Bifunctional Magnetite–Gold Nanoparticles for Magneto-Mechanical Actuation and Cancer Cell Destruction

Magnetite–gold dumbbell nanoparticles are essential for biomedical applications due to the presence of two surfaces with different chemical natures and the potential combination of magnetic and plasmonic properties. Here, the remote actuation of Fe3O4-Au hybrid particles in a rotating (1 Hz, 7 mT),...

Full description

Saved in:
Bibliographic Details
Published inMagnetochemistry Vol. 8; no. 12; p. 185
Main Authors Garanina, Anastasiia S., Efremova, Maria V., Machulkin, Alexey E., Lyubin, Evgeny V., Vorobyeva, Natalia S., Zhironkina, Oxana A., Strelkova, Olga S., Kireev, Igor I., Alieva, Irina B., Uzbekov, Rustem E., Agafonov, Viatcheslav N., Shchetinin, Igor V., Fedyanin, Andrey A., Erofeev, Alexander S., Gorelkin, Peter V., Korchev, Yuri E., Savchenko, Alexander G., Abakumov, Maxim A.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetite–gold dumbbell nanoparticles are essential for biomedical applications due to the presence of two surfaces with different chemical natures and the potential combination of magnetic and plasmonic properties. Here, the remote actuation of Fe3O4-Au hybrid particles in a rotating (1 Hz, 7 mT), static (7 mT) or pulsed low-frequency (31 Hz, 175 mT, 30 s pulse/30 s pause) magnetic field was studied. The particles were synthesized by a high-temperature wet chemistry protocol and exhibited superparamagnetic properties with the saturation magnetization of 67.9 ± 3.0 Am2 kg−1. We showcased the nanoparticles’ controlled aggregation in chains (rotating/static magnetic field) in an aqueous solution and their disaggregation when the field was removed. The investigation of nanoparticle uptake by LNCaP and PC-3 cancer cells demonstrated that Fe3O4-Au hybrids mainly escaped endosomes and accumulated in the cytoplasm. A significant fraction of them still responded to a rotating magnetic field, forming short chains. The particles were not toxic to cells at concentrations up to 210 μg (Fe3O4) mL−1. However, cell viability decrease after incubation with the nanoparticles (≥70 μg mL−1) and exposure to a pulsed low-frequency magnetic field was found. We ascribe this effect to mechanically induced cell destruction. Overall, this makes Fe3O4-Au nanostructures promising candidates for intracellular actuation for future magneto-mechanical cancer therapies.
AbstractList Magnetite–gold dumbbell nanoparticles are essential for biomedical applications due to the presence of two surfaces with different chemical natures and the potential combination of magnetic and plasmonic properties. Here, the remote actuation of Fe3O4-Au hybrid particles in a rotating (1 Hz, 7 mT), static (7 mT) or pulsed low-frequency (31 Hz, 175 mT, 30 s pulse/30 s pause) magnetic field was studied. The particles were synthesized by a high-temperature wet chemistry protocol and exhibited superparamagnetic properties with the saturation magnetization of 67.9 ± 3.0 Am2 kg−1. We showcased the nanoparticles’ controlled aggregation in chains (rotating/static magnetic field) in an aqueous solution and their disaggregation when the field was removed. The investigation of nanoparticle uptake by LNCaP and PC-3 cancer cells demonstrated that Fe3O4-Au hybrids mainly escaped endosomes and accumulated in the cytoplasm. A significant fraction of them still responded to a rotating magnetic field, forming short chains. The particles were not toxic to cells at concentrations up to 210 μg (Fe3O4) mL−1. However, cell viability decrease after incubation with the nanoparticles (≥70 μg mL−1) and exposure to a pulsed low-frequency magnetic field was found. We ascribe this effect to mechanically induced cell destruction. Overall, this makes Fe3O4-Au nanostructures promising candidates for intracellular actuation for future magneto-mechanical cancer therapies.
Magnetite–gold dumbbell nanoparticles are essential for biomedical applications due to the presence of two surfaces with different chemical natures and the potential combination of magnetic and plasmonic properties. Here, the remote actuation of Fe[sub.3]O[sub.4]-Au hybrid particles in a rotating (1 Hz, 7 mT), static (7 mT) or pulsed low-frequency (31 Hz, 175 mT, 30 s pulse/30 s pause) magnetic field was studied. The particles were synthesized by a high-temperature wet chemistry protocol and exhibited superparamagnetic properties with the saturation magnetization of 67.9 ± 3.0 Am[sup.2] kg[sup.−1]. We showcased the nanoparticles’ controlled aggregation in chains (rotating/static magnetic field) in an aqueous solution and their disaggregation when the field was removed. The investigation of nanoparticle uptake by LNCaP and PC-3 cancer cells demonstrated that Fe[sub.3]O[sub.4]-Au hybrids mainly escaped endosomes and accumulated in the cytoplasm. A significant fraction of them still responded to a rotating magnetic field, forming short chains. The particles were not toxic to cells at concentrations up to 210 μg (Fe[sub.3]O[sub.4]) mL[sup.−1]. However, cell viability decrease after incubation with the nanoparticles (≥70 μg mL[sup.−1]) and exposure to a pulsed low-frequency magnetic field was found. We ascribe this effect to mechanically induced cell destruction. Overall, this makes Fe[sub.3]O[sub.4]-Au nanostructures promising candidates for intracellular actuation for future magneto-mechanical cancer therapies.
Audience Academic
Author Alieva, Irina B.
Korchev, Yuri E.
Vorobyeva, Natalia S.
Abakumov, Maxim A.
Shchetinin, Igor V.
Kireev, Igor I.
Machulkin, Alexey E.
Garanina, Anastasiia S.
Savchenko, Alexander G.
Lyubin, Evgeny V.
Erofeev, Alexander S.
Gorelkin, Peter V.
Fedyanin, Andrey A.
Strelkova, Olga S.
Efremova, Maria V.
Agafonov, Viatcheslav N.
Uzbekov, Rustem E.
Zhironkina, Oxana A.
Author_xml – sequence: 1
  givenname: Anastasiia S.
  orcidid: 0000-0003-3442-9553
  surname: Garanina
  fullname: Garanina, Anastasiia S.
– sequence: 2
  givenname: Maria V.
  orcidid: 0000-0002-5196-5596
  surname: Efremova
  fullname: Efremova, Maria V.
– sequence: 3
  givenname: Alexey E.
  orcidid: 0000-0001-7975-0346
  surname: Machulkin
  fullname: Machulkin, Alexey E.
– sequence: 4
  givenname: Evgeny V.
  orcidid: 0000-0003-2912-5037
  surname: Lyubin
  fullname: Lyubin, Evgeny V.
– sequence: 5
  givenname: Natalia S.
  surname: Vorobyeva
  fullname: Vorobyeva, Natalia S.
– sequence: 6
  givenname: Oxana A.
  surname: Zhironkina
  fullname: Zhironkina, Oxana A.
– sequence: 7
  givenname: Olga S.
  surname: Strelkova
  fullname: Strelkova, Olga S.
– sequence: 8
  givenname: Igor I.
  surname: Kireev
  fullname: Kireev, Igor I.
– sequence: 9
  givenname: Irina B.
  orcidid: 0000-0002-5726-4889
  surname: Alieva
  fullname: Alieva, Irina B.
– sequence: 10
  givenname: Rustem E.
  surname: Uzbekov
  fullname: Uzbekov, Rustem E.
– sequence: 11
  givenname: Viatcheslav N.
  surname: Agafonov
  fullname: Agafonov, Viatcheslav N.
– sequence: 12
  givenname: Igor V.
  surname: Shchetinin
  fullname: Shchetinin, Igor V.
– sequence: 13
  givenname: Andrey A.
  orcidid: 0000-0003-4708-6895
  surname: Fedyanin
  fullname: Fedyanin, Andrey A.
– sequence: 14
  givenname: Alexander S.
  surname: Erofeev
  fullname: Erofeev, Alexander S.
– sequence: 15
  givenname: Peter V.
  orcidid: 0000-0002-4860-9013
  surname: Gorelkin
  fullname: Gorelkin, Peter V.
– sequence: 16
  givenname: Yuri E.
  surname: Korchev
  fullname: Korchev, Yuri E.
– sequence: 17
  givenname: Alexander G.
  surname: Savchenko
  fullname: Savchenko, Alexander G.
– sequence: 18
  givenname: Maxim A.
  orcidid: 0000-0003-2622-9201
  surname: Abakumov
  fullname: Abakumov, Maxim A.
BackLink https://hal.science/hal-03982433$$DView record in HAL
BookMark eNqFkstuEzEUhkeoSJTSZ2AkVixS7PF4bC9YhEAvUgobWFsnx57E0cQOnplK3fEOvGGfhJMLgiIQ8sLW0f9_PrfnxUlM0RfFS84uhDDszQaW0Q8JV34T-iHfa14xruWT4rQSvJqoWvOT397PivO-XzPGSCVUZU6L1bvQjhGHkCJ05e0eFwb_8O37Vepc-RFi2kIeAna-L9uUj5I0ufW4ghiQXFMcRtgRSoiunEFEn8uZ77ryvaekxj39RfG0ha7358f7rPhy-eHz7Hoy_3R1M5vOJygZHyZCNb5BwWGBlUGUClphOAOjjXTGgUC3UEwLJ9Fwt3Cm1nWjvRa-WVC0FWfFzYHrEqztNocN5HubINh9IOWlPdZjwVMTjDGNMKJuWgfQ0Pe1MlyhJB6xXh9YK-geoa6nc7uLMWF0VQtxx0n76qDd5vR1pLrtOo2ZmtrbSslGyUoa_Uu1BEogxDYNGZBmh3aq6lpJwdmOdfEXFR1HY0bagDZQ_JHh7cGAOfV99q3FMOxHQsbQWc7sbl3sP9aF_OoP_89q_-f8AXbazOg
CitedBy_id crossref_primary_10_1021_acs_jpclett_3c01944
crossref_primary_10_1142_S0219519423400274
crossref_primary_10_1063_5_0254620
crossref_primary_10_1039_D4NJ05015K
crossref_primary_10_1039_D4NR01652A
crossref_primary_10_1002_tcr_202400179
crossref_primary_10_1016_j_jcis_2023_12_019
crossref_primary_10_3390_app14156750
Cites_doi 10.1039/D0NA00187B
10.3390/magnetochemistry8020021
10.1021/acsanm.2c00338
10.3103/S1062873815090166
10.1038/s41598-018-29618-w
10.1038/srep46287
10.1007/s41061-020-00302-w
10.1007/s10517-016-3490-3
10.3390/magnetochemistry8010011
10.1038/srep21212
10.2174/1568026617666161122120537
10.1038/s41598-018-30034-3
10.1016/j.biomaterials.2019.05.002
10.1021/nn406302j
10.1016/S0006-3495(97)78100-1
10.1038/s41598-017-11279-w
10.1039/D1NA00474C
10.3390/magnetochemistry8040038
10.1039/C8CP03016B
10.1007/s12274-020-2696-x
10.3390/cells9041015
10.1186/s12951-016-0219-4
10.3390/ma9110943
10.1016/j.mtnano.2020.100084
10.1186/s40580-018-0166-x
10.1371/journal.pone.0129008
10.1186/s12951-019-0463-5
10.1242/jcs.251470
10.1186/s12951-022-01521-7
10.1046/j.1365-2818.1997.2430801.x
10.7150/thno.18352
10.1186/s11671-018-2728-6
10.1002/advs.201902933
10.1007/s12272-013-0292-2
10.1038/s41420-018-0052-7
10.3390/ijms231911134
10.1021/acsami.0c21002
10.1002/wnan.1571
10.3390/magnetochemistry8100117
10.1016/j.jtherbio.2020.102644
10.1039/C9NR09235H
10.1002/pros.21383
10.1016/j.biomaterials.2022.121365
10.2174/0929867323666160829111531
10.1073/pnas.252458399
10.1021/acsami.2c04865
10.1021/nl047955q
10.1016/j.jmmm.2021.168314
10.1038/srep33560
10.1016/j.jphotobiol.2019.01.012
10.3389/fchem.2018.00619
10.1016/j.jmmm.2022.169278
10.3762/bjnano.9.251
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
DOA
DOI 10.3390/magnetochemistry8120185
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
开放获取期刊(Open Access Journals)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 2312-7481
ExternalDocumentID oai_doaj_org_article_ae137999639346fdaa637647917c5e6b
oai_HAL_hal_03982433v1
A744753101
10_3390_magnetochemistry8120185
GeographicLocations United Kingdom
Russia
United States--US
GeographicLocations_xml – name: United Kingdom
– name: Russia
– name: United States--US
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
PUEGO
ID FETCH-LOGICAL-c501t-376e6c31abc29cc57af3910a9895d9da3cdb7083d5c91dbd948468e83e6b83df3
IEDL.DBID DOA
ISSN 2312-7481
IngestDate Wed Aug 27 01:24:43 EDT 2025
Fri May 09 12:18:30 EDT 2025
Fri Jul 25 11:45:05 EDT 2025
Tue Jun 17 22:22:31 EDT 2025
Tue Jun 10 21:22:23 EDT 2025
Tue Jul 01 04:04:07 EDT 2025
Thu Apr 24 23:14:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Prostate cancer cells
magnetite–gold dumbbell nanoparticles
low-frequency magnetic field
Biomedical application
Cancer cell destruction
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-376e6c31abc29cc57af3910a9895d9da3cdb7083d5c91dbd948468e83e6b83df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5196-5596
0000-0003-2622-9201
0000-0001-7975-0346
0000-0003-3442-9553
0000-0003-2912-5037
0000-0002-5726-4889
0000-0003-4708-6895
0000-0002-4860-9013
0000-0001-5770-1252
OpenAccessLink https://doaj.org/article/ae137999639346fdaa637647917c5e6b
PQID 2756752598
PQPubID 2059549
ParticipantIDs doaj_primary_oai_doaj_org_article_ae137999639346fdaa637647917c5e6b
hal_primary_oai_HAL_hal_03982433v1
proquest_journals_2756752598
gale_infotracmisc_A744753101
gale_infotracacademiconefile_A744753101
crossref_citationtrail_10_3390_magnetochemistry8120185
crossref_primary_10_3390_magnetochemistry8120185
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Magnetochemistry
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Liu (ref_7) 2019; 11
Brollo (ref_50) 2018; 20
Li (ref_14) 2017; 7
ref_13
ref_10
Yu (ref_27) 2005; 5
Chiriac (ref_17) 2018; 8
Naud (ref_21) 2020; 2
Raouf (ref_3) 2020; 91
Wong (ref_16) 2017; 7
Korchev (ref_30) 1997; 73
Gribanovsky (ref_35) 2022; 553
Gorelik (ref_32) 2002; 99
Wong (ref_11) 2018; 4
ref_23
Muzzi (ref_42) 2022; 14
Machulkin (ref_26) 2016; 161
Portilla (ref_46) 2022; 281
Shen (ref_19) 2017; 7
Garanina (ref_20) 2019; 17
Efremova (ref_25) 2018; 9
Avasthi (ref_1) 2020; 378
Chun (ref_5) 2018; 5
Tai (ref_53) 2011; 71
Master (ref_15) 2016; 6
Orel (ref_12) 2021; 538
Zhang (ref_22) 2014; 8
Efremova (ref_24) 2018; 8
Fantechi (ref_39) 2020; 13
Rathore (ref_43) 2019; 211
Jiang (ref_48) 2014; 37
Sanavio (ref_38) 2017; 24
Lopez (ref_8) 2022; 4
Wang (ref_2) 2020; 3
Ghalandari (ref_51) 2019; 192
Nikitin (ref_52) 2021; 13
Rajkumar (ref_41) 2017; 17
Perez (ref_34) 2020; 11
Guo (ref_37) 2022; 20
Price (ref_6) 2018; 6
ref_44
Vavaev (ref_29) 2022; 5
Korchev (ref_31) 1997; 188
Alieva (ref_18) 2016; 7
ref_40
Foroozandeh (ref_45) 2018; 13
ref_49
ref_9
Salikhov (ref_33) 2015; 79
Romodina (ref_28) 2016; 6
Wu (ref_36) 2020; 7
Alieva (ref_47) 2016; 14
ref_4
Hope (ref_54) 2021; 134
References_xml – volume: 2
  start-page: 3632
  year: 2020
  ident: ref_21
  article-title: Cancer treatment by magneto-mechanical effect of particles, a review
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00187B
– ident: ref_13
  doi: 10.3390/magnetochemistry8020021
– volume: 5
  start-page: 2994
  year: 2022
  ident: ref_29
  article-title: CaCO3 Nanoparticles Coated with Alternating Layers of Poly-L-Arginine Hydrochloride and Fe3O4 Nanoparticles as Navigable Drug Carriers and Hyperthermia Agents
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.2c00338
– volume: 79
  start-page: 1106
  year: 2015
  ident: ref_33
  article-title: Phase composition and structure of iron oxide nanopowders prepared by chemical means
  publication-title: Bull. Russ. Acad. Sci. Phys.
  doi: 10.3103/S1062873815090166
– volume: 8
  start-page: 11295
  year: 2018
  ident: ref_24
  article-title: Magnetite-Gold nanohybrids as ideal all-in-one platforms for theranostics
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29618-w
– volume: 7
  start-page: 46287
  year: 2017
  ident: ref_14
  article-title: Evaluation of Tumor Treatment of Magnetic Nanoparticles Driven by Extremely Low Frequency Magnetic Field
  publication-title: Sci. Rep.
  doi: 10.1038/srep46287
– volume: 378
  start-page: 40
  year: 2020
  ident: ref_1
  article-title: Magnetic Nanoparticles as MRI Contrast Agents
  publication-title: Top. Curr. Chem.
  doi: 10.1007/s41061-020-00302-w
– volume: 161
  start-page: 706
  year: 2016
  ident: ref_26
  article-title: Nanohybride Materials Based on Magnetite-Gold Nanoparticles for Diagnostics of Prostate Cancer: Synthesis and In Vitro Testing
  publication-title: Bull. Exp. Biol. Med.
  doi: 10.1007/s10517-016-3490-3
– ident: ref_4
  doi: 10.3390/magnetochemistry8010011
– volume: 6
  start-page: 21212
  year: 2016
  ident: ref_28
  article-title: Detection of Brownian Torque in a Magnetically-Driven Rotating Microsystem
  publication-title: Sci. Rep.
  doi: 10.1038/srep21212
– volume: 17
  start-page: 1858
  year: 2017
  ident: ref_41
  article-title: Theranostics Based on Iron Oxide and Gold Nanoparticles for Imaging-Guided Photothermal and Photodynamic Therapy of Cancer
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026617666161122120537
– volume: 8
  start-page: 11538
  year: 2018
  ident: ref_17
  article-title: Fe-Cr-Nb-B ferromagnetic particles with shape anisotropy for cancer cell destruction by magneto-mechanical actuation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30034-3
– volume: 211
  start-page: 25
  year: 2019
  ident: ref_43
  article-title: Nanomaterial designing strategies related to cell lysosome and their biomedical applications: A review
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.05.002
– volume: 8
  start-page: 3192
  year: 2014
  ident: ref_22
  article-title: Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation
  publication-title: ACS Nano
  doi: 10.1021/nn406302j
– volume: 73
  start-page: 653
  year: 1997
  ident: ref_30
  article-title: Scanning ion conductance microscopy of living cells
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(97)78100-1
– volume: 7
  start-page: 10919
  year: 2017
  ident: ref_16
  article-title: Magneto-actuated cell apoptosis by biaxial pulsed magnetic field
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11279-w
– volume: 4
  start-page: 421
  year: 2022
  ident: ref_8
  article-title: Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields
  publication-title: Nanoscale Adv.
  doi: 10.1039/D1NA00474C
– ident: ref_40
  doi: 10.3390/magnetochemistry8040038
– volume: 20
  start-page: 17829
  year: 2018
  ident: ref_50
  article-title: Magnetic properties of nanoparticles as a function of their spatial distribution on liposomes and cells
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP03016B
– volume: 13
  start-page: 785
  year: 2020
  ident: ref_39
  article-title: Modulation of the magnetic properties of gold-spinel ferrite heterostructured nanocrystals
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2696-x
– ident: ref_44
  doi: 10.3390/cells9041015
– volume: 14
  start-page: 67
  year: 2016
  ident: ref_47
  article-title: Magnetocontrollability of Fe7C3@C superparamagnetic nanoparticles in living cells
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-016-0219-4
– ident: ref_23
  doi: 10.3390/ma9110943
– volume: 11
  start-page: 100084
  year: 2020
  ident: ref_34
  article-title: Magnetic nanoparticles in regenerative medicine: What of their fate and impact in stem cells?
  publication-title: Mater. Today Nano
  doi: 10.1016/j.mtnano.2020.100084
– volume: 5
  start-page: 34
  year: 2018
  ident: ref_5
  article-title: Regulation of cellular gene expression by nanomaterials
  publication-title: Nano Converg.
  doi: 10.1186/s40580-018-0166-x
– ident: ref_49
  doi: 10.1371/journal.pone.0129008
– volume: 17
  start-page: 27
  year: 2019
  ident: ref_20
  article-title: Long-term live cells observation of internalized fluorescent Fe@C nanoparticles in constant magnetic field
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-019-0463-5
– volume: 134
  start-page: jcs251470
  year: 2021
  ident: ref_54
  article-title: Circulating prostate cancer cells have differential resistance to fluid shear stress-induced cell death
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.251470
– volume: 20
  start-page: 316
  year: 2022
  ident: ref_37
  article-title: Low frequency vibrating magnetic field-triggered magnetic microspheres with a nanoflagellum-like surface for cancer therapy
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-022-01521-7
– volume: 188
  start-page: 17
  year: 1997
  ident: ref_31
  article-title: Specialized scanning ion-conductance microscope for imaging of living cells
  publication-title: J. Microsc.
  doi: 10.1046/j.1365-2818.1997.2430801.x
– volume: 7
  start-page: 1735
  year: 2017
  ident: ref_19
  article-title: Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field
  publication-title: Theranostics
  doi: 10.7150/thno.18352
– volume: 13
  start-page: 339
  year: 2018
  ident: ref_45
  article-title: Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-018-2728-6
– volume: 7
  start-page: 1902933
  year: 2020
  ident: ref_36
  article-title: Programmable ROS-Mediated Cancer Therapy via Magneto-Inductions
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902933
– volume: 37
  start-page: 129
  year: 2014
  ident: ref_48
  article-title: Protein corona on magnetite nanoparticles and internalizationof nanoparticle–protein complexes into healthy and cancer cells
  publication-title: Arch. Pharmacal Res.
  doi: 10.1007/s12272-013-0292-2
– volume: 4
  start-page: 49
  year: 2018
  ident: ref_11
  article-title: Interplay of cell death signaling pathways mediated by alternating magnetic field gradient
  publication-title: Cell Death Discov.
  doi: 10.1038/s41420-018-0052-7
– ident: ref_9
  doi: 10.3390/ijms231911134
– volume: 13
  start-page: 14458
  year: 2021
  ident: ref_52
  article-title: Magnetic Nanoparticles as a Tool for Remote DNA Manipulations at a Single-Molecule Level
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c21002
– volume: 11
  start-page: e1571
  year: 2019
  ident: ref_7
  article-title: Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.1571
– ident: ref_10
  doi: 10.3390/magnetochemistry8100117
– volume: 91
  start-page: 102644
  year: 2020
  ident: ref_3
  article-title: A Review on Numerical Modeling for Magnetic Nanoparticle Hyperthermia: Progress and Challenges
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2020.102644
– volume: 3
  start-page: 1886
  year: 2020
  ident: ref_2
  article-title: Enzyme-instructed self-aggregation of Fe3O4 nanoparticles for enhanced MRI T2 imaging and photothermal therapy of tumors
  publication-title: Nanoscale
  doi: 10.1039/C9NR09235H
– volume: 71
  start-page: 1668
  year: 2011
  ident: ref_53
  article-title: PC3 is a cell line characteristic of prostatic small cell carcinoma
  publication-title: Prostate
  doi: 10.1002/pros.21383
– volume: 281
  start-page: 121365
  year: 2022
  ident: ref_46
  article-title: The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121365
– volume: 24
  start-page: 497
  year: 2017
  ident: ref_38
  article-title: Recent Advances in the Synthesis and Applications of Multimodal Gold-Iron Nanoparticles
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867323666160829111531
– volume: 99
  start-page: 16018
  year: 2002
  ident: ref_32
  article-title: Scanning surface confocal microscopy for simultaneous topographical and fluorescence imaging: Application to single virus-like particle entry into a cell
  publication-title: PNAS
  doi: 10.1073/pnas.252458399
– volume: 14
  start-page: 29087
  year: 2022
  ident: ref_42
  article-title: Star-Shaped Magnetic-Plasmonic Au@Fe3O4 Nano-Heterostructures for Photothermal Therapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c04865
– volume: 7
  start-page: 158160
  year: 2016
  ident: ref_18
  article-title: Magnetinduced behavior of iron carbide (Fe7C3@C) nanoparticles in the cytoplasm of living cells
  publication-title: Nanosyst. Phys. Chem. Math.
– volume: 5
  start-page: 379
  year: 2005
  ident: ref_27
  article-title: Dumbbell-like bifunctional Au-Fe3O4 nanoparticles
  publication-title: Nano Lett.
  doi: 10.1021/nl047955q
– volume: 538
  start-page: 168314
  year: 2021
  ident: ref_12
  article-title: Magneto-mechanical effects of magnetite nanoparticles on Walker-256 carcinosarcoma heterogeneity, redox state and growth modulated by an inhomogeneous stationary magnetic field
  publication-title: JMMM
  doi: 10.1016/j.jmmm.2021.168314
– volume: 6
  start-page: 33560
  year: 2016
  ident: ref_15
  article-title: Remote Actuation of Magnetic Nanoparticles for Cancer Cell Selective Treatment Through Cytoskeletal Disruption
  publication-title: Sci. Rep.
  doi: 10.1038/srep33560
– volume: 192
  start-page: 131
  year: 2019
  ident: ref_51
  article-title: Microtubule network as a potential candidate for targeting by gold nanoparticle-assisted photothermal therapy
  publication-title: J. Photochem. Photobiol. B
  doi: 10.1016/j.jphotobiol.2019.01.012
– volume: 6
  start-page: 619
  year: 2018
  ident: ref_6
  article-title: Magnetic Drug Delivery: Where the Field Is Going
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00619
– volume: 553
  start-page: 169278
  year: 2022
  ident: ref_35
  article-title: Mechanisms and conditions for mechanical activation of magnetic nanoparticles by external magnetic field for biomedical applications
  publication-title: JMMM
  doi: 10.1016/j.jmmm.2022.169278
– volume: 9
  start-page: 2684
  year: 2018
  ident: ref_25
  article-title: Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.9.251
SSID ssj0002013729
Score 2.26349
Snippet Magnetite–gold dumbbell nanoparticles are essential for biomedical applications due to the presence of two surfaces with different chemical natures and the...
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 185
SubjectTerms Acids
Actuation
Analysis
Apoptosis
Aqueous solutions
Atomic Physics
Biocompatibility
biomedical application
Biomedical materials
Cancer
cancer cell destruction
Chains
Chemical Sciences
Chemical synthesis
Cytoplasm
Destruction
Diffraction
Endosomes
Gene expression
Gold
Gold compounds
High temperature
Hyperthermia
Iron oxides
Life Sciences
low-frequency magnetic field
Magnetic fields
Magnetic properties
Magnetic resonance imaging
Magnetic saturation
Magnetite
magnetite–gold dumbbell nanoparticles
Material chemistry
Mechanical properties
Methods
Nanoparticles
Physics
prostate cancer cells
Rotation
SICM
Software
Structure
Transmission electron microscopes
Transmission electron microscopy
X-rays
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1fT9swED9BedhepsE2rRsgCyHtKSKJEyd-mtoKqCaKpmlIvFm2zwWkrmGAeOY77Bvuk-wucQudxPbqOK59d737nXN_APYZ4wbrqoTQNCZFXmDiCGYkZGw0mSvMXeBE4cmpGp8VX87L83jhdhvDKhc6sVXU2Hi-Iz_gMuVVSWC9_nz9M-GuUfx1NbbQWIcNUsF13YON4eHp12_LW5acK-rlugvskuTfH_ywF-Tzczeqrp0aGbg0407KT8xSW71_qaPXLzlE8i9N3Zqfo9fwKuJGMegYvQlrYb4FL0aL9d_A5fCKbVR3tScm7e_T1n8__DpuZihIi5J7HKPgBCHVOKVJJoGTf5lXYsDZJLyCsHMUIxaIGzEKs5lg9zQWmn0LZ0eH30fjJLZRSHyZZnesQoLyMrPO59r7srJTSSDB6lqXqNFKj64iJIal1xk61AVhkjrUMihHo1P5DnrzZh7eg7BpTgulvvBeFipTGqdWO3QSFSqlfR_UgorGxxrj3OpiZsjXYPKbZ8jfh3T54nVXZuP_rwyZTcvpXCe7HWhuLkykp7GB-M8-ndS04Slaq4gcRUVOqi_pfH34xEw2_G-mjXobkxLouFwXywwqLohIR876sL0yk_biVx7vkZisbGY8ODE8lkpd54WU97zGQopMVBW35lGwP_z78Ud4mXPuRRtLsw09YnvYIUR053aj2P8Bq_8Pcg
  priority: 102
  providerName: ProQuest
Title Bifunctional Magnetite–Gold Nanoparticles for Magneto-Mechanical Actuation and Cancer Cell Destruction
URI https://www.proquest.com/docview/2756752598
https://hal.science/hal-03982433
https://doaj.org/article/ae137999639346fdaa637647917c5e6b
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7RclguiNeKLqWyENKeoiZx4sTHtupDiFYIbaXeLL9KQaFFbMWZ_8A_5Jcwk7hVi4R64erYjj0ez3yTzAPgLWFcr00RIZp2UZZmLjIIMyJUNhLVlUuNp0Dh-ULMltm7Vb46KfVFPmFNeuCGcH3tE14QKueSZ2LttBZ4J7ICzQybe2FI-qLOOzGmvtS_1xL6H9U4dHG06_tf9Se09akKVVNGDRVbnFAF5RN1VGftP8rm1oZcI_-S0LXamTyBxwEvskGzzqfwwG-fwdXoMP9z2Aw_k25qPumxef1-hJG_f_6a7irHUHqiWRy83xgi1NBlF809Bf3SGbEBRZHQDExvHRsRI3xnI19VjMzSkGD2BSwn47vRLArlEyKbx8meRIcXlifa2FRamxd6zREcaFnK3EmnuXWmQATmcisTZ5zMEIuUvuRIVWxd82tob3db_xKYjlOcKLaZtXgIiZBuraVxhjvhhJC2A-JARWVDbnEqcVEptDGI_Oof5O9AfBz4rUmvcXnIkI7p2J3yY9cNyDUq0FNd4poO3NIhK7rFuFCrQzACbpfyYalBQYkQcctJB7pnPXEt9uzxG2STs8XMBu8VtcVclmnG-Q-a48BFKoiIe0V594scrc_y5n_s6BU8Sikyo_a06UIbmcO_Rry0Nz1olZNpDx4Ox4sPH3v1RfkDekMYIA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB615VAuiPIQgVIsBOK06q69610fUJUG0pQmPbVSb8avtEhht7QRiBv_of-DH9Vf0pl9BIIEnHq1vRN7PPY348wD4BXpuMHYPEJt2kcpT31kUc2IEGwUwpXnNlCg8ORQjo7TDyfZyQr87GJhyK2yuxPri9pXjt7ItylNeZ6hsl7snH-JqGoU_bvaldBoxOIgfP-GJtvl2_13uL-vOR--PxqMoraqQOSyOJnTiQrSicRYx5VzWW6mAjHTqEJlXnkjnLc5KiY-cyrx1qsUIboIhQjSYutUIN1VuJMKRHKKTB_uLd50OOXv46pxI8P-ePuzOS3DnGpfNcXbEE7jhOo2_waCda2ABSKsnpFD5h-4UIPd8D7ca7VU1m_EagNWQvkA1gcd_YdwtvuJELF5SGST-veRUdc_rvaqmWd4Z6Mx3vrcMdSL2yFVNAkUakySwfoUu0IUmCk9G5D4XbBBmM0YGcNtWttHcHwr7H0Ma2VVhifATMyRUOxS50QqE6n81CjrrfDSS6lcD2THRe3ajOZUWGOm0bIh9uu_sL8H8eLD8yapx_8_2aVtWgynrNx1Q3Vxqlt-ahNw_8mCFAonPPXGSGRHmqNJ7DJcXw_e0CZrujtwos60IRC4XMrCpfs5pV_EJSc92FwaiXNxS90vUUyWJjPqjzW1xUIVHIXzK9HopEi3F9Ol_nWMnv67-wWsj44mYz3ePzx4Bnc5RX3UXjybsIYiEJ6jLja3W_UBYPDxtk_cDRXFS6Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1No6CXhBXEVhgIVAPEVN7MSJHxBqu5WOrdWEmLQ341s2pJKMrQLxxj_wN3wOX8I5iVMoEvC0V8c5sY_P1TkXQp6ijeu1ySOwpl2UstRFBsyMCJSNBHXlmPGYKDybi-lR-vo4O94g37tcGAyr7GRiI6hdbfGOfIBlyvMMjPViUIawiMOdycuzjxF2kMI_rV07jZZE9v2Xz-C-XbzY24GzfsbYZPfteBqFDgORzeJkidzlheWJNpZJa7Nclxz0p5aFzJx0mltncjBSXGZl4oyTKajrwhfcCwOjJQe4m2QrR6-oR7ZGu_PDN6sbHobV_Jhsg8o4l_Hggz6p_BI7YbWt3EC5xgl2cf5NJTadA1b6YfMUwzP_0BKN6pvcINeDzUqHLZHdJBu-ukWujjv4t8np6D3qx_Zakc6a7wOqfnz99qpeOAoSHFzzEIFHwUoOU-po5jHxGOmEDjGTBSFQXTk6RmI8p2O_WFB0jUOR2zvk6FIQfJf0qrry9wjVMQNAsU2t5alIhHSllsYZ7oQTQto-ER0WlQ31zbHNxkKBn4PoV39Bf5_EqxfP2hIf_39lhMe0mo41upuB-vxEBXwq7eH80Z_kEhZcOq0FoCPNwUG2GeyvT57jISuUJLBQq0NCBGwXa3KpYY7FGGHLSZ9sr82Etdi1x0-ATNYWMx0eKByLuSxYyvknhNFRkQpi6kL9Yqr7_378mFwBblMHe_P9B-QawxSQJqRnm_SAAvxDMMyW5lHgAEreXTbT_QS2ZFE4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifunctional+Magnetite%E2%80%93Gold+Nanoparticles+for+Magneto-Mechanical+Actuation+and+Cancer+Cell+Destruction&rft.jtitle=Magnetochemistry&rft.au=Garanina%2C+Anastasiia+S&rft.au=Efremova%2C+Maria+V&rft.au=Machulkin%2C+Alexey+E&rft.au=Lyubin%2C+Evgeny+V&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.issn=2312-7481&rft.eissn=2312-7481&rft.volume=8&rft.issue=12&rft_id=info:doi/10.3390%2Fmagnetochemistry8120185&rft.externalDocID=A744753101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2312-7481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2312-7481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2312-7481&client=summon