Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate-copper complex loaded into hyaluronic acid decorated liposomes

Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1863; no. 1; pp. 61 - 72
Main Authors Marengo, Alessandro, Forciniti, Stefania, Dando, Ilaria, Dalla Pozza, Elisa, Stella, Barbara, Tsapis, Nicolas, Yagoubi, Najet, Fanelli, Giuseppina, Fattal, Elias, Heeschen, Christopher, Palmieri, Marta, Arpicco, Silvia
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches. Hyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate‑copper (Cu(DDC)2), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC)2 liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed. Liposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu(DDC)2 crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu(DDC)2. The obtained results show that the encapsulation of Cu(DDC)2 complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs. This paper describes for the first time the use of HA decorated liposomes containing Cu(DDC)2 against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches. [Display omitted] •Cu(DDC)2 has a stronger anti-proliferative activity than DSF, Zn(DDC)2 and Fe(DDC)2.•Cu(DDC)2 containing HA coated liposomes have a strong anti-proliferative activity on CSCs.•Cu(DDC)2 complexes precipitated inside the aqueous core of liposomes in the form of crystals.•Anti-proliferative activity of Cu(DDC)2 containing liposomes is ROS mediated.
AbstractList Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches. Hyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate‑copper (Cu(DDC)2), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC)2 liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed. Liposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu(DDC)2 crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu(DDC)2. The obtained results show that the encapsulation of Cu(DDC)2 complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs. This paper describes for the first time the use of HA decorated liposomes containing Cu(DDC)2 against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches. [Display omitted] •Cu(DDC)2 has a stronger anti-proliferative activity than DSF, Zn(DDC)2 and Fe(DDC)2.•Cu(DDC)2 containing HA coated liposomes have a strong anti-proliferative activity on CSCs.•Cu(DDC)2 complexes precipitated inside the aqueous core of liposomes in the form of crystals.•Anti-proliferative activity of Cu(DDC)2 containing liposomes is ROS mediated.
Background: Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches. Methods: Hyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate-copper (Cu(DDC) 2), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC) 2 liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed. Results: Liposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu (DDC) 2 crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu (DDC) 2. Conclusions: The obtained results show that the encapsulation of Cu(DDC) 2 complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs. General significance: This paper describes for the first time the use of HA decorated liposomes containing Cu (DDC) 2 against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches.
Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches. Hyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate‑copper (Cu(DDC) ), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC) liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed. Liposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu(DDC) crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu(DDC) . The obtained results show that the encapsulation of Cu(DDC) complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs. This paper describes for the first time the use of HA decorated liposomes containing Cu(DDC) against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches.
Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches.Hyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate‑copper (Cu(DDC)2), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC)2 liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed.Liposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu(DDC)2 crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu(DDC)2.The obtained results show that the encapsulation of Cu(DDC)2 complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs.This paper describes for the first time the use of HA decorated liposomes containing Cu(DDC)2 against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches.
Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches.BACKGROUNDPancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches.Hyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate‑copper (Cu(DDC)2), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC)2 liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed.METHODSHyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate‑copper (Cu(DDC)2), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC)2 liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed.Liposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu(DDC)2 crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu(DDC)2.RESULTSLiposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu(DDC)2 crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu(DDC)2.The obtained results show that the encapsulation of Cu(DDC)2 complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs.CONCLUSIONSThe obtained results show that the encapsulation of Cu(DDC)2 complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs.This paper describes for the first time the use of HA decorated liposomes containing Cu(DDC)2 against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches.GENERAL SIGNIFICANCEThis paper describes for the first time the use of HA decorated liposomes containing Cu(DDC)2 against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches.
Author Fanelli, Giuseppina
Stella, Barbara
Marengo, Alessandro
Arpicco, Silvia
Heeschen, Christopher
Dando, Ilaria
Tsapis, Nicolas
Forciniti, Stefania
Palmieri, Marta
Dalla Pozza, Elisa
Yagoubi, Najet
Fattal, Elias
Author_xml – sequence: 1
  givenname: Alessandro
  surname: Marengo
  fullname: Marengo, Alessandro
  organization: Department of Drug Science and Technology, University of Torino, Italy
– sequence: 2
  givenname: Stefania
  surname: Forciniti
  fullname: Forciniti, Stefania
  organization: Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
– sequence: 3
  givenname: Ilaria
  surname: Dando
  fullname: Dando, Ilaria
  organization: Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
– sequence: 4
  givenname: Elisa
  surname: Dalla Pozza
  fullname: Dalla Pozza, Elisa
  organization: Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
– sequence: 5
  givenname: Barbara
  surname: Stella
  fullname: Stella, Barbara
  organization: Department of Drug Science and Technology, University of Torino, Italy
– sequence: 6
  givenname: Nicolas
  surname: Tsapis
  fullname: Tsapis, Nicolas
  organization: Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
– sequence: 7
  givenname: Najet
  surname: Yagoubi
  fullname: Yagoubi, Najet
  organization: EA 401, Matériaux et Santé, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
– sequence: 8
  givenname: Giuseppina
  surname: Fanelli
  fullname: Fanelli, Giuseppina
  organization: Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
– sequence: 9
  givenname: Elias
  surname: Fattal
  fullname: Fattal, Elias
  organization: Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
– sequence: 10
  givenname: Christopher
  surname: Heeschen
  fullname: Heeschen, Christopher
  organization: Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
– sequence: 11
  givenname: Marta
  surname: Palmieri
  fullname: Palmieri, Marta
  email: marta.palmieri@univr.it
  organization: Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
– sequence: 12
  givenname: Silvia
  surname: Arpicco
  fullname: Arpicco, Silvia
  email: silvia.arpicco@unito.it
  organization: Department of Drug Science and Technology, University of Torino, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30267751$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02323431$$DView record in HAL
BookMark eNqFks9uEzEQxi1URNPCGyDkIxw2-M96veGAVFVAkSLBAc7WrD1pHHnXi-1U5E14XBzScuBAfRnL85tvrJnvgpxNcUJCXnK25Ix3b3fLYYBbnJaC8X7JVssanpAF77Voesa6M7JgkrVNyzt1Ti5y3rF61Eo9I-eSiU5rxRfk11eYbEIo3lJbr5hoLjhSiyHQOcXgN5hqNk7U55pKcboNB-qnrR98QUeHA3Uey_YQnC9bHy2kAUYo2Ng4z1XOxnEO-JOGCK7yfiqRbg8Q9lWqNgXrHXVoY-1S08HPMccR83PydAMh44v7eEm-f_zw7fqmWX_59Pn6at1YxXhplGUcUQiFjoteDK3QLXPQaw3gJHCnmOY9E5uuB7lSalCoAZVmAzItQcpL8uaku4Vg5uRHSAcTwZubq7U5vjEhhWwlv-OVfX1i62B-7DEXM_p8nBRMGPfZCCHqaqTo9eMo5223Ep0QFX11j-6HEd3fTzwsqQLvToBNMeeEG2N9-bOTksAHw5k5OsLszMkR5ugIw1amhlrc_lP8oP9I2ftTGdbZ33lMJluP1R_OJ7TFuOj_L_AbmnjTpg
CitedBy_id crossref_primary_10_1016_j_envres_2023_116490
crossref_primary_10_1021_acsami_8b14940
crossref_primary_10_1039_D4NR04778H
crossref_primary_10_3390_pharmaceutics12050466
crossref_primary_10_1016_j_cellsig_2019_109377
crossref_primary_10_1016_j_ijbiomac_2025_140146
crossref_primary_10_1016_j_jddst_2021_102539
crossref_primary_10_1007_s00535_025_02213_3
crossref_primary_10_1016_j_carbpol_2020_116798
crossref_primary_10_2174_0113892010284407240212110745
crossref_primary_10_1016_j_heliyon_2023_e19896
crossref_primary_10_2174_1381612826666200214110645
crossref_primary_10_3390_pharmaceutics14030640
crossref_primary_10_1016_j_carbpol_2019_03_043
crossref_primary_10_1016_j_ccr_2021_213975
crossref_primary_10_1134_S1070328420110093
crossref_primary_10_3390_pharmaceutics13101538
crossref_primary_10_3390_pharmaceutics14122841
crossref_primary_10_1021_acs_jmedchem_0c01936
crossref_primary_10_1080_10717544_2019_1669734
crossref_primary_10_1016_j_ijpharm_2022_122130
crossref_primary_10_2147_IJN_S288379
crossref_primary_10_3390_cancers13092058
crossref_primary_10_1039_D3TB02491A
crossref_primary_10_1007_s11094_024_03263_2
crossref_primary_10_3390_inorganics9090070
crossref_primary_10_1002_asia_202401628
crossref_primary_10_1016_j_ijpharm_2020_119097
crossref_primary_10_1016_j_jconrel_2022_06_012
crossref_primary_10_1016_j_biomaterials_2021_121335
crossref_primary_10_2174_1568009620666200115160805
crossref_primary_10_18632_aging_204193
crossref_primary_10_2174_1568009623666230329085618
crossref_primary_10_1080_08982104_2023_2268710
crossref_primary_10_3389_fcell_2021_783617
crossref_primary_10_34133_research_0335
crossref_primary_10_1016_j_jconrel_2020_01_001
crossref_primary_10_1080_07391102_2020_1861979
crossref_primary_10_1002_macp_202200190
crossref_primary_10_1016_j_ejpb_2021_11_006
crossref_primary_10_3390_pharmaceutics16111432
crossref_primary_10_1016_j_ijpharm_2020_119191
crossref_primary_10_1016_j_inoche_2022_109246
crossref_primary_10_3390_pharmaceutics15061567
crossref_primary_10_1016_j_apsb_2019_06_004
crossref_primary_10_1016_j_colsurfb_2021_112141
crossref_primary_10_2217_nnm_2023_0210
crossref_primary_10_3390_ijms22147743
crossref_primary_10_1016_j_jconrel_2019_05_018
crossref_primary_10_3390_pharmaceutics13010084
Cites_doi 10.1016/j.freeradbiomed.2011.01.001
10.1016/j.ejpb.2013.06.003
10.1021/acsbiomaterials.7b00569
10.1371/journal.pone.0153416
10.1158/1078-0432.CCR-09-1035
10.1016/j.colsurfb.2016.03.075
10.1158/0008-5472.CAN-06-2030
10.1067/j.cpsurg.2016.01.001
10.1016/S0021-9258(18)70226-3
10.1158/1078-0432.CCR-15-1798
10.3109/1061186X.2015.1052072
10.1007/s00280-009-1132-4
10.1016/j.canlet.2009.09.002
10.2174/138955712802762040
10.1038/nrc3803
10.3892/ijo.2014.2796
10.1093/carcin/bgt366
10.1016/j.stem.2012.05.007
10.1021/bc5004313
10.1371/journal.pone.0093711
10.1016/j.stem.2007.06.002
10.1517/17425247.5.9.1003
10.1039/C5RA16023E
10.1016/j.molonc.2015.02.007
10.1158/1535-7163.MCT-08-0924
10.1093/jnci/djp535
10.1124/mol.64.5.1076
10.2217/nnm.13.118
10.1002/ejlt.201400278
10.1002/bip.22678
10.1016/j.jprot.2016.10.002
10.1021/mp049917l
10.1186/1556-276X-8-102
10.1038/nnano.2007.387
10.1016/j.taap.2013.09.009
10.1111/j.1742-4658.2011.08071.x
10.1039/C6TB03146C
10.1038/bjc.2012.442
10.1016/j.canlet.2016.05.026
10.1016/j.biomaterials.2015.08.048
10.1002/ijc.21534
10.1016/j.stem.2011.10.001
10.2147/IJN.S137347
10.3322/caac.21332
10.1016/j.bbamem.2013.01.020
10.1111/j.1600-0447.1992.tb03310.x
10.1158/0008-5472.CAN-06-2126
10.1158/1535-7163.1049.3.9
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
1XC
VOOES
DOI 10.1016/j.bbagen.2018.09.018
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

PubMed
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 72
ExternalDocumentID oai_HAL_hal_02323431v1
30267751
10_1016_j_bbagen_2018_09_018
S0304416518303064
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
EFKBS
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c501t-5c01ee225ed1282b42740da877aad3a1d5071802f68a3955b5e7ae570be073a33
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Fri May 09 12:17:51 EDT 2025
Fri Jul 11 09:38:55 EDT 2025
Mon Jul 21 10:38:08 EDT 2025
Thu Apr 03 07:02:02 EDT 2025
Tue Jul 01 00:22:11 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Fri Feb 23 02:32:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Pancreatic cancer stem cells
Liposomes
Diethyldithiocarbamate/copper complex
Hyaluronic acid
CD44
PDAC patient-derived cells
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-5c01ee225ed1282b42740da877aad3a1d5071802f68a3955b5e7ae570be073a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3194-961X
0000-0003-2095-2626
OpenAccessLink https://hal.science/hal-02323431
PMID 30267751
PQID 2114692622
PQPubID 23479
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_02323431v1
proquest_miscellaneous_2221013287
proquest_miscellaneous_2114692622
pubmed_primary_30267751
crossref_citationtrail_10_1016_j_bbagen_2018_09_018
crossref_primary_10_1016_j_bbagen_2018_09_018
elsevier_sciencedirect_doi_10_1016_j_bbagen_2018_09_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
20190101
2019-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2019
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Cen, Gonzalez, Buckmeier, Kahlon, Tohidian, Meyskens (bb0060) 2002; 1
Han, Liu, Yue, Chang, Shi, Hua (bb0120) 2013; 273
Dalla Pozza, Lerda, Costanzo, Donadelli, Dando, Zoratti, Scupoli, Beghelli, Scarpa, Fattal, Arpicco, Palmieri (bb0215) 2013; 1828
Alshaer, Hillaireau, Vergnaud, Ismail, Fattal (bb0190) 2015; 26
Hermann, Huber, Herrler, Aicher, Ellwart, Guba, Bruns, Heeschen (bb0020) 2007; 1
Lonardo, Cioffi, Sancho, Crusz, Heeschen (bb0240) 2015
Li, Heidt, Dalerba, Burant, Zhang, Adsay, Wicha, Clarke, Simeone (bb0015) 2007; 67
Lun, Wells, Grinshtein, King, Hao, Dang, Wang, Aman, Uehling, Datti, Wrana, Easaw, Luchman, Weiss, Cairncross, Kaplan, Robbins, Senger (bb0090) 2016; 22
Akbarzadeh, Rezaei-Sadabady, Davaran, Joo, Zarghami, Hanifehpour, Samiei, Kouhi, Nejati-Koshki (bb0165) 2013; 8
Brandi, Dando, Pozza, Biondani, Jenkins, Elliott, Park, Fanelli, Zolla, Costello, Scarpa, Cecconi, Palmieri (bb0235) 2017; 150
Kankala, Tsai, Kuthati, Wei, Liu, Lee (bb0150) 2017; 5
Guo, Xu, Pandey, Goessl, Brown, Armesilla, Darling, Wang (bb0095) 2010; 290
Kankala, Kuthati, Liu, Mou, Lee (bb0145) 2015; 5
Gabizon, Tzemach, Gorin, Mak, Amitay, Shmeeda, Zalipsky (bb0185) 2010; 66
Wehbe, Anantha, Backstrom, Leung, Chen, Malhotra, Edwards, Bally (bb0225) 2016; 11
Allensworth, Evans, Bertucci, Aldrich, Festa, Finetti, Ueno, Safi, McDonnell, Thiele, Van Laere, Devi (bb0135) 2015; 9
Mattheolabakis, Milane, Singh, Amiji (bb0200) 2015; 23
Wang, Agarwal, Zhao, Xu, Yu, Lu, He (bb0050) 2015; 72
Bartlett (bb0230) 1959; 234
Torchilin (bb0175) 2008; 5
Arpicco, Lerda, Dalla Pozza, Costanzo, Tsapis, Stella, Donadelli, Dando, Fattal, Cattel, Palmieri (bb0210) 2013; 85
Li, Zhang, Zheng, Guo (bb0195) 2015; 8
Cho, Lee, Park, Park, Choe, Sin, Park, Moon, Lee, Yeo, Han, Cho, Choi, Park, Lee, Chang (bb0070) 2007; 40
Chen, Cui, Yang, Dou (bb0075) 2006; 66
Chen, Zhang, Hu, Lin, Zhang, Tang (bb0220) 2015; 117
Kim, Cho, Oh, Lee, An, Sung, Cho, Seo (bb0110) 2016; 379
Siegel, Miller, Jemal (bb0005) 2016; 66
Lonardo, Hermann, Mueller, Huber, Balic, Miranda-Lorenzo, Zagorac, Alcala, Rodriguez-Arabaolaza, Ramirez, Torres-Ruiz, Garcia, Hidalgo, Cebrian, Heuchel, Lohr, Berger, Bartenstein, Aicher, Heeschen (bb0035) 2011; 9
Muntimadugu, Kumar, Saladi, Rafeeqi, Khan (bb0055) 2016; 143
Dalla Pozza, Donadelli, Costanzo, Zaniboni, Dando, Franchini, Arpicco, Scarpa, Palmieri (bb0105) 2011; 50
Brar, Grigg, Wilson, Holder, Dreau, Austin, Foster, Ghio, Whorton, Stowell, Whittall, Whittle, White, Kennedy (bb0100) 2004; 3
Liu, Brown, Goktug, Channathodiyil, Kannappan, Hugnot, Guichet, Bian, Armesilla, Darling, Wang (bb0115) 2012; 107
Wehbe, Anantha, Shi, Leung, Dragowska, Sanche, Bally (bb0255) 2017; 12
Sabharwal, Schumacker (bb0260) 2014; 14
Eskander, Bliss, Tseng (bb0010) 2016; 53
Accardo, Morelli (bb0180) 2015; 104
Paranjpe, Zhang, Ali-Osman, Bobustuc, Srivenugopal (bb0125) 2014; 35
Buac, Schmitt, Ventro, Kona, Dou (bb0245) 2012; 12
Deshpande, Biswas, Torchilin (bb0170) 2013; 8
Cheriyan, Wang, Muthu, Jamal, Chen, Yang, Polin, Tarca, Pass, Dou, Sharma, Wali, Rishi (bb0080) 2014; 9
Jimeno, Feldmann, Suarez-Gauthier, Rasheed, Solomon, Zou, Rubio-Viqueira, Garcia-Garcia, Lopez-Rios, Matsui, Maitra, Hidalgo (bb0045) 2009; 8
Johansson (bb0155) 1992; 369
Lovborg, Oberg, Rickardson, Gullbo, Nygren, Larsson (bb0065) 2006; 118
Loo, Bartlett, Clarke (bb0130) 2004; 1
Peer, Karp, Hong, Farokhzad, Margalit, Langer (bb0160) 2007; 2
Misra, Heldin, Hascall, Karamanos, Skandalis, Markwald, Ghatak (bb0205) 2011; 278
Iljin, Ketola, Vainio, Halonen, Kohonen, Fey, Grafstrom, Perala, Kallioniemi (bb0085) 2009; 15
Kankala, Liu, Chen, Wang, Xu, Mende, Liu, Lee, Hu (bb0140) 2017; 3
Rasheed, Yang, Wang, Kowalski, Freed, Murter, Hong, Koorstra, Rajeshkumar, He, Goggins, Iacobuzio-Donahue, Berman, Laheru, Jimeno, Hidalgo, Maitra, Matsui (bb0025) 2010; 102
Visvader, Lindeman (bb0030) 2012; 10
Shian, Kao, Wu, Wu (bb0250) 2003; 64
Dalla Pozza, Dando, Biondani, Brandi, Costanzo, Zoratti, Fassan, Boschi, Melisi, Cecconi, Scupoli, Scarpa, Palmieri (bb0040) 2015; 46
Gabizon (10.1016/j.bbagen.2018.09.018_bb0185) 2010; 66
Rasheed (10.1016/j.bbagen.2018.09.018_bb0025) 2010; 102
Kim (10.1016/j.bbagen.2018.09.018_bb0110) 2016; 379
Misra (10.1016/j.bbagen.2018.09.018_bb0205) 2011; 278
Alshaer (10.1016/j.bbagen.2018.09.018_bb0190) 2015; 26
Dalla Pozza (10.1016/j.bbagen.2018.09.018_bb0040) 2015; 46
Muntimadugu (10.1016/j.bbagen.2018.09.018_bb0055) 2016; 143
Shian (10.1016/j.bbagen.2018.09.018_bb0250) 2003; 64
Dalla Pozza (10.1016/j.bbagen.2018.09.018_bb0215) 2013; 1828
Chen (10.1016/j.bbagen.2018.09.018_bb0220) 2015; 117
Lovborg (10.1016/j.bbagen.2018.09.018_bb0065) 2006; 118
Cho (10.1016/j.bbagen.2018.09.018_bb0070) 2007; 40
Torchilin (10.1016/j.bbagen.2018.09.018_bb0175) 2008; 5
Hermann (10.1016/j.bbagen.2018.09.018_bb0020) 2007; 1
Li (10.1016/j.bbagen.2018.09.018_bb0195) 2015; 8
Lonardo (10.1016/j.bbagen.2018.09.018_bb0240) 2015
Loo (10.1016/j.bbagen.2018.09.018_bb0130) 2004; 1
Buac (10.1016/j.bbagen.2018.09.018_bb0245) 2012; 12
Jimeno (10.1016/j.bbagen.2018.09.018_bb0045) 2009; 8
Kankala (10.1016/j.bbagen.2018.09.018_bb0140) 2017; 3
Deshpande (10.1016/j.bbagen.2018.09.018_bb0170) 2013; 8
Accardo (10.1016/j.bbagen.2018.09.018_bb0180) 2015; 104
Brandi (10.1016/j.bbagen.2018.09.018_bb0235) 2017; 150
Sabharwal (10.1016/j.bbagen.2018.09.018_bb0260) 2014; 14
Cen (10.1016/j.bbagen.2018.09.018_bb0060) 2002; 1
Wehbe (10.1016/j.bbagen.2018.09.018_bb0225) 2016; 11
Wehbe (10.1016/j.bbagen.2018.09.018_bb0255) 2017; 12
Paranjpe (10.1016/j.bbagen.2018.09.018_bb0125) 2014; 35
Li (10.1016/j.bbagen.2018.09.018_bb0015) 2007; 67
Wang (10.1016/j.bbagen.2018.09.018_bb0050) 2015; 72
Iljin (10.1016/j.bbagen.2018.09.018_bb0085) 2009; 15
Eskander (10.1016/j.bbagen.2018.09.018_bb0010) 2016; 53
Liu (10.1016/j.bbagen.2018.09.018_bb0115) 2012; 107
Lun (10.1016/j.bbagen.2018.09.018_bb0090) 2016; 22
Allensworth (10.1016/j.bbagen.2018.09.018_bb0135) 2015; 9
Chen (10.1016/j.bbagen.2018.09.018_bb0075) 2006; 66
Kankala (10.1016/j.bbagen.2018.09.018_bb0145) 2015; 5
Han (10.1016/j.bbagen.2018.09.018_bb0120) 2013; 273
Visvader (10.1016/j.bbagen.2018.09.018_bb0030) 2012; 10
Guo (10.1016/j.bbagen.2018.09.018_bb0095) 2010; 290
Dalla Pozza (10.1016/j.bbagen.2018.09.018_bb0105) 2011; 50
Bartlett (10.1016/j.bbagen.2018.09.018_bb0230) 1959; 234
Peer (10.1016/j.bbagen.2018.09.018_bb0160) 2007; 2
Akbarzadeh (10.1016/j.bbagen.2018.09.018_bb0165) 2013; 8
Johansson (10.1016/j.bbagen.2018.09.018_bb0155) 1992; 369
Cheriyan (10.1016/j.bbagen.2018.09.018_bb0080) 2014; 9
Kankala (10.1016/j.bbagen.2018.09.018_bb0150) 2017; 5
Mattheolabakis (10.1016/j.bbagen.2018.09.018_bb0200) 2015; 23
Brar (10.1016/j.bbagen.2018.09.018_bb0100) 2004; 3
Arpicco (10.1016/j.bbagen.2018.09.018_bb0210) 2013; 85
Siegel (10.1016/j.bbagen.2018.09.018_bb0005) 2016; 66
Lonardo (10.1016/j.bbagen.2018.09.018_bb0035) 2011; 9
References_xml – volume: 369
  start-page: 15
  year: 1992
  end-page: 26
  ident: bb0155
  article-title: A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites
  publication-title: Acta Psychiatr. Scand. Suppl.
– volume: 66
  start-page: 43
  year: 2010
  end-page: 52
  ident: bb0185
  article-title: Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models
  publication-title: Cancer Chemother. Pharmacol.
– volume: 8
  start-page: 6724
  year: 2015
  end-page: 6731
  ident: bb0195
  article-title: Expression of CD44 in pancreatic cancer and its significance
  publication-title: Int. J. Clin. Exp. Pathol.
– volume: 53
  start-page: 107
  year: 2016
  end-page: 154
  ident: bb0010
  article-title: Pancreatic adenocarcinoma
  publication-title: Curr. Probl. Surg.
– volume: 5
  start-page: 1507
  year: 2017
  end-page: 1517
  ident: bb0150
  article-title: Overcoming multidrug resistance through co-delivery of ROS-generating nano-machinery in cancer therapeutics
  publication-title: J. Mater. Chem. B
– volume: 1828
  start-page: 1396
  year: 2013
  end-page: 1404
  ident: bb0215
  article-title: Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity
  publication-title: Biochim. Biophys. Acta
– volume: 234
  start-page: 466
  year: 1959
  end-page: 468
  ident: bb0230
  article-title: Phosphorus assay in column chromatography
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 1509
  year: 2013
  end-page: 1528
  ident: bb0170
  article-title: Current trends in the use of liposomes for tumor targeting
  publication-title: Nanomed. (Lond., Engl.)
– volume: 107
  start-page: 1488
  year: 2012
  end-page: 1497
  ident: bb0115
  article-title: Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells
  publication-title: Br. J. Cancer
– volume: 12
  start-page: 1193
  year: 2012
  end-page: 1201
  ident: bb0245
  article-title: Dithiocarbamate-based coordination compounds as potent proteasome inhibitors in human cancer cells
  publication-title: Mini Rev. Med. Chem.
– volume: 143
  start-page: 532
  year: 2016
  end-page: 546
  ident: bb0055
  article-title: CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel
  publication-title: Colloids Surf. B Biointerfaces
– start-page: e52801
  year: 2015
  ident: bb0240
  article-title: Studying pancreatic cancer stem cell characteristics for developing new treatment strategies
  publication-title: J. Vis. Exp.
– volume: 10
  start-page: 717
  year: 2012
  end-page: 728
  ident: bb0030
  article-title: Cancer stem cells: current status and evolving complexities
  publication-title: Cell Stem Cell
– volume: 2
  start-page: 751
  year: 2007
  end-page: 760
  ident: bb0160
  article-title: Nanocarriers as an emerging platform for cancer therapy
  publication-title: Nat. Nanotechnol.
– volume: 104
  start-page: 462
  year: 2015
  end-page: 479
  ident: bb0180
  article-title: Review peptide-targeted liposomes for selective drug delivery: Advantages and problematic issues
  publication-title: Biopolymers
– volume: 1
  start-page: 426
  year: 2004
  end-page: 433
  ident: bb0130
  article-title: Disulfiram metabolites permanently inactivate the human multidrug resistance P-glycoprotein
  publication-title: Mol. Pharm.
– volume: 64
  start-page: 1076
  year: 2003
  end-page: 1084
  ident: bb0250
  article-title: Inhibition of invasion and angiogenesis by zinc-chelating agent disulfiram
  publication-title: Mol. Pharmacol.
– volume: 5
  start-page: 1003
  year: 2008
  end-page: 1025
  ident: bb0175
  article-title: Antibody-modified liposomes for cancer chemotherapy
  publication-title: Expert Opin. Drug Deliv.
– volume: 290
  start-page: 104
  year: 2010
  end-page: 113
  ident: bb0095
  article-title: Disulfiram/copper complex inhibiting NFkappaB activity and potentiating cytotoxic effect of gemcitabine on colon and breast cancer cell lines
  publication-title: Cancer Lett.
– volume: 118
  start-page: 1577
  year: 2006
  end-page: 1580
  ident: bb0065
  article-title: Inhibition of proteasome activity, nuclear factor-KappaB translocation and cell survival by the antialcoholism drug disulfiram
  publication-title: Int. J. Cancer
– volume: 9
  start-page: 433
  year: 2011
  end-page: 446
  ident: bb0035
  article-title: Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy
  publication-title: Cell Stem Cell
– volume: 35
  start-page: 692
  year: 2014
  end-page: 702
  ident: bb0125
  article-title: Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage
  publication-title: Carcinogenesis
– volume: 150
  start-page: 310
  year: 2017
  end-page: 322
  ident: bb0235
  article-title: Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways
  publication-title: J. Proteome
– volume: 5
  start-page: 86072
  year: 2015
  end-page: 86081
  ident: bb0145
  article-title: Killing cancer cells by delivering a nanoreactor for inhibition of catalase and catalytically enhancing intracellular levels of ROS
  publication-title: RSC Adv.
– volume: 12
  start-page: 4129
  year: 2017
  end-page: 4146
  ident: bb0255
  article-title: Development and optimization of an injectable formulation of copper diethyldithiocarbamate, an active anticancer agent
  publication-title: Int. J. Nanomedicine
– volume: 273
  start-page: 477
  year: 2013
  end-page: 483
  ident: bb0120
  article-title: A binuclear complex constituted by diethyldithiocarbamate and copper(I) functions as a proteasome activity inhibitor in pancreatic cancer cultures and xenografts
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 1
  start-page: 313
  year: 2007
  end-page: 323
  ident: bb0020
  article-title: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer
  publication-title: Cell Stem Cell
– volume: 14
  start-page: 709
  year: 2014
  end-page: 721
  ident: bb0260
  article-title: Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?
  publication-title: Nat. Rev. Cancer
– volume: 22
  start-page: 3860
  year: 2016
  end-page: 3875
  ident: bb0090
  article-title: Disulfiram when combined with copper enhances the therapeutic effects of temozolomide for the treatment of glioblastoma
  publication-title: Clin. Cancer Res.
– volume: 40
  start-page: 1069
  year: 2007
  end-page: 1076
  ident: bb0070
  article-title: Disulfiram suppresses invasive ability of osteosarcoma cells via the inhibition of MMP-2 and MMP-9 expression
  publication-title: J. Biochem. Mol. Biol.
– volume: 50
  start-page: 926
  year: 2011
  end-page: 933
  ident: bb0105
  article-title: Gemcitabine response in pancreatic adenocarcinoma cells is synergistically enhanced by dithiocarbamate derivatives
  publication-title: Free Radic. Biol. Med.
– volume: 23
  start-page: 605
  year: 2015
  end-page: 618
  ident: bb0200
  article-title: Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine
  publication-title: J. Drug Target.
– volume: 85
  start-page: 373
  year: 2013
  end-page: 380
  ident: bb0210
  article-title: Hyaluronic acid-coated liposomes for active targeting of gemcitabine
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 8
  start-page: 310
  year: 2009
  end-page: 314
  ident: bb0045
  article-title: A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development
  publication-title: Mol. Cancer Ther.
– volume: 117
  start-page: 869
  year: 2015
  end-page: 878
  ident: bb0220
  article-title: Formulation and preparation of a stable intravenous disulfiram-loaded lipid emulsion
  publication-title: Eur. J. Lipid Sci. Technol.
– volume: 67
  start-page: 1030
  year: 2007
  end-page: 1037
  ident: bb0015
  article-title: Identification of pancreatic cancer stem cells
  publication-title: Cancer Res.
– volume: 72
  start-page: 74
  year: 2015
  end-page: 89
  ident: bb0050
  article-title: Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells
  publication-title: Biomaterials
– volume: 15
  start-page: 6070
  year: 2009
  end-page: 6078
  ident: bb0085
  article-title: High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth
  publication-title: Clin. Cancer Res.
– volume: 9
  year: 2014
  ident: bb0080
  article-title: Disulfiram suppresses growth of the malignant pleural mesothelioma cells in part by inducing apoptosis
  publication-title: PLoS One
– volume: 102
  start-page: 340
  year: 2010
  end-page: 351
  ident: bb0025
  article-title: Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma
  publication-title: J. Natl. Cancer Inst.
– volume: 9
  start-page: 1155
  year: 2015
  end-page: 1168
  ident: bb0135
  article-title: Disulfiram (DSF) acts as a copper ionophore to induce copper-dependent oxidative stress and mediate anti-tumor efficacy in inflammatory breast cancer
  publication-title: Mol. Oncol.
– volume: 26
  start-page: 1307
  year: 2015
  end-page: 1313
  ident: bb0190
  article-title: Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells
  publication-title: Bioconjug. Chem.
– volume: 11
  year: 2016
  ident: bb0225
  article-title: Nanoscale reaction vessels designed for synthesis of copper-drug complexes suitable for preclinical development
  publication-title: PLoS One
– volume: 46
  start-page: 1099
  year: 2015
  end-page: 1108
  ident: bb0040
  article-title: Pancreatic ductal adenocarcinoma cell lines display a plastic ability to bidirectionally convert into cancer stem cells
  publication-title: Int. J. Oncol.
– volume: 3
  start-page: 2431
  year: 2017
  end-page: 2442
  ident: bb0140
  article-title: Overcoming multidrug resistance through the synergistic effects of hierarchical pH-sensitive, ROS-generating nanoreactors
  publication-title: ACS Biomater. Sci. Eng.
– volume: 3
  start-page: 1049
  year: 2004
  end-page: 1060
  ident: bb0100
  article-title: Disulfiram inhibits activating transcription factor/cyclic AMP-responsive element binding protein and human melanoma growth in a metal-dependent manner in vitro, in mice and in a patient with metastatic disease
  publication-title: Mol. Cancer Ther.
– volume: 379
  start-page: 39
  year: 2016
  end-page: 48
  ident: bb0110
  article-title: Disulfiram targets cancer stem-like properties and the HER2/Akt signaling pathway in HER2-positive breast cancer
  publication-title: Cancer Lett.
– volume: 278
  start-page: 1429
  year: 2011
  end-page: 1443
  ident: bb0205
  article-title: Hyaluronan-CD44 interactions as potential targets for cancer therapy
  publication-title: FEBS J.
– volume: 8
  start-page: 102
  year: 2013
  ident: bb0165
  article-title: Liposome: classification, preparation, and applications
  publication-title: Nanoscale Res. Lett.
– volume: 66
  start-page: 7
  year: 2016
  end-page: 30
  ident: bb0005
  article-title: Cancer statistics, 2016
  publication-title: CA Cancer J. Clin.
– volume: 1
  start-page: 197
  year: 2002
  end-page: 204
  ident: bb0060
  article-title: Disulfiram induces apoptosis in human melanoma cells: a redox-related process
  publication-title: Mol. Cancer Ther.
– volume: 66
  start-page: 10425
  year: 2006
  end-page: 10433
  ident: bb0075
  article-title: Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity
  publication-title: Cancer Res.
– volume: 50
  start-page: 926
  year: 2011
  ident: 10.1016/j.bbagen.2018.09.018_bb0105
  article-title: Gemcitabine response in pancreatic adenocarcinoma cells is synergistically enhanced by dithiocarbamate derivatives
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2011.01.001
– volume: 85
  start-page: 373
  year: 2013
  ident: 10.1016/j.bbagen.2018.09.018_bb0210
  article-title: Hyaluronic acid-coated liposomes for active targeting of gemcitabine
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2013.06.003
– volume: 3
  start-page: 2431
  year: 2017
  ident: 10.1016/j.bbagen.2018.09.018_bb0140
  article-title: Overcoming multidrug resistance through the synergistic effects of hierarchical pH-sensitive, ROS-generating nanoreactors
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.7b00569
– volume: 11
  year: 2016
  ident: 10.1016/j.bbagen.2018.09.018_bb0225
  article-title: Nanoscale reaction vessels designed for synthesis of copper-drug complexes suitable for preclinical development
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0153416
– volume: 15
  start-page: 6070
  year: 2009
  ident: 10.1016/j.bbagen.2018.09.018_bb0085
  article-title: High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-09-1035
– volume: 143
  start-page: 532
  year: 2016
  ident: 10.1016/j.bbagen.2018.09.018_bb0055
  article-title: CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2016.03.075
– volume: 40
  start-page: 1069
  year: 2007
  ident: 10.1016/j.bbagen.2018.09.018_bb0070
  article-title: Disulfiram suppresses invasive ability of osteosarcoma cells via the inhibition of MMP-2 and MMP-9 expression
  publication-title: J. Biochem. Mol. Biol.
– volume: 67
  start-page: 1030
  year: 2007
  ident: 10.1016/j.bbagen.2018.09.018_bb0015
  article-title: Identification of pancreatic cancer stem cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-2030
– volume: 53
  start-page: 107
  year: 2016
  ident: 10.1016/j.bbagen.2018.09.018_bb0010
  article-title: Pancreatic adenocarcinoma
  publication-title: Curr. Probl. Surg.
  doi: 10.1067/j.cpsurg.2016.01.001
– volume: 234
  start-page: 466
  year: 1959
  ident: 10.1016/j.bbagen.2018.09.018_bb0230
  article-title: Phosphorus assay in column chromatography
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)70226-3
– volume: 22
  start-page: 3860
  year: 2016
  ident: 10.1016/j.bbagen.2018.09.018_bb0090
  article-title: Disulfiram when combined with copper enhances the therapeutic effects of temozolomide for the treatment of glioblastoma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-1798
– volume: 23
  start-page: 605
  year: 2015
  ident: 10.1016/j.bbagen.2018.09.018_bb0200
  article-title: Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine
  publication-title: J. Drug Target.
  doi: 10.3109/1061186X.2015.1052072
– volume: 66
  start-page: 43
  year: 2010
  ident: 10.1016/j.bbagen.2018.09.018_bb0185
  article-title: Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s00280-009-1132-4
– volume: 290
  start-page: 104
  year: 2010
  ident: 10.1016/j.bbagen.2018.09.018_bb0095
  article-title: Disulfiram/copper complex inhibiting NFkappaB activity and potentiating cytotoxic effect of gemcitabine on colon and breast cancer cell lines
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2009.09.002
– volume: 12
  start-page: 1193
  year: 2012
  ident: 10.1016/j.bbagen.2018.09.018_bb0245
  article-title: Dithiocarbamate-based coordination compounds as potent proteasome inhibitors in human cancer cells
  publication-title: Mini Rev. Med. Chem.
  doi: 10.2174/138955712802762040
– volume: 14
  start-page: 709
  year: 2014
  ident: 10.1016/j.bbagen.2018.09.018_bb0260
  article-title: Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3803
– volume: 46
  start-page: 1099
  year: 2015
  ident: 10.1016/j.bbagen.2018.09.018_bb0040
  article-title: Pancreatic ductal adenocarcinoma cell lines display a plastic ability to bidirectionally convert into cancer stem cells
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2014.2796
– volume: 35
  start-page: 692
  year: 2014
  ident: 10.1016/j.bbagen.2018.09.018_bb0125
  article-title: Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgt366
– volume: 10
  start-page: 717
  year: 2012
  ident: 10.1016/j.bbagen.2018.09.018_bb0030
  article-title: Cancer stem cells: current status and evolving complexities
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.05.007
– volume: 26
  start-page: 1307
  year: 2015
  ident: 10.1016/j.bbagen.2018.09.018_bb0190
  article-title: Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc5004313
– volume: 9
  year: 2014
  ident: 10.1016/j.bbagen.2018.09.018_bb0080
  article-title: Disulfiram suppresses growth of the malignant pleural mesothelioma cells in part by inducing apoptosis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0093711
– volume: 1
  start-page: 313
  year: 2007
  ident: 10.1016/j.bbagen.2018.09.018_bb0020
  article-title: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.06.002
– volume: 5
  start-page: 1003
  year: 2008
  ident: 10.1016/j.bbagen.2018.09.018_bb0175
  article-title: Antibody-modified liposomes for cancer chemotherapy
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1517/17425247.5.9.1003
– volume: 5
  start-page: 86072
  year: 2015
  ident: 10.1016/j.bbagen.2018.09.018_bb0145
  article-title: Killing cancer cells by delivering a nanoreactor for inhibition of catalase and catalytically enhancing intracellular levels of ROS
  publication-title: RSC Adv.
  doi: 10.1039/C5RA16023E
– volume: 9
  start-page: 1155
  year: 2015
  ident: 10.1016/j.bbagen.2018.09.018_bb0135
  article-title: Disulfiram (DSF) acts as a copper ionophore to induce copper-dependent oxidative stress and mediate anti-tumor efficacy in inflammatory breast cancer
  publication-title: Mol. Oncol.
  doi: 10.1016/j.molonc.2015.02.007
– volume: 8
  start-page: 310
  year: 2009
  ident: 10.1016/j.bbagen.2018.09.018_bb0045
  article-title: A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-08-0924
– volume: 102
  start-page: 340
  year: 2010
  ident: 10.1016/j.bbagen.2018.09.018_bb0025
  article-title: Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djp535
– volume: 64
  start-page: 1076
  year: 2003
  ident: 10.1016/j.bbagen.2018.09.018_bb0250
  article-title: Inhibition of invasion and angiogenesis by zinc-chelating agent disulfiram
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.64.5.1076
– volume: 8
  start-page: 6724
  year: 2015
  ident: 10.1016/j.bbagen.2018.09.018_bb0195
  article-title: Expression of CD44 in pancreatic cancer and its significance
  publication-title: Int. J. Clin. Exp. Pathol.
– volume: 1
  start-page: 197
  year: 2002
  ident: 10.1016/j.bbagen.2018.09.018_bb0060
  article-title: Disulfiram induces apoptosis in human melanoma cells: a redox-related process
  publication-title: Mol. Cancer Ther.
– volume: 8
  start-page: 1509
  year: 2013
  ident: 10.1016/j.bbagen.2018.09.018_bb0170
  article-title: Current trends in the use of liposomes for tumor targeting
  publication-title: Nanomed. (Lond., Engl.)
  doi: 10.2217/nnm.13.118
– start-page: e52801
  year: 2015
  ident: 10.1016/j.bbagen.2018.09.018_bb0240
  article-title: Studying pancreatic cancer stem cell characteristics for developing new treatment strategies
  publication-title: J. Vis. Exp.
– volume: 117
  start-page: 869
  year: 2015
  ident: 10.1016/j.bbagen.2018.09.018_bb0220
  article-title: Formulation and preparation of a stable intravenous disulfiram-loaded lipid emulsion
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.201400278
– volume: 104
  start-page: 462
  year: 2015
  ident: 10.1016/j.bbagen.2018.09.018_bb0180
  article-title: Review peptide-targeted liposomes for selective drug delivery: Advantages and problematic issues
  publication-title: Biopolymers
  doi: 10.1002/bip.22678
– volume: 150
  start-page: 310
  year: 2017
  ident: 10.1016/j.bbagen.2018.09.018_bb0235
  article-title: Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways
  publication-title: J. Proteome
  doi: 10.1016/j.jprot.2016.10.002
– volume: 1
  start-page: 426
  year: 2004
  ident: 10.1016/j.bbagen.2018.09.018_bb0130
  article-title: Disulfiram metabolites permanently inactivate the human multidrug resistance P-glycoprotein
  publication-title: Mol. Pharm.
  doi: 10.1021/mp049917l
– volume: 8
  start-page: 102
  year: 2013
  ident: 10.1016/j.bbagen.2018.09.018_bb0165
  article-title: Liposome: classification, preparation, and applications
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-8-102
– volume: 2
  start-page: 751
  year: 2007
  ident: 10.1016/j.bbagen.2018.09.018_bb0160
  article-title: Nanocarriers as an emerging platform for cancer therapy
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.387
– volume: 273
  start-page: 477
  year: 2013
  ident: 10.1016/j.bbagen.2018.09.018_bb0120
  article-title: A binuclear complex constituted by diethyldithiocarbamate and copper(I) functions as a proteasome activity inhibitor in pancreatic cancer cultures and xenografts
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2013.09.009
– volume: 278
  start-page: 1429
  year: 2011
  ident: 10.1016/j.bbagen.2018.09.018_bb0205
  article-title: Hyaluronan-CD44 interactions as potential targets for cancer therapy
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2011.08071.x
– volume: 5
  start-page: 1507
  year: 2017
  ident: 10.1016/j.bbagen.2018.09.018_bb0150
  article-title: Overcoming multidrug resistance through co-delivery of ROS-generating nano-machinery in cancer therapeutics
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB03146C
– volume: 107
  start-page: 1488
  year: 2012
  ident: 10.1016/j.bbagen.2018.09.018_bb0115
  article-title: Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2012.442
– volume: 379
  start-page: 39
  year: 2016
  ident: 10.1016/j.bbagen.2018.09.018_bb0110
  article-title: Disulfiram targets cancer stem-like properties and the HER2/Akt signaling pathway in HER2-positive breast cancer
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2016.05.026
– volume: 72
  start-page: 74
  year: 2015
  ident: 10.1016/j.bbagen.2018.09.018_bb0050
  article-title: Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.08.048
– volume: 118
  start-page: 1577
  year: 2006
  ident: 10.1016/j.bbagen.2018.09.018_bb0065
  article-title: Inhibition of proteasome activity, nuclear factor-KappaB translocation and cell survival by the antialcoholism drug disulfiram
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.21534
– volume: 9
  start-page: 433
  year: 2011
  ident: 10.1016/j.bbagen.2018.09.018_bb0035
  article-title: Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.10.001
– volume: 12
  start-page: 4129
  year: 2017
  ident: 10.1016/j.bbagen.2018.09.018_bb0255
  article-title: Development and optimization of an injectable formulation of copper diethyldithiocarbamate, an active anticancer agent
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S137347
– volume: 66
  start-page: 7
  year: 2016
  ident: 10.1016/j.bbagen.2018.09.018_bb0005
  article-title: Cancer statistics, 2016
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21332
– volume: 1828
  start-page: 1396
  year: 2013
  ident: 10.1016/j.bbagen.2018.09.018_bb0215
  article-title: Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2013.01.020
– volume: 369
  start-page: 15
  year: 1992
  ident: 10.1016/j.bbagen.2018.09.018_bb0155
  article-title: A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites
  publication-title: Acta Psychiatr. Scand. Suppl.
  doi: 10.1111/j.1600-0447.1992.tb03310.x
– volume: 66
  start-page: 10425
  year: 2006
  ident: 10.1016/j.bbagen.2018.09.018_bb0075
  article-title: Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-2126
– volume: 3
  start-page: 1049
  year: 2004
  ident: 10.1016/j.bbagen.2018.09.018_bb0100
  article-title: Disulfiram inhibits activating transcription factor/cyclic AMP-responsive element binding protein and human melanoma growth in a metal-dependent manner in vitro, in mice and in a patient with metastatic disease
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.1049.3.9
SSID ssj0000595
Score 2.4688506
Snippet Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The...
Background: Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 61
SubjectTerms acetylcysteine
adenocarcinoma
antineoplastic activity
CD44
cell lines
cell proliferation
copper nanoparticles
cryo-electron microscopy
crystals
Diethyldithiocarbamate/copper complex
encapsulation
Galenic pharmacology
Hyaluronic acid
in vitro studies
Life Sciences
Liposomes
mechanism of action
metastasis
nanomedicine
neoplasm cells
neutralization tests
Pancreatic cancer stem cells
pancreatic neoplasms
patients
PDAC patient-derived cells
Pharmaceutical sciences
relapse
stem cells
therapeutics
transmission electron microscopy
Title Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate-copper complex loaded into hyaluronic acid decorated liposomes
URI https://dx.doi.org/10.1016/j.bbagen.2018.09.018
https://www.ncbi.nlm.nih.gov/pubmed/30267751
https://www.proquest.com/docview/2114692622
https://www.proquest.com/docview/2221013287
https://hal.science/hal-02323431
Volume 1863
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9RADLZKEYIXVMq1UKoB8Ro2yWRyPK5WrZarQoJKfRvNteygkER7VN0Xfgc_FzvHokpAJZ6iJJPTHvtzYn8GeJ1FlmuVmgDhaIoBSkGN3NU8EBqxfu7QVloqcP54ls7Ok3cX4mIPpkMtDKVV9ra_s-mtte63jPu3OW68H3-mn3oIJwQqJQFf4gRNkoy0_M2P32keCB9E9ychCWj0UD7X5nhpjZOWWFCjvGU7pdYff3ZPtxaUJ_k3ENo6o9MDuN-jSDbpbvQB7LnqEO50fSW3h3B3OrRxewg_P6FcW2RomCERLxlxNzP6Ys8a6tkzd50WML_CXcu6-lpuma8WXhMcZXrLrHcoz5LqNzz6vqVWiHNdYOqmwdO1WenuipW1sjjeV-uaLbaq3LS0u0wZb5mlKFfR6Urf1Kv6u1s9gvPTky_TWdC3YwiMCKN1IEwYOYfz31l0arFOMKANrcqzTCnLVWQJWuZhPE9zxQshtHCZciILtUM7ojh_DPtVXbmnwApNvGyoJSbNiZ0mR33GQK1IncXwNC5GwAcpSNNzlVPLjFIOSWnfZCc7SbKTYSFxMYJgd1TTcXXcMD4bBCyv6ZxEd3LDka9QH3YXIYru2eSDpG2IgWKOqOwyGsHLQV0kypzEqipXb1YyplJwImqM_zEmxmA84hjQjuBJp2u763FqG5aJ6Nl_P8BzuIdrRfct6Qj218uNe4Hoaq2P2-lzDLcnb9_Pzn4B4ukksQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9RADLbaIlReEJRrOQfEa9gkk8nxWK2oFthWSLRS30ZzbXdQSKI9EPvC7-DnYudYhARU4ilSMjntsT9P7M8Ar7PIcq1SEyAcTTFAKaiRu5oHQiPWzx3aSksFzqdn6fQieX8pLvdgMtTCUFplb_s7m95a637PuP-a48b78Sf6qYdwQqBSEvBN9uFGgtOX2hi8-f4rzwPxg-h-JSQBDR_q59okL61x1hINapS3dKfU--PP_ml_QYmSf0OhrTc6uQO3exjJjrsnvQt7rjqCm11jye0RHE6GPm734MdHFGwLDQ0zJOMlI_JmRkv2rKGmPXPXqQHzKzy0rKurcst8tfCa8CjTW2a9Q4GWVMDh0fkttUKg6wJTNw1erk1Ld99YWSuL4321rtliq8pNy7vLlPGWWQpzFV2u9E29qr-41X24OHl7PpkGfT-GwIgwWgfChJFzaACcRa8W6wQj2tCqPMuUslxFlrBlHsbzNFe8EEILlyknslA7NCSK8wdwUNWVewSs0ETMhmpi0pzoaXJUaIzUitRZjE_jYgR8kII0PVk59cwo5ZCV9ll2spMkOxkWEjcjCHZnNR1ZxzXjs0HA8jelk-hPrjnzFerD7ibE0T09nknahyAo5gjLvkYjeDmoi0SZk1hV5erNSsZUC05MjfE_xsQYjUccI9oRPOx0bXc_Tn3DMhE9_u8XeAGH0_PTmZy9O_vwBG7hkaJbWHoKB-vlxj1DqLXWz9up9BNU1SY_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pancreatic+cancer+stem+cell+proliferation+is+strongly+inhibited+by+diethyldithiocarbamate-copper+complex+loaded+into+hyaluronic+acid+decorated+liposomes&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Marengo%2C+Alessandro&rft.au=Forciniti%2C+Stefania&rft.au=Dando%2C+Ilaria&rft.au=Dalla+Pozza%2C+Elisa&rft.date=2019-01-01&rft.pub=Elsevier&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1863&rft.issue=1&rft.spage=61&rft.epage=72&rft_id=info:doi/10.1016%2Fj.bbagen.2018.09.018&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02323431v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon