CdSe/ZnS quantum dots induce hepatocyte pyroptosis and liver inflammation via NLRP3 inflammasome activation
Abstract Increased biomedical applications of quantum dots (QDs) have raised considerable concern regarding their toxicological impact. However, the toxicity of QDs is largely unknown and the underlying mechanism is still undefined. This study was conducted to examine the hepatotoxicity of CdSe/ZnS...
Saved in:
Published in | Biomaterials Vol. 90; pp. 27 - 39 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract Increased biomedical applications of quantum dots (QDs) have raised considerable concern regarding their toxicological impact. However, the toxicity of QDs is largely unknown and the underlying mechanism is still undefined. This study was conducted to examine the hepatotoxicity of CdSe/ZnS core/shell QDs and the underlying mechanism. In hepatic L02 cells, the QDs caused cytotoxicity in a dose-dependent manner. The QDs were then shown to activate the NLR pyrin domain containing 3 (NLRP3) inflammasome in hepatocytes, leading to a novel pro-inflammatory form of cell death named pyroptosis. Further experiments demonstrated that the QDs induced mitochondrial reactive oxygen species (mtROS) production, and that both a mtROS and a total ROS scavenger attenuated QDs-induced NLRP3 activation and pyroptosis. In addition, QDs increased cytoplasmic calcium (Ca2+ ) levels, while a Ca2+ release antagonist and chelator alleviated QDs-induced mtROS, NLRP3 activation and subsequent pyroptosis in hepatocytes. In vivo , QDs administration induced liver inflammation and dysfunction. Moreover, the QDs also resulted in NLRP3 activation in liver tissue. However, QDs-induced liver inflammation and dysfunction were abolished in NLRP3 knockout mice. Also, an elevation in mtROS was observed in liver after QDs administration, and the mtROS scavenger suppressed liver NLRP3 activation, inflammation and dysfunction induced by QDs. Our data suggest that QDs induced hepatocyte pyroptosis, liver inflammation and dysfunction via NLRP3 activation, which was caused by QDs-triggered mtROS production and Ca2+ mobilization. Our results provide novel insights into QDs-induced hepatotoxicity and the underlying mechanism, facilitating control of the side effects of QDs. |
---|---|
AbstractList | Abstract Increased biomedical applications of quantum dots (QDs) have raised considerable concern regarding their toxicological impact. However, the toxicity of QDs is largely unknown and the underlying mechanism is still undefined. This study was conducted to examine the hepatotoxicity of CdSe/ZnS core/shell QDs and the underlying mechanism. In hepatic L02 cells, the QDs caused cytotoxicity in a dose-dependent manner. The QDs were then shown to activate the NLR pyrin domain containing 3 (NLRP3) inflammasome in hepatocytes, leading to a novel pro-inflammatory form of cell death named pyroptosis. Further experiments demonstrated that the QDs induced mitochondrial reactive oxygen species (mtROS) production, and that both a mtROS and a total ROS scavenger attenuated QDs-induced NLRP3 activation and pyroptosis. In addition, QDs increased cytoplasmic calcium (Ca2+ ) levels, while a Ca2+ release antagonist and chelator alleviated QDs-induced mtROS, NLRP3 activation and subsequent pyroptosis in hepatocytes. In vivo , QDs administration induced liver inflammation and dysfunction. Moreover, the QDs also resulted in NLRP3 activation in liver tissue. However, QDs-induced liver inflammation and dysfunction were abolished in NLRP3 knockout mice. Also, an elevation in mtROS was observed in liver after QDs administration, and the mtROS scavenger suppressed liver NLRP3 activation, inflammation and dysfunction induced by QDs. Our data suggest that QDs induced hepatocyte pyroptosis, liver inflammation and dysfunction via NLRP3 activation, which was caused by QDs-triggered mtROS production and Ca2+ mobilization. Our results provide novel insights into QDs-induced hepatotoxicity and the underlying mechanism, facilitating control of the side effects of QDs. Increased biomedical applications of quantum dots (QDs) have raised considerable concern regarding their toxicological impact. However, the toxicity of QDs is largely unknown and the underlying mechanism is still undefined. This study was conducted to examine the hepatotoxicity of CdSe/ZnS core/shell QDs and the underlying mechanism. In hepatic L02 cells, the QDs caused cytotoxicity in a dose-dependent manner. The QDs were then shown to activate the NLR pyrin domain containing 3 (NLRP3) inflammasome in hepatocytes, leading to a novel pro-inflammatory form of cell death named pyroptosis. Further experiments demonstrated that the QDs induced mitochondrial reactive oxygen species (mtROS) production, and that both a mtROS and a total ROS scavenger attenuated QDs-induced NLRP3 activation and pyroptosis. In addition, QDs increased cytoplasmic calcium (Ca2+) levels, while a Ca2+ release antagonist and chelator alleviated QDs-induced mtROS, NLRP3 activation and subsequent pyroptosis in hepatocytes. In vivo, QDs administration induced liver inflammation and dysfunction. Moreover, the QDs also resulted in NLRP3 activation in liver tissue. However, QDs-induced liver inflammation and dysfunction were abolished in NLRP3 knockout mice. Also, an elevation in mtROS was observed in liver after QDs administration, and the mtROS scavenger suppressed liver NLRP3 activation, inflammation and dysfunction induced by QDs. Our data suggest that QDs induced hepatocyte pyroptosis, liver inflammation and dysfunction via NLRP3 activation, which was caused by QDs-triggered mtROS production and Ca2+ mobilization. Our results provide novel insights into QDs-induced hepatotoxicity and the underlying mechanism, facilitating control of the side effects of QDs. Increased biomedical applications of quantum dots (QDs) have raised considerable concern regarding their toxicological impact. However, the toxicity of QDs is largely unknown and the underlying mechanism is still undefined. This study was conducted to examine the hepatotoxicity of CdSe/ZnS core/shell QDs and the underlying mechanism. In hepatic L02 cells, the QDs caused cytotoxicity in a dose-dependent manner. The QDs were then shown to activate the NLR pyrin domain containing 3 (NLRP3) inflammasome in hepatocytes, leading to a novel pro-inflammatory form of cell death named pyroptosis. Further experiments demonstrated that the QDs induced mitochondrial reactive oxygen species (mtROS) production, and that both a mtROS and a total ROS scavenger attenuated QDs-induced NLRP3 activation and pyroptosis. In addition, QDs increased cytoplasmic calcium (Ca2+) levels, while a Ca2+ release antagonist and chelator alleviated QDs-induced mtROS, NLRP3 activation and subsequent pyroptosis in hepatocytes. In vivo, QDs administration induced liver inflammation and dysfunction. Moreover, the QDs also resulted in NLRP3 activation in liver tissue. However, QDs-induced liver inflammation and dysfunction were abolished in NLRP3 knockout mice. Also, an elevation in mtROS was observed in liver after QDs administration, and the mtROS scavenger suppressed liver NLRP3 activation, inflammation and dysfunction induced by QDs. Our data suggest that QDs induced hepatocyte pyroptosis, liver