals.•Anti-proliferative activity of Cu(DDC)2 containing liposomes is ROS mediated. Background: Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches. Methods: Hyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate-copper (Cu(DDC) 2), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC) 2 liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed. Results: Liposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu (DDC) 2 crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu (DDC) 2. Conclusions: The obtained results show that the encapsulation of Cu(DDC) 2 complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs. General significance: This paper describes for the first time the use of HA decorated liposomes containing Cu (DDC) 2 against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches. Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches. Hyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate‑copper (Cu(DDC) ), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC) liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed. Liposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu(DDC) crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu(DDC) . The obtained results show that the encapsulation of Cu(DDC) complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs. This paper describes for the first time the use of HA decorated liposomes containing Cu(DDC) against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches. Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches.Hyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate‑copper (Cu(DDC)2), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC)2 liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed.Liposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu(DDC)2 crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu(DDC)2.The obtained results show that the encapsulation of Cu(DDC)2 complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs.This paper describes for the first time the use of HA decorated liposomes containing Cu(DDC)2 against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches. Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches.BACKGROUNDPancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches.Hyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate‑copper (Cu(DDC)2), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC)2 liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed.METHODSHyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate‑copper (Cu(DDC)2), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC)2 liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed.Liposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu(DDC)2 crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu(DDC)2.RESULTSLiposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu(DDC)2 crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu(DDC)2.The obtained results show that the encapsulation of Cu(DDC)2 complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs.CONCLUSIONSThe obtained results show that the encapsulation of Cu(DDC)2 complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs.This paper describes for the first time the use of HA decorated liposomes containing Cu(DDC)2 against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches.GENERAL SIGNIFICANCEThis paper describes for the first time the use of HA decorated liposomes containing Cu(DDC)2 against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches. |
Author | Fanelli, Giuseppina Stella, Barbara Marengo, Alessandro Arpicco, Silvia Heeschen, Christopher Dando, Ilaria Tsapis, Nicolas Forciniti, Stefania Palmieri, Marta Dalla Pozza, Elisa Yagoubi, Najet Fattal, Elias |
Author_xml | – sequence: 1 givenname: Alessandro surname: Marengo fullname: Marengo, Alessandro organization: Department of Drug Science and Technology, University of Torino, Italy – sequence: 2 givenname: Stefania surname: Forciniti fullname: Forciniti, Stefania organization: Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy – sequence: 3 givenname: Ilaria surname: Dando fullname: Dando, Ilaria organization: Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy – sequence: 4 givenname: Elisa surname: Dalla Pozza fullname: Dalla Pozza, Elisa organization: Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy – sequence: 5 givenname: Barbara surname: Stella fullname: Stella, Barbara organization: Department of Drug Science and Technology, University of Torino, Italy – sequence: 6 givenname: Nicolas surname: Tsapis fullname: Tsapis, Nicolas organization: Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France – sequence: 7 givenname: Najet surname: Yagoubi fullname: Yagoubi, Najet organization: EA 401, Matériaux et Santé, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France – sequence: 8 givenname: Giuseppina surname: Fanelli fullname: Fanelli, Giuseppina organization: Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy – sequence: 9 givenname: Elias surname: Fattal fullname: Fattal, Elias organization: Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France – sequence: 10 givenname: Christopher surname: Heeschen fullname: Heeschen, Christopher organization: Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK – sequence: 11 givenname: Marta surname: Palmieri fullname: Palmieri, Marta email: marta.palmieri@univr.it organization: Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy – sequence: 12 givenname: Silvia surname: Arpicco fullname: Arpicco, Silvia email: silvia.arpicco@unito.it organization: Department of Drug Science and Technology, University of Torino, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30267751$$D View this record in MEDLINE/PubMed https://hal.science/hal-02323431$$DView record in HAL |
BookMark | eNqFks9uEzEQxi1URNPCGyDkIxw2-M96veGAVFVAkSLBAc7WrD1pHHnXi-1U5E14XBzScuBAfRnL85tvrJnvgpxNcUJCXnK25Ix3b3fLYYBbnJaC8X7JVssanpAF77Voesa6M7JgkrVNyzt1Ti5y3rF61Eo9I-eSiU5rxRfk11eYbEIo3lJbr5hoLjhSiyHQOcXgN5hqNk7U55pKcboNB-qnrR98QUeHA3Uey_YQnC9bHy2kAUYo2Ng4z1XOxnEO-JOGCK7yfiqRbg8Q9lWqNgXrHXVoY-1S08HPMccR83PydAMh44v7eEm-f_zw7fqmWX_59Pn6at1YxXhplGUcUQiFjoteDK3QLXPQaw3gJHCnmOY9E5uuB7lSalCoAZVmAzItQcpL8uaku4Vg5uRHSAcTwZubq7U5vjEhhWwlv-OVfX1i62B-7DEXM_p8nBRMGPfZCCHqaqTo9eMo5223Ep0QFX11j-6HEd3fTzwsqQLvToBNMeeEG2N9-bOTksAHw5k5OsLszMkR5ugIw1amhlrc_lP8oP9I2ftTGdbZ33lMJluP1R_OJ7TFuOj_L_AbmnjTpg |
CitedBy_id | crossref_primary_10_1016_j_envres_2023_116490 crossref_primary_10_1021_acsami_8b14940 crossref_primary_10_1039_D4NR04778H crossref_primary_10_3390_pharmaceutics12050466 crossref_primary_10_1016_j_cellsig_2019_109377 crossref_primary_10_1016_j_ijbiomac_2025_140146 crossref_primary_10_1016_j_jddst_2021_102539 crossref_primary_10_1007_s00535_025_02213_3 crossref_primary_10_1016_j_carbpol_2020_116798 crossref_primary_10_2174_0113892010284407240212110745 crossref_primary_10_1016_j_heliyon_2023_e19896 crossref_primary_10_2174_1381612826666200214110645 crossref_primary_10_3390_pharmaceutics14030640 crossref_primary_10_1016_j_carbpol_2019_03_043 crossref_primary_10_1016_j_ccr_2021_213975 crossref_primary_10_1134_S1070328420110093 crossref_primary_10_3390_pharmaceutics13101538 crossref_primary_10_3390_pharmaceutics14122841 crossref_primary_10_1021_acs_jmedchem_0c01936 crossref_primary_10_1080_10717544_2019_1669734 crossref_primary_10_1016_j_ijpharm_2022_122130 crossref_primary_10_2147_IJN_S288379 crossref_primary_10_3390_cancers13092058 crossref_primary_10_1039_D3TB02491A crossref_primary_10_1007_s11094_024_03263_2 crossref_primary_10_3390_inorganics9090070 crossref_primary_10_1002_asia_202401628 crossref_primary_10_1016_j_ijpharm_2020_119097 crossref_primary_10_1016_j_jconrel_2022_06_012 crossref_primary_10_1016_j_biomaterials_2021_121335 crossref_primary_10_2174_1568009620666200115160805 crossref_primary_10_18632_aging_204193 crossref_primary_10_2174_1568009623666230329085618 crossref_primary_10_1080_08982104_2023_2268710 crossref_primary_10_3389_fcell_2021_783617 crossref_primary_10_34133_research_0335 crossref_primary_10_1016_j_jconrel_2020_01_001 crossref_primary_10_1080_07391102_2020_1861979 crossref_primary_10_1002_macp_202200190 crossref_primary_10_1016_j_ejpb_2021_11_006 crossref_primary_10_3390_pharmaceutics16111432 crossref_primary_10_1016_j_ijpharm_2020_119191 crossref_primary_10_1016_j_inoche_2022_109246 crossref_primary_10_3390_pharmaceutics15061567 crossref_primary_10_1016_j_apsb_2019_06_004 crossref_primary_10_1016_j_colsurfb_2021_112141 crossref_primary_10_2217_nnm_2023_0210 crossref_primary_10_3390_ijms22147743 crossref_primary_10_1016_j_jconrel_2019_05_018 crossref_primary_10_3390_pharmaceutics13010084 |
Cites_doi | 10.1016/j.freeradbiomed.2011.01.001 10.1016/j.ejpb.2013.06.003 10.1021/acsbiomaterials.7b00569 10.1371/journal.pone.0153416 10.1158/1078-0432.CCR-09-1035 10.1016/j.colsurfb.2016.03.075 10.1158/0008-5472.CAN-06-2030 10.1067/j.cpsurg.2016.01.001 10.1016/S0021-9258(18)70226-3 10.1158/1078-0432.CCR-15-1798 10.3109/1061186X.2015.1052072 10.1007/s00280-009-1132-4 10.1016/j.canlet.2009.09.002 10.2174/138955712802762040 10.1038/nrc3803 10.3892/ijo.2014.2796 10.1093/carcin/bgt366 10.1016/j.stem.2012.05.007 10.1021/bc5004313 10.1371/journal.pone.0093711 10.1016/j.stem.2007.06.002 10.1517/17425247.5.9.1003 10.1039/C5RA16023E 10.1016/j.molonc.2015.02.007 10.1158/1535-7163.MCT-08-0924 10.1093/jnci/djp535 10.1124/mol.64.5.1076 10.2217/nnm.13.118 10.1002/ejlt.201400278 10.1002/bip.22678 10.1016/j.jprot.2016.10.002 10.1021/mp049917l 10.1186/1556-276X-8-102 10.1038/nnano.2007.387 10.1016/j.taap.2013.09.009 10.1111/j.1742-4658.2011.08071.x 10.1039/C6TB03146C 10.1038/bjc.2012.442 10.1016/j.canlet.2016.05.026 10.1016/j.biomaterials.2015.08.048 10.1002/ijc.21534 10.1016/j.stem.2011.10.001 10.2147/IJN.S137347 10.3322/caac.21332 10.1016/j.bbamem.2013.01.020 10.1111/j.1600-0447.1992.tb03310.x 10.1158/0008-5472.CAN-06-2126 10.1158/1535-7163.1049.3.9 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.bbagen.2018.09.018 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 72 |
ExternalDocumentID | oai_HAL_hal_02323431v1 30267751 10_1016_j_bbagen_2018_09_018 S0304416518303064 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 EFKBS 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c501t-5c01ee225ed1282b42740da877aad3a1d5071802f68a3955b5e7ae570be073a33 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri May 09 12:17:51 EDT 2025 Fri Jul 11 09:38:55 EDT 2025 Mon Jul 21 10:38:08 EDT 2025 Thu Apr 03 07:02:02 EDT 2025 Tue Jul 01 00:22:11 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 Fri Feb 23 02:32:43 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Pancreatic cancer stem cells Liposomes Diethyldithiocarbamate/copper complex Hyaluronic acid CD44 PDAC patient-derived cells |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-5c01ee225ed1282b42740da877aad3a1d5071802f68a3955b5e7ae570be073a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3194-961X 0000-0003-2095-2626 |
OpenAccessLink | https://hal.science/hal-02323431 |
PMID | 30267751 |
PQID | 2114692622 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | hal_primary_oai_HAL_hal_02323431v1 proquest_miscellaneous_2221013287 proquest_miscellaneous_2114692622 pubmed_primary_30267751 crossref_citationtrail_10_1016_j_bbagen_2018_09_018 crossref_primary_10_1016_j_bbagen_2018_09_018 elsevier_sciencedirect_doi_10_1016_j_bbagen_2018_09_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 20190101 2019-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Cen, Gonzalez, Buckmeier, Kahlon, Tohidian, Meyskens (bb0060) 2002; 1 Han, Liu, Yue, Chang, Shi, Hua (bb0120) 2013; 273 Dalla Pozza, Lerda, Costanzo, Donadelli, Dando, Zoratti, Scupoli, Beghelli, Scarpa, Fattal, Arpicco, Palmieri (bb0215) 2013; 1828 Alshaer, Hillaireau, Vergnaud, Ismail, Fattal (bb0190) 2015; 26 Hermann, Huber, Herrler, Aicher, Ellwart, Guba, Bruns, Heeschen (bb0020) 2007; 1 Lonardo, Cioffi, Sancho, Crusz, Heeschen (bb0240) 2015 Li, Heidt, Dalerba, Burant, Zhang, Adsay, Wicha, Clarke, Simeone (bb0015) 2007; 67 Lun, Wells, Grinshtein, King, Hao, Dang, Wang, Aman, Uehling, Datti, Wrana, Easaw, Luchman, Weiss, Cairncross, Kaplan, Robbins, Senger (bb0090) 2016; 22 Akbarzadeh, Rezaei-Sadabady, Davaran, Joo, Zarghami, Hanifehpour, Samiei, Kouhi, Nejati-Koshki (bb0165) 2013; 8 Brandi, Dando, Pozza, Biondani, Jenkins, Elliott, Park, Fanelli, Zolla, Costello, Scarpa, Cecconi, Palmieri (bb0235) 2017; 150 Kankala, Tsai, Kuthati, Wei, Liu, Lee (bb0150) 2017; 5 Guo, Xu, Pandey, Goessl, Brown, Armesilla, Darling, Wang (bb0095) 2010; 290 Kankala, Kuthati, Liu, Mou, Lee (bb0145) 2015; 5 Gabizon, Tzemach, Gorin, Mak, Amitay, Shmeeda, Zalipsky (bb0185) 2010; 66 Wehbe, Anantha, Backstrom, Leung, Chen, Malhotra, Edwards, Bally (bb0225) 2016; 11 Allensworth, Evans, Bertucci, Aldrich, Festa, Finetti, Ueno, Safi, McDonnell, Thiele, Van Laere, Devi (bb0135) 2015; 9 Mattheolabakis, Milane, Singh, Amiji (bb0200) 2015; 23 Wang, Agarwal, Zhao, Xu, Yu, Lu, He (bb0050) 2015; 72 Bartlett (bb0230) 1959; 234 Torchilin (bb0175) 2008; 5 Arpicco, Lerda, Dalla Pozza, Costanzo, Tsapis, Stella, Donadelli, Dando, Fattal, Cattel, Palmieri (bb0210) 2013; 85 Li, Zhang, Zheng, Guo (bb0195) 2015; 8 Cho, Lee, Park, Park, Choe, Sin, Park, Moon, Lee, Yeo, Han, Cho, Choi, Park, Lee, Chang (bb0070) 2007; 40 Chen, Cui, Yang, Dou (bb0075) 2006; 66 Chen, Zhang, Hu, Lin, Zhang, Tang (bb0220) 2015; 117 Kim, Cho, Oh, Lee, An, Sung, Cho, Seo (bb0110) 2016; 379 Siegel, Miller, Jemal (bb0005) 2016; 66 Lonardo, Hermann, Mueller, Huber, Balic, Miranda-Lorenzo, Zagorac, Alcala, Rodriguez-Arabaolaza, Ramirez, Torres-Ruiz, Garcia, Hidalgo, Cebrian, Heuchel, Lohr, Berger, Bartenstein, Aicher, Heeschen (bb0035) 2011; 9 Muntimadugu, Kumar, Saladi, Rafeeqi, Khan (bb0055) 2016; 143 Dalla Pozza, Donadelli, Costanzo, Zaniboni, Dando, Franchini, Arpicco, Scarpa, Palmieri (bb0105) 2011; 50 Brar, Grigg, Wilson, Holder, Dreau, Austin, Foster, Ghio, Whorton, Stowell, Whittall, Whittle, White, Kennedy (bb0100) 2004; 3 Liu, Brown, Goktug, Channathodiyil, Kannappan, Hugnot, Guichet, Bian, Armesilla, Darling, Wang (bb0115) 2012; 107 Wehbe, Anantha, Shi, Leung, Dragowska, Sanche, Bally (bb0255) 2017; 12 Sabharwal, Schumacker (bb0260) 2014; 14 Eskander, Bliss, Tseng (bb0010) 2016; 53 Accardo, Morelli (bb0180) 2015; 104 Paranjpe, Zhang, Ali-Osman, Bobustuc, Srivenugopal (bb0125) 2014; 35 Buac, Schmitt, Ventro, Kona, Dou (bb0245) 2012; 12 Deshpande, Biswas, Torchilin (bb0170) 2013; 8 Cheriyan, Wang, Muthu, Jamal, Chen, Yang, Polin, Tarca, Pass, Dou, Sharma, Wali, Rishi (bb0080) 2014; 9 Jimeno, Feldmann, Suarez-Gauthier, Rasheed, Solomon, Zou, Rubio-Viqueira, Garcia-Garcia, Lopez-Rios, Matsui, Maitra, Hidalgo (bb0045) 2009; 8 Johansson (bb0155) 1992; 369 Lovborg, Oberg, Rickardson, Gullbo, Nygren, Larsson (bb0065) 2006; 118 Loo, Bartlett, Clarke (bb0130) 2004; 1 Peer, Karp, Hong, Farokhzad, Margalit, Langer (bb0160) 2007; 2 Misra, Heldin, Hascall, Karamanos, Skandalis, Markwald, Ghatak (bb0205) 2011; 278 Iljin, Ketola, Vainio, Halonen, Kohonen, Fey, Grafstrom, Perala, Kallioniemi (bb0085) 2009; 15 Kankala, Liu, Chen, Wang, Xu, Mende, Liu, Lee, Hu (bb0140) 2017; 3 Rasheed, Yang, Wang, Kowalski, Freed, Murter, Hong, Koorstra, Rajeshkumar, He, Goggins, Iacobuzio-Donahue, Berman, Laheru, Jimeno, Hidalgo, Maitra, Matsui (bb0025) 2010; 102 Visvader, Lindeman (bb0030) 2012; 10 Shian, Kao, Wu, Wu (bb0250) 2003; 64 Dalla Pozza, Dando, Biondani, Brandi, Costanzo, Zoratti, Fassan, Boschi, Melisi, Cecconi, Scupoli, Scarpa, Palmieri (bb0040) 2015; 46 Gabizon (10.1016/j.bbagen.2018.09.018_bb0185) 2010; 66 Rasheed (10.1016/j.bbagen.2018.09.018_bb0025) 2010; 102 Kim (10.1016/j.bbagen.2018.09.018_bb0110) 2016; 379 Misra (10.1016/j.bbagen.2018.09.018_bb0205) 2011; 278 Alshaer (10.1016/j.bbagen.2018.09.018_bb0190) 2015; 26 Dalla Pozza (10.1016/j.bbagen.2018.09.018_bb0040) 2015; 46 Muntimadugu (10.1016/j.bbagen.2018.09.018_bb0055) 2016; 143 Shian (10.1016/j.bbagen.2018.09.018_bb0250) 2003; 64 Dalla Pozza (10.1016/j.bbagen.2018.09.018_bb0215) 2013; 1828 Chen (10.1016/j.bbagen.2018.09.018_bb0220) 2015; 117 Lovborg (10.1016/j.bbagen.2018.09.018_bb0065) 2006; 118 Cho (10.1016/j.bbagen.2018.09.018_bb0070) 2007; 40 Torchilin (10.1016/j.bbagen.2018.09.018_bb0175) 2008; 5 Hermann (10.1016/j.bbagen.2018.09.018_bb0020) 2007; 1 Li (10.1016/j.bbagen.2018.09.018_bb0195) 2015; 8 Lonardo (10.1016/j.bbagen.2018.09.018_bb0240) 2015 Loo (10.1016/j.bbagen.2018.09.018_bb0130) 2004; 1 Buac (10.1016/j.bbagen.2018.09.018_bb0245) 2012; 12 Jimeno (10.1016/j.bbagen.2018.09.018_bb0045) 2009; 8 Kankala (10.1016/j.bbagen.2018.09.018_bb0140) 2017; 3 Deshpande (10.1016/j.bbagen.2018.09.018_bb0170) 2013; 8 Accardo (10.1016/j.bbagen.2018.09.018_bb0180) 2015; 104 Brandi (10.1016/j.bbagen.2018.09.018_bb0235) 2017; 150 Sabharwal (10.1016/j.bbagen.2018.09.018_bb0260) 2014; 14 Cen (10.1016/j.bbagen.2018.09.018_bb0060) 2002; 1 Wehbe (10.1016/j.bbagen.2018.09.018_bb0225) 2016; 11 Wehbe (10.1016/j.bbagen.2018.09.018_bb0255) 2017; 12 Paranjpe (10.1016/j.bbagen.2018.09.018_bb0125) 2014; 35 Li (10.1016/j.bbagen.2018.09.018_bb0015) 2007; 67 Wang (10.1016/j.bbagen.2018.09.018_bb0050) 2015; 72 Iljin (10.1016/j.bbagen.2018.09.018_bb0085) 2009; 15 Eskander (10.1016/j.bbagen.2018.09.018_bb0010) 2016; 53 Liu (10.1016/j.bbagen.2018.09.018_bb0115) 2012; 107 Lun (10.1016/j.bbagen.2018.09.018_bb0090) 2016; 22 Allensworth (10.1016/j.bbagen.2018.09.018_bb0135) 2015; 9 Chen (10.1016/j.bbagen.2018.09.018_bb0075) 2006; 66 Kankala (10.1016/j.bbagen.2018.09.018_bb0145) 2015; 5 Han (10.1016/j.bbagen.2018.09.018_bb0120) 2013; 273 Visvader (10.1016/j.bbagen.2018.09.018_bb0030) 2012; 10 Guo (10.1016/j.bbagen.2018.09.018_bb0095) 2010; 290 Dalla Pozza (10.1016/j.bbagen.2018.09.018_bb0105) 2011; 50 Bartlett (10.1016/j.bbagen.2018.09.018_bb0230) 1959; 234 Peer (10.1016/j.bbagen.2018.09.018_bb0160) 2007; 2 Akbarzadeh (10.1016/j.bbagen.2018.09.018_bb0165) 2013; 8 Johansson (10.1016/j.bbagen.2018.09.018_bb0155) 1992; 369 Cheriyan (10.1016/j.bbagen.2018.09.018_bb0080) 2014; 9 Kankala (10.1016/j.bbagen.2018.09.018_bb0150) 2017; 5 Mattheolabakis (10.1016/j.bbagen.2018.09.018_bb0200) 2015; 23 Brar (10.1016/j.bbagen.2018.09.018_bb0100) 2004; 3 Arpicco (10.1016/j.bbagen.2018.09.018_bb0210) 2013; 85 Siegel (10.1016/j.bbagen.2018.09.018_bb0005) 2016; 66 Lonardo (10.1016/j.bbagen.2018.09.018_bb0035) 2011; 9 |
References_xml | – volume: 369 start-page: 15 year: 1992 end-page: 26 ident: bb0155 article-title: A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites publication-title: Acta Psychiatr. Scand. Suppl. – volume: 66 start-page: 43 year: 2010 end-page: 52 ident: bb0185 article-title: Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models publication-title: Cancer Chemother. Pharmacol. – volume: 8 start-page: 6724 year: 2015 end-page: 6731 ident: bb0195 article-title: Expression of CD44 in pancreatic cancer and its significance publication-title: Int. J. Clin. Exp. Pathol. – volume: 53 start-page: 107 year: 2016 end-page: 154 ident: bb0010 article-title: Pancreatic adenocarcinoma publication-title: Curr. Probl. Surg. – volume: 5 start-page: 1507 year: 2017 end-page: 1517 ident: bb0150 article-title: Overcoming multidrug resistance through co-delivery of ROS-generating nano-machinery in cancer therapeutics publication-title: J. Mater. Chem. B – volume: 1828 start-page: 1396 year: 2013 end-page: 1404 ident: bb0215 article-title: Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity publication-title: Biochim. Biophys. Acta – volume: 234 start-page: 466 year: 1959 end-page: 468 ident: bb0230 article-title: Phosphorus assay in column chromatography publication-title: J. Biol. Chem. – volume: 8 start-page: 1509 year: 2013 end-page: 1528 ident: bb0170 article-title: Current trends in the use of liposomes for tumor targeting publication-title: Nanomed. (Lond., Engl.) – volume: 107 start-page: 1488 year: 2012 end-page: 1497 ident: bb0115 article-title: Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells publication-title: Br. J. Cancer – volume: 12 start-page: 1193 year: 2012 end-page: 1201 ident: bb0245 article-title: Dithiocarbamate-based coordination compounds as potent proteasome inhibitors in human cancer cells publication-title: Mini Rev. Med. Chem. – volume: 143 start-page: 532 year: 2016 end-page: 546 ident: bb0055 article-title: CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel publication-title: Colloids Surf. B Biointerfaces – start-page: e52801 year: 2015 ident: bb0240 article-title: Studying pancreatic cancer stem cell characteristics for developing new treatment strategies publication-title: J. Vis. Exp. – volume: 10 start-page: 717 year: 2012 end-page: 728 ident: bb0030 article-title: Cancer stem cells: current status and evolving complexities publication-title: Cell Stem Cell – volume: 2 start-page: 751 year: 2007 end-page: 760 ident: bb0160 article-title: Nanocarriers as an emerging platform for cancer therapy publication-title: Nat. Nanotechnol. – volume: 104 start-page: 462 year: 2015 end-page: 479 ident: bb0180 article-title: Review peptide-targeted liposomes for selective drug delivery: Advantages and problematic issues publication-title: Biopolymers – volume: 1 start-page: 426 year: 2004 end-page: 433 ident: bb0130 article-title: Disulfiram metabolites permanently inactivate the human multidrug resistance P-glycoprotein publication-title: Mol. Pharm. – volume: 64 start-page: 1076 year: 2003 end-page: 1084 ident: bb0250 article-title: Inhibition of invasion and angiogenesis by zinc-chelating agent disulfiram publication-title: Mol. Pharmacol. – volume: 5 start-page: 1003 year: 2008 end-page: 1025 ident: bb0175 article-title: Antibody-modified liposomes for cancer chemotherapy publication-title: Expert Opin. Drug Deliv. – volume: 290 start-page: 104 year: 2010 end-page: 113 ident: bb0095 article-title: Disulfiram/copper complex inhibiting NFkappaB activity and potentiating cytotoxic effect of gemcitabine on colon and breast cancer cell lines publication-title: Cancer Lett. – volume: 118 start-page: 1577 year: 2006 end-page: 1580 ident: bb0065 article-title: Inhibition of proteasome activity, nuclear factor-KappaB translocation and cell survival by the antialcoholism drug disulfiram publication-title: Int. J. Cancer – volume: 9 start-page: 433 year: 2011 end-page: 446 ident: bb0035 article-title: Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy publication-title: Cell Stem Cell – volume: 35 start-page: 692 year: 2014 end-page: 702 ident: bb0125 article-title: Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage publication-title: Carcinogenesis – volume: 150 start-page: 310 year: 2017 end-page: 322 ident: bb0235 article-title: Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways publication-title: J. Proteome – volume: 5 start-page: 86072 year: 2015 end-page: 86081 ident: bb0145 article-title: Killing cancer cells by delivering a nanoreactor for inhibition of catalase and catalytically enhancing intracellular levels of ROS publication-title: RSC Adv. – volume: 12 start-page: 4129 year: 2017 end-page: 4146 ident: bb0255 article-title: Development and optimization of an injectable formulation of copper diethyldithiocarbamate, an active anticancer agent publication-title: Int. J. Nanomedicine – volume: 273 start-page: 477 year: 2013 end-page: 483 ident: bb0120 article-title: A binuclear complex constituted by diethyldithiocarbamate and copper(I) functions as a proteasome activity inhibitor in pancreatic cancer cultures and xenografts publication-title: Toxicol. Appl. Pharmacol. – volume: 1 start-page: 313 year: 2007 end-page: 323 ident: bb0020 article-title: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer publication-title: Cell Stem Cell – volume: 14 start-page: 709 year: 2014 end-page: 721 ident: bb0260 article-title: Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? publication-title: Nat. Rev. Cancer – volume: 22 start-page: 3860 year: 2016 end-page: 3875 ident: bb0090 article-title: Disulfiram when combined with copper enhances the therapeutic effects of temozolomide for the treatment of glioblastoma publication-title: Clin. Cancer Res. – volume: 40 start-page: 1069 year: 2007 end-page: 1076 ident: bb0070 article-title: Disulfiram suppresses invasive ability of osteosarcoma cells via the inhibition of MMP-2 and MMP-9 expression publication-title: J. Biochem. Mol. Biol. – volume: 50 start-page: 926 year: 2011 end-page: 933 ident: bb0105 article-title: Gemcitabine response in pancreatic adenocarcinoma cells is synergistically enhanced by dithiocarbamate derivatives publication-title: Free Radic. Biol. Med. – volume: 23 start-page: 605 year: 2015 end-page: 618 ident: bb0200 article-title: Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine publication-title: J. Drug Target. – volume: 85 start-page: 373 year: 2013 end-page: 380 ident: bb0210 article-title: Hyaluronic acid-coated liposomes for active targeting of gemcitabine publication-title: Eur. J. Pharm. Biopharm. – volume: 8 start-page: 310 year: 2009 end-page: 314 ident: bb0045 article-title: A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development publication-title: Mol. Cancer Ther. – volume: 117 start-page: 869 year: 2015 end-page: 878 ident: bb0220 article-title: Formulation and preparation of a stable intravenous disulfiram-loaded lipid emulsion publication-title: Eur. J. Lipid Sci. Technol. – volume: 67 start-page: 1030 year: 2007 end-page: 1037 ident: bb0015 article-title: Identification of pancreatic cancer stem cells publication-title: Cancer Res. – volume: 72 start-page: 74 year: 2015 end-page: 89 ident: bb0050 article-title: Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells publication-title: Biomaterials – volume: 15 start-page: 6070 year: 2009 end-page: 6078 ident: bb0085 article-title: High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth publication-title: Clin. Cancer Res. – volume: 9 year: 2014 ident: bb0080 article-title: Disulfiram suppresses growth of the malignant pleural mesothelioma cells in part by inducing apoptosis publication-title: PLoS One – volume: 102 start-page: 340 year: 2010 end-page: 351 ident: bb0025 article-title: Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma publication-title: J. Natl. Cancer Inst. – volume: 9 start-page: 1155 year: 2015 end-page: 1168 ident: bb0135 article-title: Disulfiram (DSF) acts as a copper ionophore to induce copper-dependent oxidative stress and mediate anti-tumor efficacy in inflammatory breast cancer publication-title: Mol. Oncol. – volume: 26 start-page: 1307 year: 2015 end-page: 1313 ident: bb0190 article-title: Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells publication-title: Bioconjug. Chem. – volume: 11 year: 2016 ident: bb0225 article-title: Nanoscale reaction vessels designed for synthesis of copper-drug complexes suitable for preclinical development publication-title: PLoS One – volume: 46 start-page: 1099 year: 2015 end-page: 1108 ident: bb0040 article-title: Pancreatic ductal adenocarcinoma cell lines display a plastic ability to bidirectionally convert into cancer stem cells publication-title: Int. J. Oncol. – volume: 3 start-page: 2431 year: 2017 end-page: 2442 ident: bb0140 article-title: Overcoming multidrug resistance through the synergistic effects of hierarchical pH-sensitive, ROS-generating nanoreactors publication-title: ACS Biomater. Sci. Eng. – volume: 3 start-page: 1049 year: 2004 end-page: 1060 ident: bb0100 article-title: Disulfiram inhibits activating transcription factor/cyclic AMP-responsive element binding protein and human melanoma growth in a metal-dependent manner in vitro, in mice and in a patient with metastatic disease publication-title: Mol. Cancer Ther. – volume: 379 start-page: 39 year: 2016 end-page: 48 ident: bb0110 article-title: Disulfiram targets cancer stem-like properties and the HER2/Akt signaling pathway in HER2-positive breast cancer publication-title: Cancer Lett. – volume: 278 start-page: 1429 year: 2011 end-page: 1443 ident: bb0205 article-title: Hyaluronan-CD44 interactions as potential targets for cancer therapy publication-title: FEBS J. – volume: 8 start-page: 102 year: 2013 ident: bb0165 article-title: Liposome: classification, preparation, and applications publication-title: Nanoscale Res. Lett. – volume: 66 start-page: 7 year: 2016 end-page: 30 ident: bb0005 article-title: Cancer statistics, 2016 publication-title: CA Cancer J. Clin. – volume: 1 start-page: 197 year: 2002 end-page: 204 ident: bb0060 article-title: Disulfiram induces apoptosis in human melanoma cells: a redox-related process publication-title: Mol. Cancer Ther. – volume: 66 start-page: 10425 year: 2006 end-page: 10433 ident: bb0075 article-title: Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity publication-title: Cancer Res. – volume: 50 start-page: 926 year: 2011 ident: 10.1016/j.bbagen.2018.09.018_bb0105 article-title: Gemcitabine response in pancreatic adenocarcinoma cells is synergistically enhanced by dithiocarbamate derivatives publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2011.01.001 – volume: 85 start-page: 373 year: 2013 ident: 10.1016/j.bbagen.2018.09.018_bb0210 article-title: Hyaluronic acid-coated liposomes for active targeting of gemcitabine publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2013.06.003 – volume: 3 start-page: 2431 year: 2017 ident: 10.1016/j.bbagen.2018.09.018_bb0140 article-title: Overcoming multidrug resistance through the synergistic effects of hierarchical pH-sensitive, ROS-generating nanoreactors publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.7b00569 – volume: 11 year: 2016 ident: 10.1016/j.bbagen.2018.09.018_bb0225 article-title: Nanoscale reaction vessels designed for synthesis of copper-drug complexes suitable for preclinical development publication-title: PLoS One doi: 10.1371/journal.pone.0153416 – volume: 15 start-page: 6070 year: 2009 ident: 10.1016/j.bbagen.2018.09.018_bb0085 article-title: High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-09-1035 – volume: 143 start-page: 532 year: 2016 ident: 10.1016/j.bbagen.2018.09.018_bb0055 article-title: CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2016.03.075 – volume: 40 start-page: 1069 year: 2007 ident: 10.1016/j.bbagen.2018.09.018_bb0070 article-title: Disulfiram suppresses invasive ability of osteosarcoma cells via the inhibition of MMP-2 and MMP-9 expression publication-title: J. Biochem. Mol. Biol. – volume: 67 start-page: 1030 year: 2007 ident: 10.1016/j.bbagen.2018.09.018_bb0015 article-title: Identification of pancreatic cancer stem cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-2030 – volume: 53 start-page: 107 year: 2016 ident: 10.1016/j.bbagen.2018.09.018_bb0010 article-title: Pancreatic adenocarcinoma publication-title: Curr. Probl. Surg. doi: 10.1067/j.cpsurg.2016.01.001 – volume: 234 start-page: 466 year: 1959 ident: 10.1016/j.bbagen.2018.09.018_bb0230 article-title: Phosphorus assay in column chromatography publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)70226-3 – volume: 22 start-page: 3860 year: 2016 ident: 10.1016/j.bbagen.2018.09.018_bb0090 article-title: Disulfiram when combined with copper enhances the therapeutic effects of temozolomide for the treatment of glioblastoma publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-1798 – volume: 23 start-page: 605 year: 2015 ident: 10.1016/j.bbagen.2018.09.018_bb0200 article-title: Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine publication-title: J. Drug Target. doi: 10.3109/1061186X.2015.1052072 – volume: 66 start-page: 43 year: 2010 ident: 10.1016/j.bbagen.2018.09.018_bb0185 article-title: Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/s00280-009-1132-4 – volume: 290 start-page: 104 year: 2010 ident: 10.1016/j.bbagen.2018.09.018_bb0095 article-title: Disulfiram/copper complex inhibiting NFkappaB activity and potentiating cytotoxic effect of gemcitabine on colon and breast cancer cell lines publication-title: Cancer Lett. doi: 10.1016/j.canlet.2009.09.002 – volume: 12 start-page: 1193 year: 2012 ident: 10.1016/j.bbagen.2018.09.018_bb0245 article-title: Dithiocarbamate-based coordination compounds as potent proteasome inhibitors in human cancer cells publication-title: Mini Rev. Med. Chem. doi: 10.2174/138955712802762040 – volume: 14 start-page: 709 year: 2014 ident: 10.1016/j.bbagen.2018.09.018_bb0260 article-title: Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3803 – volume: 46 start-page: 1099 year: 2015 ident: 10.1016/j.bbagen.2018.09.018_bb0040 article-title: Pancreatic ductal adenocarcinoma cell lines display a plastic ability to bidirectionally convert into cancer stem cells publication-title: Int. J. Oncol. doi: 10.3892/ijo.2014.2796 – volume: 35 start-page: 692 year: 2014 ident: 10.1016/j.bbagen.2018.09.018_bb0125 article-title: Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage publication-title: Carcinogenesis doi: 10.1093/carcin/bgt366 – volume: 10 start-page: 717 year: 2012 ident: 10.1016/j.bbagen.2018.09.018_bb0030 article-title: Cancer stem cells: current status and evolving complexities publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.05.007 – volume: 26 start-page: 1307 year: 2015 ident: 10.1016/j.bbagen.2018.09.018_bb0190 article-title: Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells publication-title: Bioconjug. Chem. doi: 10.1021/bc5004313 – volume: 9 year: 2014 ident: 10.1016/j.bbagen.2018.09.018_bb0080 article-title: Disulfiram suppresses growth of the malignant pleural mesothelioma cells in part by inducing apoptosis publication-title: PLoS One doi: 10.1371/journal.pone.0093711 – volume: 1 start-page: 313 year: 2007 ident: 10.1016/j.bbagen.2018.09.018_bb0020 article-title: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.06.002 – volume: 5 start-page: 1003 year: 2008 ident: 10.1016/j.bbagen.2018.09.018_bb0175 article-title: Antibody-modified liposomes for cancer chemotherapy publication-title: Expert Opin. Drug Deliv. doi: 10.1517/17425247.5.9.1003 – volume: 5 start-page: 86072 year: 2015 ident: 10.1016/j.bbagen.2018.09.018_bb0145 article-title: Killing cancer cells by delivering a nanoreactor for inhibition of catalase and catalytically enhancing intracellular levels of ROS publication-title: RSC Adv. doi: 10.1039/C5RA16023E – volume: 9 start-page: 1155 year: 2015 ident: 10.1016/j.bbagen.2018.09.018_bb0135 article-title: Disulfiram (DSF) acts as a copper ionophore to induce copper-dependent oxidative stress and mediate anti-tumor efficacy in inflammatory breast cancer publication-title: Mol. Oncol. doi: 10.1016/j.molonc.2015.02.007 – volume: 8 start-page: 310 year: 2009 ident: 10.1016/j.bbagen.2018.09.018_bb0045 article-title: A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-08-0924 – volume: 102 start-page: 340 year: 2010 ident: 10.1016/j.bbagen.2018.09.018_bb0025 article-title: Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djp535 – volume: 64 start-page: 1076 year: 2003 ident: 10.1016/j.bbagen.2018.09.018_bb0250 article-title: Inhibition of invasion and angiogenesis by zinc-chelating agent disulfiram publication-title: Mol. Pharmacol. doi: 10.1124/mol.64.5.1076 – volume: 8 start-page: 6724 year: 2015 ident: 10.1016/j.bbagen.2018.09.018_bb0195 article-title: Expression of CD44 in pancreatic cancer and its significance publication-title: Int. J. Clin. Exp. Pathol. – volume: 1 start-page: 197 year: 2002 ident: 10.1016/j.bbagen.2018.09.018_bb0060 article-title: Disulfiram induces apoptosis in human melanoma cells: a redox-related process publication-title: Mol. Cancer Ther. – volume: 8 start-page: 1509 year: 2013 ident: 10.1016/j.bbagen.2018.09.018_bb0170 article-title: Current trends in the use of liposomes for tumor targeting publication-title: Nanomed. (Lond., Engl.) doi: 10.2217/nnm.13.118 – start-page: e52801 year: 2015 ident: 10.1016/j.bbagen.2018.09.018_bb0240 article-title: Studying pancreatic cancer stem cell characteristics for developing new treatment strategies publication-title: J. Vis. Exp. – volume: 117 start-page: 869 year: 2015 ident: 10.1016/j.bbagen.2018.09.018_bb0220 article-title: Formulation and preparation of a stable intravenous disulfiram-loaded lipid emulsion publication-title: Eur. J. Lipid Sci. Technol. doi: 10.1002/ejlt.201400278 – volume: 104 start-page: 462 year: 2015 ident: 10.1016/j.bbagen.2018.09.018_bb0180 article-title: Review peptide-targeted liposomes for selective drug delivery: Advantages and problematic issues publication-title: Biopolymers doi: 10.1002/bip.22678 – volume: 150 start-page: 310 year: 2017 ident: 10.1016/j.bbagen.2018.09.018_bb0235 article-title: Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways publication-title: J. Proteome doi: 10.1016/j.jprot.2016.10.002 – volume: 1 start-page: 426 year: 2004 ident: 10.1016/j.bbagen.2018.09.018_bb0130 article-title: Disulfiram metabolites permanently inactivate the human multidrug resistance P-glycoprotein publication-title: Mol. Pharm. doi: 10.1021/mp049917l – volume: 8 start-page: 102 year: 2013 ident: 10.1016/j.bbagen.2018.09.018_bb0165 article-title: Liposome: classification, preparation, and applications publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-8-102 – volume: 2 start-page: 751 year: 2007 ident: 10.1016/j.bbagen.2018.09.018_bb0160 article-title: Nanocarriers as an emerging platform for cancer therapy publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.387 – volume: 273 start-page: 477 year: 2013 ident: 10.1016/j.bbagen.2018.09.018_bb0120 article-title: A binuclear complex constituted by diethyldithiocarbamate and copper(I) functions as a proteasome activity inhibitor in pancreatic cancer cultures and xenografts publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2013.09.009 – volume: 278 start-page: 1429 year: 2011 ident: 10.1016/j.bbagen.2018.09.018_bb0205 article-title: Hyaluronan-CD44 interactions as potential targets for cancer therapy publication-title: FEBS J. doi: 10.1111/j.1742-4658.2011.08071.x – volume: 5 start-page: 1507 year: 2017 ident: 10.1016/j.bbagen.2018.09.018_bb0150 article-title: Overcoming multidrug resistance through co-delivery of ROS-generating nano-machinery in cancer therapeutics publication-title: J. Mater. Chem. B doi: 10.1039/C6TB03146C – volume: 107 start-page: 1488 year: 2012 ident: 10.1016/j.bbagen.2018.09.018_bb0115 article-title: Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells publication-title: Br. J. Cancer doi: 10.1038/bjc.2012.442 – volume: 379 start-page: 39 year: 2016 ident: 10.1016/j.bbagen.2018.09.018_bb0110 article-title: Disulfiram targets cancer stem-like properties and the HER2/Akt signaling pathway in HER2-positive breast cancer publication-title: Cancer Lett. doi: 10.1016/j.canlet.2016.05.026 – volume: 72 start-page: 74 year: 2015 ident: 10.1016/j.bbagen.2018.09.018_bb0050 article-title: Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.08.048 – volume: 118 start-page: 1577 year: 2006 ident: 10.1016/j.bbagen.2018.09.018_bb0065 article-title: Inhibition of proteasome activity, nuclear factor-KappaB translocation and cell survival by the antialcoholism drug disulfiram publication-title: Int. J. Cancer doi: 10.1002/ijc.21534 – volume: 9 start-page: 433 year: 2011 ident: 10.1016/j.bbagen.2018.09.018_bb0035 article-title: Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.10.001 – volume: 12 start-page: 4129 year: 2017 ident: 10.1016/j.bbagen.2018.09.018_bb0255 article-title: Development and optimization of an injectable formulation of copper diethyldithiocarbamate, an active anticancer agent publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S137347 – volume: 66 start-page: 7 year: 2016 ident: 10.1016/j.bbagen.2018.09.018_bb0005 article-title: Cancer statistics, 2016 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21332 – volume: 1828 start-page: 1396 year: 2013 ident: 10.1016/j.bbagen.2018.09.018_bb0215 article-title: Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2013.01.020 – volume: 369 start-page: 15 year: 1992 ident: 10.1016/j.bbagen.2018.09.018_bb0155 article-title: A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites publication-title: Acta Psychiatr. Scand. Suppl. doi: 10.1111/j.1600-0447.1992.tb03310.x – volume: 66 start-page: 10425 year: 2006 ident: 10.1016/j.bbagen.2018.09.018_bb0075 article-title: Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-2126 – volume: 3 start-page: 1049 year: 2004 ident: 10.1016/j.bbagen.2018.09.018_bb0100 article-title: Disulfiram inhibits activating transcription factor/cyclic AMP-responsive element binding protein and human melanoma growth in a metal-dependent manner in vitro, in mice and in a patient with metastatic disease publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.1049.3.9 |
SSID | ssj0000595 |
Score | 2.4688506 |
Snippet | Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The... Background: Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 61 |
SubjectTerms | acetylcysteine adenocarcinoma antineoplastic activity CD44 cell lines cell proliferation copper nanoparticles cryo-electron microscopy crystals Diethyldithiocarbamate/copper complex encapsulation Galenic pharmacology Hyaluronic acid in vitro studies Life Sciences Liposomes mechanism of action metastasis nanomedicine neoplasm cells neutralization tests Pancreatic cancer stem cells pancreatic neoplasms patients PDAC patient-derived cells Pharmaceutical sciences relapse stem cells therapeutics transmission electron microscopy |
Title | Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate-copper complex loaded into hyaluronic acid decorated liposomes |
URI | https://dx.doi.org/10.1016/j.bbagen.2018.09.018 https://www.ncbi.nlm.nih.gov/pubmed/30267751 https://www.proquest.com/docview/2114692622 https://www.proquest.com/docview/2221013287 https://hal.science/hal-02323431 |
Volume | 1863 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9RADLZKEYIXVMq1UKoB8Ro2yWRyPK5WrZarQoJKfRvNteygkER7VN0Xfgc_FzvHokpAJZ6iJJPTHvtzYn8GeJ1FlmuVmgDhaIoBSkGN3NU8EBqxfu7QVloqcP54ls7Ok3cX4mIPpkMtDKVV9ra_s-mtte63jPu3OW68H3-mn3oIJwQqJQFf4gRNkoy0_M2P32keCB9E9ychCWj0UD7X5nhpjZOWWFCjvGU7pdYff3ZPtxaUJ_k3ENo6o9MDuN-jSDbpbvQB7LnqEO50fSW3h3B3OrRxewg_P6FcW2RomCERLxlxNzP6Ys8a6tkzd50WML_CXcu6-lpuma8WXhMcZXrLrHcoz5LqNzz6vqVWiHNdYOqmwdO1WenuipW1sjjeV-uaLbaq3LS0u0wZb5mlKFfR6Urf1Kv6u1s9gvPTky_TWdC3YwiMCKN1IEwYOYfz31l0arFOMKANrcqzTCnLVWQJWuZhPE9zxQshtHCZciILtUM7ojh_DPtVXbmnwApNvGyoJSbNiZ0mR33GQK1IncXwNC5GwAcpSNNzlVPLjFIOSWnfZCc7SbKTYSFxMYJgd1TTcXXcMD4bBCyv6ZxEd3LDka9QH3YXIYru2eSDpG2IgWKOqOwyGsHLQV0kypzEqipXb1YyplJwImqM_zEmxmA84hjQjuBJp2u763FqG5aJ6Nl_P8BzuIdrRfct6Qj218uNe4Hoaq2P2-lzDLcnb9_Pzn4B4ukksQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9RADLbaIlReEJRrOQfEa9gkk8nxWK2oFthWSLRS30ZzbXdQSKI9EPvC7-DnYudYhARU4ilSMjntsT9P7M8Ar7PIcq1SEyAcTTFAKaiRu5oHQiPWzx3aSksFzqdn6fQieX8pLvdgMtTCUFplb_s7m95a637PuP-a48b78Sf6qYdwQqBSEvBN9uFGgtOX2hi8-f4rzwPxg-h-JSQBDR_q59okL61x1hINapS3dKfU--PP_ml_QYmSf0OhrTc6uQO3exjJjrsnvQt7rjqCm11jye0RHE6GPm734MdHFGwLDQ0zJOMlI_JmRkv2rKGmPXPXqQHzKzy0rKurcst8tfCa8CjTW2a9Q4GWVMDh0fkttUKg6wJTNw1erk1Ld99YWSuL4321rtliq8pNy7vLlPGWWQpzFV2u9E29qr-41X24OHl7PpkGfT-GwIgwWgfChJFzaACcRa8W6wQj2tCqPMuUslxFlrBlHsbzNFe8EEILlyknslA7NCSK8wdwUNWVewSs0ETMhmpi0pzoaXJUaIzUitRZjE_jYgR8kII0PVk59cwo5ZCV9ll2spMkOxkWEjcjCHZnNR1ZxzXjs0HA8jelk-hPrjnzFerD7ibE0T09nknahyAo5gjLvkYjeDmoi0SZk1hV5erNSsZUC05MjfE_xsQYjUccI9oRPOx0bXc_Tn3DMhE9_u8XeAGH0_PTmZy9O_vwBG7hkaJbWHoKB-vlxj1DqLXWz9up9BNU1SY_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pancreatic+cancer+stem+cell+proliferation+is+strongly+inhibited+by+diethyldithiocarbamate-copper+complex+loaded+into+hyaluronic+acid+decorated+liposomes&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Marengo%2C+Alessandro&rft.au=Forciniti%2C+Stefania&rft.au=Dando%2C+Ilaria&rft.au=Dalla+Pozza%2C+Elisa&rft.date=2019-01-01&rft.pub=Elsevier&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1863&rft.issue=1&rft.spage=61&rft.epage=72&rft_id=info:doi/10.1016%2Fj.bbagen.2018.09.018&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02323431v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |