Subsurface Cooling Rates and Microstructural Response during Laser Based Metal Additive Manufacturing
Laser powder bed fusion (LPBF) is a method of additive manufacturing characterized by the rapid scanning of a high powered laser over a thin bed of metallic powder to create a single layer, which may then be built upon to form larger structures. Much of the melting, resolidification, and subsequent...
Saved in:
Published in | Scientific reports Vol. 10; no. 1; p. 1981 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
06.02.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Laser powder bed fusion (LPBF) is a method of additive manufacturing characterized by the rapid scanning of a high powered laser over a thin bed of metallic powder to create a single layer, which may then be built upon to form larger structures. Much of the melting, resolidification, and subsequent cooling take place at much higher rates and with much higher thermal gradients than in traditional metallurgical processes, with much of this occurring below the surface. We have used
in situ
high speed X-ray diffraction to extract subsurface cooling rates following resolidification from the melt and above the
β
-transus in titanium alloy Ti-6Al-4V. We observe an inverse relationship with laser power and bulk cooling rates. The measured cooling rates are seen to correlate to the level of residual strain borne by the minority
β
-Ti phase with increased strain at slower cooling rates. The
α
-Ti phase shows a lattice contraction which is invariant with cooling rate. We also observe a broadening of the diffraction peaks which is greater for the
β
-Ti phase at slower cooling rates and a change in the relative phase fraction following LPBF. These results provide a direct measure of the subsurface thermal history and demonstrate its importance to the ultimate quality of additively manufactured materials. |
---|---|
AbstractList | Laser powder bed fusion (LPBF) is a method of additive manufacturing characterized by the rapid scanning of a high powered laser over a thin bed of metallic powder to create a single layer, which may then be built upon to form larger structures. Much of the melting, resolidification, and subsequent cooling take place at much higher rates and with much higher thermal gradients than in traditional metallurgical processes, with much of this occurring below the surface. We have used in situ high speed X-ray diffraction to extract subsurface cooling rates following resolidification from the melt and above the β-transus in titanium alloy Ti-6Al-4V. We observe an inverse relationship with laser power and bulk cooling rates. The measured cooling rates are seen to correlate to the level of residual strain borne by the minority β-Ti phase with increased strain at slower cooling rates. The α-Ti phase shows a lattice contraction which is invariant with cooling rate. We also observe a broadening of the diffraction peaks which is greater for the β-Ti phase at slower cooling rates and a change in the relative phase fraction following LPBF. These results provide a direct measure of the subsurface thermal history and demonstrate its importance to the ultimate quality of additively manufactured materials. Abstract Laser powder bed fusion (LPBF) is a method of additive manufacturing characterized by the rapid scanning of a high powered laser over a thin bed of metallic powder to create a single layer, which may then be built upon to form larger structures. Much of the melting, resolidification, and subsequent cooling take place at much higher rates and with much higher thermal gradients than in traditional metallurgical processes, with much of this occurring below the surface. We have used in situ high speed X-ray diffraction to extract subsurface cooling rates following resolidification from the melt and above the β -transus in titanium alloy Ti-6Al-4V. We observe an inverse relationship with laser power and bulk cooling rates. The measured cooling rates are seen to correlate to the level of residual strain borne by the minority β -Ti phase with increased strain at slower cooling rates. The α -Ti phase shows a lattice contraction which is invariant with cooling rate. We also observe a broadening of the diffraction peaks which is greater for the β -Ti phase at slower cooling rates and a change in the relative phase fraction following LPBF. These results provide a direct measure of the subsurface thermal history and demonstrate its importance to the ultimate quality of additively manufactured materials. Laser powder bed fusion (LPBF) is a method of additive manufacturing characterized by the rapid scanning of a high powered laser over a thin bed of metallic powder to create a single layer, which may then be built upon to form larger structures. Much of the melting, resolidification, and subsequent cooling take place at much higher rates and with much higher thermal gradients than in traditional metallurgical processes, with much of this occurring below the surface. We have used in situ high speed X-ray diffraction to extract subsurface cooling rates following resolidification from the melt and above the β -transus in titanium alloy Ti-6Al-4V. We observe an inverse relationship with laser power and bulk cooling rates. The measured cooling rates are seen to correlate to the level of residual strain borne by the minority β -Ti phase with increased strain at slower cooling rates. The α -Ti phase shows a lattice contraction which is invariant with cooling rate. We also observe a broadening of the diffraction peaks which is greater for the β -Ti phase at slower cooling rates and a change in the relative phase fraction following LPBF. These results provide a direct measure of the subsurface thermal history and demonstrate its importance to the ultimate quality of additively manufactured materials. |
ArticleNumber | 1981 |
Author | Toney, Michael F. Martin, Aiden A. Thampy, Vivek Fong, Anthony Y. Kiss, Andrew M. Ott, Ryan T. Matthews, Manyalibo J. van Buuren, Anthony Depond, Philip J. Tassone, Christopher J. Guss, Gabe Stone, Kevin H. Calta, Nicholas P. Weker, Johanna Nelson Xing, Qingfeng Wang, Jenny Kramer, Matthew J. |
Author_xml | – sequence: 1 givenname: Vivek surname: Thampy fullname: Thampy, Vivek email: vthampy@slac.stanford.edu organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory – sequence: 2 givenname: Anthony Y. surname: Fong fullname: Fong, Anthony Y. organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory – sequence: 3 givenname: Nicholas P. surname: Calta fullname: Calta, Nicholas P. organization: Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory – sequence: 4 givenname: Jenny surname: Wang fullname: Wang, Jenny organization: Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory – sequence: 5 givenname: Aiden A. surname: Martin fullname: Martin, Aiden A. organization: Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory – sequence: 6 givenname: Philip J. surname: Depond fullname: Depond, Philip J. organization: Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory – sequence: 7 givenname: Andrew M. surname: Kiss fullname: Kiss, Andrew M. organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory – sequence: 8 givenname: Gabe surname: Guss fullname: Guss, Gabe organization: Engineering Directorate, Lawrence Livermore National Laboratory – sequence: 9 givenname: Qingfeng surname: Xing fullname: Xing, Qingfeng organization: Division of Materials Science and Engineering, Ames Laboratory – sequence: 10 givenname: Ryan T. surname: Ott fullname: Ott, Ryan T. organization: Division of Materials Science and Engineering, Ames Laboratory – sequence: 11 givenname: Anthony surname: van Buuren fullname: van Buuren, Anthony organization: Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory – sequence: 12 givenname: Michael F. orcidid: 0000-0002-7513-1166 surname: Toney fullname: Toney, Michael F. organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory – sequence: 13 givenname: Johanna Nelson orcidid: 0000-0001-6856-3203 surname: Weker fullname: Weker, Johanna Nelson organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory – sequence: 14 givenname: Matthew J. orcidid: 0000-0002-9097-6730 surname: Kramer fullname: Kramer, Matthew J. organization: Division of Materials Science and Engineering, Ames Laboratory – sequence: 15 givenname: Manyalibo J. surname: Matthews fullname: Matthews, Manyalibo J. organization: Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory – sequence: 16 givenname: Christopher J. surname: Tassone fullname: Tassone, Christopher J. organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory – sequence: 17 givenname: Kevin H. orcidid: 0000-0003-1387-1510 surname: Stone fullname: Stone, Kevin H. email: khstone@slac.stanford.edu organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32029753$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1600506$$D View this record in Osti.gov |
BookMark | eNp9kctu1DAUhi3UipbSF2CBItiwCfUljuMNUjviJk2FVGBtOc5J6ypjD75Uok-PMymlZVEv7CP5O_-5_C_QnvMOEHpF8HuCWXcSG8JlV2OKa97N0e0zdEhxw2vKKN17EB-g4xivcTmcyobI5-iAUUyl4OwQwffcxxxGbaBaeT9Zd1ld6ASx0m6ozq0JPqaQTcpBT9UFxK13Eaohh5lc6wihOit3YSEV4nQYbLI3UJ1rl4tq2oEv0f6opwjHd-8R-vnp44_Vl3r97fPX1em6NhyTVFNBpRlaTIiGRncEBAaCeSNZZzhrBZhu7Es89J2UhgDTQpBWjnJoeyFoy47Qh0V3m_sNDAZcKm2rbbAbHX4rr616_OPslbr0N0qU5RDOisCbRaBMbVU0NoG5Mt45MEmRtlB4rvLurkrwvzLEpDY2Gpgm7cDnqCjjpRfeMFzQt_-h1z4HV3awo3DDOkoLRRdq3nYMMN53TLCa3VaL26q4rXZuq9uS9PrhrPcpf70tAFuAuJ09gPCv9hOyfwDZdrfi |
CitedBy_id | crossref_primary_10_1016_j_matdes_2022_111458 crossref_primary_10_3390_cryst12101437 crossref_primary_10_1016_j_jmapro_2022_04_037 crossref_primary_10_1016_j_matdes_2021_109976 crossref_primary_10_1080_17452759_2022_2125880 crossref_primary_10_3390_met11040626 crossref_primary_10_1016_j_msea_2023_145061 crossref_primary_10_1107_S1600576723005198 crossref_primary_10_1016_j_mtcomm_2024_109782 crossref_primary_10_1080_21663831_2021_1966537 crossref_primary_10_1016_j_matdes_2023_112540 crossref_primary_10_1007_s00170_021_08295_6 crossref_primary_10_1016_j_addma_2021_102139 crossref_primary_10_1016_j_addma_2023_103704 crossref_primary_10_1016_j_cossms_2021_100974 crossref_primary_10_1016_j_jmapro_2022_01_055 crossref_primary_10_2139_ssrn_4123789 crossref_primary_10_18273_revuin_v19n4_2020018 crossref_primary_10_3390_ma15041319 crossref_primary_10_1134_S1029959923060073 crossref_primary_10_1016_j_addma_2024_104187 crossref_primary_10_1007_s11661_021_06273_x crossref_primary_10_2351_7_0000464 crossref_primary_10_1016_j_jmrt_2024_04_198 crossref_primary_10_1016_j_jallcom_2020_155866 crossref_primary_10_1016_j_jallcom_2021_159329 crossref_primary_10_1007_s40964_024_00579_z crossref_primary_10_1016_j_jmapro_2022_12_053 crossref_primary_10_1016_j_matdes_2022_110790 crossref_primary_10_1038_s41467_023_38727_8 crossref_primary_10_1016_j_ijmachtools_2021_103743 crossref_primary_10_1016_j_jmapro_2022_05_028 crossref_primary_10_1007_s40964_021_00181_7 crossref_primary_10_1007_s10853_023_08445_z crossref_primary_10_1007_s11661_024_07396_7 crossref_primary_10_1016_j_addma_2022_102825 crossref_primary_10_1557_mrs_2020_275 crossref_primary_10_1007_s12540_023_01467_x crossref_primary_10_1016_j_matdes_2020_108987 crossref_primary_10_1177_09544089231191905 crossref_primary_10_1088_2053_1591_aca508 crossref_primary_10_1063_5_0080724 crossref_primary_10_1360_TB_2022_0439 crossref_primary_10_1016_j_pmatsci_2022_101049 crossref_primary_10_1016_j_actamat_2022_117876 crossref_primary_10_3390_su16031167 crossref_primary_10_1063_5_0077105 crossref_primary_10_1016_j_matdes_2023_111994 crossref_primary_10_1038_s43246_023_00404_0 crossref_primary_10_1016_j_addma_2023_103882 crossref_primary_10_1016_j_msea_2022_143860 crossref_primary_10_1103_RevModPhys_94_045002 crossref_primary_10_1007_s11837_020_04469_x crossref_primary_10_1016_j_jmapro_2023_03_041 crossref_primary_10_1063_5_0081186 crossref_primary_10_1007_s40516_024_00254_9 crossref_primary_10_1016_j_addma_2022_102619 crossref_primary_10_3390_ma14092374 crossref_primary_10_1007_s00170_022_10671_9 crossref_primary_10_3788_CJL240440 crossref_primary_10_1007_s11661_020_06009_3 crossref_primary_10_1007_s12008_022_01152_0 crossref_primary_10_1016_j_actamat_2023_118713 crossref_primary_10_1016_j_optlastec_2024_110571 crossref_primary_10_1016_j_actamat_2021_116777 crossref_primary_10_1002_adom_202303194 crossref_primary_10_1080_00325899_2022_2134083 crossref_primary_10_1016_j_jmrt_2023_11_146 crossref_primary_10_3390_met12030420 |
Cites_doi | 10.1016/S0924-0136(02)00865-8 10.1016/S1005-0302(12)60016-4 10.1063/1.5017236 10.1016/S0921-5093(97)00802-2 10.1016/j.actamat.2010.02.004 10.1016/j.jmbbm.2008.05.004 10.1016/j.matdes.2017.09.044 10.1002/adem.200310095 10.1007/978-3-319-58205-4 10.1016/j.addma.2014.12.001 10.1016/j.matlet.2008.10.065 10.1117/12.2263863 10.1016/j.cirp.2013.03.032 10.1016/J.JMATPROTEC.2012.11.014 10.1038/s41598-017-04237-z 10.1016/j.actamat.2017.09.051 10.1557/jmr.2014.166 10.1002/0471434027 10.1179/1743284714Y.0000000728 10.1038/s41598-017-03761-2 10.1038/s41598-017-16760-0 10.1016/j.matdes.2016.01.099 10.1016/j.actamat.2016.05.017 10.31399/asm.tb.ttg2.9781627082693 10.1016/j.actamat.2015.06.004 10.1016/j.msea.2004.08.084 10.1063/1.1737476 10.1007/s11661-002-0204-4 10.1038/193261b0 10.1016/j.matdes.2018.08.004 10.1002/3527602119.ch13 10.1016/j.phpro.2010.08.080 10.1016/j.addma.2014.08.001 10.1016/j.jallcom.2012.07.022 10.1016/j.msea.2016.04.012 10.1016/j.actamat.2016.02.014 10.1007/s11837-005-0029-x 10.1088/0965-0393/20/5/055006 10.1016/j.addma.2017.06.007 10.1063/1.4935926 10.1016/j.apmt.2017.08.006 10.1108/13552540710776142 10.1007/s11665-014-0958-z 10.1063/1.4937809 10.1016/j.actamat.2014.11.028 10.1016/j.matdes.2016.06.117 10.1007/s11837-001-0068-x 10.1088/1757-899X/328/1/012005 10.1016/j.actamat.2016.07.019 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | SLAC National Accelerator Lab., Menlo Park, CA (United States) Ames Laboratory (AMES), Ames, IA (United States) Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) |
CorporateAuthor_xml | – name: SLAC National Accelerator Lab., Menlo Park, CA (United States) – name: Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) – name: Ames Laboratory (AMES), Ames, IA (United States) |
DBID | C6C NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI Q9U 7X8 OIOZB OTOTI 5PM |
DOI | 10.1038/s41598-020-58598-z |
DatabaseName | Springer Open Access PubMed CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Science Journals Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Open Access url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 1981 |
ExternalDocumentID | 1600506 10_1038_s41598_020_58598_z 32029753 |
Genre | Journal Article |
GrantInformation_xml | – fundername: DOE | SC | Basic Energy Sciences (BES) grantid: DE-AC02-76SF00515 funderid: https://doi.org/10.13039/100006151 – fundername: DOE | Office of Science (SC) grantid: DE-AC02-76SF00515; DE-AC02-76SF00515; DE-AC02-76SF00515 funderid: https://doi.org/10.13039/100006132 – fundername: DOE | National Nuclear Security Administration (NNSA) grantid: DE-AC52-07NA27344; DE-AC52-07NA27344; DE-AC52-07NA27344 funderid: https://doi.org/10.13039/100006168 – fundername: DOE | Office of Energy Efficiency and Renewable Energy (Office of Energy Efficiency & Renewable Energy) – fundername: DOE | Office of Energy Efficiency and Renewable Energy (Office of Energy Efficiency & Renewable Energy) grantid: 32038; 32037; 32037; 32035; DEAC02-07CH11358; 32037; 32038; DEAC02-07CH11358; 32038 funderid: https://doi.org/10.13039/100006134 – fundername: DOE | SC | Basic Energy Sciences (BES) grantid: DE-AC02-76SF00515 – fundername: DOE | Office of Energy Efficiency and Renewable Energy (Office of Energy Efficiency & Renewable Energy) grantid: 32035 – fundername: DOE | Office of Science (SC) grantid: DE-AC02-76SF00515 – fundername: DOE | Office of Energy Efficiency and Renewable Energy (Office of Energy Efficiency & Renewable Energy) grantid: 32037 – fundername: DOE | Office of Energy Efficiency and Renewable Energy (Office of Energy Efficiency & Renewable Energy) grantid: 32038 – fundername: DOE | Office of Energy Efficiency and Renewable Energy (Office of Energy Efficiency & Renewable Energy) grantid: DEAC02-07CH11358 – fundername: DOE | National Nuclear Security Administration (NNSA) grantid: DE-AC52-07NA27344 – fundername: ; – fundername: ; grantid: DE-AC02-76SF00515 – fundername: ; grantid: 32038; 32037; 32037; 32035; DEAC02-07CH11358; 32037; 32038; DEAC02-07CH11358; 32038 – fundername: ; grantid: DE-AC52-07NA27344; DE-AC52-07NA27344; DE-AC52-07NA27344 – fundername: ; grantid: DE-AC02-76SF00515; DE-AC02-76SF00515; DE-AC02-76SF00515 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP NPM AAYXX AFPKN CITATION 7XB 8FK K9. PQEST PQUKI Q9U 7X8 OIOZB OTOTI U1R 5PM |
ID | FETCH-LOGICAL-c501t-2729cd6011ae4a81e70e1054938c5367ec8fb38cdb899c1e3a77169f9d6b77263 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Sep 17 21:25:49 EDT 2024 Fri May 19 01:13:16 EDT 2023 Fri Oct 25 15:12:02 EDT 2024 Sat Nov 09 16:36:45 EST 2024 Fri Aug 23 00:44:56 EDT 2024 Wed Oct 16 00:45:00 EDT 2024 Fri Oct 11 20:49:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-2729cd6011ae4a81e70e1054938c5367ec8fb38cdb899c1e3a77169f9d6b77263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) AC02-07CH11358; AC02-76SF00515; AC52-07NA27344 IS-J-10156; LLNL-JRNL-758994 USDOE National Nuclear Security Administration (NNSA) |
ORCID | 0000-0002-7513-1166 0000-0003-1387-1510 0000-0002-9097-6730 0000-0001-6856-3203 0000000275131166 0000000313871510 0000000168563203 0000000290976730 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005153/ |
PMID | 32029753 |
PQID | 2352043822 |
PQPubID | 2041939 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7005153 osti_scitechconnect_1600506 proquest_miscellaneous_2352635430 proquest_journals_2352043822 crossref_primary_10_1038_s41598_020_58598_z pubmed_primary_32029753 springer_journals_10_1038_s41598_020_58598_z |
PublicationCentury | 2000 |
PublicationDate | 2020-02-06 |
PublicationDateYYYYMMDD | 2020-02-06 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | HerzogDSeydaVWyciskEEmmelmannCAdditive manufacturing of metalsActa Materialia20161173713921:CAS:528:DC%2BC28Xht1SgsLbP10.1016/j.actamat.2016.07.019 FurumotoTUedaTAlkahariMRHosokawaAInvestigation of laser consolidation process for metal powder by two-color pyrometer and high-speed video cameraCIRP Annals - Manuf. Technol.20136222322610.1016/j.cirp.2013.03.032 Leyens, C. & Peters, M. Titanium and Titanium Alloys: Fundamentals and Applications (Wiley, 2006). QiuCOn the role of melt flow into the surface structure and porosity development during selective laser meltingActa Materialia20159672791:CAS:528:DC%2BC2MXht1GlurrF10.1016/j.actamat.2015.06.004 ThijsLVerhaegheFCraeghsTHumbeeckJVKruthJ-PA study of the microstructural evolution during selective laser melting of Ti–6Al–4VActa Materialia201058330333121:CAS:528:DC%2BC3cXkt1GqtL4%3D10.1016/j.actamat.2010.02.004 RivardJohn D. K.BlueCraig A.HarperDavid C.KiggansJim O.MenchhoferPaul A.MayotteJackie R.JacobsenLanceKogutDariuszThe thermomechanical processing of titanium and Ti-6Al-4V thin gage sheet and plateJOM2005571158611:CAS:528:DC%2BD2MXhtlSjsrzO10.1007/s11837-005-0029-x ElmerJWPalmerTABabuSSSpechtEDIn situ observations of lattice expansion and transformation rates of a and b phases in Ti-6Al-4VMater. Sci. Eng. A20053911041131:CAS:528:DC%2BD2MXkt1an10.1016/j.msea.2004.08.084 Zhao, C. et al. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci. Reports7, https://doi.org/10.1038/s41598-017-03761-2 (2017). YadroitsevIKrakhmalevPYadroitsavaIJohanssonSSmurovIEnergy input effect on morphology and microstructure of selective laser melting single track from metallic powderJ. Mater. Process. Technol.20132136066131:CAS:528:DC%2BC3sXhsVCqur4%3D10.1016/J.JMATPROTEC.2012.11.014 KhairallahSAAndersonATRubenchikAKingWELaser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zonesActa Materialia201610836451:CAS:528:DC%2BC28XjtVOgtbY%3D10.1016/j.actamat.2016.02.014 ElmerJWPalmerTABabuSSZhangWDebRoyTPhase transformation dynamics during welding of Ti-6Al-4VJ. Appl. Phys.200495832783392004JAP....95.8327E1:CAS:528:DC%2BD2cXks1eitr4%3D10.1063/1.1737476 XuWAdditive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via In situ martensite decompositionActa Materialia20158574841:CAS:528:DC%2BC2cXitFKlurfN10.1016/j.actamat.2014.11.028 Effenberg, G. & Ilyenko, S. (eds.). Al-Ti-V (Aluminium - Titanium - Vanadium), 1–28 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2006). Milewski, J. Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry. Springer Series in Materials Science (Springer International Publishing, 2017). PavlovM.DoubenskaiaM.SmurovI.Pyrometric analysis of thermal processes in SLM technologyPhysics Procedia201055235312010PhPro...5..523P10.1016/j.phpro.2010.08.080 AboulkhairNesma T.EverittNicola M.AshcroftIanTuckChrisReducing porosity in AlSi10Mg parts processed by selective laser meltingAdditive Manufacturing20141-4778610.1016/j.addma.2014.08.001 VandenbrouckeBKruthJSelective laser melting of biocompatible metals for rapid manufacturing of medical partsRapid Prototyp. J.20071319620310.1108/13552540710776142 AzamFIRaniAMAAltafKRaoTZaharinHAAn in-depth review on direct additive manufacturing of metalsIOP Conf. Series: Mater. Sci. Eng.201832801200510.1088/1757-899X/328/1/012005 FrazierWilliam E.Metal Additive Manufacturing: A ReviewJournal of Materials Engineering and Performance2014236191719282014JMEP...23.1917F1:CAS:528:DC%2BC2cXlslSgs74%3D10.1007/s11665-014-0958-z PetersMKumpfertJWardCLeyensCTitanium alloys for aerospace applicationsAdv. Eng. Mater.200354194271:CAS:528:DC%2BD3sXmsV2ksro%3D10.1002/adem.200310095 TrappJRubenchikAMGussGMatthewsMJIn situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturingAppl. Mater. Today2017934134910.1016/j.apmt.2017.08.006 Scipioni BertoliUGussGWuSMatthewsMJSchoenungJMIn-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturingMater. Des.20171353853961:CAS:528:DC%2BC2sXhsFyltrfF10.1016/j.matdes.2017.09.044 BidarePBitharasIWardRMAttallahMMMooreAJFluid and particle dynamics in laser powder bed fusionActa Materialia20181421071201:CAS:528:DC%2BC2sXhs1Skur7N10.1016/j.actamat.2017.09.051 Int., A. Standard Terminology for Additive Manufacturing – General Principles – Terminology. I (ISO/ASTM52900-15, ASTM International, 2015). CaltaNPAn instrument for In situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes. RevSci. Instruments2018890551012018RScI...89e5101C1:CAS:528:DC%2BC1cXovVCls7g%3D10.1063/1.5017236 KingWELaser powder bed fusion additive manufacturing of metals; physics, computational, and materials challengesAppl. Phys. Rev.201520413042015ApPRv...2d1304K1:CAS:528:DC%2BC28XpsFCr10.1063/1.4937809 BidarePMaierRRBeckRJShephardJDMooreAJAn open-architecture metal powder bed fusion system for in-situ process measurementsAddit. Manuf.20171617718510.1016/j.addma.2017.06.007 Donachie, M. Titanium: A Technical Guide, 2nd Edition (ASM International, 2000). Fox, J. C., Lane, B. M. & Yeung, H. Measurement of process dynamics through coaxially aligned high speed near-infrared imaging in laser powder bed fusion additive manufacturing. vol. 10214, 1021407, https://doi.org/10.1117/12.2263863 (International Society for Optics and Photonics, 2017). YamadaSSatoHSome physical properties of glassy carbonNat.19621932612621962Natur.193..261Y1:CAS:528:DyaF38XktF2qsbk%3D10.1038/193261b0 RodriguezEApproximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using In situ infrared thermographyAddit. Manuf.2015531391:CAS:528:DC%2BC2sXmvVGkur4%3D10.1016/j.addma.2014.12.001 LiXWangCZhangWLiYFabrication and characterization of porous ti6al4v parts for biomedical applications using electron beam melting processMater. Lett.2009634034051:CAS:528:DC%2BD1cXhsFajtrrK10.1016/j.matlet.2008.10.065 YapC. Y.ChuaC. K.DongZ. L.LiuZ. H.ZhangD. Q.LohL. E.SingS. L.Review of selective laser melting: Materials and applicationsApplied Physics Reviews2015240411012015ApPRv...2d1101Y10.1063/1.4935926 KenelCIn situ investigation of phase transformations in Ti-6Al-4V under additive manufacturing conditions combining laser melting and high-speed micro-X-ray diffractionSci. Reports20177163582017NatSR...716358K1:CAS:528:DC%2BC1cXhsFWnsL7M10.1038/s41598-017-16760-0 MulayRPMooreJAFlorandoJNBartonNRKumarMMicrostructure and mechanical properties of Ti-6Al-4V: Mill-annealed versus direct metal laser melted alloysMater. Sci. Eng. A201666643471:CAS:528:DC%2BC28XmsFCms7w%3D10.1016/j.msea.2016.04.012 SimonelliMTseYYTuckCThe formation of a + b microstructure in as-fabricated selective laser melting of Ti-6Al-4VJ. Mater. Res.201429202820352014JMatR..29.2028S1:CAS:528:DC%2BC2cXhsFyjur3M10.1557/jmr.2014.166 AhmedTRackHPhase transformations during cooling in a+b titanium alloysMater. Sci. Eng. A199824320621110.1016/S0921-5093(97)00802-2 KobrynPASemiatinSLThe laser additive manufacture of Ti-6Al-4VJOM20015340421:CAS:528:DC%2BD3MXntlais70%3D10.1007/s11837-001-0068-x MatthewsMJDenudation of metal powder layers in laser powder bed fusion processesActa Materialia201611433421:CAS:528:DC%2BC28XpsVyntLk%3D10.1016/j.actamat.2016.05.017 ElmerJPalmerTBabuSSpechtEIn situ observations of lattice expansion and transformation rates of a and b phases in ti–6al–4vMater. Sci. Eng. A20053911041131:CAS:528:DC%2BD2MXkt1an10.1016/j.msea.2004.08.084 YangJFormation and control of martensite in ti-6al-4v alloy produced by selective laser meltingMater. & Des.20161083083181:CAS:528:DC%2BC28XhtFCisrjI10.1016/j.matdes.2016.06.117 MurrL.E.QuinonesS.A.GaytanS.M.LopezM.I.RodelaA.MartinezE.Y.HernandezD.H.MartinezE.MedinaF.WickerR.B.Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applicationsJournal of the Mechanical Behavior of Biomedical Materials20092120321:STN:280:DC%2BD1MrgvFegtg%3D%3D10.1016/j.jmbbm.2008.05.004 KatzarovIMalinovSShaWFinite element modeling of the morphology of b to a phase transformation in Ti-6Al-4V alloyMetall. Mater. Transactions A200233102710402002MMTA...33.1027K10.1007/s11661-002-0204-4 LySRubenchikAMKhairallahSAGussGMatthewsMJMetal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturingSci. Reports2017740852017NatSR...7.4085L1:CAS:528:DC%2BC1cXhtlaisr%2FJ10.1038/s41598-017-04237-z MurgauCCPedersonRLindgrenLEA model for Ti6Al4V microstructure evolution for arbitrary temperature changesModel. Simul. Mater. Sci. Eng.2012200550062012MSMSE..20e5006M1:CAS:528:DC%2BC38XhsFKnur3F10.1088/0965-0393/20/5/055006 VoisinTDefects-dictated tensile properties of selective laser melted Ti-6Al-4VMater. Des.20181581131261:CAS:528:DC%2BC1cXhsFGqsrrJ10.1016/j.matdes.2018.08.004 KingWOverview of modelling and simulation of metal powder bed fusion process at lawrence livermore national laboratoryMater. Sci. Technol.2015319579681:CAS:528:DC%2BC2cXitVyhtr3N10.1179/1743284714Y.0000000728 KobrynPASemiatinSLMicrostructure and texture evolution during solidification processing of Ti-6A1-4VJ. Mater. Process. Technol.20031353303391:CAS:528:DC%2BD3sXhvV2msbo%3D10.1016/S0924-0136(02)00865-8 Wohlers, T., Associates, W. & Caffrey, T. Wohlers Report 2014: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report (Wohlers Associates, 2014). Lutjering, G. & Williams, J. C. Titanium, Second Edition. Springer (Springer International Publishing, 2007). Kou, S. Welding Metallurgy, vol. 822 (2003). MurrLawrence E.GaytanSara M.RamirezDiana A.MartinezEdwinHernandezJenniferAmatoKrista N.ShindoPatrick W.MedinaFrancisco R.WickerRyan B.Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting TechnologiesJournal of Mat NP Calta (58598_CR49) 2018; 89 J Elmer (58598_CR52) 2005; 391 Nesma T. Aboulkhair (58598_CR31) 2014; 1-4 W Xu (58598_CR55) 2015; 85 B Vandenbroucke (58598_CR5) 2007; 13 U Scipioni Bertoli (58598_CR38) 2017; 135 58598_CR26 58598_CR25 S Yamada (58598_CR54) 1962; 193 C Qiu (58598_CR32) 2015; 96 T Ahmed (58598_CR29) 1998; 243 JW Elmer (58598_CR48) 2005; 391 X Li (58598_CR22) 2009; 63 MJ Matthews (58598_CR37) 2016; 114 M Simonelli (58598_CR50) 2014; 29 E Rodriguez (58598_CR45) 2015; 5 58598_CR24 58598_CR23 John D. K. Rivard (58598_CR34) 2005; 57 D Herzog (58598_CR14) 2016; 117 L Thijs (58598_CR6) 2010; 58 JW Elmer (58598_CR16) 2004; 95 SA Khairallah (58598_CR2) 2016; 108 C. Y. Yap (58598_CR3) 2015; 2 B Vrancken (58598_CR17) 2012; 541 58598_CR15 M. Pavlov (58598_CR42) 2010; 5 William E. Frazier (58598_CR12) 2014; 23 CC Murgau (58598_CR28) 2012; 20 Lawrence E. Murr (58598_CR10) 2012; 28 M Peters (58598_CR21) 2003; 5 T Voisin (58598_CR20) 2018; 158 P Bidare (58598_CR41) 2017; 16 W King (58598_CR30) 2015; 31 PA Kobryn (58598_CR33) 2003; 135 L.E. Murr (58598_CR9) 2009; 2 FI Azam (58598_CR13) 2018; 328 J Trapp (58598_CR39) 2017; 9 PA Kobryn (58598_CR35) 2001; 53 S Ly (58598_CR19) 2017; 7 58598_CR7 C Kenel (58598_CR47) 2017; 7 58598_CR8 Sarah K. Everton (58598_CR11) 2016; 95 58598_CR1 58598_CR46 58598_CR43 58598_CR36 J Yang (58598_CR51) 2016; 108 I Katzarov (58598_CR27) 2002; 33 T Furumoto (58598_CR44) 2013; 62 WE King (58598_CR4) 2015; 2 RP Mulay (58598_CR18) 2016; 666 P Bidare (58598_CR40) 2018; 142 I Yadroitsev (58598_CR53) 2013; 213 |
References_xml | – volume: 135 start-page: 330 year: 2003 ident: 58598_CR33 publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(02)00865-8 contributor: fullname: PA Kobryn – volume: 28 start-page: 1 issue: 1 year: 2012 ident: 58598_CR10 publication-title: Journal of Materials Science & Technology doi: 10.1016/S1005-0302(12)60016-4 contributor: fullname: Lawrence E. Murr – volume: 89 start-page: 055101 year: 2018 ident: 58598_CR49 publication-title: Sci. Instruments doi: 10.1063/1.5017236 contributor: fullname: NP Calta – volume: 243 start-page: 206 year: 1998 ident: 58598_CR29 publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(97)00802-2 contributor: fullname: T Ahmed – volume: 58 start-page: 3303 year: 2010 ident: 58598_CR6 publication-title: Acta Materialia doi: 10.1016/j.actamat.2010.02.004 contributor: fullname: L Thijs – volume: 2 start-page: 20 issue: 1 year: 2009 ident: 58598_CR9 publication-title: Journal of the Mechanical Behavior of Biomedical Materials doi: 10.1016/j.jmbbm.2008.05.004 contributor: fullname: L.E. Murr – ident: 58598_CR25 – volume: 135 start-page: 385 year: 2017 ident: 58598_CR38 publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.09.044 contributor: fullname: U Scipioni Bertoli – volume: 5 start-page: 419 year: 2003 ident: 58598_CR21 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200310095 contributor: fullname: M Peters – ident: 58598_CR7 doi: 10.1007/978-3-319-58205-4 – volume: 5 start-page: 31 year: 2015 ident: 58598_CR45 publication-title: Addit. Manuf. doi: 10.1016/j.addma.2014.12.001 contributor: fullname: E Rodriguez – volume: 63 start-page: 403 year: 2009 ident: 58598_CR22 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2008.10.065 contributor: fullname: X Li – ident: 58598_CR43 doi: 10.1117/12.2263863 – volume: 62 start-page: 223 year: 2013 ident: 58598_CR44 publication-title: CIRP Annals - Manuf. Technol. doi: 10.1016/j.cirp.2013.03.032 contributor: fullname: T Furumoto – volume: 213 start-page: 606 year: 2013 ident: 58598_CR53 publication-title: J. Mater. Process. Technol. doi: 10.1016/J.JMATPROTEC.2012.11.014 contributor: fullname: I Yadroitsev – volume: 7 start-page: 4085 year: 2017 ident: 58598_CR19 publication-title: Sci. Reports doi: 10.1038/s41598-017-04237-z contributor: fullname: S Ly – volume: 142 start-page: 107 year: 2018 ident: 58598_CR40 publication-title: Acta Materialia doi: 10.1016/j.actamat.2017.09.051 contributor: fullname: P Bidare – volume: 29 start-page: 2028 year: 2014 ident: 58598_CR50 publication-title: J. Mater. Res. doi: 10.1557/jmr.2014.166 contributor: fullname: M Simonelli – ident: 58598_CR46 doi: 10.1002/0471434027 – volume: 31 start-page: 957 year: 2015 ident: 58598_CR30 publication-title: Mater. Sci. Technol. doi: 10.1179/1743284714Y.0000000728 contributor: fullname: W King – ident: 58598_CR15 doi: 10.1038/s41598-017-03761-2 – volume: 7 start-page: 16358 year: 2017 ident: 58598_CR47 publication-title: Sci. Reports doi: 10.1038/s41598-017-16760-0 contributor: fullname: C Kenel – volume: 95 start-page: 431 year: 2016 ident: 58598_CR11 publication-title: Materials & Design doi: 10.1016/j.matdes.2016.01.099 contributor: fullname: Sarah K. Everton – volume: 114 start-page: 33 year: 2016 ident: 58598_CR37 publication-title: Acta Materialia doi: 10.1016/j.actamat.2016.05.017 contributor: fullname: MJ Matthews – ident: 58598_CR24 doi: 10.31399/asm.tb.ttg2.9781627082693 – volume: 96 start-page: 72 year: 2015 ident: 58598_CR32 publication-title: Acta Materialia doi: 10.1016/j.actamat.2015.06.004 contributor: fullname: C Qiu – volume: 391 start-page: 104 year: 2005 ident: 58598_CR48 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2004.08.084 contributor: fullname: JW Elmer – ident: 58598_CR36 – volume: 95 start-page: 8327 year: 2004 ident: 58598_CR16 publication-title: J. Appl. Phys. doi: 10.1063/1.1737476 contributor: fullname: JW Elmer – volume: 33 start-page: 1027 year: 2002 ident: 58598_CR27 publication-title: Metall. Mater. Transactions A doi: 10.1007/s11661-002-0204-4 contributor: fullname: I Katzarov – volume: 193 start-page: 261 year: 1962 ident: 58598_CR54 publication-title: Nat. doi: 10.1038/193261b0 contributor: fullname: S Yamada – volume: 158 start-page: 113 year: 2018 ident: 58598_CR20 publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.08.004 contributor: fullname: T Voisin – ident: 58598_CR26 doi: 10.1002/3527602119.ch13 – volume: 5 start-page: 523 year: 2010 ident: 58598_CR42 publication-title: Physics Procedia doi: 10.1016/j.phpro.2010.08.080 contributor: fullname: M. Pavlov – volume: 1-4 start-page: 77 year: 2014 ident: 58598_CR31 publication-title: Additive Manufacturing doi: 10.1016/j.addma.2014.08.001 contributor: fullname: Nesma T. Aboulkhair – volume: 391 start-page: 104 year: 2005 ident: 58598_CR52 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2004.08.084 contributor: fullname: J Elmer – volume: 541 start-page: 177 year: 2012 ident: 58598_CR17 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2012.07.022 contributor: fullname: B Vrancken – volume: 666 start-page: 43 year: 2016 ident: 58598_CR18 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.04.012 contributor: fullname: RP Mulay – ident: 58598_CR23 – volume: 108 start-page: 36 year: 2016 ident: 58598_CR2 publication-title: Acta Materialia doi: 10.1016/j.actamat.2016.02.014 contributor: fullname: SA Khairallah – volume: 57 start-page: 58 issue: 11 year: 2005 ident: 58598_CR34 publication-title: JOM doi: 10.1007/s11837-005-0029-x contributor: fullname: John D. K. Rivard – volume: 20 start-page: 055006 year: 2012 ident: 58598_CR28 publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/20/5/055006 contributor: fullname: CC Murgau – volume: 16 start-page: 177 year: 2017 ident: 58598_CR41 publication-title: Addit. Manuf. doi: 10.1016/j.addma.2017.06.007 contributor: fullname: P Bidare – volume: 2 start-page: 041101 issue: 4 year: 2015 ident: 58598_CR3 publication-title: Applied Physics Reviews doi: 10.1063/1.4935926 contributor: fullname: C. Y. Yap – volume: 9 start-page: 341 year: 2017 ident: 58598_CR39 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2017.08.006 contributor: fullname: J Trapp – ident: 58598_CR1 – volume: 13 start-page: 196 year: 2007 ident: 58598_CR5 publication-title: Rapid Prototyp. J. doi: 10.1108/13552540710776142 contributor: fullname: B Vandenbroucke – volume: 23 start-page: 1917 issue: 6 year: 2014 ident: 58598_CR12 publication-title: Journal of Materials Engineering and Performance doi: 10.1007/s11665-014-0958-z contributor: fullname: William E. Frazier – volume: 2 start-page: 041304 year: 2015 ident: 58598_CR4 publication-title: Appl. Phys. Rev. doi: 10.1063/1.4937809 contributor: fullname: WE King – ident: 58598_CR8 – volume: 85 start-page: 74 year: 2015 ident: 58598_CR55 publication-title: Acta Materialia doi: 10.1016/j.actamat.2014.11.028 contributor: fullname: W Xu – volume: 108 start-page: 308 year: 2016 ident: 58598_CR51 publication-title: Mater. & Des. doi: 10.1016/j.matdes.2016.06.117 contributor: fullname: J Yang – volume: 53 start-page: 40 year: 2001 ident: 58598_CR35 publication-title: JOM doi: 10.1007/s11837-001-0068-x contributor: fullname: PA Kobryn – volume: 328 start-page: 012005 year: 2018 ident: 58598_CR13 publication-title: IOP Conf. Series: Mater. Sci. Eng. doi: 10.1088/1757-899X/328/1/012005 contributor: fullname: FI Azam – volume: 117 start-page: 371 year: 2016 ident: 58598_CR14 publication-title: Acta Materialia doi: 10.1016/j.actamat.2016.07.019 contributor: fullname: D Herzog |
SSID | ssj0000529419 |
Score | 2.5770624 |
Snippet | Laser powder bed fusion (LPBF) is a method of additive manufacturing characterized by the rapid scanning of a high powered laser over a thin bed of metallic... Abstract Laser powder bed fusion (LPBF) is a method of additive manufacturing characterized by the rapid scanning of a high powered laser over a thin bed of... |
SourceID | pubmedcentral osti proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1981 |
SubjectTerms | 639/301/1023/1026 639/301/930/12 Additive manufacturing Characterization and analytical techniques Contraction Cooling Humanities and Social Sciences Lasers MATERIALS SCIENCE Metals and alloys multidisciplinary Science Science (multidisciplinary) Titanium Titanium alloys X-ray diffraction |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7RRZV6qUqfAYpcqbc2IokTJ3tCgECoYlG1KhI3y49J6SWh7O4Bfn1n7OyibQuXyJIdJfaMPd94XgCfsarQyzZLbYsyLUkIpDbzReqUaVXe2Eq1fN8xuVBnl-W3q-pquHCbDW6VyzMxHNS-d3xHvl8QUghWq-Lg5nfKVaPYujqU0HgGmwVpCtkINo9OLr5PV7csbMcq8_EQLZPJZn9GEoujykhrIqRMrfs1iTTqaWf9D23-6zT5l-U0CKTTV_ByQJLiMJJ-Czawew3PY23JuzeAfCQsblvjUBz3XJrnp5gysBSm82LCfngxdyzn3RDT6CqLIoYtinMSbrfiiJ40Fuf8He-Dm5GYmG7B4RBh4Fu4PD35cXyWDjUVUldl-TwtCEw7T1pYbrA0TY51hgSxyrFsXCVVja5pLbW9JUXM5ShNzfl02rFXloC4ku9g1PUdfgBh0NayyYxqXFlaU5gxwTUjnaoJNWHtE_iyXFd9E1Nn6GDylo2OVNBEBR2ooO8T2OGl1yT4OXutYzcfN9e54gw1KoHdJUX0sMlm-oElEvi06qbtwTYP02G_iGMIU5UyS-B9JODqZ7h0PMcVJ1CvkXY1gFNvr_d0v65DCu461MahN78umeDhtx6f4_bTs9iBFwXzJfuEq10YERPgR4I8c7s38PUf1ZAAtg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access(OpenAccess) dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9QwDLbGISReJsbPsoGCxBsU2iZN2weE2MQ0IY6HiZP2FiWpC5OmHrvdSWx_PXbSHjo4eKkiNVGb2Kk_N_ZngJdYltjKLktdhzJVZARSl7VF6rXtdF67Unf8v2P6RZ_M1Kez8mwHxnJHwwJebXXtuJ7UbHHx5ufl9Xva8O9iynj99oqMECeKkSNE4JdaN7fgdqHIU-dQvgHuR67volF5M-TObB-6YZ8mc9pn27Dn3yGUf5yjBvN0fA92B1wpPkRF2IMd7O_DnVhp8voBIH8gVovOehRHcy7U802cMswUtm_FlKPyIpMss3CI0xg4iyImMYrPZOoW4pCu1BeX_Jy2DUFHYmr7FSdHhI4PYXb88evRSTpUWEh9meXLtCBo7VvyyXKLytY5VhkS4FKNrH0pdYW-7hy1W0dumc9R2orZdbqm1Y5guZaPYNLPe3wCwqKrZJ1ZXXulnC1sQ-DNSq8rwlBYtQm8GtfV_IhEGiYcgMvaRCkYkoIJUjA3Cezz0huCAcxl6znoxy9NrpmvRidwMErEjBpjCoKS4VizSODF-jZtFj4BsT3OV7EPISwlswQeRwGuX4YLyXOWcQLVhmjXHZiIe_NOf_49EHJXoVIOjXw9KsHv1_r3HJ_-fxb7cLdgveQIcX0AE1ICfEYAaOmeB63-BZwuAuk priority: 102 providerName: Scholars Portal – databaseName: Springer Open Access dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BIiQuFeXRpt0iI3GDiCROHO8RVlQVYjlUVOrN8mMCvWSr7u6h--s7Y2cXLSwHLpElj5XEY2s-e2a-AXiHTYNBdkXuOpR5TUYgd0Wocq9sp0rtGtXxfcfsu7q4qr9eN9cDTQ7nwuz476X-uCADw0lgdMghYEut9WN4QjZYc_jWVE239ynssarLyZAXs3_oju0ZzWkP7cOVf4dH_uEjjabn_DkcDJhRfEpKPoRH2L-Ap6mK5P1LQN78q7vOehTTORfh-SkuGUIK2wcx44i7xBLLDBviMgXFokgJiuIbmbE78ZmeJItLfk8IMaBIzGy_4sSHKPgKrs6__Jhe5EP1hNw3RbnMK4LNPtB5q7RYW11iWyCBqXoitW-katHrzlE7ODpy-RKlbZk5p5sE5QhyK_kaRv28x2MQFl0rdWGV9nXtbGUnBMys9KolfIRtyOD9Zl7NbSLJMNG5LbVJWjCkBRO1YNYZnPLUGzLxzFPrOaDHL02pmItGZTDeaMQM22lhKoKJ0WVZZfB2200bgb0btsf5KskQeqplkcFRUuD2Y7hIPGcQZ9DuqHYrwCTbuz39za9Itt3GKjg08sNmEfz-rH__48n_iZ_Cs4rXKUeDqzGMaFHgGYGdpXsTV_kDEw34-Q priority: 102 providerName: Springer Nature |
Title | Subsurface Cooling Rates and Microstructural Response during Laser Based Metal Additive Manufacturing |
URI | https://link.springer.com/article/10.1038/s41598-020-58598-z https://www.ncbi.nlm.nih.gov/pubmed/32029753 https://www.proquest.com/docview/2352043822 https://search.proquest.com/docview/2352635430 https://www.osti.gov/servlets/purl/1600506 https://pubmed.ncbi.nlm.nih.gov/PMC7005153 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21i0C9IL4JLSsjcYN0kzixkyONWlWIVNWKSnuzbMeBSjRbtbsH-uuZsZOF5ePCJcoqluJkZnae4zdvAN66onAt75LYdI7HOSaB2CRtFluhO5GWphAdfe9ozsTpRf5xUSx2oBhrYTxp35rLw_7b1WF_-dVzK6-v7Gzkic3Om1r6ziR8tgu76KC_LNGDoHdW5Wk1FMgkvJzdYpKiQjJcKCE4xrO7PXhAfcOpqHQrH02WGFd_w5p_UiZ_2zf16ejkETwccCT7EOb7GHZc_wTuh86S35-Coz-E9U2nrWP1khrzfGFzgpVM9y1riIUXlGNJdYPNA1HWsVC0yD5harthR3jEsW5F92lbTzJije7XVAzhBz6Di5Pjz_VpPHRUiG2RpKs4QyhtW1yDpdrlukydTBwCrLzipS24kM6WncHz1uAyzKaOa0lqOl3VCoMwXPDnMOmXvXsJTDsjeZloUdo8NzrTFYI1za2QiJmcbCN4N75XdR2EM5Tf8OalCgZRaBDlDaLuItinV68w7ZN2rSWSj12pVJA-jYjgYLSIGkLsVmUIHf02ZhbBm81lDA7a8dC9W67DGERUOU8ieBEMuJnM6AARyC3TbgaQ8Pb2FfRHL8A9-F8E70cn-Dmtfz_jq_--0T7sZeS9RBYXBzBB_3CvEQutzBQjYCGncO_o-Ox8jr9qUU_9dwU8Nnk59bHxAxkUDXs |
link.rule.ids | 230,315,730,783,787,867,888,12068,21400,24330,27936,27937,31731,31732,33756,33757,41132,42201,43322,43817,51588,53804,53806,74073,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED5BJ8Re0PgdtoGReINoSZw46RNi06YCbYWqTdqb5diXwUuyre0D--u5s9NOZYyXKFIcJfadfZ99d98BfMCiQCebJK4blHFORiCuE5fFVplGpVVdqIbPOyZTNTrLv50X5_2B27wPq1ytiX6hdp3lM_KDjJCC91plny-vYq4axd7VvoTGQ9hiqirafG0dHk9_zNanLOzHytNhny2TyOpgThaLs8po10RIme5uNizSoKOZ9S-0eTdo8i_PqTdIJzvwpEeS4ksQ_VN4gO0zeBRqS_5-DshLwvK6MRbFUceleS7EjIGlMK0TE47DC9yxzLshZiFUFkVIWxRjMm7X4pCu1BYX_B3nfJiRmJh2yekQvuELODs5Pj0axX1NhdgWSbqIMwLT1tEuLDWYmyrFMkGCWPlQVraQqkRbNTXdu5o2YjZFaUrm02mGTtUExJV8CYO2a_E1CIN1KavEqMrmeW0yMyS4ZqRVJaEmLF0EH1fjqi8DdYb2Lm9Z6SAFTVLQXgr6JoJdHnpNhp_Zay2H-diFThUz1KgI9lYS0f0km-tblYjg_foxTQ_2eZgWu2VoQ5gql0kEr4IA1z_DpeM5rziCckO06wZMvb35pP3101Nwl742Dr35aaUEt791fx_f_L8X7-Dx6HQy1uOv0--7sJ2xjnJ8uNqDASkE7hP8WdRvex3_AyyIA7A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVqBeEO-GFjASN4g2iR07e0L0sSrQXVUrKvVmOfaE9pKU7u6B_npmkuxWC5RLZMmO8pix57PnmxmA95jnGGSVxGWFMlZkBOIyCVnstat0WpS5rvi8YzLVx2fq63l-3vOf5j2tcrUmtgt1aDyfkQ8zQgqt1yobVj0t4vRw_OnqZ8wVpNjT2pfTuA9bRmmZDGBr_2h6OlufuLBPS6WjPnImkcVwTtaLI8xoB0WomVo3G9Zp0NAs-xfy_JtA-YcXtTVO48fwqEeV4nOnBk_gHtZP4UFXZ_LXM0BeHpbXlfMoDhou0_NDzBhkClcHMWFOXpdHlnNwiFlHm0XRhTCKEzJ012KfrjQWF_ycEFrKkZi4esmhEe3A53A2Pvp-cBz39RVinyfpIs4IWPtAO7LUoXJFiiZBgltqJAufS23QF1VJ7VDSpsynKJ3h3DrVKOiSQLmWL2BQNzXugHBYGlkkThdeqdJlbkTQzUmvDSEoNCGCD6v_aq-6NBq2dX_LwnZSsCQF20rB3kSwy7_eEgjgTLaeKT9-YVPN2Wp0BHsridh-ws3trXpE8G7dTVOF_R-uxmbZjSF8pWQSwctOgOuX4TLyHGMcgdkQ7XoAp-He7KkvL9p03Katk0N3flwpwe1r3f2Nr_7_FW_hIam3Pfky_bYL2xmrKFPF9R4MSB_wNSGhRfmmV_HfSk4H3g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subsurface+Cooling+Rates+and+Microstructural+Response+during+Laser+Based+Metal+Additive+Manufacturing&rft.jtitle=Scientific+reports&rft.au=Thampy+Vivek&rft.au=Fong%2C+Anthony+Y&rft.au=Calta%2C+Nicholas+P&rft.au=Wang%2C+Jenny&rft.date=2020-02-06&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-58598-z&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |