Detecting Stealthy False Data Injection Using Machine Learning in Smart Grid

Aging power industries, together with the increase in demand from industrial and residential customers, are the main incentive for policy makers to define a road map to the next-generation power system called the smart grid. In the smart grid, the overall monitoring costs will be decreased, but at t...

Full description

Saved in:
Bibliographic Details
Published inIEEE systems journal Vol. 11; no. 3; pp. 1644 - 1652
Main Authors Esmalifalak, Mohammad, Liu, Lanchao, Nguyen, Nam, Zheng, Rong, Han, Zhu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aging power industries, together with the increase in demand from industrial and residential customers, are the main incentive for policy makers to define a road map to the next-generation power system called the smart grid. In the smart grid, the overall monitoring costs will be decreased, but at the same time, the risk of cyber attacks might be increased. Recently, a new type of attacks (called the stealth attack) has been introduced, which cannot be detected by the traditional bad data detection using state estimation. In this paper, we show how normal operations of power networks can be statistically distinguished from the case under stealthy attacks. We propose two machine-learning-based techniques for stealthy attack detection. The first method utilizes supervised learning over labeled data and trains a distributed support vector machine (SVM). The design of the distributed SVM is based on the alternating direction method of multipliers, which offers provable optimality and convergence rate. The second method requires no training data and detects the deviation in measurements. In both methods, principal component analysis is used to reduce the dimensionality of the data to be processed, which leads to lower computation complexities. The results of the proposed detection methods on IEEE standard test systems demonstrate the effectiveness of both schemes.
AbstractList Aging power industries, together with the increase in demand from industrial and residential customers, are the main incentive for policy makers to define a road map to the next-generation power system called the smart grid. In the smart grid, the overall monitoring costs will be decreased, but at the same time, the risk of cyber attacks might be increased. Recently, a new type of attacks (called the stealth attack) has been introduced, which cannot be detected by the traditional bad data detection using state estimation. In this paper, we show how normal operations of power networks can be statistically distinguished from the case under stealthy attacks. We propose two machine-learning-based techniques for stealthy attack detection. The first method utilizes supervised learning over labeled data and trains a distributed support vector machine (SVM). The design of the distributed SVM is based on the alternating direction method of multipliers, which offers provable optimality and convergence rate. The second method requires no training data and detects the deviation in measurements. In both methods, principal component analysis is used to reduce the dimensionality of the data to be processed, which leads to lower computation complexities. The results of the proposed detection methods on IEEE standard test systems demonstrate the effectiveness of both schemes.
Author Liu, Lanchao
Esmalifalak, Mohammad
Zheng, Rong
Han, Zhu
Nguyen, Nam
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Esmalifalak
  fullname: Esmalifalak, Mohammad
  organization: Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
– sequence: 2
  givenname: Lanchao
  surname: Liu
  fullname: Liu, Lanchao
  organization: Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
– sequence: 3
  givenname: Nam
  surname: Nguyen
  fullname: Nguyen, Nam
  organization: Schlumberger Information Solutions, Houston, TX, USA
– sequence: 4
  givenname: Rong
  surname: Zheng
  fullname: Zheng, Rong
  organization: Department of Computing and Software and the Department of Electrical and Computer Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
– sequence: 5
  givenname: Zhu
  surname: Han
  fullname: Han, Zhu
  organization: Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
BookMark eNp9kEFPwjAUxxujiYB-Ab008Txs1462RwOCmBkPg4OnpnRvUoIdduXAt3cD4sGDp7av_997L78-uvS1B4TuKBlSStTja_FRLIYpoXyYMk4zJS5QjyomEtW-L4_3NJFU8mvUb5oNIZnMhOqhfAIRbHT-ExcRzDauD3hqtg3giYkGz_2m-609XjZd5s3YtfOAczDBdwXncfFlQsSz4MobdFV17O35HKDl9Hkxfkny99l8_JQnNiM0JpyJVZnRKlUUrLRU8RWBShFDhGSGcMat5TYrQZQjxcsVZ1ZAJY3hnFUqAzZAD6e-u1B_76GJelPvg29H6rYZ54SKUdqm0lPKhrppAlR6F1y760FTojtr-mhNd9b02VoLyT-QddF0BmIwbvs_en9CHQD8zhpJSWTK2A_3LHw7
CODEN ISJEB2
CitedBy_id crossref_primary_10_1186_s41601_023_00319_5
crossref_primary_10_1186_s13673_019_0175_8
crossref_primary_10_1016_j_measurement_2023_112565
crossref_primary_10_1016_j_rser_2023_113752
crossref_primary_10_1007_s40319_021_01100_7
crossref_primary_10_1016_j_epsr_2024_110321
crossref_primary_10_1016_j_egyr_2022_02_290
crossref_primary_10_1109_ACCESS_2019_2933020
crossref_primary_10_1016_j_compeleceng_2021_107212
crossref_primary_10_1109_TTE_2024_3355094
crossref_primary_10_3390_electronics10161914
crossref_primary_10_1016_j_jfranklin_2024_107000
crossref_primary_10_3390_electronics10121459
crossref_primary_10_1109_TSG_2024_3451970
crossref_primary_10_1109_TSG_2024_3389948
crossref_primary_10_1109_TSG_2021_3134306
crossref_primary_10_1186_s41601_023_00287_w
crossref_primary_10_1007_s12652_020_02636_1
crossref_primary_10_3390_app122111073
crossref_primary_10_1109_JIOT_2024_3416839
crossref_primary_10_1109_JIOT_2023_3323565
crossref_primary_10_1109_ACCESS_2024_3403456
crossref_primary_10_1049_iet_stg_2019_0320
crossref_primary_10_1109_TSG_2024_3524629
crossref_primary_10_1109_ACCESS_2021_3117230
crossref_primary_10_1109_TSG_2019_2891852
crossref_primary_10_1016_j_iot_2025_101574
crossref_primary_10_1016_j_ijepes_2018_11_013
crossref_primary_10_1007_s10207_023_00720_z
crossref_primary_10_32604_cmc_2023_044857
crossref_primary_10_1109_ACCESS_2019_2894819
crossref_primary_10_3390_en15010212
crossref_primary_10_1109_TSG_2018_2890809
crossref_primary_10_1016_j_ins_2020_12_027
crossref_primary_10_3390_s21072478
crossref_primary_10_1109_MIE_2021_3059996
crossref_primary_10_1109_TSG_2024_3364665
crossref_primary_10_3390_designs8010010
crossref_primary_10_1109_TAI_2023_3286831
crossref_primary_10_1016_j_scs_2022_103861
crossref_primary_10_1109_ACCESS_2024_3425270
crossref_primary_10_1109_JIOT_2020_3046622
crossref_primary_10_3390_s22093146
crossref_primary_10_1109_TSG_2022_3141803
crossref_primary_10_1016_j_epsr_2024_111077
crossref_primary_10_1109_OAJPE_2024_3524268
crossref_primary_10_1049_enc2_12049
crossref_primary_10_1109_TIA_2023_3307496
crossref_primary_10_3390_en16010528
crossref_primary_10_1049_iet_cps_2019_0010
crossref_primary_10_1109_ACCESS_2024_3370911
crossref_primary_10_1145_3331174
crossref_primary_10_1007_s13369_020_04813_y
crossref_primary_10_1016_j_tej_2017_04_001
crossref_primary_10_1016_j_scs_2019_101660
crossref_primary_10_1109_ACCESS_2018_2835527
crossref_primary_10_1109_JIOT_2019_2962788
crossref_primary_10_1109_JSYST_2020_3001680
crossref_primary_10_3390_app11125706
crossref_primary_10_1186_s42162_024_00381_9
crossref_primary_10_1016_j_heliyon_2024_e36846
crossref_primary_10_1016_j_egyr_2024_11_075
crossref_primary_10_1016_j_arcontrol_2019_08_002
crossref_primary_10_1109_TSG_2021_3137835
crossref_primary_10_3390_en13174331
crossref_primary_10_1016_j_asej_2024_103143
crossref_primary_10_1016_j_ijepes_2021_107752
crossref_primary_10_1186_s43067_023_00083_4
crossref_primary_10_1049_iet_stg_2018_0043
crossref_primary_10_1016_j_epsr_2020_106866
crossref_primary_10_1109_JIOT_2020_2983911
crossref_primary_10_1109_JSYST_2020_2991608
crossref_primary_10_1109_TII_2018_2851248
crossref_primary_10_1109_TSG_2020_2971148
crossref_primary_10_1016_j_egyr_2023_04_157
crossref_primary_10_1109_TWC_2017_2784431
crossref_primary_10_3390_en12112209
crossref_primary_10_1007_s11063_022_10743_7
crossref_primary_10_1109_TCSII_2020_3020139
crossref_primary_10_1109_TII_2020_2999571
crossref_primary_10_3390_en14092657
crossref_primary_10_1016_j_segan_2022_100702
crossref_primary_10_1109_TII_2020_3007425
crossref_primary_10_1109_TNSE_2024_3370649
crossref_primary_10_3390_su15118952
crossref_primary_10_1109_JSYST_2023_3286375
crossref_primary_10_1016_j_egyai_2024_100381
crossref_primary_10_3389_fenrg_2021_649460
crossref_primary_10_1007_s00500_020_05557_5
crossref_primary_10_1109_TNSE_2020_3009299
crossref_primary_10_1109_TII_2022_3151748
crossref_primary_10_1109_ACCESS_2020_2993233
crossref_primary_10_1109_TSG_2018_2859339
crossref_primary_10_1109_ACCESS_2023_3331314
crossref_primary_10_1109_TIFS_2019_2938875
crossref_primary_10_1109_ACCESS_2024_3519328
crossref_primary_10_1109_TPWRS_2021_3128633
crossref_primary_10_1109_TSG_2022_3175470
crossref_primary_10_1016_j_egyai_2023_100271
crossref_primary_10_1109_TII_2018_2825243
crossref_primary_10_1109_ACCESS_2023_3336683
crossref_primary_10_1016_j_energy_2022_125865
crossref_primary_10_1109_TSG_2019_2929702
crossref_primary_10_1109_JIOT_2024_3443277
crossref_primary_10_1145_3592797
crossref_primary_10_3390_en14010027
crossref_primary_10_1016_j_ress_2023_109212
crossref_primary_10_1109_TSG_2021_3136559
crossref_primary_10_1109_TIA_2022_3154688
crossref_primary_10_1109_TSG_2021_3089041
crossref_primary_10_1109_TDSC_2021_3096213
crossref_primary_10_1016_j_scs_2023_104475
crossref_primary_10_1109_ACCESS_2020_2968934
crossref_primary_10_3390_app14114764
crossref_primary_10_3390_su13063196
crossref_primary_10_1109_TIFS_2019_2902822
crossref_primary_10_1109_TSG_2023_3274642
crossref_primary_10_1016_j_cosrev_2024_100665
crossref_primary_10_1109_ACCESS_2020_3041765
crossref_primary_10_1109_TTE_2020_3044524
crossref_primary_10_3390_en17123057
crossref_primary_10_1016_j_cose_2020_101899
crossref_primary_10_1109_JESTPE_2021_3111728
crossref_primary_10_1109_TSG_2020_3017562
crossref_primary_10_1109_TETCI_2022_3232821
crossref_primary_10_1109_TSG_2022_3216625
crossref_primary_10_1016_j_heliyon_2024_e35683
crossref_primary_10_1109_ACCESS_2019_2902910
crossref_primary_10_1109_TSG_2020_2986704
crossref_primary_10_1016_j_cose_2021_102265
crossref_primary_10_1109_COMST_2020_3036778
crossref_primary_10_1016_j_sysarc_2019_101705
crossref_primary_10_1109_MIE_2019_2958039
crossref_primary_10_1109_JSYST_2019_2935352
crossref_primary_10_1109_TAI_2024_3417389
crossref_primary_10_3390_en12163091
crossref_primary_10_1109_ACCESS_2021_3059648
crossref_primary_10_1109_ACCESS_2022_3202201
crossref_primary_10_1109_TSG_2022_3223279
crossref_primary_10_1088_1742_6596_1633_1_012134
crossref_primary_10_1109_TETCI_2019_2902845
crossref_primary_10_1109_TICPS_2024_3424769
crossref_primary_10_1016_j_iot_2019_100111
crossref_primary_10_1109_JSYST_2020_3001016
crossref_primary_10_1109_ACCESS_2021_3064689
crossref_primary_10_1109_ACCESS_2024_3445811
crossref_primary_10_1109_TSG_2024_3447754
crossref_primary_10_1109_TIA_2022_3159314
crossref_primary_10_3390_su14116407
crossref_primary_10_1109_TICPS_2024_3452681
crossref_primary_10_1109_TSMC_2023_3292110
crossref_primary_10_1016_j_compeleceng_2021_107058
crossref_primary_10_1109_TSG_2020_3040361
crossref_primary_10_1016_j_engappai_2023_106771
crossref_primary_10_1109_TIFS_2018_2854745
crossref_primary_10_1109_TNSE_2021_3098738
crossref_primary_10_1109_TSG_2022_3225469
crossref_primary_10_1016_j_apenergy_2021_118425
crossref_primary_10_1080_23307706_2022_2139299
crossref_primary_10_1109_JIOT_2022_3227059
crossref_primary_10_2139_ssrn_4156768
crossref_primary_10_1186_s42162_022_00195_7
crossref_primary_10_1016_j_cose_2022_102941
crossref_primary_10_1109_TAI_2024_3464511
crossref_primary_10_55969_paradigmplus_v3n1a2
crossref_primary_10_1109_JSYST_2020_2982953
crossref_primary_10_3390_brainsci13040683
crossref_primary_10_1016_j_cherd_2021_08_013
crossref_primary_10_1109_TMECH_2022_3201875
crossref_primary_10_1109_TPWRS_2021_3135357
crossref_primary_10_1109_JESTIE_2022_3198504
crossref_primary_10_1109_OJSE_2024_3458841
crossref_primary_10_1109_JSYST_2019_2960149
crossref_primary_10_1109_TSG_2022_3209524
crossref_primary_10_1109_COMST_2020_3023963
crossref_primary_10_1109_JSYST_2020_3012937
crossref_primary_10_1109_TPEL_2020_3017935
crossref_primary_10_1109_TSG_2021_3128034
crossref_primary_10_1016_j_anucene_2022_109503
crossref_primary_10_1088_1742_6596_1168_3_032132
crossref_primary_10_1016_j_ijepes_2020_106516
crossref_primary_10_1109_TSG_2023_3308339
crossref_primary_10_1109_JIOT_2022_3147040
crossref_primary_10_1109_TSTE_2017_2782090
crossref_primary_10_1016_j_epsr_2024_110150
crossref_primary_10_3390_en15051616
crossref_primary_10_1109_ACCESS_2021_3051155
crossref_primary_10_1016_j_compchemeng_2023_108359
crossref_primary_10_1109_TNNLS_2019_2955857
crossref_primary_10_1016_j_epsr_2022_108975
crossref_primary_10_1007_s11431_019_9544_7
crossref_primary_10_3390_en15145312
crossref_primary_10_1109_ACCESS_2024_3437426
crossref_primary_10_1145_3578366
crossref_primary_10_1016_j_eng_2020_06_006
crossref_primary_10_1002_ese3_2095
crossref_primary_10_1109_TIA_2020_2979793
crossref_primary_10_1109_TDSC_2021_3119897
crossref_primary_10_1016_j_epsr_2024_111126
crossref_primary_10_1016_j_is_2014_12_001
crossref_primary_10_1109_ACCESS_2024_3519388
crossref_primary_10_1016_j_cose_2020_101994
crossref_primary_10_1109_JESTPE_2023_3336997
crossref_primary_10_3390_en16041651
crossref_primary_10_1016_j_segan_2024_101562
crossref_primary_10_1109_TSG_2015_2466611
crossref_primary_10_1109_ACCESS_2019_2936816
crossref_primary_10_1109_ACCESS_2020_3027782
crossref_primary_10_1109_TII_2021_3053304
crossref_primary_10_1007_s42835_023_01494_z
crossref_primary_10_1007_s11071_024_09320_5
crossref_primary_10_1109_TSG_2019_2949998
crossref_primary_10_1109_TII_2021_3065080
crossref_primary_10_1109_TII_2024_3393005
crossref_primary_10_3390_en17235870
crossref_primary_10_3390_en15155723
crossref_primary_10_1109_TPWRD_2023_3281293
crossref_primary_10_1016_j_segan_2023_101116
crossref_primary_10_3389_fenrg_2021_730058
crossref_primary_10_1109_TII_2021_3105679
crossref_primary_10_1007_s00202_021_01278_6
crossref_primary_10_1016_j_epsr_2021_107625
crossref_primary_10_1109_ACCESS_2017_2786584
crossref_primary_10_1109_TCNS_2024_3371548
crossref_primary_10_3390_en15197419
crossref_primary_10_1049_iet_stg_2020_0015
crossref_primary_10_1109_ACCESS_2025_3543751
crossref_primary_10_3390_en16186678
crossref_primary_10_1016_j_ijcip_2024_100694
crossref_primary_10_1109_JSYST_2021_3109082
crossref_primary_10_1016_j_ijepes_2022_108409
crossref_primary_10_1016_j_jisa_2020_102518
crossref_primary_10_1016_j_ijepes_2022_108083
crossref_primary_10_1109_JSAC_2019_2934002
crossref_primary_10_1109_TNNLS_2022_3230056
crossref_primary_10_1109_JESTPE_2020_3045667
crossref_primary_10_1109_OJCS_2022_3199755
crossref_primary_10_1109_TPWRS_2022_3181353
crossref_primary_10_1080_00207721_2022_2143735
crossref_primary_10_1109_TSG_2020_3042926
crossref_primary_10_1016_j_epsr_2021_107636
crossref_primary_10_1109_TII_2022_3165890
crossref_primary_10_1109_TSIPN_2022_3230562
crossref_primary_10_1088_1755_1315_984_1_012005
crossref_primary_10_1016_j_jclepro_2021_126877
crossref_primary_10_1038_s41598_025_93957_8
crossref_primary_10_1109_TII_2018_2875529
crossref_primary_10_1109_ACCESS_2019_2899293
crossref_primary_10_4236_jcc_2018_611025
crossref_primary_10_1007_s40866_024_00205_5
crossref_primary_10_1109_TASE_2022_3149764
crossref_primary_10_1016_j_epsr_2023_110067
crossref_primary_10_1109_TPWRS_2020_3026951
crossref_primary_10_1109_ACCESS_2020_3022842
crossref_primary_10_3390_en15228692
crossref_primary_10_3390_info12080328
crossref_primary_10_1109_JIOT_2021_3098735
crossref_primary_10_1109_TSG_2018_2867106
crossref_primary_10_1016_j_isatra_2021_01_036
crossref_primary_10_1109_TSG_2024_3524455
crossref_primary_10_1109_ACCESS_2019_2929785
crossref_primary_10_1109_JSYST_2022_3201725
crossref_primary_10_1109_ACCESS_2025_3537410
crossref_primary_10_1016_j_apenergy_2020_115237
crossref_primary_10_1109_JSYST_2019_2927469
crossref_primary_10_1109_TDSC_2024_3353302
crossref_primary_10_1109_ACCESS_2021_3131220
crossref_primary_10_1109_COMST_2022_3187531
crossref_primary_10_1002_int_22581
crossref_primary_10_3390_en12112140
crossref_primary_10_1016_j_enconman_2024_119291
crossref_primary_10_1109_JIOT_2020_2991693
crossref_primary_10_1049_gtd2_12178
crossref_primary_10_1109_JSYST_2017_2741483
crossref_primary_10_36548_jeea_2021_1_003
crossref_primary_10_1109_ACCESS_2024_3458788
crossref_primary_10_1109_COMST_2020_2986444
Cites_doi 10.1109/SmartGridComm.2011.6102326
10.1109/SMARTGRID.2010.5622045
10.1109/PSCE.2009.4840110
10.1109/SMARTGRID.2010.5622046
10.1145/1541880.1541882
10.1109/WCNC.2012.6214211
10.1002/9780470588475
10.1109/TPWRD.2007.910991
10.1109/TPWRS.2010.2051168
10.1016/j.comnet.2006.01.005
10.1016/j.comnet.2012.12.017
10.1016/j.ijepes.2008.04.010
10.1109/TSG.2011.2159817
10.1016/j.comnet.2011.07.010
10.1145/1653662.1653666
10.1109/INFCOM.2005.1498536
10.1109/TSG.2011.2161892
10.1109/SmartGridComm.2011.6102322
10.1109/INFCOM.2007.176
10.1109/TSG.2013.2284438
10.1109/INFCOM.2009.5061973
10.1109/TPWRS.2003.810698
10.1109/MWC.2004.1269720
10.1109/59.32475
10.1109/MPE.2009.934876
10.1017/CBO9780511801389
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSYST.2014.2341597
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-9234
EndPage 1652
ExternalDocumentID 10_1109_JSYST_2014_2341597
6880823
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c501t-437bd51f291ec8c194b0ef90a0783a0434cc4c5de7d694db43c7ef8aa443f95e3
IEDL.DBID RIE
ISSN 1932-8184
IngestDate Mon Jun 30 05:27:45 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
Tue Jul 01 01:43:27 EDT 2025
Wed Aug 27 02:14:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-437bd51f291ec8c194b0ef90a0783a0434cc4c5de7d694db43c7ef8aa443f95e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1944401762
PQPubID 85494
PageCount 9
ParticipantIDs proquest_journals_1944401762
crossref_primary_10_1109_JSYST_2014_2341597
crossref_citationtrail_10_1109_JSYST_2014_2341597
ieee_primary_6880823
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE systems journal
PublicationTitleAbbrev JSYST
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref33
popper (ref21) 0
ref10
ref32
ref2
ref1
ref16
ref19
chang (ref17) 2001
jin (ref20) 0
ref24
ref23
jolliffe (ref31) 2002
ref25
ref22
wood (ref27) 1996
ref28
grainger (ref26) 1994; 621
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
baumeister (ref18) 2010
References_xml – ident: ref10
  doi: 10.1109/SmartGridComm.2011.6102326
– year: 2001
  ident: ref17
  publication-title: LIBSVM A library for support vector machines
– ident: ref11
  doi: 10.1109/SMARTGRID.2010.5622045
– ident: ref4
  doi: 10.1109/PSCE.2009.4840110
– ident: ref12
  doi: 10.1109/SMARTGRID.2010.5622046
– ident: ref29
  doi: 10.1145/1541880.1541882
– ident: ref9
  doi: 10.1109/WCNC.2012.6214211
– ident: ref25
  doi: 10.1002/9780470588475
– start-page: 2614
  year: 0
  ident: ref20
  article-title: An event buffer flooding attack in DNP3 controlled SCADA systems
  publication-title: Proc Winter Simul Conf
– ident: ref3
  doi: 10.1109/TPWRD.2007.910991
– ident: ref32
  doi: 10.1109/TPWRS.2010.2051168
– ident: ref1
  doi: 10.1016/j.comnet.2006.01.005
– year: 2010
  ident: ref18
  publication-title: Literature Review on Smart Grid Cyber Security
– ident: ref19
  doi: 10.1016/j.comnet.2012.12.017
– ident: ref5
  doi: 10.1016/j.ijepes.2008.04.010
– ident: ref23
  doi: 10.1109/TSG.2011.2159817
– volume: 621
  year: 1994
  ident: ref26
  publication-title: Power System Analysis
– ident: ref2
  doi: 10.1016/j.comnet.2011.07.010
– ident: ref7
  doi: 10.1145/1653662.1653666
– ident: ref14
  doi: 10.1109/INFCOM.2005.1498536
– start-page: 231
  year: 0
  ident: ref21
  article-title: Jamming-resistant broadcast communication without shared keys
  publication-title: Proc 18th USENIX Security Symp
– ident: ref8
  doi: 10.1109/TSG.2011.2161892
– ident: ref24
  doi: 10.1109/SmartGridComm.2011.6102322
– year: 1996
  ident: ref27
  publication-title: Power Generation Operation and Control
– ident: ref15
  doi: 10.1109/INFCOM.2007.176
– ident: ref13
  doi: 10.1109/TSG.2013.2284438
– ident: ref16
  doi: 10.1109/INFCOM.2009.5061973
– ident: ref33
  doi: 10.1109/TPWRS.2003.810698
– ident: ref22
  doi: 10.1109/MWC.2004.1269720
– year: 2002
  ident: ref31
  publication-title: Principal Component Analysis
– ident: ref30
  doi: 10.1109/59.32475
– ident: ref6
  doi: 10.1109/MPE.2009.934876
– ident: ref28
  doi: 10.1017/CBO9780511801389
SSID ssj0058579
Score 2.606179
Snippet Aging power industries, together with the increase in demand from industrial and residential customers, are the main incentive for policy makers to define a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1644
SubjectTerms Anomaly detection
bad data detection (BDD)
Boolean functions
Cybersecurity
Data structures
Machine learning
Measurement methods
power system state estimation
Principal component analysis
Principal components analysis
Residential energy
Smart grid
Smart grids
State estimation
Support vector machines
support vector machines (SVMs)
System effectiveness
Training
Transmission line measurements
Title Detecting Stealthy False Data Injection Using Machine Learning in Smart Grid
URI https://ieeexplore.ieee.org/document/6880823
https://www.proquest.com/docview/1944401762
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EYWCPLBBipM4TTwiSnmIshQkmCI_Lqg8AoJ04ddzdpMKAUJslmJLju9yj9x3nwH2KIYvUGkekKuMKUERJtAJt4GOrAo5okx9uWBw1T27ERe3ye0MHEx7YRDRg8-w44a-lm9fzNj9KjvskrJlUTwLs5S4TXq1GqtLUa_n1XPxSEBOSDQNMlweXgzvhtcOxSU6ERntxBE8fXFC_laVH6bY-5f-EgyanU1gJY-dcaU75uMbaeN_t74Mi3WgyY4mmrECM1iuwsIX-sE1uOyhKyHQmDlY7xPJjPVJHZH1VKXYefngcVol87gCNvC4S2Q1Jes9G5Vs-Eyqx07fRnYdbvon18dnQX27QmASHlaBiFNtk7CIZIgmM6EUmmMhuXKFPcVFLIwRJrGY2q4UVovYpFhkSgkRFzLBeAPmypcSN4FpylFsIV1fvauThpnsCl4IHhcqS-lRC8LmuHNTU4-7GzCecp-CcJl7EeVORHktohbsT9e8Tog3_py95s58OrM-7ha0G6nm9bf5ntObCsoqyQts_b5qG-Yj57w9kqwNc9XbGHco9Kj0rte5T9L70ys
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5ROLQ9FAqtmpbCHriBzdpex95jVQghjXNJItGTtY9xxaOmos6lv76zGzuKKKq4reRdab0znofnm28BjiiGr1BpHpCrTChBESbQKbeBjq2KOKLMfLmgmPSHczG6Sq824GTVC4OIHnyGoRv6Wr69Nwv3q-y0T8qWx8kL2CK_n0bLbq3O7lLc65n1XEQSkBsSXYsMl6ej6ffpzOG4RBiT2U4dxdOaG_L3qvxjjL2HGWxD0e1tCSy5DReNDs2fR7SNz938DrxpQ032Zakbb2ED6114vUZAuAfjM3RFBBozB-y9I6mxASkksjPVKHZZ33ikVs08soAVHnmJrCVl_cGuazb9ScrHLh6u7TuYD85nX4dBe79CYFIeNYFIMm3TqIplhCY3kRSaYyW5cqU9xUUijBEmtZjZvhRWi8RkWOVKCZFUMsXkPWzW9zV-AKYpS7GVdJ31rlIa5bIveCV4Uqk8o0c9iLrjLk1LPu7uwLgrfRLCZelFVDoRla2IenC8WvNrSb3x39l77sxXM9vj7sF-J9Wy_Tp_l_SmgvJK8gMfn151CC-Hs2Jcji8n3z7Bq9i5co8r24fN5mGBnykQafSB17-_A8vWdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Stealthy+False+Data+Injection+Using+Machine+Learning+in+Smart+Grid&rft.jtitle=IEEE+systems+journal&rft.au=Esmalifalak%2C+Mohammad&rft.au=Liu%2C+Lanchao&rft.au=Nguyen%2C+Nam&rft.au=Zheng%2C+Rong&rft.date=2017-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1932-8184&rft.eissn=1937-9234&rft.volume=11&rft.issue=3&rft.spage=1644&rft_id=info:doi/10.1109%2FJSYST.2014.2341597&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8184&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8184&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8184&client=summon