Detecting Stealthy False Data Injection Using Machine Learning in Smart Grid
Aging power industries, together with the increase in demand from industrial and residential customers, are the main incentive for policy makers to define a road map to the next-generation power system called the smart grid. In the smart grid, the overall monitoring costs will be decreased, but at t...
Saved in:
Published in | IEEE systems journal Vol. 11; no. 3; pp. 1644 - 1652 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aging power industries, together with the increase in demand from industrial and residential customers, are the main incentive for policy makers to define a road map to the next-generation power system called the smart grid. In the smart grid, the overall monitoring costs will be decreased, but at the same time, the risk of cyber attacks might be increased. Recently, a new type of attacks (called the stealth attack) has been introduced, which cannot be detected by the traditional bad data detection using state estimation. In this paper, we show how normal operations of power networks can be statistically distinguished from the case under stealthy attacks. We propose two machine-learning-based techniques for stealthy attack detection. The first method utilizes supervised learning over labeled data and trains a distributed support vector machine (SVM). The design of the distributed SVM is based on the alternating direction method of multipliers, which offers provable optimality and convergence rate. The second method requires no training data and detects the deviation in measurements. In both methods, principal component analysis is used to reduce the dimensionality of the data to be processed, which leads to lower computation complexities. The results of the proposed detection methods on IEEE standard test systems demonstrate the effectiveness of both schemes. |
---|---|
AbstractList | Aging power industries, together with the increase in demand from industrial and residential customers, are the main incentive for policy makers to define a road map to the next-generation power system called the smart grid. In the smart grid, the overall monitoring costs will be decreased, but at the same time, the risk of cyber attacks might be increased. Recently, a new type of attacks (called the stealth attack) has been introduced, which cannot be detected by the traditional bad data detection using state estimation. In this paper, we show how normal operations of power networks can be statistically distinguished from the case under stealthy attacks. We propose two machine-learning-based techniques for stealthy attack detection. The first method utilizes supervised learning over labeled data and trains a distributed support vector machine (SVM). The design of the distributed SVM is based on the alternating direction method of multipliers, which offers provable optimality and convergence rate. The second method requires no training data and detects the deviation in measurements. In both methods, principal component analysis is used to reduce the dimensionality of the data to be processed, which leads to lower computation complexities. The results of the proposed detection methods on IEEE standard test systems demonstrate the effectiveness of both schemes. |
Author | Liu, Lanchao Esmalifalak, Mohammad Zheng, Rong Han, Zhu Nguyen, Nam |
Author_xml | – sequence: 1 givenname: Mohammad surname: Esmalifalak fullname: Esmalifalak, Mohammad organization: Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA – sequence: 2 givenname: Lanchao surname: Liu fullname: Liu, Lanchao organization: Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA – sequence: 3 givenname: Nam surname: Nguyen fullname: Nguyen, Nam organization: Schlumberger Information Solutions, Houston, TX, USA – sequence: 4 givenname: Rong surname: Zheng fullname: Zheng, Rong organization: Department of Computing and Software and the Department of Electrical and Computer Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada – sequence: 5 givenname: Zhu surname: Han fullname: Han, Zhu organization: Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA |
BookMark | eNp9kEFPwjAUxxujiYB-Ab008Txs1462RwOCmBkPg4OnpnRvUoIdduXAt3cD4sGDp7av_997L78-uvS1B4TuKBlSStTja_FRLIYpoXyYMk4zJS5QjyomEtW-L4_3NJFU8mvUb5oNIZnMhOqhfAIRbHT-ExcRzDauD3hqtg3giYkGz_2m-609XjZd5s3YtfOAczDBdwXncfFlQsSz4MobdFV17O35HKDl9Hkxfkny99l8_JQnNiM0JpyJVZnRKlUUrLRU8RWBShFDhGSGcMat5TYrQZQjxcsVZ1ZAJY3hnFUqAzZAD6e-u1B_76GJelPvg29H6rYZ54SKUdqm0lPKhrppAlR6F1y760FTojtr-mhNd9b02VoLyT-QddF0BmIwbvs_en9CHQD8zhpJSWTK2A_3LHw7 |
CODEN | ISJEB2 |
CitedBy_id | crossref_primary_10_1186_s41601_023_00319_5 crossref_primary_10_1186_s13673_019_0175_8 crossref_primary_10_1016_j_measurement_2023_112565 crossref_primary_10_1016_j_rser_2023_113752 crossref_primary_10_1007_s40319_021_01100_7 crossref_primary_10_1016_j_epsr_2024_110321 crossref_primary_10_1016_j_egyr_2022_02_290 crossref_primary_10_1109_ACCESS_2019_2933020 crossref_primary_10_1016_j_compeleceng_2021_107212 crossref_primary_10_1109_TTE_2024_3355094 crossref_primary_10_3390_electronics10161914 crossref_primary_10_1016_j_jfranklin_2024_107000 crossref_primary_10_3390_electronics10121459 crossref_primary_10_1109_TSG_2024_3451970 crossref_primary_10_1109_TSG_2024_3389948 crossref_primary_10_1109_TSG_2021_3134306 crossref_primary_10_1186_s41601_023_00287_w crossref_primary_10_1007_s12652_020_02636_1 crossref_primary_10_3390_app122111073 crossref_primary_10_1109_JIOT_2024_3416839 crossref_primary_10_1109_JIOT_2023_3323565 crossref_primary_10_1109_ACCESS_2024_3403456 crossref_primary_10_1049_iet_stg_2019_0320 crossref_primary_10_1109_TSG_2024_3524629 crossref_primary_10_1109_ACCESS_2021_3117230 crossref_primary_10_1109_TSG_2019_2891852 crossref_primary_10_1016_j_iot_2025_101574 crossref_primary_10_1016_j_ijepes_2018_11_013 crossref_primary_10_1007_s10207_023_00720_z crossref_primary_10_32604_cmc_2023_044857 crossref_primary_10_1109_ACCESS_2019_2894819 crossref_primary_10_3390_en15010212 crossref_primary_10_1109_TSG_2018_2890809 crossref_primary_10_1016_j_ins_2020_12_027 crossref_primary_10_3390_s21072478 crossref_primary_10_1109_MIE_2021_3059996 crossref_primary_10_1109_TSG_2024_3364665 crossref_primary_10_3390_designs8010010 crossref_primary_10_1109_TAI_2023_3286831 crossref_primary_10_1016_j_scs_2022_103861 crossref_primary_10_1109_ACCESS_2024_3425270 crossref_primary_10_1109_JIOT_2020_3046622 crossref_primary_10_3390_s22093146 crossref_primary_10_1109_TSG_2022_3141803 crossref_primary_10_1016_j_epsr_2024_111077 crossref_primary_10_1109_OAJPE_2024_3524268 crossref_primary_10_1049_enc2_12049 crossref_primary_10_1109_TIA_2023_3307496 crossref_primary_10_3390_en16010528 crossref_primary_10_1049_iet_cps_2019_0010 crossref_primary_10_1109_ACCESS_2024_3370911 crossref_primary_10_1145_3331174 crossref_primary_10_1007_s13369_020_04813_y crossref_primary_10_1016_j_tej_2017_04_001 crossref_primary_10_1016_j_scs_2019_101660 crossref_primary_10_1109_ACCESS_2018_2835527 crossref_primary_10_1109_JIOT_2019_2962788 crossref_primary_10_1109_JSYST_2020_3001680 crossref_primary_10_3390_app11125706 crossref_primary_10_1186_s42162_024_00381_9 crossref_primary_10_1016_j_heliyon_2024_e36846 crossref_primary_10_1016_j_egyr_2024_11_075 crossref_primary_10_1016_j_arcontrol_2019_08_002 crossref_primary_10_1109_TSG_2021_3137835 crossref_primary_10_3390_en13174331 crossref_primary_10_1016_j_asej_2024_103143 crossref_primary_10_1016_j_ijepes_2021_107752 crossref_primary_10_1186_s43067_023_00083_4 crossref_primary_10_1049_iet_stg_2018_0043 crossref_primary_10_1016_j_epsr_2020_106866 crossref_primary_10_1109_JIOT_2020_2983911 crossref_primary_10_1109_JSYST_2020_2991608 crossref_primary_10_1109_TII_2018_2851248 crossref_primary_10_1109_TSG_2020_2971148 crossref_primary_10_1016_j_egyr_2023_04_157 crossref_primary_10_1109_TWC_2017_2784431 crossref_primary_10_3390_en12112209 crossref_primary_10_1007_s11063_022_10743_7 crossref_primary_10_1109_TCSII_2020_3020139 crossref_primary_10_1109_TII_2020_2999571 crossref_primary_10_3390_en14092657 crossref_primary_10_1016_j_segan_2022_100702 crossref_primary_10_1109_TII_2020_3007425 crossref_primary_10_1109_TNSE_2024_3370649 crossref_primary_10_3390_su15118952 crossref_primary_10_1109_JSYST_2023_3286375 crossref_primary_10_1016_j_egyai_2024_100381 crossref_primary_10_3389_fenrg_2021_649460 crossref_primary_10_1007_s00500_020_05557_5 crossref_primary_10_1109_TNSE_2020_3009299 crossref_primary_10_1109_TII_2022_3151748 crossref_primary_10_1109_ACCESS_2020_2993233 crossref_primary_10_1109_TSG_2018_2859339 crossref_primary_10_1109_ACCESS_2023_3331314 crossref_primary_10_1109_TIFS_2019_2938875 crossref_primary_10_1109_ACCESS_2024_3519328 crossref_primary_10_1109_TPWRS_2021_3128633 crossref_primary_10_1109_TSG_2022_3175470 crossref_primary_10_1016_j_egyai_2023_100271 crossref_primary_10_1109_TII_2018_2825243 crossref_primary_10_1109_ACCESS_2023_3336683 crossref_primary_10_1016_j_energy_2022_125865 crossref_primary_10_1109_TSG_2019_2929702 crossref_primary_10_1109_JIOT_2024_3443277 crossref_primary_10_1145_3592797 crossref_primary_10_3390_en14010027 crossref_primary_10_1016_j_ress_2023_109212 crossref_primary_10_1109_TSG_2021_3136559 crossref_primary_10_1109_TIA_2022_3154688 crossref_primary_10_1109_TSG_2021_3089041 crossref_primary_10_1109_TDSC_2021_3096213 crossref_primary_10_1016_j_scs_2023_104475 crossref_primary_10_1109_ACCESS_2020_2968934 crossref_primary_10_3390_app14114764 crossref_primary_10_3390_su13063196 crossref_primary_10_1109_TIFS_2019_2902822 crossref_primary_10_1109_TSG_2023_3274642 crossref_primary_10_1016_j_cosrev_2024_100665 crossref_primary_10_1109_ACCESS_2020_3041765 crossref_primary_10_1109_TTE_2020_3044524 crossref_primary_10_3390_en17123057 crossref_primary_10_1016_j_cose_2020_101899 crossref_primary_10_1109_JESTPE_2021_3111728 crossref_primary_10_1109_TSG_2020_3017562 crossref_primary_10_1109_TETCI_2022_3232821 crossref_primary_10_1109_TSG_2022_3216625 crossref_primary_10_1016_j_heliyon_2024_e35683 crossref_primary_10_1109_ACCESS_2019_2902910 crossref_primary_10_1109_TSG_2020_2986704 crossref_primary_10_1016_j_cose_2021_102265 crossref_primary_10_1109_COMST_2020_3036778 crossref_primary_10_1016_j_sysarc_2019_101705 crossref_primary_10_1109_MIE_2019_2958039 crossref_primary_10_1109_JSYST_2019_2935352 crossref_primary_10_1109_TAI_2024_3417389 crossref_primary_10_3390_en12163091 crossref_primary_10_1109_ACCESS_2021_3059648 crossref_primary_10_1109_ACCESS_2022_3202201 crossref_primary_10_1109_TSG_2022_3223279 crossref_primary_10_1088_1742_6596_1633_1_012134 crossref_primary_10_1109_TETCI_2019_2902845 crossref_primary_10_1109_TICPS_2024_3424769 crossref_primary_10_1016_j_iot_2019_100111 crossref_primary_10_1109_JSYST_2020_3001016 crossref_primary_10_1109_ACCESS_2021_3064689 crossref_primary_10_1109_ACCESS_2024_3445811 crossref_primary_10_1109_TSG_2024_3447754 crossref_primary_10_1109_TIA_2022_3159314 crossref_primary_10_3390_su14116407 crossref_primary_10_1109_TICPS_2024_3452681 crossref_primary_10_1109_TSMC_2023_3292110 crossref_primary_10_1016_j_compeleceng_2021_107058 crossref_primary_10_1109_TSG_2020_3040361 crossref_primary_10_1016_j_engappai_2023_106771 crossref_primary_10_1109_TIFS_2018_2854745 crossref_primary_10_1109_TNSE_2021_3098738 crossref_primary_10_1109_TSG_2022_3225469 crossref_primary_10_1016_j_apenergy_2021_118425 crossref_primary_10_1080_23307706_2022_2139299 crossref_primary_10_1109_JIOT_2022_3227059 crossref_primary_10_2139_ssrn_4156768 crossref_primary_10_1186_s42162_022_00195_7 crossref_primary_10_1016_j_cose_2022_102941 crossref_primary_10_1109_TAI_2024_3464511 crossref_primary_10_55969_paradigmplus_v3n1a2 crossref_primary_10_1109_JSYST_2020_2982953 crossref_primary_10_3390_brainsci13040683 crossref_primary_10_1016_j_cherd_2021_08_013 crossref_primary_10_1109_TMECH_2022_3201875 crossref_primary_10_1109_TPWRS_2021_3135357 crossref_primary_10_1109_JESTIE_2022_3198504 crossref_primary_10_1109_OJSE_2024_3458841 crossref_primary_10_1109_JSYST_2019_2960149 crossref_primary_10_1109_TSG_2022_3209524 crossref_primary_10_1109_COMST_2020_3023963 crossref_primary_10_1109_JSYST_2020_3012937 crossref_primary_10_1109_TPEL_2020_3017935 crossref_primary_10_1109_TSG_2021_3128034 crossref_primary_10_1016_j_anucene_2022_109503 crossref_primary_10_1088_1742_6596_1168_3_032132 crossref_primary_10_1016_j_ijepes_2020_106516 crossref_primary_10_1109_TSG_2023_3308339 crossref_primary_10_1109_JIOT_2022_3147040 crossref_primary_10_1109_TSTE_2017_2782090 crossref_primary_10_1016_j_epsr_2024_110150 crossref_primary_10_3390_en15051616 crossref_primary_10_1109_ACCESS_2021_3051155 crossref_primary_10_1016_j_compchemeng_2023_108359 crossref_primary_10_1109_TNNLS_2019_2955857 crossref_primary_10_1016_j_epsr_2022_108975 crossref_primary_10_1007_s11431_019_9544_7 crossref_primary_10_3390_en15145312 crossref_primary_10_1109_ACCESS_2024_3437426 crossref_primary_10_1145_3578366 crossref_primary_10_1016_j_eng_2020_06_006 crossref_primary_10_1002_ese3_2095 crossref_primary_10_1109_TIA_2020_2979793 crossref_primary_10_1109_TDSC_2021_3119897 crossref_primary_10_1016_j_epsr_2024_111126 crossref_primary_10_1016_j_is_2014_12_001 crossref_primary_10_1109_ACCESS_2024_3519388 crossref_primary_10_1016_j_cose_2020_101994 crossref_primary_10_1109_JESTPE_2023_3336997 crossref_primary_10_3390_en16041651 crossref_primary_10_1016_j_segan_2024_101562 crossref_primary_10_1109_TSG_2015_2466611 crossref_primary_10_1109_ACCESS_2019_2936816 crossref_primary_10_1109_ACCESS_2020_3027782 crossref_primary_10_1109_TII_2021_3053304 crossref_primary_10_1007_s42835_023_01494_z crossref_primary_10_1007_s11071_024_09320_5 crossref_primary_10_1109_TSG_2019_2949998 crossref_primary_10_1109_TII_2021_3065080 crossref_primary_10_1109_TII_2024_3393005 crossref_primary_10_3390_en17235870 crossref_primary_10_3390_en15155723 crossref_primary_10_1109_TPWRD_2023_3281293 crossref_primary_10_1016_j_segan_2023_101116 crossref_primary_10_3389_fenrg_2021_730058 crossref_primary_10_1109_TII_2021_3105679 crossref_primary_10_1007_s00202_021_01278_6 crossref_primary_10_1016_j_epsr_2021_107625 crossref_primary_10_1109_ACCESS_2017_2786584 crossref_primary_10_1109_TCNS_2024_3371548 crossref_primary_10_3390_en15197419 crossref_primary_10_1049_iet_stg_2020_0015 crossref_primary_10_1109_ACCESS_2025_3543751 crossref_primary_10_3390_en16186678 crossref_primary_10_1016_j_ijcip_2024_100694 crossref_primary_10_1109_JSYST_2021_3109082 crossref_primary_10_1016_j_ijepes_2022_108409 crossref_primary_10_1016_j_jisa_2020_102518 crossref_primary_10_1016_j_ijepes_2022_108083 crossref_primary_10_1109_JSAC_2019_2934002 crossref_primary_10_1109_TNNLS_2022_3230056 crossref_primary_10_1109_JESTPE_2020_3045667 crossref_primary_10_1109_OJCS_2022_3199755 crossref_primary_10_1109_TPWRS_2022_3181353 crossref_primary_10_1080_00207721_2022_2143735 crossref_primary_10_1109_TSG_2020_3042926 crossref_primary_10_1016_j_epsr_2021_107636 crossref_primary_10_1109_TII_2022_3165890 crossref_primary_10_1109_TSIPN_2022_3230562 crossref_primary_10_1088_1755_1315_984_1_012005 crossref_primary_10_1016_j_jclepro_2021_126877 crossref_primary_10_1038_s41598_025_93957_8 crossref_primary_10_1109_TII_2018_2875529 crossref_primary_10_1109_ACCESS_2019_2899293 crossref_primary_10_4236_jcc_2018_611025 crossref_primary_10_1007_s40866_024_00205_5 crossref_primary_10_1109_TASE_2022_3149764 crossref_primary_10_1016_j_epsr_2023_110067 crossref_primary_10_1109_TPWRS_2020_3026951 crossref_primary_10_1109_ACCESS_2020_3022842 crossref_primary_10_3390_en15228692 crossref_primary_10_3390_info12080328 crossref_primary_10_1109_JIOT_2021_3098735 crossref_primary_10_1109_TSG_2018_2867106 crossref_primary_10_1016_j_isatra_2021_01_036 crossref_primary_10_1109_TSG_2024_3524455 crossref_primary_10_1109_ACCESS_2019_2929785 crossref_primary_10_1109_JSYST_2022_3201725 crossref_primary_10_1109_ACCESS_2025_3537410 crossref_primary_10_1016_j_apenergy_2020_115237 crossref_primary_10_1109_JSYST_2019_2927469 crossref_primary_10_1109_TDSC_2024_3353302 crossref_primary_10_1109_ACCESS_2021_3131220 crossref_primary_10_1109_COMST_2022_3187531 crossref_primary_10_1002_int_22581 crossref_primary_10_3390_en12112140 crossref_primary_10_1016_j_enconman_2024_119291 crossref_primary_10_1109_JIOT_2020_2991693 crossref_primary_10_1049_gtd2_12178 crossref_primary_10_1109_JSYST_2017_2741483 crossref_primary_10_36548_jeea_2021_1_003 crossref_primary_10_1109_ACCESS_2024_3458788 crossref_primary_10_1109_COMST_2020_2986444 |
Cites_doi | 10.1109/SmartGridComm.2011.6102326 10.1109/SMARTGRID.2010.5622045 10.1109/PSCE.2009.4840110 10.1109/SMARTGRID.2010.5622046 10.1145/1541880.1541882 10.1109/WCNC.2012.6214211 10.1002/9780470588475 10.1109/TPWRD.2007.910991 10.1109/TPWRS.2010.2051168 10.1016/j.comnet.2006.01.005 10.1016/j.comnet.2012.12.017 10.1016/j.ijepes.2008.04.010 10.1109/TSG.2011.2159817 10.1016/j.comnet.2011.07.010 10.1145/1653662.1653666 10.1109/INFCOM.2005.1498536 10.1109/TSG.2011.2161892 10.1109/SmartGridComm.2011.6102322 10.1109/INFCOM.2007.176 10.1109/TSG.2013.2284438 10.1109/INFCOM.2009.5061973 10.1109/TPWRS.2003.810698 10.1109/MWC.2004.1269720 10.1109/59.32475 10.1109/MPE.2009.934876 10.1017/CBO9780511801389 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/JSYST.2014.2341597 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1937-9234 |
EndPage | 1652 |
ExternalDocumentID | 10_1109_JSYST_2014_2341597 6880823 |
Genre | orig-research |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c501t-437bd51f291ec8c194b0ef90a0783a0434cc4c5de7d694db43c7ef8aa443f95e3 |
IEDL.DBID | RIE |
ISSN | 1932-8184 |
IngestDate | Mon Jun 30 05:27:45 EDT 2025 Thu Apr 24 23:07:28 EDT 2025 Tue Jul 01 01:43:27 EDT 2025 Wed Aug 27 02:14:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-437bd51f291ec8c194b0ef90a0783a0434cc4c5de7d694db43c7ef8aa443f95e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1944401762 |
PQPubID | 85494 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1944401762 crossref_primary_10_1109_JSYST_2014_2341597 crossref_citationtrail_10_1109_JSYST_2014_2341597 ieee_primary_6880823 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE systems journal |
PublicationTitleAbbrev | JSYST |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref30 ref11 ref33 popper (ref21) 0 ref10 ref32 ref2 ref1 ref16 ref19 chang (ref17) 2001 jin (ref20) 0 ref24 ref23 jolliffe (ref31) 2002 ref25 ref22 wood (ref27) 1996 ref28 grainger (ref26) 1994; 621 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 baumeister (ref18) 2010 |
References_xml | – ident: ref10 doi: 10.1109/SmartGridComm.2011.6102326 – year: 2001 ident: ref17 publication-title: LIBSVM A library for support vector machines – ident: ref11 doi: 10.1109/SMARTGRID.2010.5622045 – ident: ref4 doi: 10.1109/PSCE.2009.4840110 – ident: ref12 doi: 10.1109/SMARTGRID.2010.5622046 – ident: ref29 doi: 10.1145/1541880.1541882 – ident: ref9 doi: 10.1109/WCNC.2012.6214211 – ident: ref25 doi: 10.1002/9780470588475 – start-page: 2614 year: 0 ident: ref20 article-title: An event buffer flooding attack in DNP3 controlled SCADA systems publication-title: Proc Winter Simul Conf – ident: ref3 doi: 10.1109/TPWRD.2007.910991 – ident: ref32 doi: 10.1109/TPWRS.2010.2051168 – ident: ref1 doi: 10.1016/j.comnet.2006.01.005 – year: 2010 ident: ref18 publication-title: Literature Review on Smart Grid Cyber Security – ident: ref19 doi: 10.1016/j.comnet.2012.12.017 – ident: ref5 doi: 10.1016/j.ijepes.2008.04.010 – ident: ref23 doi: 10.1109/TSG.2011.2159817 – volume: 621 year: 1994 ident: ref26 publication-title: Power System Analysis – ident: ref2 doi: 10.1016/j.comnet.2011.07.010 – ident: ref7 doi: 10.1145/1653662.1653666 – ident: ref14 doi: 10.1109/INFCOM.2005.1498536 – start-page: 231 year: 0 ident: ref21 article-title: Jamming-resistant broadcast communication without shared keys publication-title: Proc 18th USENIX Security Symp – ident: ref8 doi: 10.1109/TSG.2011.2161892 – ident: ref24 doi: 10.1109/SmartGridComm.2011.6102322 – year: 1996 ident: ref27 publication-title: Power Generation Operation and Control – ident: ref15 doi: 10.1109/INFCOM.2007.176 – ident: ref13 doi: 10.1109/TSG.2013.2284438 – ident: ref16 doi: 10.1109/INFCOM.2009.5061973 – ident: ref33 doi: 10.1109/TPWRS.2003.810698 – ident: ref22 doi: 10.1109/MWC.2004.1269720 – year: 2002 ident: ref31 publication-title: Principal Component Analysis – ident: ref30 doi: 10.1109/59.32475 – ident: ref6 doi: 10.1109/MPE.2009.934876 – ident: ref28 doi: 10.1017/CBO9780511801389 |
SSID | ssj0058579 |
Score | 2.606179 |
Snippet | Aging power industries, together with the increase in demand from industrial and residential customers, are the main incentive for policy makers to define a... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1644 |
SubjectTerms | Anomaly detection bad data detection (BDD) Boolean functions Cybersecurity Data structures Machine learning Measurement methods power system state estimation Principal component analysis Principal components analysis Residential energy Smart grid Smart grids State estimation Support vector machines support vector machines (SVMs) System effectiveness Training Transmission line measurements |
Title | Detecting Stealthy False Data Injection Using Machine Learning in Smart Grid |
URI | https://ieeexplore.ieee.org/document/6880823 https://www.proquest.com/docview/1944401762 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EYWCPLBBipM4TTwiSnmIshQkmCI_Lqg8AoJ04ddzdpMKAUJslmJLju9yj9x3nwH2KIYvUGkekKuMKUERJtAJt4GOrAo5okx9uWBw1T27ERe3ye0MHEx7YRDRg8-w44a-lm9fzNj9KjvskrJlUTwLs5S4TXq1GqtLUa_n1XPxSEBOSDQNMlweXgzvhtcOxSU6ERntxBE8fXFC_laVH6bY-5f-EgyanU1gJY-dcaU75uMbaeN_t74Mi3WgyY4mmrECM1iuwsIX-sE1uOyhKyHQmDlY7xPJjPVJHZH1VKXYefngcVol87gCNvC4S2Q1Jes9G5Vs-Eyqx07fRnYdbvon18dnQX27QmASHlaBiFNtk7CIZIgmM6EUmmMhuXKFPcVFLIwRJrGY2q4UVovYpFhkSgkRFzLBeAPmypcSN4FpylFsIV1fvauThpnsCl4IHhcqS-lRC8LmuHNTU4-7GzCecp-CcJl7EeVORHktohbsT9e8Tog3_py95s58OrM-7ha0G6nm9bf5ntObCsoqyQts_b5qG-Yj57w9kqwNc9XbGHco9Kj0rte5T9L70ys |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5ROLQ9FAqtmpbCHriBzdpex95jVQghjXNJItGTtY9xxaOmos6lv76zGzuKKKq4reRdab0znofnm28BjiiGr1BpHpCrTChBESbQKbeBjq2KOKLMfLmgmPSHczG6Sq824GTVC4OIHnyGoRv6Wr69Nwv3q-y0T8qWx8kL2CK_n0bLbq3O7lLc65n1XEQSkBsSXYsMl6ej6ffpzOG4RBiT2U4dxdOaG_L3qvxjjL2HGWxD0e1tCSy5DReNDs2fR7SNz938DrxpQ032Zakbb2ED6114vUZAuAfjM3RFBBozB-y9I6mxASkksjPVKHZZ33ikVs08soAVHnmJrCVl_cGuazb9ScrHLh6u7TuYD85nX4dBe79CYFIeNYFIMm3TqIplhCY3kRSaYyW5cqU9xUUijBEmtZjZvhRWi8RkWOVKCZFUMsXkPWzW9zV-AKYpS7GVdJ31rlIa5bIveCV4Uqk8o0c9iLrjLk1LPu7uwLgrfRLCZelFVDoRla2IenC8WvNrSb3x39l77sxXM9vj7sF-J9Wy_Tp_l_SmgvJK8gMfn151CC-Hs2Jcji8n3z7Bq9i5co8r24fN5mGBnykQafSB17-_A8vWdA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Stealthy+False+Data+Injection+Using+Machine+Learning+in+Smart+Grid&rft.jtitle=IEEE+systems+journal&rft.au=Esmalifalak%2C+Mohammad&rft.au=Liu%2C+Lanchao&rft.au=Nguyen%2C+Nam&rft.au=Zheng%2C+Rong&rft.date=2017-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1932-8184&rft.eissn=1937-9234&rft.volume=11&rft.issue=3&rft.spage=1644&rft_id=info:doi/10.1109%2FJSYST.2014.2341597&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8184&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8184&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8184&client=summon |