Evaluating Variation in Germination and Growth of Landraces of Barley (Hordeum vulgare L.) Under Salinity Stress
Ongoing climate change is resulting in increasing areas of salinity affected soils, rising saline groundwater and droughts resulting in irrigation with brackish water. This leads to increased salinity stress in crops that are already grown on marginal agricultural lands, such as barley. Tolerance to...
Saved in:
Published in | Frontiers in plant science Vol. 13; p. 863069 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
16.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ongoing climate change is resulting in increasing areas of salinity affected soils, rising saline groundwater and droughts resulting in irrigation with brackish water. This leads to increased salinity stress in crops that are already grown on marginal agricultural lands, such as barley. Tolerance to salinity stress is limited in the elite barley cultivar pools, but landraces of barley hold potential sources of tolerance due to their continuous selection on marginal lands. This study analyzed 140 heritage cultivars and landrace lines of barley, including 37 Scottish Bere lines that were selected from coastal regions, to screen for tolerance to salinity stress. Tolerance to salinity stress was screened by looking at the germination speed and the early root growth during germination, and the pre-maturity biomass accumulation during early growth stages. Results showed that most lines increased germination time, and decreased shoot biomass and early root growth with greater salinity stress. Elite cultivars showed increased response to the salinity, compared to the landrace lines. Individual Bere and landrace lines showed little to no effect of increased salinity in one or more experiments, one line showed high salinity tolerance in all experiments—Bere 49 A 27 Shetland. A Genome Wide Association Screening identified a number of genomic regions associated with increased tolerance to salinity stress. Two chromosomal regions were found, one associated with shoot biomass on 5HL, and another associated with early root growth, in each of the salinities, on 3HS. Within these regions a number of promising candidate genes were identified. Further analysis of these new regions and candidate genes should be undertaken, along with field trials, to identify targets for future breeding for salinity tolerance. |
---|---|
AbstractList | Ongoing climate change is resulting in increasing areas of salinity affected soils, rising saline groundwater and droughts resulting in irrigation with brackish water. This leads to increased salinity stress in crops that are already grown on marginal agricultural lands, such as barley. Tolerance to salinity stress is limited in the elite barley cultivar pools, but landraces of barley hold potential sources of tolerance due to their continuous selection on marginal lands. This study analyzed 140 heritage cultivars and landrace lines of barley, including 37 Scottish Bere lines that were selected from coastal regions, to screen for tolerance to salinity stress. Tolerance to salinity stress was screened by looking at the germination speed and the early root growth during germination, and the pre-maturity biomass accumulation during early growth stages. Results showed that most lines increased germination time, and decreased shoot biomass and early root growth with greater salinity stress. Elite cultivars showed increased response to the salinity, compared to the landrace lines. Individual Bere and landrace lines showed little to no effect of increased salinity in one or more experiments, one line showed high salinity tolerance in all experiments-Bere 49 A 27 Shetland. A Genome Wide Association Screening identified a number of genomic regions associated with increased tolerance to salinity stress. Two chromosomal regions were found, one associated with shoot biomass on 5HL, and another associated with early root growth, in each of the salinities, on 3HS. Within these regions a number of promising candidate genes were identified. Further analysis of these new regions and candidate genes should be undertaken, along with field trials, to identify targets for future breeding for salinity tolerance.Ongoing climate change is resulting in increasing areas of salinity affected soils, rising saline groundwater and droughts resulting in irrigation with brackish water. This leads to increased salinity stress in crops that are already grown on marginal agricultural lands, such as barley. Tolerance to salinity stress is limited in the elite barley cultivar pools, but landraces of barley hold potential sources of tolerance due to their continuous selection on marginal lands. This study analyzed 140 heritage cultivars and landrace lines of barley, including 37 Scottish Bere lines that were selected from coastal regions, to screen for tolerance to salinity stress. Tolerance to salinity stress was screened by looking at the germination speed and the early root growth during germination, and the pre-maturity biomass accumulation during early growth stages. Results showed that most lines increased germination time, and decreased shoot biomass and early root growth with greater salinity stress. Elite cultivars showed increased response to the salinity, compared to the landrace lines. Individual Bere and landrace lines showed little to no effect of increased salinity in one or more experiments, one line showed high salinity tolerance in all experiments-Bere 49 A 27 Shetland. A Genome Wide Association Screening identified a number of genomic regions associated with increased tolerance to salinity stress. Two chromosomal regions were found, one associated with shoot biomass on 5HL, and another associated with early root growth, in each of the salinities, on 3HS. Within these regions a number of promising candidate genes were identified. Further analysis of these new regions and candidate genes should be undertaken, along with field trials, to identify targets for future breeding for salinity tolerance. Ongoing climate change is resulting in increasing areas of salinity affected soils, rising saline groundwater and droughts resulting in irrigation with brackish water. This leads to increased salinity stress in crops that are already grown on marginal agricultural lands, such as barley. Tolerance to salinity stress is limited in the elite barley cultivar pools, but landraces of barley hold potential sources of tolerance due to their continuous selection on marginal lands. This study analyzed 140 heritage cultivars and landrace lines of barley, including 37 Scottish Bere lines that were selected from coastal regions, to screen for tolerance to salinity stress. Tolerance to salinity stress was screened by looking at the germination speed and the early root growth during germination, and the pre-maturity biomass accumulation during early growth stages. Results showed that most lines increased germination time, and decreased shoot biomass and early root growth with greater salinity stress. Elite cultivars showed increased response to the salinity, compared to the landrace lines. Individual Bere and landrace lines showed little to no effect of increased salinity in one or more experiments, one line showed high salinity tolerance in all experiments—Bere 49 A 27 Shetland. A Genome Wide Association Screening identified a number of genomic regions associated with increased tolerance to salinity stress. Two chromosomal regions were found, one associated with shoot biomass on 5HL, and another associated with early root growth, in each of the salinities, on 3HS. Within these regions a number of promising candidate genes were identified. Further analysis of these new regions and candidate genes should be undertaken, along with field trials, to identify targets for future breeding for salinity tolerance. |
Author | Norton, Gareth J. George, Timothy S. Cope, Jonathan E. Newton, Adrian C. |
AuthorAffiliation | 3 School of Biological Sciences, University of Aberdeen , Aberdeen , United Kingdom 2 Department of Crop Production Ecology, Swedish University of Agricultural Sciences , Uppsala , Sweden 1 The James Hutton Institute , Dundee , United Kingdom |
AuthorAffiliation_xml | – name: 3 School of Biological Sciences, University of Aberdeen , Aberdeen , United Kingdom – name: 1 The James Hutton Institute , Dundee , United Kingdom – name: 2 Department of Crop Production Ecology, Swedish University of Agricultural Sciences , Uppsala , Sweden |
Author_xml | – sequence: 1 givenname: Jonathan E. surname: Cope fullname: Cope, Jonathan E. – sequence: 2 givenname: Gareth J. surname: Norton fullname: Norton, Gareth J. – sequence: 3 givenname: Timothy S. surname: George fullname: George, Timothy S. – sequence: 4 givenname: Adrian C. surname: Newton fullname: Newton, Adrian C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35783948$$D View this record in MEDLINE/PubMed https://res.slu.se/id/publ/117484$$DView record from Swedish Publication Index |
BookMark | eNp1UsFuGyEUXFWpmjTNvaeKY3rwFhYWw6VSG6VOJEs9pKl6Q-zycIgwuLDryH9fnE2juFK5vDcwM-9JzNvqKMQAVfWe4JpSIT_Zjc91g5umFpxiLl9VJ4RzNmO8-XX0oj-uznK-x-W0GEs5f1Md03YuqGTipNpcbrUf9eDCCv3UyZUuBuQCWkBauzBBHQxapPgw3KFo0bLApHvIe_BVJw87dH4Vk4FxjbajX-kEaFl_RLfBQEI32rvghh26GRLk_K56bbXPcPZUT6vbb5c_Lq5my--L64svy1nfYjLMKMFlQS47rS1tBOkbazgzzEoteCdtCx3rmGWmxdJy0s1tZyiXPQFqGg6YnlbXk6-J-l5tklvrtFNRO_V4EdNK6TS43oMCTFpiBSaioazV0JnGMA2CMTs3HYfiVU9e-QE2Y3fglv3Y6bQvKoMiZM4EK4LPk6Cw12B6CEPS_kB3-BLcnVrFrZINa2nbFoPzJ4MUf4-QB7V2uQfvdYA4ZtVw0WJKGBOF-uHlrOchf_-4EPBE6FPMOYF9phCs9klS-ySpfZLUlKQi4f9Iejc8ZqFs6_z_hX8AhXDQTA |
CitedBy_id | crossref_primary_10_1002_ppp3_10432 crossref_primary_10_1016_j_rhisph_2023_100841 crossref_primary_10_3390_w15061065 |
Cites_doi | 10.11144/Javeriana.SC24-1.asst 10.2135/cropsci2004.0997 10.1111/ppl.13268 10.1093/jxb/erj100 10.1146/annurev-arplant-042916-040936 10.1105/tpc.107.057380 10.1051/agro/2009032 10.1016/j.plantsci.2011.07.008 10.1002/jpln.200420516 10.1093/jxb/erw237 10.1111/tpj.14599 10.1071/PP9950561 10.1007/s12594-018-0955-1 10.1111/j.1365-3040.2009.02107.x 10.1007/978-1-4020-9065-3_11 10.15835/nsb.5.2.9066 10.1596/0-8213-4773-X 10.1079/9780851994116.0351 10.1111/pbr.12000 10.1080/00380768.2004.10408467 10.1093/bioinformatics/btm108 10.5483/BMBRep.2017.50.8.128 10.3389/fpls.2014.00290 10.1038/ng.546 10.1016/0167-8809(92)90151-Z 10.1104/pp.112.202143 10.1016/j.envexpbot.2021.104499 10.1016/j.molp.2015.03.009 10.3389/fpls.2015.00084 10.3390/molecules23030613 10.3389/fpls.2020.00449 10.1007/s11738-005-0062-y 10.1093/aob/mcy215 10.1016/j.plaphy.2018.04.012 10.1071/FP12290 10.1023/a:1002968207362 10.1590/S1677-04202010000400001 10.1093/jxb/erq359 10.1104/pp.111.177501 10.1016/j.copbio.2013.12.004 10.1371/journal.pone.0071078 10.3390/ijms20030699 10.1016/j.jplph.2019.153029 10.1111/j.1365-313X.2011.04701.x 10.1016/j.indic.2020.100035 10.1074/jbc.M700766200 10.1071/FP09202 10.1111/nph.13519 10.1016/j.cj.2018.01.003 10.1104/pp.19.00882 10.5923/j.ijaf.20150502.06 10.1371/journal.pone.0177589 10.1046/j.0016-8025.2001.00808.x 10.1016/j.agee.2004.10.006 10.1016/j.agwat.2005.04.017 10.1111/pce.13064 10.1038/s41598-018-21269-1 10.1093/pcp/pcy116 10.1038/s41598-020-63211-4 10.1186/s12870-021-02863-4 10.1016/j.indcrop.2021.114244 10.1007/bf00195003 10.1016/j.plaphy.2020.07.025 10.1016/j.plipres.2016.06.002 10.1111/j.1744-7909.2005.00028.x 10.1081/PLN-200025835 10.1094/cfw-51-0004 10.1146/annurev.arplant.59.032607.092911 10.1016/j.eja.2009.01.003 10.1016/j.jgeb.2011.12.003 10.1016/j.copbio.2014.11.025 10.1093/jxb/erv269 10.1016/j.tplants.2015.10.012 10.17221/410-PSE 10.1007/978-3-319-47928-6_19 10.1002/9781119312994.apr0681 10.3390/ijms20194686 10.1093/aobpla/plab034 10.1071/FP21140 10.1139/O07-018 10.1093/aob/mcaa079 10.4161/psb.6.1.14202 10.1111/nph.15864 10.1016/j.plaphy.2020.11.029 10.1016/j.agwat.2005.07.003 10.3390/ijerph15102114 10.3389/fpls.2011.00085 10.1371/journal.pone.0129650 10.1061/JRCEA4.0001137 10.1596/0-8213-2508-6 10.1006/bbrc.2001.6299 10.3390/plants8060151 10.1007/s00122-013-2139-0 10.1016/j.envexpbot.2021.104478 10.1093/jxb/erj108 10.1016/j.envexpbot.2010.10.009 10.1038/ng1702 10.1007/s11032-011-9559-9 10.1016/j.plaphy.2020.11.007 10.1111/ejss.13010 10.21475/ajcs.2016.10.04.p6663x 10.1007/978-3-319-75527-4_10 10.1007/s11356-014-3739-1 10.1093/jxb/erp243 10.1007/s41348-021-00470-x 10.1071/AR9880759 10.3389/fpls.2018.00156 10.1007/s00425-003-1105-5 10.21273/JASHS.134.2.289 10.1016/S0921-8181(00)00020-5 10.1016/j.phytochem.2018.09.012 10.1104/pp.103.037028 10.1111/j.1399-3054.1995.tb02226.x 10.1016/j.cub.2016.06.045 10.1007/s00425-012-1827-3 10.1016/S0304-4238(98)00192-7 10.1371/journal.pone.0043079 10.1093/jxb/erq346 10.1042/BSR20140026 10.1071/ar02180 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Cope, Norton, George and Newton. Copyright © 2022 Cope, Norton, George and Newton. 2022 Cope, Norton, George and Newton |
Copyright_xml | – notice: Copyright © 2022 Cope, Norton, George and Newton. – notice: Copyright © 2022 Cope, Norton, George and Newton. 2022 Cope, Norton, George and Newton |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | AAYXX CITATION NPM 7X8 5PM ADTPV AOWAS D8T ZZAVC DOA |
DOI | 10.3389/fpls.2022.863069 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_e0151f80182345aebd2d4ae844f7db6e oai_slubar_slu_se_117484 PMC9245355 35783948 10_3389_fpls_2022_863069 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: SR49 |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM ADTPV AOWAS D8T ZZAVC |
ID | FETCH-LOGICAL-c501t-31039469baaf3281c2fd64d4f9a86b9f5eb4b4f4d509f61b7fbd369c1e3d26e03 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:07:47 EDT 2025 Thu Aug 21 06:59:25 EDT 2025 Thu Aug 21 18:26:46 EDT 2025 Fri Jul 11 16:33:33 EDT 2025 Mon Jul 21 06:06:11 EDT 2025 Thu Apr 24 22:50:58 EDT 2025 Tue Jul 01 00:37:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | genetic diversity Bere barley salinity tolerance Hordeum vulgare barley landraces |
Language | English |
License | Copyright © 2022 Cope, Norton, George and Newton. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-31039469baaf3281c2fd64d4f9a86b9f5eb4b4f4d509f61b7fbd369c1e3d26e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Loredana F. Ciarmiello, University of Campania Luigi Vanvitelli, Italy Reviewed by: Mohamed Magdy F. Mansour, Ain Shams University, Egypt; Edith Taleisnik, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2022.863069 |
PMID | 35783948 |
PQID | 2685031448 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e0151f80182345aebd2d4ae844f7db6e swepub_primary_oai_slubar_slu_se_117484 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9245355 proquest_miscellaneous_2685031448 pubmed_primary_35783948 crossref_primary_10_3389_fpls_2022_863069 crossref_citationtrail_10_3389_fpls_2022_863069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-16 |
PublicationDateYYYYMMDD | 2022-06-16 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Bose (B15) 2011; 2 Munns (B76) 2008; 59 Dbira (B26) 2018; 23 Umali (B119) 1993 Elsawy (B33) 2018; 127 Shelden (B109) 2020; 101 Wei (B124) 2018; 15 Hazzouri (B47) 2018; 9 Zsigmond (B136) 2012; 182 Shavrukov (B108) 2013; 237 Allel (B5) 2016; 10 Asif (B8) 2019; 2 Hu (B49) 2005; 168 McFarlane (B70) 2016 Xu (B129) 2012; 7 Dry (B28) 2016 Rivandi (B100) 2011; 62 Hajrah (B42) 2017; 12 Colmenero-Flores (B19) 2019; 20 Jarman (B54) 1996; 9 Grando (B38) 2001 Zhou (B133) 2012; 29 Ben Naceur (B12) 2012; 10 Rengasamy (B99) 2006; 57 Han (B45) 2018; 59 Comadran (B21) 2007 Corwin (B24) 2021; 72 Katerji (B58) 2009; 31 Munns (B77) 2020; 225 El Madidi (B32) 2004; 6 Roy (B102) 2016; 67 Wang (B122) 2003; 218 Barbieri (B11) 2020; 10 Zhou (B134) 2009; 134 Akter (B4) 2017 Chaurasia (B17) 2018; 92 Pour Aboughadareh (B92) 2013; 5 Rawson (B98) 1988; 39 Manna (B67) 2021; 172 Kumar (B60) 2021; 187 Hamamoto (B43) 2015; 32 Tomaz (B118) 2020 Li (B62) 2013; 8 Grattan (B39) 1992; 38 Abrol (B2) 1988 Schmidt (B105) 2019; 123 Pandya (B87) 2005; 27 Ashraf (B7) 2013; 132 Cope (B22) 2021; 128 Munns (B78) 2006; 57 Wright (B126) 2002 Cass (B16) 2015; 66 Cubero-Font (B25) 2016; 26 Kabała (B55) 2005; 27 Munns (B79) 1995; 22 Newman (B83) 2006; 51 Thabet (B115) 2021; 188 Nefissi Ouertani (B81) 2021; 13 Grattan (B40) 1998; 78 Gill (B37) 2019; 20 Karakousis (B57) 2003; 54 Liu (B63) 2020; 11 Seo (B107) 2012; 160 Pannell (B88) 2006; 80 Shen (B111) 2014; 5 Kalaji (B56) 2011; 73 Wei (B123) 2022; 175 Dry (B29) 1982 Gao (B35) 2008; 54 Martin (B69) 2008 Tavakkoli (B114) 2010; 37 Dwivedi (B31) 2016; 21 Rajeswari (B97) 2019; 24 Munns (B73) 2002; 25 Ayars (B10) 1993; 14 Kumar (B59) 2020; 6 Dehghan (B27) 2014; 34 Maas (B65) 1977; 103 Nevo (B82) 2010; 33 Mian (B71) 2011; 68 Van Bezouw (B120) 2019; 241 Yu (B130) 2006; 38 Berteli (B13) 1995; 93 Sahagian (B103) 2000; 25 Laluk (B61) 2011; 156 Cope (B23) 2020; 126 Hamdy (B44) 2005; 78 Haddadin (B41) 2015; 5 Adjel (B3) 2013; 3 Zhang (B131) 2017; 40 Mugai (B72) 2004; 50 Scholten (B106) 2004 Borjigin (B14) 2021; 48 Todaka (B117) 2015; 6 Tian (B116) 2005; 47 Parihar (B90) 2015; 22 Hillel (B48) 2000 Nag (B80) 2018; 156 Wang (B121) 2011; 6 Hayes (B46) 2004; 136 (B94) 2013 (B34) 2015 Jaradat (B53) 2004; 44 Zhu (B135) 2021; 21 Widodo (B125) 2009; 60 Xing (B128) 2018; 8 Osman (B86) 2018 Munns (B75) 2015; 208 MacDonald (B66) 2007; 85 Newton (B84) 2010; 30 Huang (B51) 2019; 182 Pérez-Labrada (B91) 2019; 8 Du (B30) 2016; 63 Munns (B74) 2009 Noreen (B85) 2021; 158 Gholizadeh (B36) 2010; 22 Huang (B50) 2020; 155 Mano (B68) 1997; 94 Zhang (B132) 2010; 42 Paranychianakis (B89) 2005; 106 Raboanatahiry (B95) 2015; 10 Rahnama (B96) 2011; 62 Sun (B113) 2021; 158 Ismail (B52) 2017; 68 Wu (B127) 2018; 6 Southworth (B112) 2007 Abera (B1) 2009 Roy (B101) 2014; 26 Anil (B6) 2008; 283 Aulchenko (B9) 2007; 23 Qin (B93) 2008; 20 Long (B64) 2013; 126 Shelden (B110) 2013; 40 Cho (B18) 2017; 50 Colmsee (B20) 2015; 8 Sakuma (B104) 2002; 290 |
References_xml | – volume: 24 start-page: 91 year: 2019 ident: B97 article-title: Assessing salt-stress tolerance in barley. publication-title: Univer. Sci. doi: 10.11144/Javeriana.SC24-1.asst – start-page: 351 year: 2020 ident: B118 article-title: Chapter 13 - Soil salinity risk in a climate change scenario and its effect on crop yield publication-title: Climate Change and Soil Interactions – volume: 44 start-page: 997 year: 2004 ident: B53 article-title: Genetic diversity in the Batini barley landrace from Oman: II Response to salinity stress. publication-title: Crop. Sci. doi: 10.2135/cropsci2004.0997 – volume: 172 start-page: 847 year: 2021 ident: B67 article-title: Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. publication-title: Physiol. Plantarum doi: 10.1111/ppl.13268 – volume: 57 start-page: 1025 year: 2006 ident: B78 article-title: Approaches to increasing the salt tolerance of wheat and other cereals. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erj100 – volume: 68 start-page: 405 year: 2017 ident: B52 article-title: Genomics, physiology, and molecular Breeding approaches for improving salt tolerance. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042916-040936 – volume: 20 start-page: 1693 year: 2008 ident: B93 article-title: Arabidopsis DREB2A-Interacting proteins function as RING E3 Ligases and negatively regulate plant drought stress–responsive gene expression. publication-title: Plant Cell doi: 10.1105/tpc.107.057380 – volume: 30 start-page: 237 year: 2010 ident: B84 article-title: Cereal landraces for sustainable agriculture, a review. publication-title: Agron. Sustain. Dev. doi: 10.1051/agro/2009032 – volume: 182 start-page: 87 year: 2012 ident: B136 article-title: Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis. publication-title: Plant Sci. doi: 10.1016/j.plantsci.2011.07.008 – volume: 168 start-page: 541 year: 2005 ident: B49 article-title: Drought and salinity: a comparison of their effects on mineral nutrition of plants. publication-title: J. Plant Nutri. Soil Sci. doi: 10.1002/jpln.200420516 – volume: 67 start-page: 4495 year: 2016 ident: B102 article-title: SLAH1, a homologue of the slow type anion channel SLAC1, modulates shoot Cl– accumulation and salt tolerance in Arabidopsis thaliana. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw237 – volume: 101 start-page: 1462 year: 2020 ident: B109 article-title: A laser ablation technique maps differences in elemental composition in roots of two barley cultivars subjected to salinity stress. publication-title: Plant J. doi: 10.1111/tpj.14599 – volume: 22 start-page: 561 year: 1995 ident: B79 article-title: The significance of a two-phase growth response to salinity in wheat and barley. publication-title: Aust. J. Plant Physiol. doi: 10.1071/PP9950561 – volume: 9 start-page: 191 year: 1996 ident: B54 article-title: Bere barley: a living link with the 8th century. publication-title: Plant Varieties Seeds – volume: 92 start-page: 76 year: 2018 ident: B17 article-title: Groundwater Quality assessment using Water Quality Index (WQI) in parts of Varanasi District, Uttar Pradesh, India. publication-title: J.Geol. Soc. India doi: 10.1007/s12594-018-0955-1 – year: 1982 ident: B29 publication-title: Soil and land Capability for Agriculture Orkney and Shetland. – volume: 33 start-page: 670 year: 2010 ident: B82 article-title: Drought and salt tolerances in wild relatives for wheat and barley improvement. publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2009.02107.x – start-page: 99 year: 2009 ident: B74 article-title: Strategies for crop improvement in saline soils publication-title: Salinity and Water Stress: Improving Crop Efficiency doi: 10.1007/978-1-4020-9065-3_11 – volume: 5 start-page: 249 year: 2013 ident: B92 article-title: Water deficit stress tolerance in some of barley genotypes and landraces under field conditions. publication-title: Notulae Sci. Biol. doi: 10.15835/nsb.5.2.9066 – year: 2000 ident: B48 publication-title: Salinity Management for Sustainable Irrigation: Integrating Science, Environment, and Economics. doi: 10.1596/0-8213-4773-X – start-page: 351 year: 2001 ident: B38 article-title: Genetic diversity of barley: Use of locally adapted germplasm to enhance yield and yield stability of barley in dry areas publication-title: Broadening the Genetic Base of Crop Production doi: 10.1079/9780851994116.0351 – volume: 132 start-page: 10 year: 2013 ident: B7 article-title: Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. publication-title: Plant Breeding doi: 10.1111/pbr.12000 – volume: 50 start-page: 181 year: 2004 ident: B72 article-title: Salinity characterization of the Kenyan saline soils. publication-title: Soil Sci. Plant Nutri. doi: 10.1080/00380768.2004.10408467 – volume: 23 start-page: 1294 year: 2007 ident: B9 article-title: GenABEL: an R library for genome-wide association analysis. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm108 – volume: 50 start-page: 393 year: 2017 ident: B18 article-title: RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants. publication-title: BMB Rep. doi: 10.5483/BMBRep.2017.50.8.128 – volume: 5 year: 2014 ident: B111 article-title: Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00290 – volume: 42 start-page: 355 year: 2010 ident: B132 article-title: Mixed linear model approach adapted for genome-wide association studies. publication-title: Nat. Gen. doi: 10.1038/ng.546 – volume: 38 start-page: 275 year: 1992 ident: B39 article-title: Mineral element acquisition and growth response of plants grown in saline environments. publication-title: Agric., Ecosyst. Environ. doi: 10.1016/0167-8809(92)90151-Z – year: 2004 ident: B106 publication-title: UK National Inventory of Plant Genetic Resources for Food and Agriculture [Report]. – volume: 160 start-page: 556 year: 2012 ident: B107 article-title: Roles of four Arabidopsis U-Box E3 Ubiquitin Ligases in negative regulation of Abscisic Acid-mediated drought stress responses. publication-title: Plant Physiol. doi: 10.1104/pp.112.202143 – volume: 188 year: 2021 ident: B115 article-title: Genetic associations uncover candidate SNP markers and genes associated with salt tolerance during seedling developmental phase in barley. publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2021.104499 – volume: 8 start-page: 964 year: 2015 ident: B20 article-title: BARLEX – the barley draft genome explorer. publication-title: Mole. Plant doi: 10.1016/j.molp.2015.03.009 – volume: 3 start-page: 223 year: 2013 ident: B3 article-title: Salt stress effects on seed germination and seedling growth of barley (Hordeum vulgare L.) genotypes. publication-title: J. Agric. Sustain. – volume: 6 year: 2015 ident: B117 article-title: Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00084 – volume: 23 year: 2018 ident: B26 article-title: Variable Levels of Tolerance to Water Stress (Drought) and Associated Biochemical Markers in Tunisian Barley Landraces. publication-title: Molecules doi: 10.3390/molecules23030613 – year: 2017 ident: B4 publication-title: Groundwater Salinity and Interaction with Surface Water Near Cootamundra, Australia. – year: 1988 ident: B2 publication-title: Salt-Affected Soils and Their Management. – volume: 11 year: 2020 ident: B63 article-title: Over-Expression of a 14-3-3 Protein From Foxtail Millet Improves Plant Tolerance to Salinity Stress in Arabidopsis thaliana. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00449 – volume: 27 start-page: 559 year: 2005 ident: B55 article-title: Plant Ca2+-ATPases. publication-title: Acta Physiol. Plantarum doi: 10.1007/s11738-005-0062-y – volume: 123 start-page: 831 year: 2019 ident: B105 article-title: Ancient barley landraces adapted to marginal soils demonstrate exceptional tolerance to manganese limitation. publication-title: Ann. Bot. doi: 10.1093/aob/mcy215 – volume: 127 start-page: 425 year: 2018 ident: B33 article-title: Differential responses of two Egyptian barley (Hordeum vulgare L.) cultivars to salt stress. publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2018.04.012 – volume: 40 start-page: 516 year: 2013 ident: B110 article-title: Genetic variation in the root growth response of barley genotypes to salinity stress. publication-title: Functional Plant Biol. doi: 10.1071/FP12290 – volume: 94 start-page: 263 year: 1997 ident: B68 article-title: Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). publication-title: Euphytica doi: 10.1023/a:1002968207362 – year: 2016 ident: B28 publication-title: The Soils of Orkney. – volume: 22 start-page: 217 year: 2010 ident: B36 article-title: Activation of phenylalanine ammonia lyase as a key component of the antioxidative system of salt-challenged maize leaves. publication-title: Braz. J. Plant Physiol. doi: 10.1590/S1677-04202010000400001 – volume: 62 start-page: 69 year: 2011 ident: B96 article-title: A screening method to identify genetic variation in root growth response to a salinity gradient. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq359 – volume: 156 start-page: 2053 year: 2011 ident: B61 article-title: The Arabidopsis Mitochondria-localized Pentatricopeptide Repeat Protein PGN functions in defense against necrotrophic fungi and abiotic stress tolerance. publication-title: Plant Physiol. doi: 10.1104/pp.111.177501 – volume: 26 start-page: 115 year: 2014 ident: B101 article-title: Salt resistant crop plants. publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2013.12.004 – volume: 8 year: 2013 ident: B62 article-title: The E3 Ligase AtRDUF1 positively regulates salt stress responses in Arabidopsis thaliana. publication-title: PLoS One doi: 10.1371/journal.pone.0071078 – volume: 20 year: 2019 ident: B37 article-title: Identification of QTL Related to ROS Formation under Hypoxia and Their Association with Waterlogging and Salt Tolerance in Barley. publication-title: Int. J. Mole. Sci. doi: 10.3390/ijms20030699 – volume: 241 year: 2019 ident: B120 article-title: Shoot sodium exclusion in salt stressed barley (Hordeum vulgare L.) is determined by allele specific increased expression of HKT1;5. publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2019.153029 – volume: 68 start-page: 468 year: 2011 ident: B71 article-title: Over-expression of an Na+- and K+-permeable HKT transporter in barley improves salt tolerance. publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04701.x – volume: 6 year: 2020 ident: B59 article-title: Barley landraces: ecological heritage for edaphic stress adaptations and sustainable production. publication-title: Environ. Sustainability Indicators doi: 10.1016/j.indic.2020.100035 – volume: 283 start-page: 3497 year: 2008 ident: B6 article-title: A plant Ca2+ pump, ACA2, relieves salt hypersensitivity in yeast: modulation of cytosolic calcium signature and activation of adaptive Na+ homeostasis. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M700766200 – volume: 37 start-page: 621 year: 2010 ident: B114 article-title: The response of barley to salinity stress differs between hydroponic and soil systems. publication-title: Functional Plant Biol. doi: 10.1071/FP09202 – volume: 208 start-page: 668 year: 2015 ident: B75 article-title: Salinity tolerance of crops – what is the cost? publication-title: New Phytologist doi: 10.1111/nph.13519 – volume: 6 start-page: 215 year: 2018 ident: B127 article-title: Plant salt tolerance and Na+ sensing and transport. publication-title: Crop J. doi: 10.1016/j.cj.2018.01.003 – volume: 182 start-page: 584 year: 2019 ident: B51 article-title: The HKT Transporter HvHKT1;5 Negatively Regulates Salt Tolerance1. publication-title: Plant Physiol. doi: 10.1104/pp.19.00882 – volume: 5 start-page: 131 year: 2015 ident: B41 article-title: Assessment of drought tolerant barley varieties under water stress. publication-title: Int. J. Agric. For. doi: 10.5923/j.ijaf.20150502.06 – volume: 12 year: 2017 ident: B42 article-title: Transcriptomic analysis of salt stress responsive genes in Rhazya stricta. publication-title: PLoS One doi: 10.1371/journal.pone.0177589 – volume: 25 start-page: 239 year: 2002 ident: B73 article-title: Comparative physiology of salt and water stress. publication-title: Plant Cell Environ. doi: 10.1046/j.0016-8025.2001.00808.x – volume: 106 start-page: 171 year: 2005 ident: B89 article-title: Irrigation of Mediterranean crops with saline water: from physiology to management practices. publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2004.10.006 – volume: 78 start-page: 122 year: 2005 ident: B44 article-title: Saline water in supplemental irrigation of wheat and barley under rainfed agriculture. publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2005.04.017 – volume: 40 start-page: 2831 year: 2017 ident: B131 article-title: The Arabidopsis U-box E3 ubiquitin ligase PUB30 negatively regulates salt tolerance by facilitating BRI1 kinase inhibitor 1 (BKI1) degradation. publication-title: Plant Cell Environ. doi: 10.1111/pce.13064 – volume: 8 year: 2018 ident: B128 article-title: Genome-wide investigation of pentatricopeptide repeat gene family in poplar and their expression analysis in response to biotic and abiotic stresses. publication-title: Sci. Rep. doi: 10.1038/s41598-018-21269-1 – volume: 59 start-page: 1976 year: 2018 ident: B45 article-title: A Sodium Transporter HvHKT1;1 Confers Salt Tolerance in Barley via Regulating Tissue and Cell Ion Homeostasis. publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcy116 – volume: 10 year: 2020 ident: B11 article-title: Soil salinity and aridity specify plague foci in the United States of America. publication-title: Sci. Rep. doi: 10.1038/s41598-020-63211-4 – volume: 21 year: 2021 ident: B135 article-title: Molecular characterization, expression and functional analysis of acyl-CoA-binding protein gene family in maize (Zea mays). publication-title: BMC Plant Biol. doi: 10.1186/s12870-021-02863-4 – volume: 175 year: 2022 ident: B123 article-title: Irrigation with ionized brackish water affects cotton yield and water use efficiency. publication-title: Industrial Crops Products doi: 10.1016/j.indcrop.2021.114244 – volume: 14 start-page: 27 year: 1993 ident: B10 article-title: Long term use of saline water for irrigation. publication-title: Irrigation Sci. doi: 10.1007/bf00195003 – volume: 155 start-page: 136 year: 2020 ident: B50 article-title: Overexpression of plant ferredoxin-like protein promotes salinity tolerance in rice (Oryza sativa). publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.07.025 – year: 2009 ident: B1 publication-title: Agronomic Evaluation of Ethiopian Barley (Hordeum vulgare L.) landrace Populations Under Drought Stress Conditions in Low-Rainfall Areas of Ethiopia. [MSc]. – year: 2013 ident: B94 publication-title: R: A Language and Environment for Statistical Computing [Computer Program]. – volume: 63 start-page: 165 year: 2016 ident: B30 article-title: Plant acyl-CoA-binding proteins: an emerging family involved in plant development and stress responses. publication-title: Progress Lipid Res. doi: 10.1016/j.plipres.2016.06.002 – volume: 47 start-page: 467 year: 2005 ident: B116 article-title: OsDREB4 Genes in Rice Encode AP2-Containing Proteins that Bind Specifically to the Dehydration-Responsive Element. publication-title: J. Int. Plant Biol. doi: 10.1111/j.1744-7909.2005.00028.x – volume: 27 start-page: 1361 year: 2005 ident: B87 article-title: Effect of salt stress and manganese supply on growth of barley seedlings. publication-title: J. Plant Nutri. doi: 10.1081/PLN-200025835 – year: 2007 ident: B21 publication-title: Drought Tolerance in Mediterranean Barley: An Association Genetics Approach [Report]. SCRI Annual Report. – volume: 51 start-page: 4 year: 2006 ident: B83 article-title: A Brief History of Barley Foods. publication-title: Cereal Foods World doi: 10.1094/cfw-51-0004 – volume: 59 start-page: 651 year: 2008 ident: B76 article-title: Mechanisms of salinity tolerance. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092911 – volume: 31 start-page: 1 year: 2009 ident: B58 article-title: Durum wheat and barley productivity in saline–drought environments. publication-title: Euro. J. Agronomy doi: 10.1016/j.eja.2009.01.003 – volume: 10 start-page: 13 year: 2012 ident: B12 article-title: Genetic diversity analysis of North Africa’s barley using SSR markers. publication-title: J. Gene. Eng. Biotechnol. doi: 10.1016/j.jgeb.2011.12.003 – volume: 32 start-page: 113 year: 2015 ident: B43 article-title: HKT transporters mediate salt stress resistance in plants: from structure and function to the field. publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2014.11.025 – volume: 66 start-page: 4317 year: 2015 ident: B16 article-title: Effects of Phenylalanine Ammonia Lyase (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium. publication-title: J. Exp.Bot. doi: 10.1093/jxb/erv269 – volume: 21 start-page: 31 year: 2016 ident: B31 article-title: Landrace germplasm for improving yield and abiotic stress adaptation. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.10.012 – year: 2007 ident: B112 publication-title: The use of microsatellite markers to differentiate UK barley (Hordeum vulgare) varieties and in the population genetic analysis of bere barley from the Scottish islands. – volume: 54 start-page: 374 year: 2008 ident: B35 article-title: Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. publication-title: Plant Soil Environ. doi: 10.17221/410-PSE – start-page: 521 year: 2016 ident: B70 article-title: Salinity in dryland agricultural systems: Challenges and opportunities publication-title: Innovations in Dryland Agriculture doi: 10.1007/978-3-319-47928-6_19 – volume: 2 start-page: 131 year: 2019 ident: B8 article-title: Opportunities for Developing Salt-tolerant Wheat and Barley Varieties. publication-title: Annu. Plant Rev. Online doi: 10.1002/9781119312994.apr0681 – volume: 20 year: 2019 ident: B19 article-title: Chloride as a Beneficial Macronutrient in Higher Plants: new Roles and Regulation. publication-title: Int. J. Mole. Sci. doi: 10.3390/ijms20194686 – volume: 13 year: 2021 ident: B81 article-title: Evaluating the contribution of osmotic and oxidative stress components on barley growth under salt stress. publication-title: AoB PLANTS doi: 10.1093/aobpla/plab034 – volume: 48 start-page: 1148 year: 2021 ident: B14 article-title: Identifying the genetic control of salinity tolerance in the bread wheat landrace Mocho de Espiga Branca. publication-title: Functional Plant Biol. doi: 10.1071/FP21140 – volume: 85 start-page: 273 year: 2007 ident: B66 article-title: A modern view of phenylalanine ammonia lyase. publication-title: Biochem. Cell Biol. doi: 10.1139/O07-018 – volume: 126 start-page: 289 year: 2020 ident: B23 article-title: Assessing the variation in Manganese Use Efficiency Traits in Scottish Barley Landrace Bere (Hordeum vulgare L.). publication-title: Ann. Bot. doi: 10.1093/aob/mcaa079 – start-page: 359 year: 2008 ident: B69 article-title: Orkney Bere - developing new markets for an old crop publication-title: New Crops and Uses: Their Role in a Rapidly Changing World – volume: 6 start-page: 29 year: 2011 ident: B121 article-title: Cytoskeleton and plant salt stress tolerance. publication-title: Plant Signaling Behav. doi: 10.4161/psb.6.1.14202 – volume: 225 start-page: 1072 year: 2020 ident: B77 article-title: Energy costs of salt tolerance in crop plants. publication-title: New Phytologist doi: 10.1111/nph.15864 – volume: 158 start-page: 420 year: 2021 ident: B113 article-title: Genome-wide analysis of JMJ-C histone demethylase family involved in salt-tolerance in Gossypium hirsutum L. publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.11.029 – volume: 6 start-page: 767 year: 2004 ident: B32 article-title: Effects of salinity on germination and early growth of barley (Hordeum vulgare L.) cultivars. publication-title: Int. J. Agric. Biol. – volume: 80 start-page: 41 year: 2006 ident: B88 article-title: Managing secondary dryland salinity: options and challenges. publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2005.07.003 – volume: 15 year: 2018 ident: B124 article-title: Water salinity should be reduced for irrigation to minimize its risk of increased soil N2O emissions. publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph15102114 – volume: 2 year: 2011 ident: B15 article-title: Calcium efflux systems in stress signaling and adaptation in plants. publication-title: Front. plant sci. doi: 10.3389/fpls.2011.00085 – volume: 10 year: 2015 ident: B95 article-title: Computational prediction of acyl-coA binding proteins structure in Brassica napus. publication-title: PloS One doi: 10.1371/journal.pone.0129650 – volume: 103 start-page: 115 year: 1977 ident: B65 article-title: Crop Salt Tolerance - Current Assessment. publication-title: J. Irrigation Drainage Div. doi: 10.1061/JRCEA4.0001137 – year: 2015 ident: B34 publication-title: Salt-Affected Soils. – year: 1993 ident: B119 publication-title: Irrigation Induced Salinity: A Growing Problem for Development and the Environment [Report]. World Bank Technical Paper no. WTP 215. doi: 10.1596/0-8213-2508-6 – volume: 290 start-page: 998 year: 2002 ident: B104 article-title: DNA-Binding Specificity of the ERF/AP2 Domain of Arabidopsis DREBs, Transcription Factors Involved in Dehydration- and Cold-Inducible Gene Expression. publication-title: Biochem. Biophysical Res. Commun. doi: 10.1006/bbrc.2001.6299 – volume: 8 year: 2019 ident: B91 article-title: Responses of Tomato Plants under Saline Stress to Foliar Application of Copper Nanoparticles. publication-title: Plants doi: 10.3390/plants8060151 – volume: 126 start-page: 2335 year: 2013 ident: B64 article-title: Association mapping of salt tolerance in barley (Hordeum vulgare L.). publication-title: Theoretical Appl. Gene. doi: 10.1007/s00122-013-2139-0 – volume: 187 year: 2021 ident: B60 article-title: Genome-wide transcriptome analysis and physiological variation modulates gene regulatory networks acclimating salinity tolerance in chickpea. publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2021.104478 – volume: 57 start-page: 1017 year: 2006 ident: B99 article-title: World salinization with emphasis on Australia. publication-title: J. Exp.Bot. doi: 10.1093/jxb/erj108 – volume: 73 start-page: 64 year: 2011 ident: B56 article-title: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2010.10.009 – volume: 38 start-page: 203 year: 2006 ident: B130 article-title: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. publication-title: Nat. Gene. doi: 10.1038/ng1702 – volume: 29 start-page: 427 year: 2012 ident: B133 article-title: Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L.). publication-title: Mole. Breeding doi: 10.1007/s11032-011-9559-9 – volume: 158 start-page: 244 year: 2021 ident: B85 article-title: Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L.) grown under salt stress. publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.11.007 – volume: 72 start-page: 842 year: 2021 ident: B24 article-title: Climate change impacts on soil salinity in agricultural areas. publication-title: Euro. J. Soil Sci. doi: 10.1111/ejss.13010 – volume: 10 start-page: 438 year: 2016 ident: B5 article-title: Salt tolerance in barley originating from harsh environment of North Africa. publication-title: Aust. J. Crop. Sci. doi: 10.21475/ajcs.2016.10.04.p6663x – start-page: 255 year: 2018 ident: B86 article-title: Saline and sodic soils publication-title: Management of Soil Problems doi: 10.1007/978-3-319-75527-4_10 – volume: 22 start-page: 4056 year: 2015 ident: B90 article-title: Effect of salinity stress on plants and its tolerance strategies: a review. publication-title: Environ. Sci. Pollution Res. doi: 10.1007/s11356-014-3739-1 – volume: 60 start-page: 4089 year: 2009 ident: B125 article-title: Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp243 – volume: 128 start-page: 999 year: 2021 ident: B22 article-title: Identifying potential novel resistance to the foliar disease ‘Scald’ (Rhynchosporium commune) in a population of Scottish Bere barley landrace (Hordeum vulgare L.). publication-title: J. Plant Diseases Protection doi: 10.1007/s41348-021-00470-x – volume: 39 start-page: 759 year: 1988 ident: B98 article-title: An examination of selection criteria for salt tolerance in wheat, barley and triticale genotypes. publication-title: Aust. J. Agric. Res. doi: 10.1071/AR9880759 – volume: 9 year: 2018 ident: B47 article-title: Mapping of HKT1;5 gene in barley using GWAS approach and its implication in salt tolerance mechanism. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00156 – volume: 218 start-page: 1 year: 2003 ident: B122 article-title: Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. publication-title: Planta doi: 10.1007/s00425-003-1105-5 – volume: 134 start-page: 289 year: 2009 ident: B134 article-title: Salt-induced and salt-suppressed proteins in tomato leaves. publication-title: J. Am. Soc. Horticultural Sci. doi: 10.21273/JASHS.134.2.289 – volume: 25 start-page: 39 year: 2000 ident: B103 article-title: Global physical effects of anthropogenic hydrological alterations: sea level and water redistribution. publication-title: Global Planetary Change doi: 10.1016/S0921-8181(00)00020-5 – volume: 156 start-page: 176 year: 2018 ident: B80 article-title: In silico characterization and transcriptional modulation of phenylalanine ammonia lyase (PAL) by abiotic stresses in the medicinal orchid Vanda coerulea Griff. ex Lindl. publication-title: Phytochemistry doi: 10.1016/j.phytochem.2018.09.012 – volume: 136 start-page: 3376 year: 2004 ident: B46 article-title: Boron tolerance in barley is mediated by efflux of boron from the roots. publication-title: Plant Physiol. doi: 10.1104/pp.103.037028 – volume: 93 start-page: 259 year: 1995 ident: B13 article-title: Salt stress increases ferredoxin-dependent glutamate synthase activity and protein level in the leaves of tomato. publication-title: Physiol. Plantarum doi: 10.1111/j.1399-3054.1995.tb02226.x – volume: 26 start-page: 2213 year: 2016 ident: B25 article-title: Silent S-Type Anion Channel Subunit SLAH1 Gates SLAH3 Open for Chloride Root-to-Shoot Translocation. publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.06.045 – volume: 237 start-page: 1111 year: 2013 ident: B108 article-title: HVP10 encoding V-PPase is a prime candidate for the barley HvNax3 sodium exclusion gene: evidence from fine mapping and expression analysis. publication-title: Planta doi: 10.1007/s00425-012-1827-3 – year: 2002 ident: B126 publication-title: The Status of Traditional Scottish Animal Breeds and Plant Varieties and the Implications for Biodiversity. – volume: 78 start-page: 127 year: 1998 ident: B40 article-title: Salinity–mineral nutrient relations in horticultural crops. publication-title: Sci. Hortic. doi: 10.1016/S0304-4238(98)00192-7 – volume: 7 year: 2012 ident: B129 article-title: A single locus is responsible for salinity tolerance in a Chinese landrace barley (Hordeum vulgare L.). publication-title: PLoS One doi: 10.1371/journal.pone.0043079 – volume: 62 start-page: 1201 year: 2011 ident: B100 article-title: A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na+ exclusion trait. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq346 – volume: 34 start-page: 273 year: 2014 ident: B27 article-title: Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower. publication-title: Carthamus tinctorius. Biosci Rep. doi: 10.1042/BSR20140026 – volume: 54 start-page: 1137 year: 2003 ident: B57 article-title: Mapping and QTL analysis of the barley population Clipper × Sahara. publication-title: Aust. J. Agric. Res. doi: 10.1071/ar02180 |
SSID | ssj0000500997 |
Score | 2.3305912 |
Snippet | Ongoing climate change is resulting in increasing areas of salinity affected soils, rising saline groundwater and droughts resulting in irrigation with... |
SourceID | doaj swepub pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 863069 |
SubjectTerms | Agricultural Science barley landraces Bere barley genetic diversity Hordeum vulgare Jordbruksvetenskap Plant Science salinity tolerance |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFLYmtMMu0xhjy4DJSJM2DqWN47j2cUVAhdAuDMTNsmN7IHVpVRKk_nves0NFBNouO0VOHCV533P8Pfn5e4R8rcpRVVpAQHIGAUpQdmDDCKIUZq0qnDIqxCzfn2J6yc-uy-snpb4wJyzJAyfDDT3MV3mA_6hkBS-Nt445brzkPIydFR7_vjDnPQmmkqo3Up9xWpeEKEwNw2KG6tyMHUoBNFn15qEo1_8Sx3yeKtkTFI2T0Mk78rZjj_RHeutN8srX78nryRwY3mqLLI476e76N72CGDgand7W9DRlvMSmqR09hdi7uaHzQM-hucSsLGxMcOV9Rb9PUY-z_UPvW9zn4en54QGN9ZHohcGNlM2KXsQtJh_I5cnxr6PpoKuoMABM8maARcUUBMTWmFAwmVcsOMEdQGSksACLt9zywB3QiCByOw7WFUJVuS8cE35UbJONel77T4QiBIUqlHeOc-AB0gdrgS54ZDQAV0aGj_bVVSc3jlUvZhrCDkREIyIaEdEJkYwcrO9YJKmNv_SdIGTrfiiSHU-A6-jOdfS_XCcj-4-AaxhUuFJiaj9v4UlClqjrz2VGPiYHWD8K5YHAiHBl3HON3rv0r9S3N1G4G2LdEvhdRr4lJ-rdcjdrrVniQd951GDnkn_-H5-5Q96g5TC_LRe7ZKNZtn4PmFRjv8RB8wDvrx5W priority: 102 providerName: Directory of Open Access Journals |
Title | Evaluating Variation in Germination and Growth of Landraces of Barley (Hordeum vulgare L.) Under Salinity Stress |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35783948 https://www.proquest.com/docview/2685031448 https://pubmed.ncbi.nlm.nih.gov/PMC9245355 https://res.slu.se/id/publ/117484 https://doaj.org/article/e0151f80182345aebd2d4ae844f7db6e |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgILQL4ucWfkxGQoId2jWO4zgHhCjaWqHBZRT1FtmxvU3qkpImiP73vOekhYiKA5dWbmPZ8ves9734-XuEvM7jUR5rQEByBgGKS_VAuxFEKUzrNDKpSp3P8v0ipjP-aR7Pf1-P7hZwtTO0w3pSs2ox_Pl9_R42_DuMOMHfnrjlAoW3GRtKAQw4vU3ugF9KsJ7B547st0rfSIeS9qxyZ8d9cg_FX6IUqwH94aa8mv8uCvp3JmVPb9T7qLMH5H5HLumH1hoeklu2eETujksggOvHZHnaKXsXl_QbhMgeE3pd0EmbEOObqjB0AqF5fUVLR8-hWWHSFjbGeDC_pm-nKNfZ3NAfDV4DsfR8eEx9-SR6ofCeZb2mF_4GyhMyOzv9-nE66AouDACysB5gzbEU4mWtlIuYDHPmjOAGEFRSaEDNaq654wZYhhOhTpw2kUjz0EaGCTuKnpK9oizsIaHKSqA6UWqN4RxogrROa2ATFgkPeMWAnGzWN8s7NXIsirHIICpBcDIEJ0NwshacgBxveyxbJY5_PDtGyLbPoYa2_6GsLrNuS2YWmFDoYC6SRTxWVhtmOM6bu8RoYQPyagN4BnsOD1JUYcsGRhIyRtl_LgNy0BrAdqiNAQUk6ZlGby79f4rrK6_rDaFwDPQvIG9aI-p1WS0arSr8ylYWJdq55M_-e4znZB-XC3PeQvGC7NVVY18Cu6r1kX8rAZ-TeXjkN9Av0gUoNA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+Variation+in+Germination+and+Growth+of+Landraces+of+Barley+%28Hordeum+vulgare+L.%29+Under+Salinity+Stress&rft.jtitle=Frontiers+in+plant+science&rft.au=Cope%2C+Jonathan+E.&rft.au=Norton%2C+Gareth+J.&rft.au=George%2C+Timothy+S.&rft.au=Newton%2C+Adrian+C.&rft.date=2022-06-16&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=13&rft_id=info:doi/10.3389%2Ffpls.2022.863069&rft_id=info%3Apmid%2F35783948&rft.externalDocID=PMC9245355 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |