Amino acids regulate salinity-induced potassium efflux in barley root epidermis

The amino acid content increases substantially in salt-stressed plants. The physiological relevance of this phenomenon remains largely unknown. Using the MIFE ion flux measuring technique, we studied the effects of physiologically relevant concentrations of 26 amino acids on NaCl-induced K⁺ flux fro...

Full description

Saved in:
Bibliographic Details
Published inPlanta Vol. 225; no. 3; pp. 753 - 761
Main Authors Cuin, Tracey Ann, Shabala, Sergey
Format Journal Article
LanguageEnglish
Published Berlin Berlin/Heidelberg : Springer-Verlag 01.02.2007
Springer-Verlag
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The amino acid content increases substantially in salt-stressed plants. The physiological relevance of this phenomenon remains largely unknown. Using the MIFE ion flux measuring technique, we studied the effects of physiologically relevant concentrations of 26 amino acids on NaCl-induced K⁺ flux from barley root epidermis. We show that 21 (of 26) amino acids caused a significant mitigation of the NaCl-induced K⁺ efflux, while valine and ornithine substantially enhanced the detrimental effects of salinity on K⁺ homeostasis. Our results suggest that physiologically relevant concentrations of free amino acids might contribute to plant adaptive responses to salinity by regulating K⁺ transport across the plasma membrane, thus enabling maintenance of an optimal K⁺/Na⁺ ratio as opposed to being merely a symptom of plant damage by stress. Investigating the specific mechanisms of such amelioration remains a key issue for future studies.
AbstractList The amino acid content increases substantially in salt-stressed plants. The physiological relevance of this phenomenon remains largely unknown. Using the MIFE ion flux measuring technique, we studied the effects of physiologically relevant concentrations of 26 amino acids on NaCl-induced K(+) flux from barley root epidermis. We show that 21 (of 26) amino acids caused a significant mitigation of the NaCl-induced K(+) efflux, while valine and ornithine substantially enhanced the detrimental effects of salinity on K(+) homeostasis. Our results suggest that physiologically relevant concentrations of free amino acids might contribute to plant adaptive responses to salinity by regulating K(+) transport across the plasma membrane, thus enabling maintenance of an optimal K(+)/Na(+) ratio as opposed to being merely a symptom of plant damage by stress. Investigating the specific mechanisms of such amelioration remains a key issue for future studies.The amino acid content increases substantially in salt-stressed plants. The physiological relevance of this phenomenon remains largely unknown. Using the MIFE ion flux measuring technique, we studied the effects of physiologically relevant concentrations of 26 amino acids on NaCl-induced K(+) flux from barley root epidermis. We show that 21 (of 26) amino acids caused a significant mitigation of the NaCl-induced K(+) efflux, while valine and ornithine substantially enhanced the detrimental effects of salinity on K(+) homeostasis. Our results suggest that physiologically relevant concentrations of free amino acids might contribute to plant adaptive responses to salinity by regulating K(+) transport across the plasma membrane, thus enabling maintenance of an optimal K(+)/Na(+) ratio as opposed to being merely a symptom of plant damage by stress. Investigating the specific mechanisms of such amelioration remains a key issue for future studies.
The amino acid content increases substantially in salt-stressed plants. The physiological relevance of this phenomenon remains largely unknown. Using the MIFE ion flux measuring technique, we studied the effects of physiologically relevant concentrations of 26 amino acids on NaCl-induced K⁺ flux from barley root epidermis. We show that 21 (of 26) amino acids caused a significant mitigation of the NaCl-induced K⁺ efflux, while valine and ornithine substantially enhanced the detrimental effects of salinity on K⁺ homeostasis. Our results suggest that physiologically relevant concentrations of free amino acids might contribute to plant adaptive responses to salinity by regulating K⁺ transport across the plasma membrane, thus enabling maintenance of an optimal K⁺/Na⁺ ratio as opposed to being merely a symptom of plant damage by stress. Investigating the specific mechanisms of such amelioration remains a key issue for future studies.
The amino acid content increases substantially in salt-stressed plants. The physiological relevance of this phenomenon remains largely unknown. Using the MIFE ion flux measuring technique, we studied the effects of physiologically relevant concentrations of 26 amino acids on NaCl-induced K(+) flux from barley root epidermis. We show that 21 (of 26) amino acids caused a significant mitigation of the NaCl-induced K(+) efflux, while valine and ornithine substantially enhanced the detrimental effects of salinity on K(+) homeostasis. Our results suggest that physiologically relevant concentrations of free amino acids might contribute to plant adaptive responses to salinity by regulating K(+) transport across the plasma membrane, thus enabling maintenance of an optimal K(+)/Na(+) ratio as opposed to being merely a symptom of plant damage by stress. Investigating the specific mechanisms of such amelioration remains a key issue for future studies.
The amino acid content increases substantially in salt-stressed plants. The physiological relevance of this phenomenon remains largely unknown. Using the MIFE ion flux measuring technique, we studied the effects of physiologically relevant concentrations of 26 amino acids on NaCl-induced K^sup +^ flux from barley root epidermis. We show that 21 (of 26) amino acids caused a significant mitigation of the NaCl-induced K^sup +^ efflux, while valine and ornithine substantially enhanced the detrimental effects of salinity on K^sup +^ homeostasis. Our results suggest that physiologically relevant concentrations of free amino acids might contribute to plant adaptive responses to salinity by regulating K^sup +^ transport across the plasma membrane, thus enabling maintenance of an optimal K^sup +^/Na^sup +^ ratio as opposed to being merely a symptom of plant damage by stress. Investigating the specific mechanisms of such amelioration remains a key issue for future studies.[PUBLICATION ABSTRACT]
Author Shabala, Sergey
Cuin, Tracey Ann
Author_xml – sequence: 1
  fullname: Cuin, Tracey Ann
– sequence: 2
  fullname: Shabala, Sergey
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18539216$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16955270$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rHSEUxaWkNC-v_QBdtB0KLd1Me9VRx2UI_QeBLNqsxXE0-JjRV3XgvW9fw7w2kEXcKNzfuedezwU6CzFYhF5j-IwBxJcM0BHWAvAWaM_bwzO0wR0lLYGuP0MbgPoGSdk5ush5B1CLQrxA55hLxoiADbq5nH2IjTZ-zE2yd8uki22ynnzw5dj6MC7Gjs0-Fp2zX-bGOjcth8aHZtBpsscmxVgau_ejTbPPL9Fzp6dsX53uLbr99vX31Y_2-ub7z6vL69YwwKUl2o0SMz4agzm3DA-gpROMDKwbJWGCCjM4sJZQqgfuDFjTjYJJqpkmwtIt-rj23af4Z7G5qGpu7DTpYOOSFe-lIATzCn56EiRQD8Mr-v4RuotLCnUN1eO-l11fp9mitydoGWY7qn3ys05H9e9LK_DhBOhs9OSSDsbnB65nVK5ueOVMijkn6x4QUPfxqjVeVeNV9_GqQ9WIRxrjiy4-hpK0n55UvlmVu1xi-m9VF-olp12tv1vrTkel71Kd-PYXAUxru44I0tG_bZa7KQ
CODEN PLANAB
CitedBy_id crossref_primary_10_1007_s40415_018_0457_9
crossref_primary_10_1080_01904167_2014_911886
crossref_primary_10_1007_s11816_009_0123_6
crossref_primary_10_1186_s40529_016_0142_x
crossref_primary_10_1007_s11274_021_03203_2
crossref_primary_10_1071_FP15391
crossref_primary_10_1080_01904167_2024_2354179
crossref_primary_10_1016_j_jplph_2024_154322
crossref_primary_10_1016_j_algal_2022_102650
crossref_primary_10_1093_jxb_ern139
crossref_primary_10_1016_j_febslet_2007_04_032
crossref_primary_10_1016_j_plaphy_2014_07_005
crossref_primary_10_1093_jxb_ert085
crossref_primary_10_1111_j_1365_3040_2010_02266_x
crossref_primary_10_1021_jf3013426
crossref_primary_10_1007_s42976_023_00418_x
crossref_primary_10_1093_jxb_erq257
crossref_primary_10_3389_fpls_2018_01645
crossref_primary_10_3390_ijms242316757
crossref_primary_10_1016_j_scienta_2020_109561
crossref_primary_10_1007_s10811_015_0737_8
crossref_primary_10_3389_fpls_2015_00873
crossref_primary_10_1111_jipb_13839
crossref_primary_10_1016_j_envexpbot_2022_104965
crossref_primary_10_1155_2013_253414
crossref_primary_10_1007_s11356_013_2034_x
crossref_primary_10_1016_j_plaphy_2014_02_001
crossref_primary_10_3389_fsufs_2021_754853
crossref_primary_10_1016_j_envexpbot_2015_03_008
crossref_primary_10_1111_pce_12199
crossref_primary_10_1007_s10646_009_0312_7
crossref_primary_10_17221_62_2011_PPS
crossref_primary_10_1016_j_indcrop_2021_113830
crossref_primary_10_3390_plants11141831
crossref_primary_10_1002_jpln_200900354
crossref_primary_10_1111_j_1438_8677_2011_00526_x
crossref_primary_10_2135_cropsci2007_10_0557
crossref_primary_10_17660_ActaHortic_2025_1415_36
crossref_primary_10_1111_plb_12052
crossref_primary_10_1093_jxb_ern128
crossref_primary_10_1093_jambio_lxad226
crossref_primary_10_1007_s00299_007_0371_2
crossref_primary_10_1007_s11104_022_05732_7
crossref_primary_10_1093_aob_mcy077
crossref_primary_10_3389_fpls_2022_1004477
crossref_primary_10_1016_j_scienta_2014_03_047
crossref_primary_10_1016_j_molp_2015_10_006
crossref_primary_10_1007_s10725_015_0028_z
crossref_primary_10_3390_ijms22062813
crossref_primary_10_1515_bot_2011_035
crossref_primary_10_1080_00103620802647157
crossref_primary_10_1071_FP17250
crossref_primary_10_3390_plants11040501
crossref_primary_10_3389_fpls_2019_01429
crossref_primary_10_1111_j_1399_3054_2009_01330_x
crossref_primary_10_1080_01904167_2019_1701023
crossref_primary_10_1038_s41598_022_14689_7
crossref_primary_10_1016_j_jbiotec_2020_10_018
crossref_primary_10_1016_j_indcrop_2024_118150
crossref_primary_10_1111_nph_13173
crossref_primary_10_1007_s00425_020_03437_8
crossref_primary_10_1038_s41598_018_34320_y
crossref_primary_10_1007_s11356_014_3475_6
crossref_primary_10_3389_fpls_2023_1112264
crossref_primary_10_1186_s12864_015_1243_8
crossref_primary_10_3389_fpls_2022_922581
crossref_primary_10_1111_pce_12339
crossref_primary_10_1093_jxb_ern348
crossref_primary_10_1071_FP09051
crossref_primary_10_1111_j_1399_3054_2007_01008_x
crossref_primary_10_1186_s12870_024_06033_0
crossref_primary_10_1080_01904167_2017_1381123
crossref_primary_10_4161_psb_3_3_4966
crossref_primary_10_1016_j_scienta_2013_10_037
crossref_primary_10_1007_s13580_020_00236_8
crossref_primary_10_1515_BMC_2011_032
crossref_primary_10_3389_fpls_2014_00605
crossref_primary_10_1007_s13593_015_0344_8
crossref_primary_10_1186_s40538_017_0089_5
crossref_primary_10_1111_j_1365_3040_2011_02296_x
crossref_primary_10_1088_1755_1315_237_5_052024
crossref_primary_10_1080_07352689_2011_605739
crossref_primary_10_1016_j_stress_2024_100695
crossref_primary_10_1016_j_micres_2022_127254
crossref_primary_10_3390_molecules23071518
crossref_primary_10_1007_s10646_013_1069_6
crossref_primary_10_1016_j_ecss_2019_106275
crossref_primary_10_1007_s11738_013_1466_8
crossref_primary_10_3390_ijms22010428
crossref_primary_10_7554_eLife_83361
crossref_primary_10_1371_journal_pone_0055431
crossref_primary_10_2135_cropsci2011_02_0060
crossref_primary_10_4161_cib_7473
crossref_primary_10_1016_j_marpolbul_2023_115852
crossref_primary_10_3390_genes15121628
crossref_primary_10_1155_2016_8231873
crossref_primary_10_1080_15324982_2018_1551817
crossref_primary_10_1016_j_ecoenv_2019_04_057
crossref_primary_10_1007_s10725_011_9568_z
crossref_primary_10_3389_fpls_2021_626301
Cites_doi 10.1111/j.1365-3040.2005.01364.x
10.1093/jxb/erg072
10.1126/science.7112124
10.1074/jbc.271.4.2213
10.1016/0005-2736(71)90056-3
10.1016/S0968-0004(01)02054-0
10.1007/s00425-004-1207-8
10.1146/annurev.pp.35.060184.000401
10.1093/pcp/pci205
10.1093/jxb/47.1.25
10.1016/0031-9422(89)80182-7
10.1007/s004250050501
10.1093/jxb/47.9.1413
10.1016/j.tplants.2004.01.006
10.1046/j.1469-8137.2003.00770.x
10.1104/pp.020005
10.1073/pnas.191389398
10.1016/0003-9861(92)90719-D
10.1071/FP03016
10.1016/S0031-9422(00)82601-1
10.1104/pp.65.6.1085
10.1104/pp.96.4.1338
10.1006/anbo.1999.0912
10.1104/pp.81.4.1050
10.1146/annurev.pp.44.060193.002501
10.1104/pp.103.022178
10.1023/A:1010372213938
10.1016/S0098-8472(01)00095-8
10.1104/pp.011445
10.1104/pp.115.1.1
10.1046/j.0016-8025.2003.01116.x
10.1104/pp.96.4.1228
10.1016/S0005-2736(00)00130-9
10.1074/jbc.272.20.13040
10.1104/pp.80.4.938
10.1023/A:1027305522741
10.1016/S1369-5266(02)00255-8
10.1016/j.soilbio.2004.07.021
10.1016/S1360-1385(98)01231-X
10.1146/annurev.arplant.53.091901.161540
10.1104/pp.94.1.268
10.1007/BF00270084
10.1023/A:1022308229759
10.1146/annurev.arplant.51.1.463
10.1046/j.1365-313X.1998.00256.x
10.1023/A:1025029026375
10.1104/pp.113.1.111
10.1016/S1369-5266(98)80115-5
10.1007/978-3-642-70722-3
10.1104/pp.106.082388
10.1080/07352680091139277
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2007
2007 INIST-CNRS
Springer-Verlag 2007
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2007
– notice: 2007 INIST-CNRS
– notice: Springer-Verlag 2007
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7TM
7X2
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7S9
L.6
7X8
DOI 10.1007/s00425-006-0386-x
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

AGRICOLA
Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1432-2048
EndPage 761
ExternalDocumentID 2218564391
16955270
18539216
10_1007_s00425_006_0386_x
23389634
US201300742724
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -Y2
-~C
.86
06C
06D
0R~
0VY
123
199
1SB
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~F
2~H
30V
36B
3SX
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X2
7X7
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAGAY
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACBXY
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEJZ
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHYZX
AIAKS
AICQM
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1J
DATOO
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FA8
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IPSME
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0K
M1P
M4Y
M7P
MA-
MQGED
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
P0-
P19
P2P
PF-
PHGZT
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SA0
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XJT
YLTOR
Z45
ZCG
ZMTXR
ZOVNA
~EX
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AGQPQ
AHWEU
AIXLP
ATHPR
PHGZM
PJZUB
PPXIY
PQGLB
PUEGO
AAYXX
CITATION
AFOHR
IQODW
-4W
-56
-5G
-BR
-EM
3V.
88A
ADINQ
CGR
CUY
CVF
ECM
EIF
GQ6
JSODD
M0L
NPM
Z7U
Z7V
Z7W
Z7Y
Z81
Z83
Z8O
Z8P
Z8Q
Z8S
Z8U
Z8W
7QP
7QR
7TM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7S9
L.6
7X8
ID FETCH-LOGICAL-c501t-2afd9156dcc166e51b0a9f752b54d925737cbf0ee233ab6fc0ec4d7593a5a27e3
IEDL.DBID 7X7
ISSN 0032-0935
IngestDate Thu Jul 10 17:48:50 EDT 2025
Fri Jul 11 10:49:44 EDT 2025
Fri Jul 25 19:13:11 EDT 2025
Wed Feb 19 01:42:48 EST 2025
Mon Jul 21 09:13:17 EDT 2025
Tue Jul 01 02:50:11 EDT 2025
Thu Apr 24 22:54:53 EDT 2025
Sun Aug 24 12:10:52 EDT 2025
Thu Apr 03 09:46:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Monocotyledones
Hordeum vulgare
Root
Homeostasis
Amino acids
Stress
Salinity
Barley. Membrane Potassium homeostasis
Gramineae
Aminoacid
Angiospermae
Stress· Adaptation
Spermatophyta
Adaptation
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-2afd9156dcc166e51b0a9f752b54d925737cbf0ee233ab6fc0ec4d7593a5a27e3
Notes http://dx.doi.org/10.1007/s00425-006-0386-x
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 16955270
PQID 818894823
PQPubID 54047
PageCount 9
ParticipantIDs proquest_miscellaneous_68972216
proquest_miscellaneous_2000051216
proquest_journals_818894823
pubmed_primary_16955270
pascalfrancis_primary_18539216
crossref_primary_10_1007_s00425_006_0386_x
crossref_citationtrail_10_1007_s00425_006_0386_x
jstor_primary_23389634
fao_agris_US201300742724
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-02-01
PublicationDateYYYYMMDD 2007-02-01
PublicationDate_xml – month: 02
  year: 2007
  text: 2007-02-01
  day: 01
PublicationDecade 2000
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
– name: Germany
– name: Heidelberg
PublicationSubtitle An International Journal of Plant Biology
PublicationTitle Planta
PublicationTitleAlternate Planta
PublicationYear 2007
Publisher Berlin/Heidelberg : Springer-Verlag
Springer-Verlag
Springer
Springer Nature B.V
Publisher_xml – name: Berlin/Heidelberg : Springer-Verlag
– name: Springer-Verlag
– name: Springer
– name: Springer Nature B.V
References JAG Silveira (386_CR52) 2001; 46
FJM Maathuis (386_CR41) 1998; 15
TM Kinraide (386_CR34) 1980; 65
V Demidchik (386_CR17) 2002; 53
M Maeshima (386_CR42) 2000; 1465
KJ Boorer (386_CR4) 1996; 271
Y Nakamura (386_CR43) 1992; 33
DR Bush (386_CR9) 1999
TJ Flowers (386_CR22) 2001; 231
S Shabala (386_CR50) 2006; 141
VK Rai (386_CR46) 2002; 45
SN Shabala (386_CR49) 1997; 113
DR Bush (386_CR8) 1993; 44
TA Cuin (386_CR14) 2003; 54
CW Ford (386_CR23) 1984; 23
THH Chen (386_CR12) 2002; 5
PA Essah (386_CR21) 2003; 133
DL Jones (386_CR31) 2005; 37
L Reinhold (386_CR47) 1984; 35
D Wipf (386_CR58) 2002; 27
Z-C Li (386_CR38) 1992; 294
D Rhodes (386_CR48) 1999
N Smirnoff (386_CR53) 1989; 28
Y Braun (386_CR7) 1986; 81
RA Gaxiola (386_CR26) 2001; 98
D Nash (386_CR44) 1982; 9
LG Paleg (386_CR45) 1981; 8
HJ Bohnert (386_CR2) 1998; 1
W Fricke (386_CR25) 1996; 47
FJM Maathuis (386_CR40) 1995; 197
R Vera-Estrella (386_CR54) 1999; 208
SN Shabala (386_CR60) 2002; 129
AM Kinnersley (386_CR33) 2000; 19
FJM Maathuis (386_CR39) 1999; 84
Z-C Li (386_CR36) 1990; 94
D Carbonera (386_CR10) 1989; 8
S Shabala (386_CR51) 2003; 30
AW Bown (386_CR6) 1997; 115
NTT Hoai (386_CR30) 2003; 41
V Demidchik (386_CR18) 2004; 219
V Volkov (386_CR56) 2003; 27
PM Hasegawa (386_CR28) 2000; 51
DE Carden (386_CR11) 2003; 131
C Di Martino (386_CR19) 2003; 158
RS Dubey (386_CR20) 1990; 17
S Handa (386_CR27) 1986; 80
DPS Verma (386_CR55) 1999
PH Yancey (386_CR59) 1982; 217
EA Curl (386_CR16) 1986
TA Cuin (386_CR15) 2005; 46
PBK Kavi Kishor (386_CR32) 2005; 88
H Wang (386_CR57) 2003; 52
U Heber (386_CR29) 1971; 241
Z-C Li (386_CR37) 1991; 96
F Ayala (386_CR1) 1996; 47
N Bouché (386_CR5) 2004; 9
WN Fischer (386_CR35) 1998; 3
KY Boorer (386_CR3) 1997; 272
Z Chen (386_CR13) 2005; 28
F Fougère (386_CR24) 1991; 96
13677474 - Plant Mol Biol. 2003 Jul;52(4):873-91
10066591 - Curr Opin Plant Biol. 1998 Jun;1(3):267-74
7112124 - Science. 1982 Sep 24;217(4566):1214-22
8580759 - Planta. 1995;197(3):456-64
12223787 - Plant Physiol. 1997 Sep;115(1):1-5
16661336 - Plant Physiol. 1980 Jun;65(6):1085-9
16668324 - Plant Physiol. 1991 Aug;96(4):1228-36
16664942 - Plant Physiol. 1986 Aug;81(4):1050-6
5159797 - Biochim Biophys Acta. 1971 Aug 13;241(2):578-92
12970496 - Plant Physiol. 2003 Sep;133(1):307-18
16223738 - Plant Cell Physiol. 2005 Dec;46(12):1924-33
11960744 - Curr Opin Plant Biol. 2002 Jun;5(3):250-7
12554708 - J Exp Bot. 2003 Feb;54(383):657-61
12586891 - Plant Physiol. 2003 Feb;131(2):676-83
10748246 - Biochim Biophys Acta. 2000 May 1;1465(1-2):37-51
16798942 - Plant Physiol. 2006 Aug;141(4):1653-65
16667696 - Plant Physiol. 1990 Sep;94(1):268-77
12223594 - Plant Physiol. 1997 Jan;113(1):111-118
9951736 - Planta. 1999 Jan;207(3):426-35
14767768 - Planta. 2004 May;219(1):167-75
12011359 - Plant Physiol. 2002 May;129(1):290-9
11572991 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11444-9
16664745 - Plant Physiol. 1986 Apr;80(4):938-45
12221989 - Annu Rev Plant Biol. 2002;53:67-107
15012199 - Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:463-499
15003233 - Trends Plant Sci. 2004 Mar;9(3):110-5
24233368 - Plant Cell Rep. 1989 Oct;8(7):422-4
1567208 - Arch Biochem Biophys. 1992 May 1;294(2):519-26
9807822 - Plant J. 1998 Sep;15(6):843-51
8567681 - J Biol Chem. 1996 Jan 26;271(4):2213-20
16668339 - Plant Physiol. 1991 Aug;96(4):1338-44
11893511 - Trends Biochem Sci. 2002 Mar;27(3):139-47
9148914 - J Biol Chem. 1997 May 16;272(20):13040-6
References_xml – volume: 28
  start-page: 1230
  year: 2005
  ident: 386_CR13
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2005.01364.x
– volume: 54
  start-page: 657
  year: 2003
  ident: 386_CR14
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erg072
– volume: 17
  start-page: 215
  year: 1990
  ident: 386_CR20
  publication-title: Aust J Plant Physiol
– volume: 217
  start-page: 1214
  year: 1982
  ident: 386_CR59
  publication-title: Sci
  doi: 10.1126/science.7112124
– volume: 271
  start-page: 2213
  year: 1996
  ident: 386_CR4
  publication-title: J Biol Chem
  doi: 10.1074/jbc.271.4.2213
– volume: 241
  start-page: 578
  year: 1971
  ident: 386_CR29
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0005-2736(71)90056-3
– volume: 27
  start-page: 139
  year: 2002
  ident: 386_CR58
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(01)02054-0
– volume: 219
  start-page: 167
  year: 2004
  ident: 386_CR18
  publication-title: Planta
  doi: 10.1007/s00425-004-1207-8
– volume: 35
  start-page: 45
  year: 1984
  ident: 386_CR47
  publication-title: Annu Rev Plant Physiol
  doi: 10.1146/annurev.pp.35.060184.000401
– volume: 46
  start-page: 1924
  year: 2005
  ident: 386_CR15
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pci205
– volume: 47
  start-page: 25
  year: 1996
  ident: 386_CR1
  publication-title: J Exp Bot
  doi: 10.1093/jxb/47.1.25
– volume: 28
  start-page: 1057
  year: 1989
  ident: 386_CR53
  publication-title: Phytochem
  doi: 10.1016/0031-9422(89)80182-7
– volume: 208
  start-page: 426
  year: 1999
  ident: 386_CR54
  publication-title: Planta
  doi: 10.1007/s004250050501
– volume: 47
  start-page: 1413
  year: 1996
  ident: 386_CR25
  publication-title: J Exp Bot
  doi: 10.1093/jxb/47.9.1413
– volume: 9
  start-page: 110
  year: 2004
  ident: 386_CR5
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2004.01.006
– volume: 9
  start-page: 47
  year: 1982
  ident: 386_CR44
  publication-title: Aust J Plant Physiol
– volume: 158
  start-page: 455
  year: 2003
  ident: 386_CR19
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2003.00770.x
– volume: 129
  start-page: 290
  year: 2002
  ident: 386_CR60
  publication-title: Plant Physiol
  doi: 10.1104/pp.020005
– volume: 98
  start-page: 11444
  year: 2001
  ident: 386_CR26
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.191389398
– volume: 294
  start-page: 519
  year: 1992
  ident: 386_CR38
  publication-title: Arch Biochem Biophys
  doi: 10.1016/0003-9861(92)90719-D
– volume: 30
  start-page: 507
  year: 2003
  ident: 386_CR51
  publication-title: Funct Plant Biol
  doi: 10.1071/FP03016
– volume: 23
  start-page: 1007
  year: 1984
  ident: 386_CR23
  publication-title: Phytochem
  doi: 10.1016/S0031-9422(00)82601-1
– volume: 65
  start-page: 1085
  year: 1980
  ident: 386_CR34
  publication-title: Plant Physiol
  doi: 10.1104/pp.65.6.1085
– volume: 8
  start-page: 107
  year: 1981
  ident: 386_CR45
  publication-title: Aust J Plant Physiol
– volume: 96
  start-page: 1338
  year: 1991
  ident: 386_CR37
  publication-title: Plant Physiol
  doi: 10.1104/pp.96.4.1338
– volume: 84
  start-page: 123
  year: 1999
  ident: 386_CR39
  publication-title: Ann Bot
  doi: 10.1006/anbo.1999.0912
– volume: 81
  start-page: 1050
  year: 1986
  ident: 386_CR7
  publication-title: Plant Physiol
  doi: 10.1104/pp.81.4.1050
– volume: 44
  start-page: 513
  year: 1993
  ident: 386_CR8
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.pp.44.060193.002501
– volume: 133
  start-page: 307
  year: 2003
  ident: 386_CR21
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.022178
– volume: 88
  start-page: 424
  year: 2005
  ident: 386_CR32
  publication-title: Curr Sci
– volume: 231
  start-page: 1
  year: 2001
  ident: 386_CR22
  publication-title: Plant Soil
  doi: 10.1023/A:1010372213938
– start-page: 319
  volume-title: Plant amino acids. Biochemistry and biotechnology
  year: 1999
  ident: 386_CR48
– volume: 46
  start-page: 171
  year: 2001
  ident: 386_CR52
  publication-title: Environ Exp Bot
  doi: 10.1016/S0098-8472(01)00095-8
– start-page: 249
  volume-title: Plant amino acids. Biochemistry and biotechnology
  year: 1999
  ident: 386_CR55
– volume: 131
  start-page: 676
  year: 2003
  ident: 386_CR11
  publication-title: Plant Physiol
  doi: 10.1104/pp.011445
– volume: 197
  start-page: 456
  year: 1995
  ident: 386_CR40
  publication-title: Planta
– volume: 115
  start-page: 1
  year: 1997
  ident: 386_CR6
  publication-title: Plant Physiol
  doi: 10.1104/pp.115.1.1
– volume: 27
  start-page: 1
  year: 2003
  ident: 386_CR56
  publication-title: Plant Cell Env
  doi: 10.1046/j.0016-8025.2003.01116.x
– volume: 96
  start-page: 1228
  year: 1991
  ident: 386_CR24
  publication-title: Plant Physiol
  doi: 10.1104/pp.96.4.1228
– volume: 1465
  start-page: 37
  year: 2000
  ident: 386_CR42
  publication-title: Biochim Biophys Acta Biomemb
  doi: 10.1016/S0005-2736(00)00130-9
– volume: 272
  start-page: 13040
  year: 1997
  ident: 386_CR3
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.20.13040
– volume: 80
  start-page: 938
  year: 1986
  ident: 386_CR27
  publication-title: Plant Physiol
  doi: 10.1104/pp.80.4.938
– volume: 41
  start-page: 159
  year: 2003
  ident: 386_CR30
  publication-title: Plant Growth Reg
  doi: 10.1023/A:1027305522741
– volume: 5
  start-page: 250
  year: 2002
  ident: 386_CR12
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/S1369-5266(02)00255-8
– volume: 37
  start-page: 179
  year: 2005
  ident: 386_CR31
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2004.07.021
– volume: 3
  start-page: 188
  year: 1998
  ident: 386_CR35
  publication-title: Trends Plant Sci
  doi: 10.1016/S1360-1385(98)01231-X
– volume: 53
  start-page: 67
  year: 2002
  ident: 386_CR17
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.53.091901.161540
– volume: 94
  start-page: 268
  year: 1990
  ident: 386_CR36
  publication-title: Plant Physiol
  doi: 10.1104/pp.94.1.268
– volume: 8
  start-page: 422
  year: 1989
  ident: 386_CR10
  publication-title: Plant Cell Rep
  doi: 10.1007/BF00270084
– volume: 45
  start-page: 481
  year: 2002
  ident: 386_CR46
  publication-title: Biol Plant
  doi: 10.1023/A:1022308229759
– volume: 33
  start-page: 139
  year: 1992
  ident: 386_CR43
  publication-title: Plant Cell Physiol
– start-page: 305
  volume-title: Plant amino acids. biochemistry and biotechnology.
  year: 1999
  ident: 386_CR9
– volume: 51
  start-page: 463
  year: 2000
  ident: 386_CR28
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.arplant.51.1.463
– volume: 15
  start-page: 843
  year: 1998
  ident: 386_CR41
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1998.00256.x
– volume: 52
  start-page: 873
  year: 2003
  ident: 386_CR57
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1025029026375
– volume: 113
  start-page: 111
  year: 1997
  ident: 386_CR49
  publication-title: Plant Physiol
  doi: 10.1104/pp.113.1.111
– volume: 1
  start-page: 267
  year: 1998
  ident: 386_CR2
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/S1369-5266(98)80115-5
– volume-title: The Rhizosphere
  year: 1986
  ident: 386_CR16
  doi: 10.1007/978-3-642-70722-3
– volume: 141
  start-page: 1653
  year: 2006
  ident: 386_CR50
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.082388
– volume: 19
  start-page: 479
  year: 2000
  ident: 386_CR33
  publication-title: Crit Rev Plant Sci
  doi: 10.1080/07352680091139277
– reference: 12586891 - Plant Physiol. 2003 Feb;131(2):676-83
– reference: 11572991 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11444-9
– reference: 12221989 - Annu Rev Plant Biol. 2002;53:67-107
– reference: 16667696 - Plant Physiol. 1990 Sep;94(1):268-77
– reference: 11960744 - Curr Opin Plant Biol. 2002 Jun;5(3):250-7
– reference: 9148914 - J Biol Chem. 1997 May 16;272(20):13040-6
– reference: 16668339 - Plant Physiol. 1991 Aug;96(4):1338-44
– reference: 15003233 - Trends Plant Sci. 2004 Mar;9(3):110-5
– reference: 11893511 - Trends Biochem Sci. 2002 Mar;27(3):139-47
– reference: 8580759 - Planta. 1995;197(3):456-64
– reference: 8567681 - J Biol Chem. 1996 Jan 26;271(4):2213-20
– reference: 16664942 - Plant Physiol. 1986 Aug;81(4):1050-6
– reference: 16798942 - Plant Physiol. 2006 Aug;141(4):1653-65
– reference: 7112124 - Science. 1982 Sep 24;217(4566):1214-22
– reference: 12011359 - Plant Physiol. 2002 May;129(1):290-9
– reference: 24233368 - Plant Cell Rep. 1989 Oct;8(7):422-4
– reference: 10066591 - Curr Opin Plant Biol. 1998 Jun;1(3):267-74
– reference: 16223738 - Plant Cell Physiol. 2005 Dec;46(12):1924-33
– reference: 16664745 - Plant Physiol. 1986 Apr;80(4):938-45
– reference: 12554708 - J Exp Bot. 2003 Feb;54(383):657-61
– reference: 14767768 - Planta. 2004 May;219(1):167-75
– reference: 12223594 - Plant Physiol. 1997 Jan;113(1):111-118
– reference: 9951736 - Planta. 1999 Jan;207(3):426-35
– reference: 13677474 - Plant Mol Biol. 2003 Jul;52(4):873-91
– reference: 1567208 - Arch Biochem Biophys. 1992 May 1;294(2):519-26
– reference: 9807822 - Plant J. 1998 Sep;15(6):843-51
– reference: 16661336 - Plant Physiol. 1980 Jun;65(6):1085-9
– reference: 12223787 - Plant Physiol. 1997 Sep;115(1):1-5
– reference: 12970496 - Plant Physiol. 2003 Sep;133(1):307-18
– reference: 10748246 - Biochim Biophys Acta. 2000 May 1;1465(1-2):37-51
– reference: 16668324 - Plant Physiol. 1991 Aug;96(4):1228-36
– reference: 5159797 - Biochim Biophys Acta. 1971 Aug 13;241(2):578-92
– reference: 15012199 - Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:463-499
SSID ssj0014377
Score 2.2608364
Snippet The amino acid content increases substantially in salt-stressed plants. The physiological relevance of this phenomenon remains largely unknown. Using the MIFE...
SourceID proquest
pubmed
pascalfrancis
crossref
jstor
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 753
SubjectTerms Absorption. Translocation of ions and substances. Permeability
adaptation
Agronomy. Soil science and plant productions
Amino Acids
Amino Acids - pharmacology
Barley
Biological and medical sciences
Biological Transport
Biological Transport - drug effects
Cell membranes
drug effects
Economic plant physiology
Epidermis
free amino acids
Fundamental and applied biological sciences. Psychology
homeostasis
Homeostasis - drug effects
Hordeum
Hordeum - drug effects
Hordeum - metabolism
Membrane
Membrane potential
metabolism
Nutrition. Photosynthesis. Respiration. Metabolism
ornithine
pharmacology
Plant cells
plant damage
Plant Epidermis
Plant Epidermis - drug effects
Plant Epidermis - metabolism
Plant Roots
Plant Roots - drug effects
Plant Roots - metabolism
Plants
plasma membrane
Potassium
Potassium - metabolism
Potassium Channels
Potassium Channels - metabolism
Potassium homeostasis
Salinity
sodium
Sodium Chloride
Sodium Chloride - pharmacology
Solutes
Stress
valine
Title Amino acids regulate salinity-induced potassium efflux in barley root epidermis
URI https://www.jstor.org/stable/23389634
https://www.ncbi.nlm.nih.gov/pubmed/16955270
https://www.proquest.com/docview/818894823
https://www.proquest.com/docview/2000051216
https://www.proquest.com/docview/68972216
Volume 225
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZN0kMvJX2kcdNuVeipIGrLlmWdyqYkhELT0nZhb0Yvl4XE3sZe2P33mZEfIYfkaCRbeD5p9I1mNEPIJ2OESp2TLLEiZpkHLIxWlmWVNVUlrXMh482Py_xikX1fiuUQm9MOYZWjTgyK2jUWz8i_wMZSqKzg6df1f4ZFo9C5OlTQ2CMHmLkMI7rkcrK3gAnIPmVmyhn6-0anZtznEOWCBXM6LXK2vbct7VW6GeMTMVhStyCvqi908TATDTvS-SF5PlBJOu-xf0Ge-PoleXraAN3bvSI_59eruqHarlxLb_qK8562Gm9CdjsGpjiA6ugausOy2FxTX1VXmy1d1dSgB35HgVN31GMFWZwMr8ni_Ozvtws2VE9gIPWkY1xXToF15qxN8tyLxMRaVVJwIzKnYKWmEuCIvedpqvHKT-xt5iRAp4Xm0qdHZL9uan9MqBBpHksTp1oaoFdGOatBUwp02wDD1BGJR-GVdkgtjhUursopKXKQdxmC6EDe5TYin6dX1n1ejcc6HwMipf4Heq9c_OHobUWbXvIsIkcBpukj8DcFKBVomN3D7W4UICiKJ3lETkYgy2HdtuU0yyLycWoFGaMXRde-2bRYtxM1WfjChwf65IWSPPR408-Qu9FzhTnv4rePjn5CnvVnyBg2847sdzcb_x7IT2dmYYrPyMHp2eWv3_C04PNbP2YAzw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BUqm9oL4oCy24UnupZDVrx3FyqCpoQUuBbdWyErfgV6qVINmSXXX3R_U_dpwX4gA3znH8mBmPv_GMZwDeaS0Sbq2kAyMCGjrkhVaJoWFmdJZJY22V8eZ0FA3H4bdzcb4C_9q3MD6sstWJlaK2hfF35B_xYImTMGb88_QP9UWjvHO1raBRS8WxW_5Fi638dPQV2fuescODsy9D2hQVoDiZwYwyldkEjRZrzCCKnBjoQCWZFEyL0CYowFziLAPnGOfKv4QJnAmtxBUpoZh0HPtdhbWQoyXTg7X9g9GPn53bIuSyTtLJGfUextaNGtRZS5mglQHP44gubh2Eq5kq2ohIH56pSuRQVpfWuBv7Vmfg4VNYb8Ar2aul7RmsuPw5PNovEGAuX8D3vatJXhBlJrYk13WNe0dK5d9ezpYUjX8UI0um2Bw34vyKuCy7nC_IJCfa-_yXBFH8jDhfs9aL30sYPwhpN6CXF7nbBCIE0lfqgCupEdDpxBqFull4RxFiWtWHoCVeappk5r6mxmXapWGu6J1WYXtI73TRhw_dL9M6k8d9jTeRI6n6jZo2Hf9i3r_rbxEkC_uwUbGp6wRXE6Maww87t_h2MwpCooQNoj5st4xMG01Rpp1c9-Ft9xVp7P02KnfFvPSVQr3urHrYvaNNFCeSVS1e1RJyM3qU-Cx7wda9o-_C4-HZ6Ul6cjQ63oYn9Q22D9p5Db3Z9dy9Qeg10zuNwBO4eOg99h_zUD1b
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaghAXxKs0LbRGgguS1cSO4-SAUKGsWgoFCVbaW_AraKU22Ta7Yven8e-Yyavqob31HMePefmzZzxDyBtjZCacUyyyMmSxB14YnVkWF9YUhbLONRlvvp0mR-P4y0RO1si__i0MhlX2NrEx1K6yeEe-DxtLmsUpF_tFFxXx43D0YXbBsIAUOlr7ahqthJz41V84vdXvjw-B1W85H33-9emIdQUGGEwsmjOuC5fBAcZZGyWJl5EJdVYoyY2MXQbCLBTMOPSeC6HxVUzobewUrE5LzZUX0O86uaeEjFDF1GQ46wEKUW26TsEZ-hp7h2rY5i_lkjVHeZEmbHltS1wvdNXHRmKgpq6BV0VbZONmFNzshqPH5FEHY-lBK3dPyJovn5L7HyuAmqtn5PvB-bSsqLZTV9PLttq9p7XGV5jzFZuWDgTK0Rk0B5VcnFNfFGeLJZ2W1KD3f0UBz8-px-q1KIjPyfhOCLtJNsqq9FuESimSUJlQaGUA2pnMWQ1WWqLLCNCtDkjYEy-3XVpzrK5xlg8JmRt6500AH9A7Xwbk3fDLrM3pcVvjLeBIrv-Azc3HPzl6evE-QfE4IJsNm4ZOYDUpGDT4sHuNb1ejADjKeJQEZKdnZN7ZjDofJDwgr4evQGP04OjSV4saa4aiFW162LuhTZJmijctXrQScjV6kmG-vXD71tH3yAPQrPzr8enJDnnYXmVj9M5LsjG_XPhXgMHmZreRdkp-37V6_QdywkAr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amino+acids+regulate+salinity-induced+potassium+efflux+in+barley+root+epidermis&rft.jtitle=Planta&rft.au=CUIN%2C+Tracey+Ann&rft.au=SHABALA%2C+Sergey&rft.date=2007-02-01&rft.pub=Springer&rft.issn=0032-0935&rft.volume=225&rft.issue=3&rft.spage=753&rft.epage=761&rft_id=info:doi/10.1007%2Fs00425-006-0386-x&rft.externalDBID=n%2Fa&rft.externalDocID=18539216
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0935&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0935&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0935&client=summon