inflammation and dysfunction via NLRP3 activation, which was caused by QDs-triggered mtROS production and Ca2+ mobilization. Our results provide novel insights into QDs-induced hepatotoxicity and the underlying mechanism, facilitating control of the side effects of QDs. Increased biomedical applications of quantum dots (QDs) have raised considerable concern regarding their toxicological impact. However, the toxicity of QDs is largely unknown and the underlying mechanism is still undefined. This study was conducted to examine the hepatotoxicity of CdSe/ZnS core/shell QDs and the underlying mechanism. In hepatic L02 cells, the QDs caused cytotoxicity in a dose-dependent manner. The QDs were then shown to activate the NLR pyrin domain containing 3 (NLRP3) inflammasome in hepatocytes, leading to a novel pro-inflammatory form of cell death named pyroptosis. Further experiments demonstrated that the QDs induced mitochondrial reactive oxygen species (mtROS) production, and that both a mtROS and a total ROS scavenger attenuated QDs-induced NLRP3 activation and pyroptosis. In addition, QDs increased cytoplasmic calcium (Ca(2+)) levels, while a Ca(2+) release antagonist and chelator alleviated QDs-induced mtROS, NLRP3 activation and subsequent pyroptosis in hepatocytes. In vivo, QDs administration induced liver inflammation and dysfunction. Moreover, the QDs also resulted in NLRP3 activation in liver tissue. However, QDs-induced liver inflammation and dysfunction were abolished in NLRP3 knockout mice. Also, an elevation in mtROS was observed in liver after QDs administration, and the mtROS scavenger suppressed liver NLRP3 activation, inflammation and dysfunction induced by QDs. Our data suggest that QDs induced hepatocyte pyroptosis, liver inflammation and dysfunction via NLRP3 activation, which was caused by QDs-triggered mtROS production and Ca(2+) mobilization. Our results provide novel insights into QDs-induced hepatotoxicity and the underlying mechanism, facilitating control of the side effects of QDs. |
Author | Lu, Yonghui Zhou, Zhou Li, Min Xu, Shangcheng Cao, Zhengwang Ma, Qinlong Ji, Yan Gao, Peng Zhang, Lei Chen, Haiyan Deng, Youcai Chen, Chunhai He, Mindi Pi, Huifeng Yu, Zhengping |
Author_xml | – sequence: 1 fullname: Lu, Yonghui – sequence: 2 fullname: Xu, Shangcheng – sequence: 3 fullname: Chen, Haiyan – sequence: 4 fullname: He, Mindi – sequence: 5 fullname: Deng, Youcai – sequence: 6 fullname: Cao, Zhengwang – sequence: 7 fullname: Pi, Huifeng – sequence: 8 fullname: Chen, Chunhai – sequence: 9 fullname: Li, Min – sequence: 10 fullname: Ma, Qinlong – sequence: 11 fullname: Gao, Peng – sequence: 12 fullname: Ji, Yan – sequence: 13 fullname: Zhang, Lei – sequence: 14 fullname: Yu, Zhengping – sequence: 15 fullname: Zhou, Zhou |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26986854$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v1DAQxS1URLeFr4AsTlyS-k_sOByQ0AIFaQWIhQsXy-tMhLeJndrJSvvtcbqlQlzgZHn0ezOjee8CnfngAaEXlJSUUHm1L3cuDGaC6EyfSpZrJeElIfwRWlFVq0I0RJyhFaEVKxpJ2Tm6SGlP8p9U7Ak6Z7JRUolqhW7W7Raufvgtvp2Nn-YBt2FK2Pl2toB_wmimYI8T4PEYwziF5BI2vsW9O0DMWNebIa_igscHZ_Cnzdcv_KGcwgDY2Mkd7oin6HGXF4Zn9-8l-v7-3bf1h2Lz-frj-s2msILQqajqmnEqW0I5E8Jy0zRG1bwjlO6UaoW1tlK1ANOpBhjpMmCFzFKy6zrbMn6JXp76jjHczpAmPbhkoe-NhzAnTRVRRLJayX-jtRKsapggGX11Qm0MKUXo9BjdYOJRU6IXX_Re_-mLXnzRhOvsSxY_v58z7wZoH6S_jcjA2xMA-TAHB1En68BbaF0EO-k2uP-b8_qvNrZ33lnT38AR0j7M0S8aqhPTRG-XhCwBoZLndDDJfwGGT7zW |
CitedBy_id | crossref_primary_10_1002_adma_202307679 crossref_primary_10_1016_j_ejphar_2018_07_054 crossref_primary_10_3390_toxics5040029 crossref_primary_10_3390_ijms23095233 crossref_primary_10_3389_ftox_2022_925399 crossref_primary_10_1016_j_envres_2020_110593 crossref_primary_10_2147_IJN_S457309 crossref_primary_10_3390_ijms23042267 crossref_primary_10_1016_j_intimp_2020_106489 crossref_primary_10_1016_j_biopha_2022_113968 crossref_primary_10_1080_10601325_2020_1766981 crossref_primary_10_1016_j_ecoenv_2019_04_084 crossref_primary_10_1007_s00204_019_02415_8 crossref_primary_10_1016_j_nano_2018_07_009 crossref_primary_10_1016_j_biopha_2017_03_005 crossref_primary_10_1039_D1FO02855C crossref_primary_10_1016_j_scitotenv_2021_147221 crossref_primary_10_1039_C6NR06749B crossref_primary_10_1039_C8NR00554K crossref_primary_10_1186_s12989_020_00372_0 crossref_primary_10_1016_j_jhazmat_2020_122606 crossref_primary_10_1016_j_scitotenv_2017_12_334 crossref_primary_10_1016_j_freeradbiomed_2019_06_031 crossref_primary_10_1016_j_ecoenv_2019_06_027 crossref_primary_10_1021_acsbiomaterials_6b00607 crossref_primary_10_1016_j_clinre_2022_102070 crossref_primary_10_1021_acsbiomaterials_9b01932 crossref_primary_10_1007_s00204_020_02940_x crossref_primary_10_1088_1361_6528_abde02 crossref_primary_10_1002_jat_3629 crossref_primary_10_1039_C9NR06778G crossref_primary_10_3389_fphar_2019_01179 crossref_primary_10_1089_ars_2017_7366 crossref_primary_10_1080_09540105_2019_1638888 crossref_primary_10_1016_j_addr_2017_04_005 crossref_primary_10_1039_D2EN00252C crossref_primary_10_2147_IJN_S241332 crossref_primary_10_1016_j_fct_2023_113918 crossref_primary_10_1016_j_tiv_2020_104967 crossref_primary_10_1007_s11356_019_07468_x crossref_primary_10_1038_s41419_020_03317_9 crossref_primary_10_1016_j_scitotenv_2023_166478 crossref_primary_10_1016_j_ecoenv_2021_112895 crossref_primary_10_1039_D4NA00028E crossref_primary_10_1007_s12011_019_01841_0 crossref_primary_10_1021_acs_chemrestox_1c00214 crossref_primary_10_1007_s12551_020_00653_0 crossref_primary_10_1016_j_etap_2023_104172 crossref_primary_10_1016_j_jhazmat_2020_123034 crossref_primary_10_1007_s42247_022_00426_3 crossref_primary_10_1016_j_actbio_2019_01_019 crossref_primary_10_1016_j_neulet_2022_136935 crossref_primary_10_18632_aging_103774 crossref_primary_10_1016_j_imlet_2019_03_001 crossref_primary_10_1002_adma_201706356 crossref_primary_10_3389_fimmu_2020_01149 crossref_primary_10_1002_adfm_201606243 crossref_primary_10_3389_fimmu_2018_02201 crossref_primary_10_2147_IJN_S434842 crossref_primary_10_1016_j_ejphar_2017_08_036 crossref_primary_10_3389_fonc_2021_749970 crossref_primary_10_1016_j_redox_2021_102157 crossref_primary_10_2217_nnm_2021_0104 crossref_primary_10_3390_ijms22031319 crossref_primary_10_1038_s41419_020_2323_5 crossref_primary_10_4254_wjh_v16_i4_566 crossref_primary_10_1007_s00011_020_01351_z crossref_primary_10_1186_s12865_017_0232_x crossref_primary_10_1002_jat_4083 crossref_primary_10_1002_jat_4085 crossref_primary_10_1016_j_matt_2022_08_026 crossref_primary_10_1016_j_actbio_2017_12_020 crossref_primary_10_1002_cmdc_202400172 crossref_primary_10_1016_j_tiv_2020_104827 crossref_primary_10_1002_adfm_202311362 crossref_primary_10_1016_j_impact_2024_100494 crossref_primary_10_1080_17435390_2023_2203239 crossref_primary_10_1016_j_phymed_2022_154596 crossref_primary_10_1016_j_taap_2018_06_021 crossref_primary_10_1016_j_toxlet_2020_05_017 crossref_primary_10_1007_s12035_022_02960_x crossref_primary_10_1016_j_molimm_2019_04_023 crossref_primary_10_2147_IJN_S246578 crossref_primary_10_1002_jat_3660 crossref_primary_10_1016_j_envpol_2023_123231 crossref_primary_10_1002_ctm2_373 crossref_primary_10_1096_fj_202100713RR crossref_primary_10_1016_j_reprotox_2017_08_016 crossref_primary_10_1186_s13287_021_02640_y crossref_primary_10_3390_nano12213908 crossref_primary_10_1016_j_fct_2023_113683 crossref_primary_10_3390_nano14131086 crossref_primary_10_3389_fcell_2023_1322305 crossref_primary_10_1016_j_imbio_2016_11_002 crossref_primary_10_1016_j_chemosphere_2020_128741 crossref_primary_10_3389_fimmu_2018_00758 crossref_primary_10_1002_mabi_201700273 crossref_primary_10_1016_j_ejps_2020_105639 crossref_primary_10_1016_j_scitotenv_2023_163166 crossref_primary_10_1016_j_taap_2024_116976 crossref_primary_10_1016_j_jcmgh_2021_11_009 crossref_primary_10_1016_j_nanoso_2022_100921 crossref_primary_10_3390_toxics11070585 crossref_primary_10_2174_1389200221666200103091753 crossref_primary_10_1016_j_brainres_2021_147525 crossref_primary_10_1039_C7EN00517B crossref_primary_10_3390_molecules25092193 crossref_primary_10_1016_j_mtcomm_2022_103359 crossref_primary_10_1080_15376516_2021_1953204 crossref_primary_10_1038_s41419_018_1004_0 crossref_primary_10_1021_acs_jafc_7b03248 crossref_primary_10_1016_j_intimp_2020_107227 crossref_primary_10_1002_jat_4180 crossref_primary_10_1093_toxres_tfaa034 crossref_primary_10_1016_j_neuro_2021_11_007 crossref_primary_10_1016_j_scitotenv_2023_165851 crossref_primary_10_1016_j_bbalip_2022_159209 crossref_primary_10_1016_j_ebiom_2018_05_023 crossref_primary_10_1016_j_colsurfb_2021_111578 |
Cites_doi | 10.3109/17435390.2010.539712 10.1289/ehp.11225 10.1016/j.biomaterials.2010.02.074 10.1002/hep.26592 10.4049/jimmunol.1501223 10.1038/nmat1390 10.1038/nbt994 10.1038/nri2725 10.1016/j.biomaterials.2011.04.063 10.1126/science.1104274 10.4161/cc.6.6.3991 10.1021/bc4001917 10.1016/j.biomaterials.2013.07.087 10.3109/17435390903276925 10.1038/nature09663 10.1016/j.jhep.2012.03.035 10.1016/j.biomaterials.2013.09.048 10.1007/s12011-014-0068-7 10.1089/ars.2014.5868 10.1002/smll.201402859 10.1002/jat.2775 10.1016/j.biomaterials.2013.11.069 10.1016/j.tox.2013.02.010 10.1016/j.cell.2010.01.040 10.3389/fncel.2014.00216 10.1371/journal.pone.0024406 10.1016/j.biomaterials.2012.04.045 10.1016/j.taap.2013.06.004 10.1038/cddis.2014.576 10.1146/annurev-cellbio-101011-155745 10.1038/nature10759 10.1002/chem.201102795 10.1073/pnas.0707370105 10.3109/17435390.2011.635814 10.1016/j.chembiol.2010.11.013 10.1021/nn204886b 10.1016/j.biomaterials.2011.08.031 10.1038/ncomms2608 10.1093/toxsci/kfv068 10.1016/j.biomaterials.2011.12.009 10.1016/j.biomaterials.2007.07.014 10.1038/cddis.2014.348 10.1016/j.jhazmat.2011.07.113 10.1016/j.cell.2014.02.008 10.1073/pnas.1008155107 10.1186/1743-8977-10-5 10.1016/j.redox.2015.01.008 10.1016/j.cell.2014.04.007 10.1038/ni.1980 10.1016/j.it.2014.02.007 10.1038/nchembio.1023 10.1016/j.biomaterials.2013.08.038 10.1073/pnas.1117765109 10.1111/j.1469-7793.2000.00057.x 10.1016/j.toxlet.2006.09.007 10.1016/j.biomaterials.2011.10.070 |
ContentType | Journal Article |
Copyright | Elsevier Ltd 2016 Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: Elsevier Ltd – notice: 2016 Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M |
DOI | 10.1016/j.biomaterials.2016.03.003 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | Materials Research Database Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 39 |
ExternalDocumentID | 10_1016_j_biomaterials_2016_03_003 26986854 S0142961216300126 1_s2_0_S0142961216300126 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYOK ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AEVXI AEZYN AFCTW AFFNX AFJKZ AFKWA AFRHN AFRZQ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJOXV AJUYK AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AAIAV ABYKQ AJBFU DOVZS EFLBG CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M |
ID | FETCH-LOGICAL-c501t-4772316d013255c3a99a873f011b88d5ccc4875eaf89e20f3a9c565010bffcd23 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 |
IngestDate | Fri Oct 25 04:18:29 EDT 2024 Fri Oct 25 06:25:01 EDT 2024 Thu Sep 26 18:41:19 EDT 2024 Sat Sep 28 08:06:19 EDT 2024 Fri Feb 23 02:31:36 EST 2024 Tue Oct 15 22:54:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ALP alanine aminotransferase ALT small interfering RNA CXCL1 NLRP3 KO MPO 2-APB Z-YVAD-FMK PAMPs mtROS flow cytometry alkaline phosphatase transmission electron microscopy N-acetyl- l-cysteine pro-Casp1 H&E lactate dehydrogenase YVAD IL-1β FCM pathogen-associated molecular patterns apoptotic speck-like protein containing CARD TEMPO pro-caspase-1 QDs Reactive oxygen species NLR pyrin domain containing 3 mRNA Casp1 p20 interleukin-1β DAMPs ASC LDH messenger RNA danger-associated molecular patterns NLRP3 caspase-1 p20 WT 2-aminoethoxydiphenyl borate hematoxylin and eosin NLRP3 knockout Calcium mobilization AST Hepatocyte pyroptosis Quantum dots chemokine [C-X-C motif] ligand 1 siRNA myeloperoxidase Mito-TEMPO γGT Liver inflammation aspartate aminotransferase NAC TNF-α Hanks balanced salt solution tumor necrosis factor-α HBSS γ-glutamyltransferase mitochondrial reactive oxygen species wild-type TEM |
Language | English |
License | Copyright © 2016 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-4772316d013255c3a99a873f011b88d5ccc4875eaf89e20f3a9c565010bffcd23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26986854 |
PQID | 1785249250 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1808062786 proquest_miscellaneous_1785249250 crossref_primary_10_1016_j_biomaterials_2016_03_003 pubmed_primary_26986854 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2016_03_003 elsevier_clinicalkeyesjournals_1_s2_0_S0142961216300126 |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yazdi, Guarda, Riteau, Drexler, Tardivel, Couillin (bib22) 2010; 107 Nagy, Steinbruck, Gao, Doggett, Hollingsworth, Iyer (bib41) 2012; 6 Tang, Cai, Chibli, Allagadda, Nadeau, Mayer (bib10) 2013; 272 Nguyen, Willmore, Tayabali (bib9) 2013; 306 Schroder, Tschopp (bib16) 2010; 140 Tang, Xing, Zeng, Wang, Li, Yin (bib29) 2008; 116 Gosso, Gavello, Giachello, Franchino, Carbone, Carabelli (bib55) 2011; 32 Zhong, Zhai, Liang, Mori, Han, Sutterwala (bib35) 2013; 4 Cerqueira, Pereira, Silva, Cunha, Zamboni (bib34) 2015; 195 Li, Zhang, Xiao, Tian, Liu, Li (bib28) 2011; 194 Murakami, Ockinger, Yu, Byles, McColl, Hofer (bib54) 2012; 109 Chen, Miao, Chen, Jin, Zha, Chai (bib12) 2013; 34 Clift, Boyles, Brown, Stone (bib56) 2010; 4 Tang, Han, Liu, Chen, Huang, Li (bib14) 2013; 34 Szabo, Csak (bib30) 2012; 57 Medintz, Uyeda, Goldman, Mattoussi (bib2) 2005; 4 Wen, Lin, Zheng, Zhang, Zhang, Wang (bib6) 2014; 35 Lamkanfi, Dixit (bib18) 2014; 157 Muehlbauer, Evering, Bonuccelli, Squires, Ashton, Porcelli (bib52) 2007; 6 Tschopp, Schroder (bib50) 2010; 10 Jamieson, Bakhshi, Petrova, Pocock, Imani, Seifalian (bib3) 2007; 28 Tiwari, Jin, Behari (bib46) 2011; 6 Chen, He, Su, Li, Huang, Wang (bib8) 2012; 33 Yukawa, Watanabe, Kaji, Okamoto, Tokeshi, Miyamoto (bib5) 2012; 33 Tan, Tan, Jiang, Zhu, Wang, Jia (bib33) 2014; 5 Liu, Zhang, Wang, Qu, Zhang, Hong (bib13) 2011; 6 Ho, Chang, Tsai, Tsai, Yang, Ling (bib45) 2013; 7 Puri, Broz, Shen, Monack, Bogyo (bib53) 2012; 8 Abderrazak, Syrovets, Couchie, El Hadri, Friguet, Simmet (bib19) 2015; 4 Lamkanfi, Dixit (bib43) 2012; 28 Bradburne, Delehanty, Boeneman Gemmill, Mei, Mattoussi, Susumu (bib40) 2013; 24 Alfonso-Loeches, Urena-Peralta, Morillo-Bargues, Oliver-De La Cruz, Guerri (bib26) 2014; 8 Zhao, Ji, Mao (bib37) 2012; 18 Zhan, Tang (bib38) 2014; 161 Nakahira, Haspel, Rathinam, Lee, Dolinay, Lam (bib51) 2011; 12 Zhang, Zhang, Chen, Hu, Wang, Jin (bib44) 2015; 22 Strowig, Henao-Mejia, Elinav, Flavell (bib21) 2012; 481 Fink, Bergsbaken, Cookson (bib32) 2008; 105 Sun, Wang, Ji, Wang, Liao, Chang (bib24) 2015; 11 Michalet, Pinaud, Bentolila, Tsay, Doose, Li (bib1) 2005; 307 Singh, Singh, Khan, Singh, Naqvi (bib36) 2012; 33 Horng (bib27) 2014; 35 Haque, Im, Seo, Hasan, Woo, Kwon (bib48) 2013; 33 Roberts, Antonini, Porter, Chapman, Scabilloni, Young (bib15) 2013; 10 Nguyen, Rippstein, Tayabali, Willmore (bib58) 2015; 146 Wree, Eguchi, McGeough, Pena, Johnson, Canbay (bib31) 2014; 59 Lu, Magupalli, Ruan, Yin, Atianand, Vos (bib17) 2014; 156 Su, Hu, Fan, He, Li, Li (bib42) 2010; 31 Baron, Gombault, Fanny, Villeret, Savigny, Guillou (bib23) 2015; 6 Gao, Cui, Levenson, Chung, Nie (bib7) 2004; 22 Chan, Shiao, Lu (bib11) 2006; 167 Lin, Yang, Chang, Yang, Chang, Chang (bib47) 2011; 5 Peng, He, Chen, Wu, Zhang, Pang (bib39) 2013; 34 Duchen (bib57) 2000; 529 Ozaki, Campbell, Doyle (bib20) 2015; 8 Su, Peng, Jiang, Zhong, Lu, Jiang (bib49) 2011; 32 Rosenthal, Chang, Kovtun, McBride, Tomlinson (bib4) 2011; 18 Zhou, Yazdi, Menu, Tschopp (bib25) 2011; 469 Lamkanfi (10.1016/j.biomaterials.2016.03.003_bib18) 2014; 157 Singh (10.1016/j.biomaterials.2016.03.003_bib36) 2012; 33 Tang (10.1016/j.biomaterials.2016.03.003_bib14) 2013; 34 Yazdi (10.1016/j.biomaterials.2016.03.003_bib22) 2010; 107 Wree (10.1016/j.biomaterials.2016.03.003_bib31) 2014; 59 Liu (10.1016/j.biomaterials.2016.03.003_bib13) 2011; 6 Tan (10.1016/j.biomaterials.2016.03.003_bib33) 2014; 5 Zhong (10.1016/j.biomaterials.2016.03.003_bib35) 2013; 4 Puri (10.1016/j.biomaterials.2016.03.003_bib53) 2012; 8 Alfonso-Loeches (10.1016/j.biomaterials.2016.03.003_bib26) 2014; 8 Tschopp (10.1016/j.biomaterials.2016.03.003_bib50) 2010; 10 Murakami (10.1016/j.biomaterials.2016.03.003_bib54) 2012; 109 Sun (10.1016/j.biomaterials.2016.03.003_bib24) 2015; 11 Clift (10.1016/j.biomaterials.2016.03.003_bib56) 2010; 4 Strowig (10.1016/j.biomaterials.2016.03.003_bib21) 2012; 481 Nguyen (10.1016/j.biomaterials.2016.03.003_bib58) 2015; 146 Zhou (10.1016/j.biomaterials.2016.03.003_bib25) 2011; 469 Haque (10.1016/j.biomaterials.2016.03.003_bib48) 2013; 33 Chan (10.1016/j.biomaterials.2016.03.003_bib11) 2006; 167 Su (10.1016/j.biomaterials.2016.03.003_bib42) 2010; 31 Horng (10.1016/j.biomaterials.2016.03.003_bib27) 2014; 35 Bradburne (10.1016/j.biomaterials.2016.03.003_bib40) 2013; 24 Ozaki (10.1016/j.biomaterials.2016.03.003_bib20) 2015; 8 Medintz (10.1016/j.biomaterials.2016.03.003_bib2) 2005; 4 Schroder (10.1016/j.biomaterials.2016.03.003_bib16) 2010; 140 Duchen (10.1016/j.biomaterials.2016.03.003_bib57) 2000; 529 Baron (10.1016/j.biomaterials.2016.03.003_bib23) 2015; 6 Chen (10.1016/j.biomaterials.2016.03.003_bib8) 2012; 33 Muehlbauer (10.1016/j.biomaterials.2016.03.003_bib52) 2007; 6 Nguyen (10.1016/j.biomaterials.2016.03.003_bib9) 2013; 306 Gao (10.1016/j.biomaterials.2016.03.003_bib7) 2004; 22 Fink (10.1016/j.biomaterials.2016.03.003_bib32) 2008; 105 Rosenthal (10.1016/j.biomaterials.2016.03.003_bib4) 2011; 18 Abderrazak (10.1016/j.biomaterials.2016.03.003_bib19) 2015; 4 Jamieson (10.1016/j.biomaterials.2016.03.003_bib3) 2007; 28 Nagy (10.1016/j.biomaterials.2016.03.003_bib41) 2012; 6 Zhao (10.1016/j.biomaterials.2016.03.003_bib37) 2012; 18 Ho (10.1016/j.biomaterials.2016.03.003_bib45) 2013; 7 Roberts (10.1016/j.biomaterials.2016.03.003_bib15) 2013; 10 Wen (10.1016/j.biomaterials.2016.03.003_bib6) 2014; 35 Tang (10.1016/j.biomaterials.2016.03.003_bib10) 2013; 272 Lamkanfi (10.1016/j.biomaterials.2016.03.003_bib43) 2012; 28 Zhang (10.1016/j.biomaterials.2016.03.003_bib44) 2015; 22 Szabo (10.1016/j.biomaterials.2016.03.003_bib30) 2012; 57 Cerqueira (10.1016/j.biomaterials.2016.03.003_bib34) 2015; 195 Lu (10.1016/j.biomaterials.2016.03.003_bib17) 2014; 156 Chen (10.1016/j.biomaterials.2016.03.003_bib12) 2013; 34 Su (10.1016/j.biomaterials.2016.03.003_bib49) 2011; 32 Li (10.1016/j.biomaterials.2016.03.003_bib28) 2011; 194 Yukawa (10.1016/j.biomaterials.2016.03.003_bib5) 2012; 33 Nakahira (10.1016/j.biomaterials.2016.03.003_bib51) 2011; 12 Michalet (10.1016/j.biomaterials.2016.03.003_bib1) 2005; 307 Tang (10.1016/j.biomaterials.2016.03.003_bib29) 2008; 116 Tiwari (10.1016/j.biomaterials.2016.03.003_bib46) 2011; 6 Zhan (10.1016/j.biomaterials.2016.03.003_bib38) 2014; 161 Gosso (10.1016/j.biomaterials.2016.03.003_bib55) 2011; 32 Peng (10.1016/j.biomaterials.2016.03.003_bib39) 2013; 34 Lin (10.1016/j.biomaterials.2016.03.003_bib47) 2011; 5 |
References_xml | – volume: 481 start-page: 278 year: 2012 end-page: 286 ident: bib21 article-title: Inflammasomes in health and disease publication-title: Nature contributor: fullname: Flavell – volume: 6 start-page: e1629 year: 2015 ident: bib23 article-title: The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine publication-title: Cell Death Dis. contributor: fullname: Guillou – volume: 35 start-page: 253 year: 2014 end-page: 261 ident: bib27 article-title: Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome publication-title: Trends Immunol. contributor: fullname: Horng – volume: 105 start-page: 4312 year: 2008 end-page: 4317 ident: bib32 article-title: Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Cookson – volume: 32 start-page: 9040 year: 2011 end-page: 9050 ident: bib55 article-title: The effect of CdSe-ZnS quantum dots on calcium currents and catecholamine secretion in mouse chromaffin cells publication-title: Biomaterials contributor: fullname: Carabelli – volume: 167 start-page: 191 year: 2006 end-page: 200 ident: bib11 article-title: CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals publication-title: Toxicol. Lett. contributor: fullname: Lu – volume: 59 start-page: 898 year: 2014 end-page: 910 ident: bib31 article-title: NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice publication-title: Hepatology contributor: fullname: Canbay – volume: 307 start-page: 538 year: 2005 end-page: 544 ident: bib1 article-title: Quantum dots for live cells, in vivo imaging, and diagnostics publication-title: Science contributor: fullname: Li – volume: 5 start-page: e1382 year: 2014 ident: bib33 article-title: Amyloid-beta induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer's disease publication-title: Cell Death Dis. contributor: fullname: Jia – volume: 7 start-page: 105 year: 2013 end-page: 115 ident: bib45 article-title: Quantum dot 705, a cadmium-based nanoparticle, induces persistent inflammation and granuloma formation in the mouse lung publication-title: Nanotoxicology contributor: fullname: Ling – volume: 272 start-page: 443 year: 2013 end-page: 452 ident: bib10 article-title: Cadmium sulfate and CdTe-quantum dots alter DNA repair in zebrafish (Danio rerio) liver cells publication-title: Toxicol. Appl. Pharmacol. contributor: fullname: Mayer – volume: 22 start-page: 969 year: 2004 end-page: 976 ident: bib7 article-title: In vivo cancer targeting and imaging with semiconductor quantum dots publication-title: Nat. Biotechnol. contributor: fullname: Nie – volume: 5 start-page: 650 year: 2011 end-page: 663 ident: bib47 article-title: Cd/Se/Te-based quantum dot 705 modulated redox homeostasis with hepatotoxicity in mice publication-title: Nanotoxicology contributor: fullname: Chang – volume: 18 start-page: 1650 year: 2012 end-page: 1658 ident: bib37 article-title: Beta-cyclodextrin/glycyrrhizic acid functionalised quantum dots selectively enter hepatic cells and induce apoptosis publication-title: Chemistry contributor: fullname: Mao – volume: 4 start-page: 435 year: 2005 end-page: 446 ident: bib2 article-title: Quantum dot bioconjugates for imaging, labelling and sensing publication-title: Nat. Mater. contributor: fullname: Mattoussi – volume: 18 start-page: 10 year: 2011 end-page: 24 ident: bib4 article-title: Biocompatible quantum dots for biological applications publication-title: Chem. Biol. contributor: fullname: Tomlinson – volume: 31 start-page: 4829 year: 2010 end-page: 4834 ident: bib42 article-title: The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties publication-title: Biomaterials contributor: fullname: Li – volume: 529 start-page: 57 year: 2000 end-page: 68 ident: bib57 article-title: Mitochondria and calcium: from cell signalling to cell death publication-title: J. Physiol. contributor: fullname: Duchen – volume: 12 start-page: 222 year: 2011 end-page: 230 ident: bib51 article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome publication-title: Nat. Immunol. contributor: fullname: Lam – volume: 6 start-page: 463 year: 2011 end-page: 475 ident: bib46 article-title: Bio-distribution and toxicity assessment of intravenously injected anti-HER2 antibody conjugated CdSe/ZnS quantum dots in Wistar rats publication-title: Int. J. Nanomed. contributor: fullname: Behari – volume: 6 start-page: 758 year: 2007 end-page: 766 ident: bib52 article-title: Anthrax lethal toxin kills macrophages in a strain-specific manner by apoptosis or caspase-1-mediated necrosis publication-title: Cell Cycle contributor: fullname: Porcelli – volume: 28 start-page: 4717 year: 2007 end-page: 4732 ident: bib3 article-title: Biological applications of quantum dots publication-title: Biomaterials contributor: fullname: Seifalian – volume: 34 start-page: 8741 year: 2013 end-page: 8755 ident: bib14 article-title: The role of surface chemistry in determining in vivo biodistribution and toxicity of CdSe/ZnS core-shell quantum dots publication-title: Biomaterials contributor: fullname: Li – volume: 4 start-page: 1611 year: 2013 ident: bib35 article-title: TRPM2 links oxidative stress to NLRP3 inflammasome activation publication-title: Nat. Commun. contributor: fullname: Sutterwala – volume: 33 start-page: 1238 year: 2012 end-page: 1244 ident: bib8 article-title: The cytotoxicity of cadmium-based quantum dots publication-title: Biomaterials contributor: fullname: Wang – volume: 24 start-page: 1570 year: 2013 end-page: 1583 ident: bib40 article-title: Cytotoxicity of quantum dots used for in vitro cellular labeling: role of QD surface ligand, delivery modality, cell type, and direct comparison to organic fluorophores publication-title: Bioconjug. Chem. contributor: fullname: Susumu – volume: 10 start-page: 5 year: 2013 ident: bib15 article-title: Lung toxicity and biodistribution of Cd/Se-ZnS quantum dots with different surface functional groups after pulmonary exposure in rats publication-title: Part. Fibre Toxicol. contributor: fullname: Young – volume: 4 start-page: 296 year: 2015 end-page: 307 ident: bib19 article-title: NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases publication-title: Redox Biol. contributor: fullname: Simmet – volume: 57 start-page: 642 year: 2012 end-page: 654 ident: bib30 article-title: Inflammasomes in liver diseases publication-title: J. Hepatol. contributor: fullname: Csak – volume: 195 start-page: 2303 year: 2015 end-page: 2311 ident: bib34 article-title: Caspase-1 but not caspase-11 is required for NLRC4-mediated pyroptosis and restriction of infection by flagellated legionella species in mouse macrophages and in vivo publication-title: J. Immunol. contributor: fullname: Zamboni – volume: 32 start-page: 5855 year: 2011 end-page: 5862 ident: bib49 article-title: In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots publication-title: Biomaterials contributor: fullname: Jiang – volume: 161 start-page: 3 year: 2014 end-page: 12 ident: bib38 article-title: Research advances on apoptosis caused by quantum dots publication-title: Biol. Trace Elem. Res. contributor: fullname: Tang – volume: 107 start-page: 19449 year: 2010 end-page: 19454 ident: bib22 article-title: Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Couillin – volume: 34 start-page: 9545 year: 2013 end-page: 9558 ident: bib39 article-title: Cellular uptake, elimination and toxicity of CdSe/ZnS quantum dots in HepG2 cells publication-title: Biomaterials contributor: fullname: Pang – volume: 11 start-page: 2087 year: 2015 end-page: 2097 ident: bib24 article-title: NADPH Oxidase-dependent NLRP3 Inflammasome activation and its important role in lung fibrosis by multiwalled carbon nanotubes publication-title: Small contributor: fullname: Chang – volume: 34 start-page: 10172 year: 2013 end-page: 10181 ident: bib12 article-title: The role of elevated autophagy on the synaptic plasticity impairment caused by CdSe/ZnS quantum dots publication-title: Biomaterials contributor: fullname: Chai – volume: 33 start-page: 2177 year: 2012 end-page: 2186 ident: bib5 article-title: Monitoring transplanted adipose tissue-derived stem cells combined with heparin in the liver by fluorescence imaging using quantum dots publication-title: Biomaterials contributor: fullname: Miyamoto – volume: 4 start-page: 139 year: 2010 end-page: 149 ident: bib56 article-title: An investigation into the potential for different surface-coated quantum dots to cause oxidative stress and affect macrophage cell signalling in vitro publication-title: Nanotoxicology contributor: fullname: Stone – volume: 8 start-page: 15 year: 2015 end-page: 27 ident: bib20 article-title: Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives publication-title: J. Inflamm. Res. contributor: fullname: Doyle – volume: 116 start-page: 915 year: 2008 end-page: 922 ident: bib29 article-title: Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons publication-title: Environ. Health Perspect. contributor: fullname: Yin – volume: 6 start-page: e24406 year: 2011 ident: bib13 article-title: CdSe quantum dot (QD)-induced morphological and functional impairments to liver in mice publication-title: PloS One contributor: fullname: Hong – volume: 157 start-page: 1013 year: 2014 end-page: 1022 ident: bib18 article-title: Mechanisms and functions of inflammasomes publication-title: Cell contributor: fullname: Dixit – volume: 10 start-page: 210 year: 2010 end-page: 215 ident: bib50 article-title: NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? publication-title: Nat. Rev. Immunol. contributor: fullname: Schroder – volume: 6 start-page: 4748 year: 2012 end-page: 4762 ident: bib41 article-title: Comprehensive analysis of the effects of CdSe quantum dot size, surface charge, and functionalization on primary human lung cells publication-title: ACS Nano contributor: fullname: Iyer – volume: 109 start-page: 11282 year: 2012 end-page: 11287 ident: bib54 article-title: Critical role for calcium mobilization in activation of the NLRP3 inflammasome publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Hofer – volume: 8 start-page: 745 year: 2012 end-page: 747 ident: bib53 article-title: Caspase-1 activity is required to bypass macrophage apoptosis upon Salmonella infection publication-title: Nat. Chem. Biol. contributor: fullname: Bogyo – volume: 22 start-page: 848 year: 2015 end-page: 870 ident: bib44 article-title: Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation publication-title: Antioxid. Redox Signal. contributor: fullname: Jin – volume: 469 start-page: 221 year: 2011 end-page: 225 ident: bib25 article-title: A role for mitochondria in NLRP3 inflammasome activation publication-title: Nature contributor: fullname: Tschopp – volume: 35 start-page: 2295 year: 2014 end-page: 2301 ident: bib6 article-title: Labeling the nucleocapsid of enveloped baculovirus with quantum dots for single-virus tracking publication-title: Biomaterials contributor: fullname: Wang – volume: 156 start-page: 1193 year: 2014 end-page: 1206 ident: bib17 article-title: Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes publication-title: Cell contributor: fullname: Vos – volume: 194 start-page: 440 year: 2011 end-page: 444 ident: bib28 article-title: Mitochondria as target of quantum dots toxicity publication-title: J. Hazard. Mater. contributor: fullname: Li – volume: 146 start-page: 31 year: 2015 end-page: 42 ident: bib58 article-title: Mitochondrial toxicity of cadmium telluride quantum dot nanoparticles in mammalian hepatocytes publication-title: Toxicol. Sci. Off. J. Soc. Toxicol. contributor: fullname: Willmore – volume: 28 start-page: 137 year: 2012 end-page: 161 ident: bib43 article-title: Inflammasomes and their roles in health and disease publication-title: Annu. Rev. Cell Dev. Biol. contributor: fullname: Dixit – volume: 140 start-page: 821 year: 2010 end-page: 832 ident: bib16 article-title: The inflammasomes publication-title: Cell contributor: fullname: Tschopp – volume: 306 start-page: 114 year: 2013 end-page: 123 ident: bib9 article-title: Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells publication-title: Toxicology contributor: fullname: Tayabali – volume: 33 start-page: 5753 year: 2012 end-page: 5767 ident: bib36 article-title: ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots publication-title: Biomaterials contributor: fullname: Naqvi – volume: 8 start-page: 216 year: 2014 ident: bib26 article-title: Role of mitochondria ROS generation in ethanol-induced NLRP3 inflammasome activation and cell death in astroglial cells publication-title: Front. Cell. Neurosci. contributor: fullname: Guerri – volume: 33 start-page: 940 year: 2013 end-page: 950 ident: bib48 article-title: Acute toxicity and tissue distribution of CdSe/CdS-MPA quantum dots after repeated intraperitoneal injection to mice publication-title: J. Appl. Toxicol. JAT contributor: fullname: Kwon – volume: 5 start-page: 650 year: 2011 ident: 10.1016/j.biomaterials.2016.03.003_bib47 article-title: Cd/Se/Te-based quantum dot 705 modulated redox homeostasis with hepatotoxicity in mice publication-title: Nanotoxicology doi: 10.3109/17435390.2010.539712 contributor: fullname: Lin – volume: 116 start-page: 915 year: 2008 ident: 10.1016/j.biomaterials.2016.03.003_bib29 article-title: Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons publication-title: Environ. Health Perspect. doi: 10.1289/ehp.11225 contributor: fullname: Tang – volume: 31 start-page: 4829 year: 2010 ident: 10.1016/j.biomaterials.2016.03.003_bib42 article-title: The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.02.074 contributor: fullname: Su – volume: 59 start-page: 898 year: 2014 ident: 10.1016/j.biomaterials.2016.03.003_bib31 article-title: NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice publication-title: Hepatology doi: 10.1002/hep.26592 contributor: fullname: Wree – volume: 195 start-page: 2303 year: 2015 ident: 10.1016/j.biomaterials.2016.03.003_bib34 article-title: Caspase-1 but not caspase-11 is required for NLRC4-mediated pyroptosis and restriction of infection by flagellated legionella species in mouse macrophages and in vivo publication-title: J. Immunol. doi: 10.4049/jimmunol.1501223 contributor: fullname: Cerqueira – volume: 4 start-page: 435 year: 2005 ident: 10.1016/j.biomaterials.2016.03.003_bib2 article-title: Quantum dot bioconjugates for imaging, labelling and sensing publication-title: Nat. Mater. doi: 10.1038/nmat1390 contributor: fullname: Medintz – volume: 22 start-page: 969 year: 2004 ident: 10.1016/j.biomaterials.2016.03.003_bib7 article-title: In vivo cancer targeting and imaging with semiconductor quantum dots publication-title: Nat. Biotechnol. doi: 10.1038/nbt994 contributor: fullname: Gao – volume: 10 start-page: 210 year: 2010 ident: 10.1016/j.biomaterials.2016.03.003_bib50 article-title: NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2725 contributor: fullname: Tschopp – volume: 32 start-page: 5855 year: 2011 ident: 10.1016/j.biomaterials.2016.03.003_bib49 article-title: In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.04.063 contributor: fullname: Su – volume: 307 start-page: 538 year: 2005 ident: 10.1016/j.biomaterials.2016.03.003_bib1 article-title: Quantum dots for live cells, in vivo imaging, and diagnostics publication-title: Science doi: 10.1126/science.1104274 contributor: fullname: Michalet – volume: 6 start-page: 758 year: 2007 ident: 10.1016/j.biomaterials.2016.03.003_bib52 article-title: Anthrax lethal toxin kills macrophages in a strain-specific manner by apoptosis or caspase-1-mediated necrosis publication-title: Cell Cycle doi: 10.4161/cc.6.6.3991 contributor: fullname: Muehlbauer – volume: 24 start-page: 1570 year: 2013 ident: 10.1016/j.biomaterials.2016.03.003_bib40 article-title: Cytotoxicity of quantum dots used for in vitro cellular labeling: role of QD surface ligand, delivery modality, cell type, and direct comparison to organic fluorophores publication-title: Bioconjug. Chem. doi: 10.1021/bc4001917 contributor: fullname: Bradburne – volume: 34 start-page: 8741 year: 2013 ident: 10.1016/j.biomaterials.2016.03.003_bib14 article-title: The role of surface chemistry in determining in vivo biodistribution and toxicity of CdSe/ZnS core-shell quantum dots publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.07.087 contributor: fullname: Tang – volume: 4 start-page: 139 year: 2010 ident: 10.1016/j.biomaterials.2016.03.003_bib56 article-title: An investigation into the potential for different surface-coated quantum dots to cause oxidative stress and affect macrophage cell signalling in vitro publication-title: Nanotoxicology doi: 10.3109/17435390903276925 contributor: fullname: Clift – volume: 469 start-page: 221 year: 2011 ident: 10.1016/j.biomaterials.2016.03.003_bib25 article-title: A role for mitochondria in NLRP3 inflammasome activation publication-title: Nature doi: 10.1038/nature09663 contributor: fullname: Zhou – volume: 57 start-page: 642 year: 2012 ident: 10.1016/j.biomaterials.2016.03.003_bib30 article-title: Inflammasomes in liver diseases publication-title: J. Hepatol. doi: 10.1016/j.jhep.2012.03.035 contributor: fullname: Szabo – volume: 6 start-page: 463 year: 2011 ident: 10.1016/j.biomaterials.2016.03.003_bib46 article-title: Bio-distribution and toxicity assessment of intravenously injected anti-HER2 antibody conjugated CdSe/ZnS quantum dots in Wistar rats publication-title: Int. J. Nanomed. contributor: fullname: Tiwari – volume: 34 start-page: 10172 year: 2013 ident: 10.1016/j.biomaterials.2016.03.003_bib12 article-title: The role of elevated autophagy on the synaptic plasticity impairment caused by CdSe/ZnS quantum dots publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.09.048 contributor: fullname: Chen – volume: 161 start-page: 3 year: 2014 ident: 10.1016/j.biomaterials.2016.03.003_bib38 article-title: Research advances on apoptosis caused by quantum dots publication-title: Biol. Trace Elem. Res. doi: 10.1007/s12011-014-0068-7 contributor: fullname: Zhan – volume: 22 start-page: 848 year: 2015 ident: 10.1016/j.biomaterials.2016.03.003_bib44 article-title: Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2014.5868 contributor: fullname: Zhang – volume: 11 start-page: 2087 year: 2015 ident: 10.1016/j.biomaterials.2016.03.003_bib24 article-title: NADPH Oxidase-dependent NLRP3 Inflammasome activation and its important role in lung fibrosis by multiwalled carbon nanotubes publication-title: Small doi: 10.1002/smll.201402859 contributor: fullname: Sun – volume: 33 start-page: 940 year: 2013 ident: 10.1016/j.biomaterials.2016.03.003_bib48 article-title: Acute toxicity and tissue distribution of CdSe/CdS-MPA quantum dots after repeated intraperitoneal injection to mice publication-title: J. Appl. Toxicol. JAT doi: 10.1002/jat.2775 contributor: fullname: Haque – volume: 35 start-page: 2295 year: 2014 ident: 10.1016/j.biomaterials.2016.03.003_bib6 article-title: Labeling the nucleocapsid of enveloped baculovirus with quantum dots for single-virus tracking publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.11.069 contributor: fullname: Wen – volume: 306 start-page: 114 year: 2013 ident: 10.1016/j.biomaterials.2016.03.003_bib9 article-title: Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells publication-title: Toxicology doi: 10.1016/j.tox.2013.02.010 contributor: fullname: Nguyen – volume: 140 start-page: 821 year: 2010 ident: 10.1016/j.biomaterials.2016.03.003_bib16 article-title: The inflammasomes publication-title: Cell doi: 10.1016/j.cell.2010.01.040 contributor: fullname: Schroder – volume: 8 start-page: 216 year: 2014 ident: 10.1016/j.biomaterials.2016.03.003_bib26 article-title: Role of mitochondria ROS generation in ethanol-induced NLRP3 inflammasome activation and cell death in astroglial cells publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2014.00216 contributor: fullname: Alfonso-Loeches – volume: 6 start-page: e24406 year: 2011 ident: 10.1016/j.biomaterials.2016.03.003_bib13 article-title: CdSe quantum dot (QD)-induced morphological and functional impairments to liver in mice publication-title: PloS One doi: 10.1371/journal.pone.0024406 contributor: fullname: Liu – volume: 33 start-page: 5753 year: 2012 ident: 10.1016/j.biomaterials.2016.03.003_bib36 article-title: ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.04.045 contributor: fullname: Singh – volume: 272 start-page: 443 year: 2013 ident: 10.1016/j.biomaterials.2016.03.003_bib10 article-title: Cadmium sulfate and CdTe-quantum dots alter DNA repair in zebrafish (Danio rerio) liver cells publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2013.06.004 contributor: fullname: Tang – volume: 6 start-page: e1629 year: 2015 ident: 10.1016/j.biomaterials.2016.03.003_bib23 article-title: The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine publication-title: Cell Death Dis. doi: 10.1038/cddis.2014.576 contributor: fullname: Baron – volume: 28 start-page: 137 year: 2012 ident: 10.1016/j.biomaterials.2016.03.003_bib43 article-title: Inflammasomes and their roles in health and disease publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-101011-155745 contributor: fullname: Lamkanfi – volume: 481 start-page: 278 year: 2012 ident: 10.1016/j.biomaterials.2016.03.003_bib21 article-title: Inflammasomes in health and disease publication-title: Nature doi: 10.1038/nature10759 contributor: fullname: Strowig – volume: 18 start-page: 1650 year: 2012 ident: 10.1016/j.biomaterials.2016.03.003_bib37 article-title: Beta-cyclodextrin/glycyrrhizic acid functionalised quantum dots selectively enter hepatic cells and induce apoptosis publication-title: Chemistry doi: 10.1002/chem.201102795 contributor: fullname: Zhao – volume: 105 start-page: 4312 year: 2008 ident: 10.1016/j.biomaterials.2016.03.003_bib32 article-title: Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0707370105 contributor: fullname: Fink – volume: 7 start-page: 105 year: 2013 ident: 10.1016/j.biomaterials.2016.03.003_bib45 article-title: Quantum dot 705, a cadmium-based nanoparticle, induces persistent inflammation and granuloma formation in the mouse lung publication-title: Nanotoxicology doi: 10.3109/17435390.2011.635814 contributor: fullname: Ho – volume: 18 start-page: 10 year: 2011 ident: 10.1016/j.biomaterials.2016.03.003_bib4 article-title: Biocompatible quantum dots for biological applications publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2010.11.013 contributor: fullname: Rosenthal – volume: 6 start-page: 4748 year: 2012 ident: 10.1016/j.biomaterials.2016.03.003_bib41 article-title: Comprehensive analysis of the effects of CdSe quantum dot size, surface charge, and functionalization on primary human lung cells publication-title: ACS Nano doi: 10.1021/nn204886b contributor: fullname: Nagy – volume: 32 start-page: 9040 year: 2011 ident: 10.1016/j.biomaterials.2016.03.003_bib55 article-title: The effect of CdSe-ZnS quantum dots on calcium currents and catecholamine secretion in mouse chromaffin cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.08.031 contributor: fullname: Gosso – volume: 4 start-page: 1611 year: 2013 ident: 10.1016/j.biomaterials.2016.03.003_bib35 article-title: TRPM2 links oxidative stress to NLRP3 inflammasome activation publication-title: Nat. Commun. doi: 10.1038/ncomms2608 contributor: fullname: Zhong – volume: 146 start-page: 31 year: 2015 ident: 10.1016/j.biomaterials.2016.03.003_bib58 article-title: Mitochondrial toxicity of cadmium telluride quantum dot nanoparticles in mammalian hepatocytes publication-title: Toxicol. Sci. Off. J. Soc. Toxicol. doi: 10.1093/toxsci/kfv068 contributor: fullname: Nguyen – volume: 33 start-page: 2177 year: 2012 ident: 10.1016/j.biomaterials.2016.03.003_bib5 article-title: Monitoring transplanted adipose tissue-derived stem cells combined with heparin in the liver by fluorescence imaging using quantum dots publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.12.009 contributor: fullname: Yukawa – volume: 28 start-page: 4717 year: 2007 ident: 10.1016/j.biomaterials.2016.03.003_bib3 article-title: Biological applications of quantum dots publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.07.014 contributor: fullname: Jamieson – volume: 5 start-page: e1382 year: 2014 ident: 10.1016/j.biomaterials.2016.03.003_bib33 article-title: Amyloid-beta induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer's disease publication-title: Cell Death Dis. doi: 10.1038/cddis.2014.348 contributor: fullname: Tan – volume: 194 start-page: 440 year: 2011 ident: 10.1016/j.biomaterials.2016.03.003_bib28 article-title: Mitochondria as target of quantum dots toxicity publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.07.113 contributor: fullname: Li – volume: 8 start-page: 15 year: 2015 ident: 10.1016/j.biomaterials.2016.03.003_bib20 article-title: Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives publication-title: J. Inflamm. Res. contributor: fullname: Ozaki – volume: 156 start-page: 1193 year: 2014 ident: 10.1016/j.biomaterials.2016.03.003_bib17 article-title: Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes publication-title: Cell doi: 10.1016/j.cell.2014.02.008 contributor: fullname: Lu – volume: 107 start-page: 19449 year: 2010 ident: 10.1016/j.biomaterials.2016.03.003_bib22 article-title: Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1008155107 contributor: fullname: Yazdi – volume: 10 start-page: 5 year: 2013 ident: 10.1016/j.biomaterials.2016.03.003_bib15 article-title: Lung toxicity and biodistribution of Cd/Se-ZnS quantum dots with different surface functional groups after pulmonary exposure in rats publication-title: Part. Fibre Toxicol. doi: 10.1186/1743-8977-10-5 contributor: fullname: Roberts – volume: 4 start-page: 296 year: 2015 ident: 10.1016/j.biomaterials.2016.03.003_bib19 article-title: NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases publication-title: Redox Biol. doi: 10.1016/j.redox.2015.01.008 contributor: fullname: Abderrazak – volume: 157 start-page: 1013 year: 2014 ident: 10.1016/j.biomaterials.2016.03.003_bib18 article-title: Mechanisms and functions of inflammasomes publication-title: Cell doi: 10.1016/j.cell.2014.04.007 contributor: fullname: Lamkanfi – volume: 12 start-page: 222 year: 2011 ident: 10.1016/j.biomaterials.2016.03.003_bib51 article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome publication-title: Nat. Immunol. doi: 10.1038/ni.1980 contributor: fullname: Nakahira – volume: 35 start-page: 253 year: 2014 ident: 10.1016/j.biomaterials.2016.03.003_bib27 article-title: Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome publication-title: Trends Immunol. doi: 10.1016/j.it.2014.02.007 contributor: fullname: Horng – volume: 8 start-page: 745 year: 2012 ident: 10.1016/j.biomaterials.2016.03.003_bib53 article-title: Caspase-1 activity is required to bypass macrophage apoptosis upon Salmonella infection publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1023 contributor: fullname: Puri – volume: 34 start-page: 9545 year: 2013 ident: 10.1016/j.biomaterials.2016.03.003_bib39 article-title: Cellular uptake, elimination and toxicity of CdSe/ZnS quantum dots in HepG2 cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.08.038 contributor: fullname: Peng – volume: 109 start-page: 11282 year: 2012 ident: 10.1016/j.biomaterials.2016.03.003_bib54 article-title: Critical role for calcium mobilization in activation of the NLRP3 inflammasome publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1117765109 contributor: fullname: Murakami – volume: 529 start-page: 57 issue: Pt 1 year: 2000 ident: 10.1016/j.biomaterials.2016.03.003_bib57 article-title: Mitochondria and calcium: from cell signalling to cell death publication-title: J. Physiol. doi: 10.1111/j.1469-7793.2000.00057.x contributor: fullname: Duchen – volume: 167 start-page: 191 year: 2006 ident: 10.1016/j.biomaterials.2016.03.003_bib11 article-title: CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2006.09.007 contributor: fullname: Chan – volume: 33 start-page: 1238 year: 2012 ident: 10.1016/j.biomaterials.2016.03.003_bib8 article-title: The cytotoxicity of cadmium-based quantum dots publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.10.070 contributor: fullname: Chen |
SSID | ssj0014042 |
Score | 2.583946 |
Snippet | Abstract Increased biomedical applications of quantum dots (QDs) have raised considerable concern regarding their toxicological impact. However, the toxicity... Increased biomedical applications of quantum dots (QDs) have raised considerable concern regarding their toxicological impact. However, the toxicity of QDs is... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 27 |
SubjectTerms | Activation Advanced Basic Science Animals Biomedical materials Cadmium Compounds - adverse effects Cadmium Compounds - chemistry Cadmium Compounds - immunology Cadmium selenides Calcium mobilization Cell Line Dentistry Hepatocyte pyroptosis Hepatocytes - drug effects Hepatocytes - immunology Humans Inflammasomes - drug effects Inflammasomes - immunology Inflammation - chemically induced Inflammation - immunology Intermetallics Liver Liver - drug effects Liver - immunology Liver inflammation Male Mice, Inbred C57BL NLR Family, Pyrin Domain-Containing 3 Protein - immunology NLRP3 Pyroptosis - drug effects Quantum dots Quantum Dots - adverse effects Quantum Dots - chemistry Reactive oxygen species Reactive Oxygen Species - immunology Scavengers Selenium Compounds - adverse effects Selenium Compounds - chemistry Selenium Compounds - immunology Sulfides - adverse effects Sulfides - immunology Zinc Compounds - adverse effects Zinc Compounds - immunology Zinc sulfides |
Title | CdSe/ZnS quantum dots induce hepatocyte pyroptosis and liver inflammation via NLRP3 inflammasome activation |
URI | https://www.clinicalkey.es/playcontent/1-s2.0-S0142961216300126 https://dx.doi.org/10.1016/j.biomaterials.2016.03.003 https://www.ncbi.nlm.nih.gov/pubmed/26986854 https://search.proquest.com/docview/1785249250 https://search.proquest.com/docview/1808062786 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA7LCqIPouttvCwRfK3TJk2aPPiwDC7jZQdxXVh8CWkuOOq247Yj7Iu_3XMm7bAiK4KPDSlJc65JvvOVkOcanCJnUWVllHlW1sFntnI2k85VvAje5wEP9I8Wcn5SvjkVpztkNtbCIKxy8P3Jp2-89dAyHVZzuloupwhLYhoJsJA1qmBIu41kW6DTL35uYR7IHsMSjJFl2HskHt1gvLDE3fZJ1AjzkonwlF8VpK5KQjfB6PA2uTVkkfQgTfQO2QnNHrl5iVtwj1w_Gm7N75KvM38cpp-aY_p9DQu5PqOwFe0o7MZBrvQzBKS-dRd9oKuL83bVt92yo7bx9BtiNqBbBK1JFY70x9LSxbsP7_m2uWvPAsXqiHS2e4-cHL76OJtnw08WMifyos9KSK95IT3euQjhuNXaqopHsPtaKS-cc7inCTYqHVgeoYODJBC2cXWMzjN-n-w2bRMeElrlVghbeC6kLXMXVSFiVevgay21rviE8HFVzSpxaZgRZPbFXJaFQVmYnCNz6YRUowDMWC0K_i10g7F1pjAdM7n5QyEm5OX2zd90ykC4-KeRn43yNmB0eJNim9CuYcRKCaRaFPlf-iBjp2SVgnk8SMqy_WomtZJKlI_-c4aPyQ18StC1J2S3P1-Hp5Ak9fX-xgr2ybWD12_ni1_-4RLc |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKkXgcEBQKy9NIXMMmduzYBw5oRbXA7grRVqq4WI7tiAWaLE0WqRd-OzPrZFWEipC4OhPZ8YzHM_Y3Xwh5ocEpclapJK9kmuRl8IktnE2kcwXPgvdpwAP9-UJOj_N3J-Jkh0yGWhiEVfa-P_r0jbfuW8b9bI5Xy-UYYUlMIwEWskZlTF4hV3PkzwKjfvlzi_NA-hgWcYwsQfGBeXQD8sIad9tFXSPOS0bGU37ZLnVZFLrZjQ5uk1t9GElfx5HeITuh3iM3L5AL7pFr8_7a_C75OvGHYfypPqTf1zCT61MKuWhLIR0HxdLPsCN1jTvvAl2dnzWrrmmXLbW1p98QtAFiFZhNLHGkP5aWLmYfP_Btc9ucBorlEfFw9x45PnhzNJkm_V8WEifSrEtyiK95Jj1eugjhuNXaqoJXsPBLpbxwzmFSE2yldGBpBQIOokDI48qqcp7xfbJbN3V4QGiRWiFs5rmQNk9dpTJRFaUOvtRS64KPCB9m1awimYYZUGZfzEVdGNSFSTlSl45IMSjADOWi4OBC26-21mSmZSY1f1jEiLzavvmbURnYL_6p5-eDvg2sOrxKsXVo1tBjoQRyLYr0LzJI2SlZoWAc96OxbL-aSa2kEvnD_xzhM3J9ejSfmdnbxftH5AY-iTi2x2S3O1uHJxAxdeXTzYr4BVz2FH4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CdSe%2FZnS+quantum+dots+induce+hepatocyte+pyroptosis+and+liver+inflammation+via+NLRP3+inflammasome+activation&rft.jtitle=Biomaterials&rft.au=Lu%2C+Yonghui&rft.au=Xu%2C+Shangcheng&rft.au=Chen%2C+Haiyan&rft.au=He%2C+Mindi&rft.date=2016-06-01&rft.issn=0142-9612&rft.volume=90&rft.spage=27&rft.epage=39&rft_id=info:doi/10.1016%2Fj.biomaterials.2016.03.003&rft.externalDBID=ECK1-s2.0-S0142961216300126&rft.externalDocID=1_s2_0_S0142961216300126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |