Bifunctional Magnetite–Gold Nanoparticles for Magneto-Mechanical Actuation and Cancer Cell Destruction
Magnetite–gold dumbbell nanoparticles are essential for biomedical applications due to the presence of two surfaces with different chemical natures and the potential combination of magnetic and plasmonic properties. Here, the remote actuation of Fe3O4-Au hybrid particles in a rotating (1 Hz, 7 mT),...
Saved in:
Published in | Magnetochemistry Vol. 8; no. 12; p. 185 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetite–gold dumbbell nanoparticles are essential for biomedical applications due to the presence of two surfaces with different chemical natures and the potential combination of magnetic and plasmonic properties. Here, the remote actuation of Fe3O4-Au hybrid particles in a rotating (1 Hz, 7 mT), static (7 mT) or pulsed low-frequency (31 Hz, 175 mT, 30 s pulse/30 s pause) magnetic field was studied. The particles were synthesized by a high-temperature wet chemistry protocol and exhibited superparamagnetic properties with the saturation magnetization of 67.9 ± 3.0 Am2 kg−1. We showcased the nanoparticles’ controlled aggregation in chains (rotating/static magnetic field) in an aqueous solution and their disaggregation when the field was removed. The investigation of nanoparticle uptake by LNCaP and PC-3 cancer cells demonstrated that Fe3O4-Au hybrids mainly escaped endosomes and accumulated in the cytoplasm. A significant fraction of them still responded to a rotating magnetic field, forming short chains. The particles were not toxic to cells at concentrations up to 210 μg (Fe3O4) mL−1. However, cell viability decrease after incubation with the nanoparticles (≥70 μg mL−1) and exposure to a pulsed low-frequency magnetic field was found. We ascribe this effect to mechanically induced cell destruction. Overall, this makes Fe3O4-Au nanostructures promising candidates for intracellular actuation for future magneto-mechanical cancer therapies. |
---|---|
AbstractList | Magnetite–gold dumbbell nanoparticles are essential for biomedical applications due to the presence of two surfaces with different chemical natures and the potential combination of magnetic and plasmonic properties. Here, the remote actuation of Fe3O4-Au hybrid particles in a rotating (1 Hz, 7 mT), static (7 mT) or pulsed low-frequency (31 Hz, 175 mT, 30 s pulse/30 s pause) magnetic field was studied. The particles were synthesized by a high-temperature wet chemistry protocol and exhibited superparamagnetic properties with the saturation magnetization of 67.9 ± 3.0 Am2 kg−1. We showcased the nanoparticles’ controlled aggregation in chains (rotating/static magnetic field) in an aqueous solution and their disaggregation when the field was removed. The investigation of nanoparticle uptake by LNCaP and PC-3 cancer cells demonstrated that Fe3O4-Au hybrids mainly escaped endosomes and accumulated in the cytoplasm. A significant fraction of them still responded to a rotating magnetic field, forming short chains. The particles were not toxic to cells at concentrations up to 210 μg (Fe3O4) mL−1. However, cell viability decrease after incubation with the nanoparticles (≥70 μg mL−1) and exposure to a pulsed low-frequency magnetic field was found. We ascribe this effect to mechanically induced cell destruction. Overall, this makes Fe3O4-Au nanostructures promising candidates for intracellular actuation for future magneto-mechanical cancer therapies. Magnetite–gold dumbbell nanoparticles are essential for biomedical applications due to the presence of two surfaces with different chemical natures and the potential combination of magnetic and plasmonic properties. Here, the remote actuation of Fe[sub.3]O[sub.4]-Au hybrid particles in a rotating (1 Hz, 7 mT), static (7 mT) or pulsed low-frequency (31 Hz, 175 mT, 30 s pulse/30 s pause) magnetic field was studied. The particles were synthesized by a high-temperature wet chemistry protocol and exhibited superparamagnetic properties with the saturation magnetization of 67.9 ± 3.0 Am[sup.2] kg[sup.−1]. We showcased the nanoparticles’ controlled aggregation in chains (rotating/static magnetic field) in an aqueous solution and their disaggregation when the field was removed. The investigation of nanoparticle uptake by LNCaP and PC-3 cancer cells demonstrated that Fe[sub.3]O[sub.4]-Au hybrids mainly escaped endosomes and accumulated in the cytoplasm. A significant fraction of them still responded to a rotating magnetic field, forming short chains. The particles were not toxic to cells at concentrations up to 210 μg (Fe[sub.3]O[sub.4]) mL[sup.−1]. However, cell viability decrease after incubation with the nanoparticles (≥70 μg mL[sup.−1]) and exposure to a pulsed low-frequency magnetic field was found. We ascribe this effect to mechanically induced cell destruction. Overall, this makes Fe[sub.3]O[sub.4]-Au nanostructures promising candidates for intracellular actuation for future magneto-mechanical cancer therapies. |
Audience | Academic |
Author | Alieva, Irina B. Korchev, Yuri E. Vorobyeva, Natalia S. Abakumov, Maxim A. Shchetinin, Igor V. Kireev, Igor I. Machulkin, Alexey E. Garanina, Anastasiia S. Savchenko, Alexander G. Lyubin, Evgeny V. Erofeev, Alexander S. Gorelkin, Peter V. Fedyanin, Andrey A. Strelkova, Olga S. Efremova, Maria V. Agafonov, Viatcheslav N. Uzbekov, Rustem E. Zhironkina, Oxana A. |
Author_xml | – sequence: 1 givenname: Anastasiia S. orcidid: 0000-0003-3442-9553 surname: Garanina fullname: Garanina, Anastasiia S. – sequence: 2 givenname: Maria V. orcidid: 0000-0002-5196-5596 surname: Efremova fullname: Efremova, Maria V. – sequence: 3 givenname: Alexey E. orcidid: 0000-0001-7975-0346 surname: Machulkin fullname: Machulkin, Alexey E. – sequence: 4 givenname: Evgeny V. orcidid: 0000-0003-2912-5037 surname: Lyubin fullname: Lyubin, Evgeny V. – sequence: 5 givenname: Natalia S. surname: Vorobyeva fullname: Vorobyeva, Natalia S. – sequence: 6 givenname: Oxana A. surname: Zhironkina fullname: Zhironkina, Oxana A. – sequence: 7 givenname: Olga S. surname: Strelkova fullname: Strelkova, Olga S. – sequence: 8 givenname: Igor I. surname: Kireev fullname: Kireev, Igor I. – sequence: 9 givenname: Irina B. orcidid: 0000-0002-5726-4889 surname: Alieva fullname: Alieva, Irina B. – sequence: 10 givenname: Rustem E. surname: Uzbekov fullname: Uzbekov, Rustem E. – sequence: 11 givenname: Viatcheslav N. surname: Agafonov fullname: Agafonov, Viatcheslav N. – sequence: 12 givenname: Igor V. surname: Shchetinin fullname: Shchetinin, Igor V. – sequence: 13 givenname: Andrey A. orcidid: 0000-0003-4708-6895 surname: Fedyanin fullname: Fedyanin, Andrey A. – sequence: 14 givenname: Alexander S. surname: Erofeev fullname: Erofeev, Alexander S. – sequence: 15 givenname: Peter V. orcidid: 0000-0002-4860-9013 surname: Gorelkin fullname: Gorelkin, Peter V. – sequence: 16 givenname: Yuri E. surname: Korchev fullname: Korchev, Yuri E. – sequence: 17 givenname: Alexander G. surname: Savchenko fullname: Savchenko, Alexander G. – sequence: 18 givenname: Maxim A. orcidid: 0000-0003-2622-9201 surname: Abakumov fullname: Abakumov, Maxim A. |
BackLink | https://hal.science/hal-03982433$$DView record in HAL |
BookMark | eNqFkstuEzEUhkeoSJTSZ2AkVixS7PF4bC9YhEAvUgobWFsnx57E0cQOnplK3fEOvGGfhJMLgiIQ8sLW0f9_PrfnxUlM0RfFS84uhDDszQaW0Q8JV34T-iHfa14xruWT4rQSvJqoWvOT397PivO-XzPGSCVUZU6L1bvQjhGHkCJ05e0eFwb_8O37Vepc-RFi2kIeAna-L9uUj5I0ufW4ghiQXFMcRtgRSoiunEFEn8uZ77ryvaekxj39RfG0ha7358f7rPhy-eHz7Hoy_3R1M5vOJygZHyZCNb5BwWGBlUGUClphOAOjjXTGgUC3UEwLJ9Fwt3Cm1nWjvRa-WVC0FWfFzYHrEqztNocN5HubINh9IOWlPdZjwVMTjDGNMKJuWgfQ0Pe1MlyhJB6xXh9YK-geoa6nc7uLMWF0VQtxx0n76qDd5vR1pLrtOo2ZmtrbSslGyUoa_Uu1BEogxDYNGZBmh3aq6lpJwdmOdfEXFR1HY0bagDZQ_JHh7cGAOfV99q3FMOxHQsbQWc7sbl3sP9aF_OoP_89q_-f8AXbazOg |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_3c01944 crossref_primary_10_1142_S0219519423400274 crossref_primary_10_1063_5_0254620 crossref_primary_10_1039_D4NJ05015K crossref_primary_10_1039_D4NR01652A crossref_primary_10_1002_tcr_202400179 crossref_primary_10_1016_j_jcis_2023_12_019 crossref_primary_10_3390_app14156750 |
Cites_doi | 10.1039/D0NA00187B 10.3390/magnetochemistry8020021 10.1021/acsanm.2c00338 10.3103/S1062873815090166 10.1038/s41598-018-29618-w 10.1038/srep46287 10.1007/s41061-020-00302-w 10.1007/s10517-016-3490-3 10.3390/magnetochemistry8010011 10.1038/srep21212 10.2174/1568026617666161122120537 10.1038/s41598-018-30034-3 10.1016/j.biomaterials.2019.05.002 10.1021/nn406302j 10.1016/S0006-3495(97)78100-1 10.1038/s41598-017-11279-w 10.1039/D1NA00474C 10.3390/magnetochemistry8040038 10.1039/C8CP03016B 10.1007/s12274-020-2696-x 10.3390/cells9041015 10.1186/s12951-016-0219-4 10.3390/ma9110943 10.1016/j.mtnano.2020.100084 10.1186/s40580-018-0166-x 10.1371/journal.pone.0129008 10.1186/s12951-019-0463-5 10.1242/jcs.251470 10.1186/s12951-022-01521-7 10.1046/j.1365-2818.1997.2430801.x 10.7150/thno.18352 10.1186/s11671-018-2728-6 10.1002/advs.201902933 10.1007/s12272-013-0292-2 10.1038/s41420-018-0052-7 10.3390/ijms231911134 10.1021/acsami.0c21002 10.1002/wnan.1571 10.3390/magnetochemistry8100117 10.1016/j.jtherbio.2020.102644 10.1039/C9NR09235H 10.1002/pros.21383 10.1016/j.biomaterials.2022.121365 10.2174/0929867323666160829111531 10.1073/pnas.252458399 10.1021/acsami.2c04865 10.1021/nl047955q 10.1016/j.jmmm.2021.168314 10.1038/srep33560 10.1016/j.jphotobiol.2019.01.012 10.3389/fchem.2018.00619 10.1016/j.jmmm.2022.169278 10.3762/bjnano.9.251 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC DOA |
DOI | 10.3390/magnetochemistry8120185 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) 开放获取期刊(Open Access Journals) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 2312-7481 |
ExternalDocumentID | oai_doaj_org_article_ae137999639346fdaa637647917c5e6b oai_HAL_hal_03982433v1 A744753101 10_3390_magnetochemistry8120185 |
GeographicLocations | United Kingdom Russia United States--US |
GeographicLocations_xml | – name: United Kingdom – name: Russia – name: United States--US |
GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I GROUPED_DOAJ HCIFZ IAO ITC KB. MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC PUEGO |
ID | FETCH-LOGICAL-c501t-376e6c31abc29cc57af3910a9895d9da3cdb7083d5c91dbd948468e83e6b83df3 |
IEDL.DBID | DOA |
ISSN | 2312-7481 |
IngestDate | Wed Aug 27 01:24:43 EDT 2025 Fri May 09 12:18:30 EDT 2025 Fri Jul 25 11:45:05 EDT 2025 Tue Jun 17 22:22:31 EDT 2025 Tue Jun 10 21:22:23 EDT 2025 Tue Jul 01 04:04:07 EDT 2025 Thu Apr 24 23:14:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Prostate cancer cells magnetite–gold dumbbell nanoparticles low-frequency magnetic field Biomedical application Cancer cell destruction |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-376e6c31abc29cc57af3910a9895d9da3cdb7083d5c91dbd948468e83e6b83df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5196-5596 0000-0003-2622-9201 0000-0001-7975-0346 0000-0003-3442-9553 0000-0003-2912-5037 0000-0002-5726-4889 0000-0003-4708-6895 0000-0002-4860-9013 0000-0001-5770-1252 |
OpenAccessLink | https://doaj.org/article/ae137999639346fdaa637647917c5e6b |
PQID | 2756752598 |
PQPubID | 2059549 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ae137999639346fdaa637647917c5e6b hal_primary_oai_HAL_hal_03982433v1 proquest_journals_2756752598 gale_infotracmisc_A744753101 gale_infotracacademiconefile_A744753101 crossref_citationtrail_10_3390_magnetochemistry8120185 crossref_primary_10_3390_magnetochemistry8120185 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Magnetochemistry |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Liu (ref_7) 2019; 11 Brollo (ref_50) 2018; 20 Li (ref_14) 2017; 7 ref_13 ref_10 Yu (ref_27) 2005; 5 Chiriac (ref_17) 2018; 8 Naud (ref_21) 2020; 2 Raouf (ref_3) 2020; 91 Wong (ref_16) 2017; 7 Korchev (ref_30) 1997; 73 Gribanovsky (ref_35) 2022; 553 Gorelik (ref_32) 2002; 99 Wong (ref_11) 2018; 4 ref_23 Muzzi (ref_42) 2022; 14 Machulkin (ref_26) 2016; 161 Portilla (ref_46) 2022; 281 Shen (ref_19) 2017; 7 Garanina (ref_20) 2019; 17 Efremova (ref_25) 2018; 9 Avasthi (ref_1) 2020; 378 Chun (ref_5) 2018; 5 Tai (ref_53) 2011; 71 Master (ref_15) 2016; 6 Orel (ref_12) 2021; 538 Zhang (ref_22) 2014; 8 Efremova (ref_24) 2018; 8 Fantechi (ref_39) 2020; 13 Rathore (ref_43) 2019; 211 Jiang (ref_48) 2014; 37 Sanavio (ref_38) 2017; 24 Lopez (ref_8) 2022; 4 Wang (ref_2) 2020; 3 Ghalandari (ref_51) 2019; 192 Nikitin (ref_52) 2021; 13 Rajkumar (ref_41) 2017; 17 Perez (ref_34) 2020; 11 Guo (ref_37) 2022; 20 Price (ref_6) 2018; 6 ref_44 Vavaev (ref_29) 2022; 5 Korchev (ref_31) 1997; 188 Alieva (ref_18) 2016; 7 ref_40 Foroozandeh (ref_45) 2018; 13 ref_49 ref_9 Salikhov (ref_33) 2015; 79 Romodina (ref_28) 2016; 6 Wu (ref_36) 2020; 7 Alieva (ref_47) 2016; 14 ref_4 Hope (ref_54) 2021; 134 |
References_xml | – volume: 2 start-page: 3632 year: 2020 ident: ref_21 article-title: Cancer treatment by magneto-mechanical effect of particles, a review publication-title: Nanoscale Adv. doi: 10.1039/D0NA00187B – ident: ref_13 doi: 10.3390/magnetochemistry8020021 – volume: 5 start-page: 2994 year: 2022 ident: ref_29 article-title: CaCO3 Nanoparticles Coated with Alternating Layers of Poly-L-Arginine Hydrochloride and Fe3O4 Nanoparticles as Navigable Drug Carriers and Hyperthermia Agents publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c00338 – volume: 79 start-page: 1106 year: 2015 ident: ref_33 article-title: Phase composition and structure of iron oxide nanopowders prepared by chemical means publication-title: Bull. Russ. Acad. Sci. Phys. doi: 10.3103/S1062873815090166 – volume: 8 start-page: 11295 year: 2018 ident: ref_24 article-title: Magnetite-Gold nanohybrids as ideal all-in-one platforms for theranostics publication-title: Sci. Rep. doi: 10.1038/s41598-018-29618-w – volume: 7 start-page: 46287 year: 2017 ident: ref_14 article-title: Evaluation of Tumor Treatment of Magnetic Nanoparticles Driven by Extremely Low Frequency Magnetic Field publication-title: Sci. Rep. doi: 10.1038/srep46287 – volume: 378 start-page: 40 year: 2020 ident: ref_1 article-title: Magnetic Nanoparticles as MRI Contrast Agents publication-title: Top. Curr. Chem. doi: 10.1007/s41061-020-00302-w – volume: 161 start-page: 706 year: 2016 ident: ref_26 article-title: Nanohybride Materials Based on Magnetite-Gold Nanoparticles for Diagnostics of Prostate Cancer: Synthesis and In Vitro Testing publication-title: Bull. Exp. Biol. Med. doi: 10.1007/s10517-016-3490-3 – ident: ref_4 doi: 10.3390/magnetochemistry8010011 – volume: 6 start-page: 21212 year: 2016 ident: ref_28 article-title: Detection of Brownian Torque in a Magnetically-Driven Rotating Microsystem publication-title: Sci. Rep. doi: 10.1038/srep21212 – volume: 17 start-page: 1858 year: 2017 ident: ref_41 article-title: Theranostics Based on Iron Oxide and Gold Nanoparticles for Imaging-Guided Photothermal and Photodynamic Therapy of Cancer publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026617666161122120537 – volume: 8 start-page: 11538 year: 2018 ident: ref_17 article-title: Fe-Cr-Nb-B ferromagnetic particles with shape anisotropy for cancer cell destruction by magneto-mechanical actuation publication-title: Sci. Rep. doi: 10.1038/s41598-018-30034-3 – volume: 211 start-page: 25 year: 2019 ident: ref_43 article-title: Nanomaterial designing strategies related to cell lysosome and their biomedical applications: A review publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.05.002 – volume: 8 start-page: 3192 year: 2014 ident: ref_22 article-title: Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation publication-title: ACS Nano doi: 10.1021/nn406302j – volume: 73 start-page: 653 year: 1997 ident: ref_30 article-title: Scanning ion conductance microscopy of living cells publication-title: Biophys. J. doi: 10.1016/S0006-3495(97)78100-1 – volume: 7 start-page: 10919 year: 2017 ident: ref_16 article-title: Magneto-actuated cell apoptosis by biaxial pulsed magnetic field publication-title: Sci. Rep. doi: 10.1038/s41598-017-11279-w – volume: 4 start-page: 421 year: 2022 ident: ref_8 article-title: Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields publication-title: Nanoscale Adv. doi: 10.1039/D1NA00474C – ident: ref_40 doi: 10.3390/magnetochemistry8040038 – volume: 20 start-page: 17829 year: 2018 ident: ref_50 article-title: Magnetic properties of nanoparticles as a function of their spatial distribution on liposomes and cells publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP03016B – volume: 13 start-page: 785 year: 2020 ident: ref_39 article-title: Modulation of the magnetic properties of gold-spinel ferrite heterostructured nanocrystals publication-title: Nano Res. doi: 10.1007/s12274-020-2696-x – ident: ref_44 doi: 10.3390/cells9041015 – volume: 14 start-page: 67 year: 2016 ident: ref_47 article-title: Magnetocontrollability of Fe7C3@C superparamagnetic nanoparticles in living cells publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-016-0219-4 – ident: ref_23 doi: 10.3390/ma9110943 – volume: 11 start-page: 100084 year: 2020 ident: ref_34 article-title: Magnetic nanoparticles in regenerative medicine: What of their fate and impact in stem cells? publication-title: Mater. Today Nano doi: 10.1016/j.mtnano.2020.100084 – volume: 5 start-page: 34 year: 2018 ident: ref_5 article-title: Regulation of cellular gene expression by nanomaterials publication-title: Nano Converg. doi: 10.1186/s40580-018-0166-x – ident: ref_49 doi: 10.1371/journal.pone.0129008 – volume: 17 start-page: 27 year: 2019 ident: ref_20 article-title: Long-term live cells observation of internalized fluorescent Fe@C nanoparticles in constant magnetic field publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-019-0463-5 – volume: 134 start-page: jcs251470 year: 2021 ident: ref_54 article-title: Circulating prostate cancer cells have differential resistance to fluid shear stress-induced cell death publication-title: J. Cell Sci. doi: 10.1242/jcs.251470 – volume: 20 start-page: 316 year: 2022 ident: ref_37 article-title: Low frequency vibrating magnetic field-triggered magnetic microspheres with a nanoflagellum-like surface for cancer therapy publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-022-01521-7 – volume: 188 start-page: 17 year: 1997 ident: ref_31 article-title: Specialized scanning ion-conductance microscope for imaging of living cells publication-title: J. Microsc. doi: 10.1046/j.1365-2818.1997.2430801.x – volume: 7 start-page: 1735 year: 2017 ident: ref_19 article-title: Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field publication-title: Theranostics doi: 10.7150/thno.18352 – volume: 13 start-page: 339 year: 2018 ident: ref_45 article-title: Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-018-2728-6 – volume: 7 start-page: 1902933 year: 2020 ident: ref_36 article-title: Programmable ROS-Mediated Cancer Therapy via Magneto-Inductions publication-title: Adv. Sci. doi: 10.1002/advs.201902933 – volume: 37 start-page: 129 year: 2014 ident: ref_48 article-title: Protein corona on magnetite nanoparticles and internalizationof nanoparticle–protein complexes into healthy and cancer cells publication-title: Arch. Pharmacal Res. doi: 10.1007/s12272-013-0292-2 – volume: 4 start-page: 49 year: 2018 ident: ref_11 article-title: Interplay of cell death signaling pathways mediated by alternating magnetic field gradient publication-title: Cell Death Discov. doi: 10.1038/s41420-018-0052-7 – ident: ref_9 doi: 10.3390/ijms231911134 – volume: 13 start-page: 14458 year: 2021 ident: ref_52 article-title: Magnetic Nanoparticles as a Tool for Remote DNA Manipulations at a Single-Molecule Level publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c21002 – volume: 11 start-page: e1571 year: 2019 ident: ref_7 article-title: Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1571 – ident: ref_10 doi: 10.3390/magnetochemistry8100117 – volume: 91 start-page: 102644 year: 2020 ident: ref_3 article-title: A Review on Numerical Modeling for Magnetic Nanoparticle Hyperthermia: Progress and Challenges publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2020.102644 – volume: 3 start-page: 1886 year: 2020 ident: ref_2 article-title: Enzyme-instructed self-aggregation of Fe3O4 nanoparticles for enhanced MRI T2 imaging and photothermal therapy of tumors publication-title: Nanoscale doi: 10.1039/C9NR09235H – volume: 71 start-page: 1668 year: 2011 ident: ref_53 article-title: PC3 is a cell line characteristic of prostatic small cell carcinoma publication-title: Prostate doi: 10.1002/pros.21383 – volume: 281 start-page: 121365 year: 2022 ident: ref_46 article-title: The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121365 – volume: 24 start-page: 497 year: 2017 ident: ref_38 article-title: Recent Advances in the Synthesis and Applications of Multimodal Gold-Iron Nanoparticles publication-title: Curr. Med. Chem. doi: 10.2174/0929867323666160829111531 – volume: 99 start-page: 16018 year: 2002 ident: ref_32 article-title: Scanning surface confocal microscopy for simultaneous topographical and fluorescence imaging: Application to single virus-like particle entry into a cell publication-title: PNAS doi: 10.1073/pnas.252458399 – volume: 14 start-page: 29087 year: 2022 ident: ref_42 article-title: Star-Shaped Magnetic-Plasmonic Au@Fe3O4 Nano-Heterostructures for Photothermal Therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c04865 – volume: 7 start-page: 158160 year: 2016 ident: ref_18 article-title: Magnetinduced behavior of iron carbide (Fe7C3@C) nanoparticles in the cytoplasm of living cells publication-title: Nanosyst. Phys. Chem. Math. – volume: 5 start-page: 379 year: 2005 ident: ref_27 article-title: Dumbbell-like bifunctional Au-Fe3O4 nanoparticles publication-title: Nano Lett. doi: 10.1021/nl047955q – volume: 538 start-page: 168314 year: 2021 ident: ref_12 article-title: Magneto-mechanical effects of magnetite nanoparticles on Walker-256 carcinosarcoma heterogeneity, redox state and growth modulated by an inhomogeneous stationary magnetic field publication-title: JMMM doi: 10.1016/j.jmmm.2021.168314 – volume: 6 start-page: 33560 year: 2016 ident: ref_15 article-title: Remote Actuation of Magnetic Nanoparticles for Cancer Cell Selective Treatment Through Cytoskeletal Disruption publication-title: Sci. Rep. doi: 10.1038/srep33560 – volume: 192 start-page: 131 year: 2019 ident: ref_51 article-title: Microtubule network as a potential candidate for targeting by gold nanoparticle-assisted photothermal therapy publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2019.01.012 – volume: 6 start-page: 619 year: 2018 ident: ref_6 article-title: Magnetic Drug Delivery: Where the Field Is Going publication-title: Front. Chem. doi: 10.3389/fchem.2018.00619 – volume: 553 start-page: 169278 year: 2022 ident: ref_35 article-title: Mechanisms and conditions for mechanical activation of magnetic nanoparticles by external magnetic field for biomedical applications publication-title: JMMM doi: 10.1016/j.jmmm.2022.169278 – volume: 9 start-page: 2684 year: 2018 ident: ref_25 article-title: Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.9.251 |
SSID | ssj0002013729 |
Score | 2.26349 |
Snippet | Magnetite–gold dumbbell nanoparticles are essential for biomedical applications due to the presence of two surfaces with different chemical natures and the... |
SourceID | doaj hal proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 185 |
SubjectTerms | Acids Actuation Analysis Apoptosis Aqueous solutions Atomic Physics Biocompatibility biomedical application Biomedical materials Cancer cancer cell destruction Chains Chemical Sciences Chemical synthesis Cytoplasm Destruction Diffraction Endosomes Gene expression Gold Gold compounds High temperature Hyperthermia Iron oxides Life Sciences low-frequency magnetic field Magnetic fields Magnetic properties Magnetic resonance imaging Magnetic saturation Magnetite magnetite–gold dumbbell nanoparticles Material chemistry Mechanical properties Methods Nanoparticles Physics prostate cancer cells Rotation SICM Software Structure Transmission electron microscopes Transmission electron microscopy X-rays |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1fT9swED9BedhepsE2rRsgCyHtKSKJEyd-mtoKqCaKpmlIvFm2zwWkrmGAeOY77Bvuk-wucQudxPbqOK59d737nXN_APYZ4wbrqoTQNCZFXmDiCGYkZGw0mSvMXeBE4cmpGp8VX87L83jhdhvDKhc6sVXU2Hi-Iz_gMuVVSWC9_nz9M-GuUfx1NbbQWIcNUsF13YON4eHp12_LW5acK-rlugvskuTfH_ywF-Tzczeqrp0aGbg0407KT8xSW71_qaPXLzlE8i9N3Zqfo9fwKuJGMegYvQlrYb4FL0aL9d_A5fCKbVR3tScm7e_T1n8__DpuZihIi5J7HKPgBCHVOKVJJoGTf5lXYsDZJLyCsHMUIxaIGzEKs5lg9zQWmn0LZ0eH30fjJLZRSHyZZnesQoLyMrPO59r7srJTSSDB6lqXqNFKj64iJIal1xk61AVhkjrUMihHo1P5DnrzZh7eg7BpTgulvvBeFipTGqdWO3QSFSqlfR_UgorGxxrj3OpiZsjXYPKbZ8jfh3T54nVXZuP_rwyZTcvpXCe7HWhuLkykp7GB-M8-ndS04Slaq4gcRUVOqi_pfH34xEw2_G-mjXobkxLouFwXywwqLohIR876sL0yk_biVx7vkZisbGY8ODE8lkpd54WU97zGQopMVBW35lGwP_z78Ud4mXPuRRtLsw09YnvYIUR053aj2P8Bq_8Pcg priority: 102 providerName: ProQuest |
Title | Bifunctional Magnetite–Gold Nanoparticles for Magneto-Mechanical Actuation and Cancer Cell Destruction |
URI | https://www.proquest.com/docview/2756752598 https://hal.science/hal-03982433 https://doaj.org/article/ae137999639346fdaa637647917c5e6b |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7RclguiNeKLqWyENKeoiZx4sTHtupDiFYIbaXeLL9KQaFFbMWZ_8A_5Jcwk7hVi4R64erYjj0ez3yTzAPgLWFcr00RIZp2UZZmLjIIMyJUNhLVlUuNp0Dh-ULMltm7Vb46KfVFPmFNeuCGcH3tE14QKueSZ2LttBZ4J7ICzQybe2FI-qLOOzGmvtS_1xL6H9U4dHG06_tf9Se09akKVVNGDRVbnFAF5RN1VGftP8rm1oZcI_-S0LXamTyBxwEvskGzzqfwwG-fwdXoMP9z2Aw_k25qPumxef1-hJG_f_6a7irHUHqiWRy83xgi1NBlF809Bf3SGbEBRZHQDExvHRsRI3xnI19VjMzSkGD2BSwn47vRLArlEyKbx8meRIcXlifa2FRamxd6zREcaFnK3EmnuXWmQATmcisTZ5zMEIuUvuRIVWxd82tob3db_xKYjlOcKLaZtXgIiZBuraVxhjvhhJC2A-JARWVDbnEqcVEptDGI_Oof5O9AfBz4rUmvcXnIkI7p2J3yY9cNyDUq0FNd4poO3NIhK7rFuFCrQzACbpfyYalBQYkQcctJB7pnPXEt9uzxG2STs8XMBu8VtcVclmnG-Q-a48BFKoiIe0V594scrc_y5n_s6BU8Sikyo_a06UIbmcO_Rry0Nz1olZNpDx4Ox4sPH3v1RfkDekMYIA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB615VAuiPIQgVIsBOK06q69610fUJUG0pQmPbVSb8avtEhht7QRiBv_of-DH9Vf0pl9BIIEnHq1vRN7PPY348wD4BXpuMHYPEJt2kcpT31kUc2IEGwUwpXnNlCg8ORQjo7TDyfZyQr87GJhyK2yuxPri9pXjt7ItylNeZ6hsl7snH-JqGoU_bvaldBoxOIgfP-GJtvl2_13uL-vOR--PxqMoraqQOSyOJnTiQrSicRYx5VzWW6mAjHTqEJlXnkjnLc5KiY-cyrx1qsUIboIhQjSYutUIN1VuJMKRHKKTB_uLd50OOXv46pxI8P-ePuzOS3DnGpfNcXbEE7jhOo2_waCda2ABSKsnpFD5h-4UIPd8D7ca7VU1m_EagNWQvkA1gcd_YdwtvuJELF5SGST-veRUdc_rvaqmWd4Z6Mx3vrcMdSL2yFVNAkUakySwfoUu0IUmCk9G5D4XbBBmM0YGcNtWttHcHwr7H0Ma2VVhifATMyRUOxS50QqE6n81CjrrfDSS6lcD2THRe3ajOZUWGOm0bIh9uu_sL8H8eLD8yapx_8_2aVtWgynrNx1Q3Vxqlt-ahNw_8mCFAonPPXGSGRHmqNJ7DJcXw_e0CZrujtwos60IRC4XMrCpfs5pV_EJSc92FwaiXNxS90vUUyWJjPqjzW1xUIVHIXzK9HopEi3F9Ol_nWMnv67-wWsj44mYz3ePzx4Bnc5RX3UXjybsIYiEJ6jLja3W_UBYPDxtk_cDRXFS6Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1No6CXhBXEVhgIVAPEVN7MSJHxBqu5WOrdWEmLQ341s2pJKMrQLxxj_wN3wOX8I5iVMoEvC0V8c5sY_P1TkXQp6ijeu1ySOwpl2UstRFBsyMCJSNBHXlmPGYKDybi-lR-vo4O94g37tcGAyr7GRiI6hdbfGOfIBlyvMMjPViUIawiMOdycuzjxF2kMI_rV07jZZE9v2Xz-C-XbzY24GzfsbYZPfteBqFDgORzeJkidzlheWJNpZJa7Nclxz0p5aFzJx0mltncjBSXGZl4oyTKajrwhfcCwOjJQe4m2QrR6-oR7ZGu_PDN6sbHobV_Jhsg8o4l_Hggz6p_BI7YbWt3EC5xgl2cf5NJTadA1b6YfMUwzP_0BKN6pvcINeDzUqHLZHdJBu-ukWujjv4t8np6D3qx_Zakc6a7wOqfnz99qpeOAoSHFzzEIFHwUoOU-po5jHxGOmEDjGTBSFQXTk6RmI8p2O_WFB0jUOR2zvk6FIQfJf0qrry9wjVMQNAsU2t5alIhHSllsYZ7oQTQto-ER0WlQ31zbHNxkKBn4PoV39Bf5_EqxfP2hIf_39lhMe0mo41upuB-vxEBXwq7eH80Z_kEhZcOq0FoCPNwUG2GeyvT57jISuUJLBQq0NCBGwXa3KpYY7FGGHLSZ9sr82Etdi1x0-ATNYWMx0eKByLuSxYyvknhNFRkQpi6kL9Yqr7_378mFwBblMHe_P9B-QawxSQJqRnm_SAAvxDMMyW5lHgAEreXTbT_QS2ZFE4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifunctional+Magnetite%E2%80%93Gold+Nanoparticles+for+Magneto-Mechanical+Actuation+and+Cancer+Cell+Destruction&rft.jtitle=Magnetochemistry&rft.au=Garanina%2C+Anastasiia+S&rft.au=Efremova%2C+Maria+V&rft.au=Machulkin%2C+Alexey+E&rft.au=Lyubin%2C+Evgeny+V&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.issn=2312-7481&rft.eissn=2312-7481&rft.volume=8&rft.issue=12&rft_id=info:doi/10.3390%2Fmagnetochemistry8120185&rft.externalDocID=A744753101 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2312-7481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2312-7481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2312-7481&client=summon |