Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning
Leaf mass per area (LMA) and leaf equivalent water thickness (EWT) are key leaf functional traits providing information for many applications including ecosystem functioning modeling and fire risk management. In this paper, we investigate two common conclusions generally made for LMA and EWT estimat...
Saved in:
Published in | Remote sensing of environment Vol. 231; p. 110959 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
15.09.2019
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Leaf mass per area (LMA) and leaf equivalent water thickness (EWT) are key leaf functional traits providing information for many applications including ecosystem functioning modeling and fire risk management. In this paper, we investigate two common conclusions generally made for LMA and EWT estimation based on leaf optical properties in the near-infrared (NIR) and shortwave infrared (SWIR) domains: (1) physically-based approaches estimate EWT accurately and LMA poorly, while (2) statistically-based and machine learning (ML) methods provide accurate estimates of both LMA and EWT.
Using six experimental datasets including broadleaf species samples of >150 species collected over tropical, temperate and boreal ecosystems, we compared the performances of a physically-based method (PROSPECT model inversion) and a ML algorithm (support vector machine regression, SVM) to infer EWT and LMA based on leaf reflectance and transmittance. We assessed several merit functions to invert PROSPECT based on iterative optimization and investigated the spectral domain to be used for optimal estimation of LMA and EWT. We also tested several strategies to select the training samples used by the SVM, in order to investigate the generalization ability of the derived regression models.
We evidenced that using spectral information from 1700 to 2400 nm leads to strong improvement in the estimation of EWT and LMA when performing a PROSPECT inversion, decreasing the LMA and EWT estimation errors by 55% and 33%, respectively.
The comparison of various sampling strategies for the training set used with SVM suggests that regression models show limited generalization ability, particularly when the regression model is applied on data fully independent from the training set. Finally, our results demonstrate that, when using an appropriate spectral domain, the PROSPECT inversion outperforms SVM trained with experimental data for the estimation of EWT and LMA. Thus we recommend that estimation of LMA and EWT based on leaf optical properties should be physically-based using inversion of reflectance and transmittance measurements on the 1700 to 2400 nm spectral range.
•Limitations of physical modeling for the estimation of LMA need to be understood.•Species samples of >150 boreal, temperate and tropical species are studied.•Performance of PROSPECT inversion is reduced when near infrared is used.•Machine learning trained with experimental data shows poor generalization ability.•LMA and EWT can be accurately estimated with PROSPECT inverted from 1700 to 2400 nm. |
---|---|
AbstractList | Leaf mass per area (LMA) and leaf equivalent water thickness (EWT) are key leaf functional traits providing information for many applications including ecosystem functioning modeling and fire risk management. In this paper, we investigate two common conclusions generally made for LMA and EWT estimation based on leaf optical properties in the near-infrared (NIR) and shortwave infrared (SWIR) domains: (1) physically-based approaches estimate EWT accurately and LMA poorly, while (2) statistically-based and machine learning (ML) methods provide accurate estimates of both LMA and EWT.Using six experimental datasets including broadleaf species samples of >150 species collected over tropical, temperate and boreal ecosystems, we compared the performances of a physically-based method (PROSPECT model inversion) and a ML algorithm (support vector machine regression, SVM) to infer EWT and LMA based on leaf reflectance and transmittance. We assessed several merit functions to invert PROSPECT based on iterative optimization and investigated the spectral domain to be used for optimal estimation of LMA and EWT. We also tested several strategies to select the training samples used by the SVM, in order to investigate the generalization ability of the derived regression models.We evidenced that using spectral information from 1700 to 2400 nm leads to strong improvement in the estimation of EWT and LMA when performing a PROSPECT inversion, decreasing the LMA and EWT estimation errors by 55% and 33%, respectively.The comparison of various sampling strategies for the training set used with SVM suggests that regression models show limited generalization ability, particularly when the regression model is applied on data fully independent from the training set. Finally, our results demonstrate that, when using an appropriate spectral domain, the PROSPECT inversion outperforms SVM trained with experimental data for the estimation of EWT and LMA. Thus we recommend that estimation of LMA and EWT based on leaf optical properties should be physically-based using inversion of reflectance and transmittance measurements on the 1700 to 2400 nm spectral range. Leaf mass per area (LMA) and leaf equivalent water thickness (EWT) are key leaf functional traits providing information for many applications including ecosystem functioning modeling and fire risk management. In this paper, we investigate two common conclusions generally made for LMA and EWT estimation based on leaf optical properties in the near-infrared (NIR) and shortwave infrared (SWIR) domains: (1) physically-based approaches estimate EWT accurately and LMA poorly, while (2) statistically-based and machine learning (ML) methods provide accurate estimates of both LMA and EWT. Using six experimental datasets including broadleaf species samples of >150 species collected over tropical, temperate and boreal ecosystems, we compared the performances of a physically-based method (PROSPECT model inversion) and a ML algorithm (support vector machine regression, SVM) to infer EWT and LMA based on leaf reflectance and transmittance. We assessed several merit functions to invert PROSPECT based on iterative optimization and investigated the spectral domain to be used for optimal estimation of LMA and EWT. We also tested several strategies to select the training samples used by the SVM, in order to investigate the generalization ability of the derived regression models. We evidenced that using spectral information from 1700 to 2400 nm leads to strong improvement in the estimation of EWT and LMA when performing a PROSPECT inversion, decreasing the LMA and EWT estimation errors by 55% and 33%, respectively. The comparison of various sampling strategies for the training set used with SVM suggests that regression models show limited generalization ability, particularly when the regression model is applied on data fully independent from the training set. Finally, our results demonstrate that, when using an appropriate spectral domain, the PROSPECT inversion outperforms SVM trained with experimental data for the estimation of EWT and LMA. Thus we recommend that estimation of LMA and EWT based on leaf optical properties should be physically-based using inversion of reflectance and transmittance measurements on the 1700 to 2400 nm spectral range. •Limitations of physical modeling for the estimation of LMA need to be understood.•Species samples of >150 boreal, temperate and tropical species are studied.•Performance of PROSPECT inversion is reduced when near infrared is used.•Machine learning trained with experimental data shows poor generalization ability.•LMA and EWT can be accurately estimated with PROSPECT inverted from 1700 to 2400 nm. |
ArticleNumber | 110959 |
Author | le Maire, G. Cheraiet, A. Lefèvre-Fonollosa, M.-J. Jay, S. de Boissieu, F. Bendoula, R. Oliveira, J.C. Solanki, T. Ponzoni, F.J. Féret, J.-B. Soudani, K. Berveiller, D. Nouvellon, Y. Hmimina, G. Proisy, C. Chave, J. Porcar-Castell, A. Gastellu-Etchegorry, J.-P. |
Author_xml | – sequence: 1 givenname: J.-B. orcidid: 0000-0002-0151-1334 surname: Féret fullname: Féret, J.-B. email: jean-baptiste.feret@teledetection.fr organization: TETIS, Irstea, AgroParisTech, CIRAD, CNRS, Université Montpellier, Montpellier, France – sequence: 2 givenname: G. surname: le Maire fullname: le Maire, G. organization: CIRAD, UMR ECO&SOLS, Montpellier, France – sequence: 3 givenname: S. surname: Jay fullname: Jay, S. organization: Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France – sequence: 4 givenname: D. surname: Berveiller fullname: Berveiller, D. organization: Ecologie Systematique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris Saclay, F-91400 Orsay, France – sequence: 5 givenname: R. surname: Bendoula fullname: Bendoula, R. organization: ITAP, Irstea, Montpellier SupAgro, Université Montpellier, Montpellier, France – sequence: 6 givenname: G. surname: Hmimina fullname: Hmimina, G. organization: Ecologie Systematique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris Saclay, F-91400 Orsay, France – sequence: 7 givenname: A. surname: Cheraiet fullname: Cheraiet, A. organization: Ecologie Systematique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris Saclay, F-91400 Orsay, France – sequence: 8 givenname: J.C. surname: Oliveira fullname: Oliveira, J.C. organization: School of Agricultural Engineering - FEAGRI, University of Campinas, São Paulo, Brazil – sequence: 9 givenname: F.J. surname: Ponzoni fullname: Ponzoni, F.J. organization: Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos 12227-010, Brazil – sequence: 10 givenname: T. surname: Solanki fullname: Solanki, T. organization: Optics of Photosynthesis Laboratory, Institute for Atmosphere and Earth System Research/ Forest Sciences, 00014, University of Helsinki, Finland – sequence: 11 givenname: F. surname: de Boissieu fullname: de Boissieu, F. organization: TETIS, Irstea, AgroParisTech, CIRAD, CNRS, Université Montpellier, Montpellier, France – sequence: 12 givenname: J. surname: Chave fullname: Chave, J. organization: Laboratoire Evolution et Diversité Biologique UMR 5174, CNRS, Université Paul Sabatier, Toulouse, France – sequence: 13 givenname: Y. surname: Nouvellon fullname: Nouvellon, Y. organization: CIRAD, UMR ECO&SOLS, Montpellier, France – sequence: 14 givenname: A. surname: Porcar-Castell fullname: Porcar-Castell, A. organization: Optics of Photosynthesis Laboratory, Institute for Atmosphere and Earth System Research/ Forest Sciences, 00014, University of Helsinki, Finland – sequence: 15 givenname: C. surname: Proisy fullname: Proisy, C. organization: AMAP, IRD, CIRAD, CNRS, INRA, Univ. Montpellier, Montpellier, France – sequence: 16 givenname: K. surname: Soudani fullname: Soudani, K. organization: Ecologie Systematique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris Saclay, F-91400 Orsay, France – sequence: 17 givenname: J.-P. surname: Gastellu-Etchegorry fullname: Gastellu-Etchegorry, J.-P. organization: Centre d'Etudes Spatiales de la Biosphère, Toulouse 31400, France – sequence: 18 givenname: M.-J. surname: Lefèvre-Fonollosa fullname: Lefèvre-Fonollosa, M.-J. organization: CNES, France |
BackLink | https://hal.inrae.fr/hal-02939160$$DView record in HAL |
BookMark | eNp9kcFu1DAQhiNUJLaFB-BmiQscEma8SZzAqaoKrbQSHOBsOc6E9ZLYqe1d1NfhSXGaikMPPVma-f7fM_OfZ2fWWcqytwgFAtYfD4UPVHDApkAsAPiLbIONaHMQUJ5lG4BtmZe8Eq-y8xAOAFg1AjfZ3-sQzaSisb_YSGpgkwqBzeSZ8qSYsj2ju6M5qZFsZH9UTJ24N_q3pcR1KlDPnF2lbo5Gq5HN3iWDaCh8Yt9dTEKTqovVaCYT02fOBuYGNu_vw4Nicj2NywgLNCm9N5YWT29T8XX2clBjoDeP70X288v1j6ubfPft6-3V5S7XFWDMseNNDQCK2qoedN0BdiUXnSBdil50GoUYoC6BoxY1pWZJgARNT6ppFG4vsg-r716NcvbpKv5eOmXkzeVOLjXg7bbFGk4L-35l0653RwpRTiZoGkdlyR2D5CjqbdmIWiT03RP04I7epk0k5y2HSoiaJwpXSnsXgqfh_wQIcklYHmRKWC4JS0SZEk4a8USjH68bvTLjs8rPq5LSPU-GvAzakNXUG086yt6ZZ9T_AF9NxEI |
CitedBy_id | crossref_primary_10_1214_21_AOAS1576 crossref_primary_10_3390_rs13081428 crossref_primary_10_1016_j_rse_2024_114559 crossref_primary_10_3389_fpls_2024_1470719 crossref_primary_10_1016_j_scienta_2021_110024 crossref_primary_10_3390_rs14153693 crossref_primary_10_3390_plants12061333 crossref_primary_10_3390_agronomy12071497 crossref_primary_10_1038_s41598_024_67283_4 crossref_primary_10_1016_j_ecolind_2024_112818 crossref_primary_10_1016_j_plantsci_2023_111795 crossref_primary_10_1016_j_agwat_2024_109059 crossref_primary_10_1111_nph_18713 crossref_primary_10_1016_j_rse_2020_112131 crossref_primary_10_1111_nph_19807 crossref_primary_10_1016_j_rse_2021_112497 crossref_primary_10_1016_j_jag_2021_102384 crossref_primary_10_1016_j_rse_2023_113612 crossref_primary_10_1016_j_rse_2023_113733 crossref_primary_10_1111_nph_16123 crossref_primary_10_3390_rs14030715 crossref_primary_10_1016_j_rse_2023_113614 crossref_primary_10_1016_j_rse_2021_112406 crossref_primary_10_1016_j_ecolind_2022_108687 crossref_primary_10_1016_j_agrformet_2022_109007 crossref_primary_10_21105_joss_06027 crossref_primary_10_1080_15481603_2023_2168410 crossref_primary_10_1016_j_jag_2022_102719 crossref_primary_10_3390_rs15030791 crossref_primary_10_1016_j_rse_2022_113071 crossref_primary_10_1111_pce_15011 crossref_primary_10_3390_rs14030567 crossref_primary_10_1016_j_rse_2019_111415 crossref_primary_10_1016_j_rse_2021_112761 crossref_primary_10_1016_j_compag_2023_108308 crossref_primary_10_1016_j_rse_2023_113926 crossref_primary_10_1109_TGRS_2021_3123117 crossref_primary_10_1016_j_asr_2025_02_052 crossref_primary_10_3390_rs12233891 crossref_primary_10_3390_rs14051251 crossref_primary_10_1109_TGRS_2024_3357774 crossref_primary_10_3390_geosciences10030105 crossref_primary_10_3390_rs14010226 crossref_primary_10_1016_j_envres_2023_115747 crossref_primary_10_1016_j_jag_2024_103817 crossref_primary_10_3390_rs13163235 crossref_primary_10_1016_j_compag_2024_108745 crossref_primary_10_1016_j_rse_2020_112274 crossref_primary_10_1016_j_rse_2022_113444 crossref_primary_10_1016_j_rse_2021_112352 crossref_primary_10_1016_j_rse_2021_112505 crossref_primary_10_1111_jvs_13220 crossref_primary_10_1016_j_srs_2023_100100 crossref_primary_10_1016_j_isprsjprs_2024_06_007 crossref_primary_10_3389_fpls_2024_1458589 crossref_primary_10_1016_j_rse_2020_111758 crossref_primary_10_5194_bg_17_4523_2020 crossref_primary_10_1016_j_foreco_2023_121461 crossref_primary_10_1016_j_jhydrol_2023_129705 crossref_primary_10_3389_fpls_2024_1459670 crossref_primary_10_1016_j_jag_2024_103963 crossref_primary_10_1080_00387010_2022_2149558 crossref_primary_10_1016_j_compag_2022_106982 crossref_primary_10_1016_j_ecolind_2021_108111 crossref_primary_10_1016_j_gecco_2020_e01201 crossref_primary_10_3390_rs16010029 crossref_primary_10_3390_rs13061189 crossref_primary_10_3390_rs14246330 crossref_primary_10_1111_1365_2745_13389 crossref_primary_10_1016_j_isprsjprs_2025_02_011 crossref_primary_10_1016_j_rse_2020_112170 crossref_primary_10_1016_j_rse_2020_112173 crossref_primary_10_1016_j_rse_2020_112176 crossref_primary_10_3389_fenvs_2024_1430818 crossref_primary_10_3390_s20185394 crossref_primary_10_1186_s13007_021_00816_4 crossref_primary_10_3390_agronomy14092173 crossref_primary_10_1080_01431161_2023_2201384 crossref_primary_10_1016_j_compag_2025_110178 crossref_primary_10_1016_j_agwat_2021_106799 crossref_primary_10_3390_rs15204997 crossref_primary_10_34133_plantphenomics_0243 crossref_primary_10_1016_j_infrared_2023_104921 crossref_primary_10_1029_2024JG008404 crossref_primary_10_1111_jvs_13130 crossref_primary_10_3390_rs16214064 crossref_primary_10_3390_rs13173352 crossref_primary_10_1111_nph_19669 crossref_primary_10_1016_j_rse_2024_114531 crossref_primary_10_1029_2023AV000910 crossref_primary_10_1016_j_compag_2023_107669 crossref_primary_10_1109_TGRS_2020_2982263 crossref_primary_10_1016_j_compag_2022_107401 crossref_primary_10_1080_19475705_2021_2002953 crossref_primary_10_1111_avsc_12586 crossref_primary_10_3390_cells13110952 crossref_primary_10_1016_j_rse_2024_114309 crossref_primary_10_1016_j_rse_2021_112826 crossref_primary_10_1016_j_jag_2021_102602 crossref_primary_10_3390_agriculture15010046 crossref_primary_10_3390_s24196490 crossref_primary_10_1016_j_rse_2024_114140 crossref_primary_10_1117_1_JRS_13_034517 crossref_primary_10_1016_j_eswa_2022_117107 crossref_primary_10_1016_j_compag_2024_108893 crossref_primary_10_1016_j_jag_2024_103905 crossref_primary_10_1016_j_agrformet_2024_110337 crossref_primary_10_3390_agronomy12112832 crossref_primary_10_1038_s41598_024_84052_5 |
Cites_doi | 10.1007/BF00379238 10.1111/j.0030-1299.2007.15559.x 10.1007/s004420100645 10.1111/nph.14766 10.1016/j.rse.2004.05.020 10.1029/2006GL026457 10.1126/science.1231574 10.1016/j.ecolind.2018.01.012 10.1016/S0034-4257(01)00191-2 10.1038/nature02403 10.1016/S0169-5347(01)02283-2 10.1016/j.rse.2015.07.007 10.1016/j.rse.2005.07.005 10.1016/j.rse.2015.03.033 10.1016/j.isprsjprs.2011.08.001 10.1080/014311698215540 10.1080/01431160600762990 10.1016/j.rse.2013.05.029 10.1016/j.gecco.2016.09.010 10.1016/j.rse.2016.02.029 10.1016/j.isprsjprs.2015.05.005 10.1364/JOSA.60.000542 10.1016/j.rse.2003.09.004 10.1086/657037 10.1071/BT98042 10.1016/j.rse.2017.12.013 10.1890/09-1999.1 10.1109/TGRS.2011.2109390 10.1016/j.rse.2014.11.011 10.1007/BF00994018 10.1007/s11099-006-0001-1 10.1080/014311698215441 10.1016/j.rse.2017.03.004 10.1590/S2197-00252013005000001 10.1016/0034-4257(84)90057-9 10.1364/AO.54.005453 10.1016/j.rse.2015.06.012 10.1023/A:1010933404324 10.1093/aob/mcg041 10.3390/rs71013098 10.1016/j.isprsjprs.2017.07.003 10.1371/journal.pone.0148788 10.1016/j.rse.2007.09.005 10.1007/s10586-017-0950-0 10.1016/j.rse.2008.06.005 10.1016/j.rse.2012.06.012 10.1071/BT12225 10.1016/0034-4257(95)00238-3 10.1080/01431161.2010.494641 10.1146/annurev.ecolsys.34.011802.132342 10.1080/01431161.2010.532819 10.1111/gcb.13542 10.1016/0034-4257(90)90100-Z 10.1109/TGRS.2018.2791930 10.1145/1961189.1961199 10.1016/j.isprsjprs.2017.11.010 10.1016/0034-4257(95)00253-7 10.1016/0893-6080(89)90020-8 10.1016/j.rse.2011.05.017 10.1109/TGRS.2009.2023908 10.1364/JOSA.59.001376 10.1080/01431160110069818 10.1109/TGRS.2005.843316 10.1016/j.rse.2011.06.016 10.1016/j.rse.2008.01.026 10.1890/08-0023.1 10.3390/rs70201667 10.1111/gcb.12822 10.1111/j.1469-8137.2009.02830.x 10.1016/j.rse.2008.02.012 10.5735/085.052.0201 10.1016/j.rse.2006.03.002 10.1016/j.jphotobiol.2004.03.003 10.1016/j.rse.2015.08.001 10.1016/j.rse.2014.11.014 10.1071/BT02124 10.1023/A:1019823303951 10.1016/j.rse.2011.05.013 10.1109/36.868891 10.2307/2657068 10.1073/pnas.94.25.13730 10.1007/s004420050471 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright Elsevier BV Sep 15, 2019 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright Elsevier BV Sep 15, 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.rse.2018.11.002 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences |
EISSN | 1879-0704 |
ExternalDocumentID | oai_HAL_hal_02939160v1 10_1016_j_rse_2018_11_002 S0034425718305030 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VOH WUQ XOL 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c501t-1b286000ae956fc6b01b427b7ec47d7bc177f064021c76e1b44e01e08dea88a13 |
IEDL.DBID | .~1 |
ISSN | 0034-4257 |
IngestDate | Sat Jun 21 06:33:03 EDT 2025 Fri Jul 11 04:40:51 EDT 2025 Wed Aug 13 09:49:57 EDT 2025 Tue Jul 01 03:51:16 EDT 2025 Thu Apr 24 23:12:13 EDT 2025 Fri Feb 23 02:20:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Leaf spectroscopy LMA Radiative transfer model EWT Biophysical properties Vegetation Support vector machine OPTICAL PROPERTIES MODELING MACHINE LEARNING ECOSYSTEM LEAF RISK MANAGEMENT |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-1b286000ae956fc6b01b427b7ec47d7bc177f064021c76e1b44e01e08dea88a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0151-1334 0000-0002-5227-958X 0000-0002-6645-8837 0000-0002-8287-5825 0000-0002-2185-9952 0000-0002-2794-1252 0000-0002-6718-863X 0000-0001-7461-6420 0000-0003-1920-3847 0000-0002-3468-5648 0000-0001-8488-834X |
OpenAccessLink | https://hal.inrae.fr/hal-02939160 |
PQID | 2292057762 |
PQPubID | 2045405 |
ParticipantIDs | hal_primary_oai_HAL_hal_02939160v1 proquest_miscellaneous_2176348767 proquest_journals_2292057762 crossref_primary_10_1016_j_rse_2018_11_002 crossref_citationtrail_10_1016_j_rse_2018_11_002 elsevier_sciencedirect_doi_10_1016_j_rse_2018_11_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-15 |
PublicationDateYYYYMMDD | 2019-09-15 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV – name: Elsevier |
References | Brown, Lewis, Gunn (bb0075) 2000; 38 Wang, Skidmore, Wang, Darvishzadeh, Hearne (bb0440) 2015; 168 Chapin (bb0095) 2003; 91 le Maire, François, Dufrêne (bb0280) 2004; 89 Reich, Walters, Ellsworth (bb0360) 1997; 94 Puglielli, Crescente, Frattaroli, Gratani (bb0345) 2015; 52 Gratani, Varone (bb0195) 2006; 44 Lardeux, Frison, Tison, Souyris, Stoll, Fruneau, Rudant (bb0245) 2009; 47 Oren, Schulze, Matyssek, Zimmermann (bb0325) 1986; 70 Gitelson, Keydan, Merzlyak (bb0190) 2006; 33 Dawson, Curran, Plummer (bb0135) 1998; 19 Feilhauer, Schmid, Faude, Sánchez-Carrillo, Cirujano (bb0160) 2018; 88 Jacquemoud, Ustin, Verdebout, Schmuck, Andreoli, Hosgood (bb0220) 1996; 56 Eviner, Chapin (bb0150) 2003; 34 Osnas, Lichstein, Reich, Pacala (bb0330) 2013; 340 Ali, Darvishzadeh, Skidmore, van Duren, Heiden, Heurich (bb0005) 2016; 45 Qiu, Chen, Ju, Wang, Zhang, Fang (bb0350) 2018; 56 Colombo, Meroni, Marchesi, Busetto, Rossini, Giardino, Panigada (bb0105) 2008; 112 de la Riva, Olmo, Poorter, Ubera, Villar (bb0240) 2016; 11 Jay, Bendoula, Hadoux, Féret, Gorretta (bb0230) 2016; 177 Baret, Buis (bb0050) 2008 Rees, Osborne, Woodward, Hulme, Turnbull, Taylor (bb0355) 2010; 176 Merzlyak, Chivkunova, Melø, Naqvi (bb0300) 2002; 72 Schaepman, Jehle, Hueni, D'Odorico, Damm, Weyermann, Schneider, Laurent, Popp, Seidel, Lenhard, Gege, Küchler, Brazile, Kohler, De Vos, Meuleman, Meynart, Schläpfer, Kneubühler, Itten (bb0385) 2015; 158 Li, Wang (bb0260) 2011; 49 Cornelissen, Grootemaat, Verheijen, Cornwell, van Bodegom, van der Wal, Aerts (bb0120) 2017; 216 Jacquemoud, Baret (bb0215) 1990; 34 Antúnez, Retamosa, Villar (bb0020) 2001; 128 Datt (bb0130) 1999; 47 Verrelst, Rivera, Gitelson, Delegido, Moreno, Camps-Valls (bb0425) 2016; 52 Merzlyak, Melø, Razi Naqvi (bb0305) 2004; 74 Li, Cheng, Jia, Zhou, Lu, Yao, Tian, Zhu, Cao (bb0265) 2018; 206 Sun, Shi, Yang, Du, Gong, Chen, Song (bb0410) 2018; 135 Wright, Reich, Westoby, Ackerly, Baruch, Bongers, Cavender-Bares, Chapin, Cornelissen, Diemer, Flexas, Garnier, Groom, Gulias, Hikosaka, Lamont, Lee, Lee, Lusk, Midgley, Navas, Niinemets, Oleksyn, Osada, Poorter, Poot, Prior, Pyankov, Roumet, Thomas, Tjoelker, Veneklaas, Villar (bb0450) 2004; 428 Oliveira, Feret, Ponzoni, Nouvellon, Gastellu-Etchegorry, Campoe, Stape, Rodriguez, le Maire (bb0320) 2017 Verhoef (bb0415) 1984; 16 Cornelissen, Lavorel, Garnier, Díaz, Buchmann, Gurvich, Reich, ter Steege, Morgan, van der Heijden, Pausas, Poorter (bb0115) 2003; 51 Newnham, Burt (bb0315) 2001 Yebra, Dennison, Chuvieco, Riaño, Zylstra, Hunt, Danson, Qi, Jurdao (bb0455) 2013; 136 Reich, Walters, Ellsworth, Vose, Volin, Gresham, Bowman (bb0365) 1998; 114 Réjou-Méchain, Tymen, Blanc, Fauset, Feldpausch, Monteagudo, Phillips, Richard, Chave (bb0370) 2015; 169 Breiman (bb0070) 2001; 45 Asner, Martin, Anderson, Knapp (bb0045) 2015; 158 Chuvieco, Riaño, Aguado, Cocero (bb0100) 2002; 23 Allen, Gausman, Richardson (bb0015) 1970; 60 Malenovský, Albrechtová, Lhotáková, Zurita-Milla, Clevers, Schaepman, Cudlín (bb0295) 2006; 27 Asner, Knapp, Boardman, Green, Kennedy-Bowdoin, Eastwood, Martin, Anderson, Field (bb0040) 2012; 124 Hornik, Stinchcombe, White (bb0205) 1989; 2 Asner, Martin, Tupayachi, Emerson, Martinez, Sinca, Powell, Wright, Lugo (bb0035) 2011; 21 Jetz, Cavender-Bares, Pavlick, Schimel, Davis, Asner, Guralnick, Kattge, Latimer, Moorcroft, Schaepman, Schildhauer, Schneider, Schrodt, Stahl, Ustin (bb0235) 2016; 2 Schimel, Pavlick, Fisher, Asner, Saatchi, Townsend, Miller, Frankenberg, Hibbard, Cox (bb0395) 2015; 21 Féret, François, Gitelson, Asner, Barry, Panigada, Richardson, Jacquemoud (bb0170) 2011; 115 Wang, Qu, Hao, Hunt (bb0435) 2011; 32 Barry, Newnham (bb0055) 2012 Drucker, Burges, Kaufman, C, Kaufman, Smola, Vapnik (bb0145) 1996 Schaepman-Strub, Schaepman, Painter, Dangel, Martonchik (bb0390) 2006; 103 Schmitter, Steinrücken, Römer, Ballvora, Léon, Rascher, Plümer (bb0400) 2017; 131 Main, Cho, Mathieu, O'Kennedy, Ramoelo, Koch (bb0275) 2011; 66 Asner, Martin (bb0025) 2016; 8 Jacquemoud, Verhoef, Baret, Bacour, Zarco-Tejada, Asner, François, Ustin (bb0225) 2009; 113 Allen, Gausman, Richardson, Thomas (bb0010) 1969; 59 le Maire, Marsden, Nouvellon, Grinand, Hakamada, Stape, Laclau (bb0290) 2011; 115 Asner, Martin, Ford, Metcalfe, Liddell (bb0030) 2009; 19 Ceccato, Flasse, Tarantola, Jacquemoud, Grégoire (bb0085) 2001; 77 Violle, Navas, Vile, Kazakou, Fortunel, Hummel, Garnier (bb0430) 2007; 116 Conejo, Frangi, de Rosny (bb0110) 2015; 54 Bousquet, Lachérade, Jacquemoud, Moya (bb0060) 2005; 98 (bb0270) 2005 Stumpf, Kerle (bb0405) 2011; 115 Poorter, Niinemets, Poorter, Wright, Villar (bb0340) 2009; 182 Riano, Vaughan, Chuvieco, Zarco-Tejada, Ustin (bb0375) 2005; 43 Cortes, Vapnik (bb0125) 1995; 20 Gualtieri (bb0200) 2009 Weng, Farrior, Dybzinski, Pacala (bb0445) 2017; 23 Bowyer, Danson (bb0065) 2004; 92 Romero, Aguado, Yebra (bb0380) 2012; 33 Féret, Gitelson, Noble, Jacquemoud (bb0175) 2017; 193 Diaz, Cabido (bb0140) 2001; 16 Mobasheri, Fatemi (bb0310) 2013; 25 Verrelst, Camps-Valls, Muñoz-Marí, Rivera, Veroustraete, Clevers, Moreno (bb0420) 2015; 108 Gastellu-Etchegorry, Demarez, Pinel, Zagolski (bb0180) 1996; 58 Fourty, Baret (bb5000) 1998; 19 Feilhauer, Asner, Martin (bb0155) 2015; 164 Zhang, He, Zhang, Peng, Long (bb0460) 2017; 20 Gastellu-Etchegorry, Yin, Lauret, Cajgfinger, Gregoire, Grau, Féret, Lopes, Guilleux, Dedieu, Malenovský, Cook, Morton, Rubio, Durrieu, Cazanave, Martin, Ristorcelli (bb0185) 2015; 7 Hosgood, Jacquemoud, Andreoli, Verdebout, Pedrini, Schmuck (bb0210) 1994 Féret, François, Asner, Gitelson, Martin, Bidel, Ustin, le Maire, Jacquemoud (bb0165) 2008; 112 le Maire, François, Soudani, Berveiller, Pontailler, Bréda, Genet, Davi, Dufrêne (bb0285) 2008; 112 Carter, Knapp (bb0080) 2001; 88 Chang, Lin (bb0090) 2011; 2 Pérez-Harguindeguy, Díaz, Garnier, Lavorel, Poorter, Jaureguiberry, Bret-Harte, Cornwell, Craine, Gurvich, Urcelay, Veneklaas, Reich, Poorter, Wright, Ray, Enrico, Pausas, de Vos, Buchmann, Funes, Quétier, Hodgson, Thompson, Morgan, ter Steege, Sack, Blonder, Poschlod, Vaieretti, Conti, Staver, Aquino, Cornelissen (bb0335) 2013; 61 Lee, Cable, Hook, Green, Ustin, Mandl, Middleton (bb0250) 2015; 167 Leitão, Schwieder, Suess, Okujeni, Galvão, Linden, Hostert (bb0255) 2015; 7 Eviner (10.1016/j.rse.2018.11.002_bb0150) 2003; 34 Jay (10.1016/j.rse.2018.11.002_bb0230) 2016; 177 Feilhauer (10.1016/j.rse.2018.11.002_bb0155) 2015; 164 Wright (10.1016/j.rse.2018.11.002_bb0450) 2004; 428 Violle (10.1016/j.rse.2018.11.002_bb0430) 2007; 116 Asner (10.1016/j.rse.2018.11.002_bb0040) 2012; 124 Oren (10.1016/j.rse.2018.11.002_bb0325) 1986; 70 Gratani (10.1016/j.rse.2018.11.002_bb0195) 2006; 44 Leitão (10.1016/j.rse.2018.11.002_bb0255) 2015; 7 Réjou-Méchain (10.1016/j.rse.2018.11.002_bb0370) 2015; 169 Féret (10.1016/j.rse.2018.11.002_bb0175) 2017; 193 Wang (10.1016/j.rse.2018.11.002_bb0435) 2011; 32 Merzlyak (10.1016/j.rse.2018.11.002_bb0305) 2004; 74 Oliveira (10.1016/j.rse.2018.11.002_bb0320) 2017 Carter (10.1016/j.rse.2018.11.002_bb0080) 2001; 88 le Maire (10.1016/j.rse.2018.11.002_bb0280) 2004; 89 Feilhauer (10.1016/j.rse.2018.11.002_bb0160) 2018; 88 Asner (10.1016/j.rse.2018.11.002_bb0030) 2009; 19 Diaz (10.1016/j.rse.2018.11.002_bb0140) 2001; 16 Yebra (10.1016/j.rse.2018.11.002_bb0455) 2013; 136 Chang (10.1016/j.rse.2018.11.002_bb0090) 2011; 2 Jacquemoud (10.1016/j.rse.2018.11.002_bb0215) 1990; 34 Fourty (10.1016/j.rse.2018.11.002_bb5000) 1998; 19 Schmitter (10.1016/j.rse.2018.11.002_bb0400) 2017; 131 Gastellu-Etchegorry (10.1016/j.rse.2018.11.002_bb0185) 2015; 7 Gualtieri (10.1016/j.rse.2018.11.002_bb0200) 2009 Mobasheri (10.1016/j.rse.2018.11.002_bb0310) 2013; 25 Hosgood (10.1016/j.rse.2018.11.002_bb0210) 1994 le Maire (10.1016/j.rse.2018.11.002_bb0285) 2008; 112 (10.1016/j.rse.2018.11.002_bb0270) 2005 Romero (10.1016/j.rse.2018.11.002_bb0380) 2012; 33 Asner (10.1016/j.rse.2018.11.002_bb0025) 2016; 8 Newnham (10.1016/j.rse.2018.11.002_bb0315) 2001 Reich (10.1016/j.rse.2018.11.002_bb0365) 1998; 114 Schaepman (10.1016/j.rse.2018.11.002_bb0385) 2015; 158 Verrelst (10.1016/j.rse.2018.11.002_bb0420) 2015; 108 Reich (10.1016/j.rse.2018.11.002_bb0360) 1997; 94 Barry (10.1016/j.rse.2018.11.002_bb0055) 2012 Gitelson (10.1016/j.rse.2018.11.002_bb0190) 2006; 33 Allen (10.1016/j.rse.2018.11.002_bb0015) 1970; 60 le Maire (10.1016/j.rse.2018.11.002_bb0290) 2011; 115 Colombo (10.1016/j.rse.2018.11.002_bb0105) 2008; 112 Cortes (10.1016/j.rse.2018.11.002_bb0125) 1995; 20 Main (10.1016/j.rse.2018.11.002_bb0275) 2011; 66 Malenovský (10.1016/j.rse.2018.11.002_bb0295) 2006; 27 Schaepman-Strub (10.1016/j.rse.2018.11.002_bb0390) 2006; 103 Bowyer (10.1016/j.rse.2018.11.002_bb0065) 2004; 92 Lardeux (10.1016/j.rse.2018.11.002_bb0245) 2009; 47 Baret (10.1016/j.rse.2018.11.002_bb0050) 2008 Datt (10.1016/j.rse.2018.11.002_bb0130) 1999; 47 Brown (10.1016/j.rse.2018.11.002_bb0075) 2000; 38 Allen (10.1016/j.rse.2018.11.002_bb0010) 1969; 59 Breiman (10.1016/j.rse.2018.11.002_bb0070) 2001; 45 Jacquemoud (10.1016/j.rse.2018.11.002_bb0220) 1996; 56 Bousquet (10.1016/j.rse.2018.11.002_bb0060) 2005; 98 Dawson (10.1016/j.rse.2018.11.002_bb0135) 1998; 19 de la Riva (10.1016/j.rse.2018.11.002_bb0240) 2016; 11 Rees (10.1016/j.rse.2018.11.002_bb0355) 2010; 176 Stumpf (10.1016/j.rse.2018.11.002_bb0405) 2011; 115 Wang (10.1016/j.rse.2018.11.002_bb0440) 2015; 168 Conejo (10.1016/j.rse.2018.11.002_bb0110) 2015; 54 Féret (10.1016/j.rse.2018.11.002_bb0165) 2008; 112 Puglielli (10.1016/j.rse.2018.11.002_bb0345) 2015; 52 Lee (10.1016/j.rse.2018.11.002_bb0250) 2015; 167 Zhang (10.1016/j.rse.2018.11.002_bb0460) 2017; 20 Li (10.1016/j.rse.2018.11.002_bb0260) 2011; 49 Weng (10.1016/j.rse.2018.11.002_bb0445) 2017; 23 Cornelissen (10.1016/j.rse.2018.11.002_bb0115) 2003; 51 Jetz (10.1016/j.rse.2018.11.002_bb0235) 2016; 2 Qiu (10.1016/j.rse.2018.11.002_bb0350) 2018; 56 Antúnez (10.1016/j.rse.2018.11.002_bb0020) 2001; 128 Riano (10.1016/j.rse.2018.11.002_bb0375) 2005; 43 Merzlyak (10.1016/j.rse.2018.11.002_bb0300) 2002; 72 Verhoef (10.1016/j.rse.2018.11.002_bb0415) 1984; 16 Sun (10.1016/j.rse.2018.11.002_bb0410) 2018; 135 Schimel (10.1016/j.rse.2018.11.002_bb0395) 2015; 21 Chuvieco (10.1016/j.rse.2018.11.002_bb0100) 2002; 23 Féret (10.1016/j.rse.2018.11.002_bb0170) 2011; 115 Chapin (10.1016/j.rse.2018.11.002_bb0095) 2003; 91 Cornelissen (10.1016/j.rse.2018.11.002_bb0120) 2017; 216 Jacquemoud (10.1016/j.rse.2018.11.002_bb0225) 2009; 113 Pérez-Harguindeguy (10.1016/j.rse.2018.11.002_bb0335) 2013; 61 Li (10.1016/j.rse.2018.11.002_bb0265) 2018; 206 Asner (10.1016/j.rse.2018.11.002_bb0045) 2015; 158 Osnas (10.1016/j.rse.2018.11.002_bb0330) 2013; 340 Verrelst (10.1016/j.rse.2018.11.002_bb0425) 2016; 52 Asner (10.1016/j.rse.2018.11.002_bb0035) 2011; 21 Ceccato (10.1016/j.rse.2018.11.002_bb0085) 2001; 77 Ali (10.1016/j.rse.2018.11.002_bb0005) 2016; 45 Hornik (10.1016/j.rse.2018.11.002_bb0205) 1989; 2 Poorter (10.1016/j.rse.2018.11.002_bb0340) 2009; 182 Gastellu-Etchegorry (10.1016/j.rse.2018.11.002_bb0180) 1996; 58 Drucker (10.1016/j.rse.2018.11.002_bb0145) 1996 |
References_xml | – volume: 34 start-page: 75 year: 1990 end-page: 91 ident: bb0215 article-title: PROSPECT: a model of leaf optical properties spectra publication-title: Remote Sens. Environ. – volume: 34 start-page: 455 year: 2003 end-page: 485 ident: bb0150 article-title: Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 167 start-page: 6 year: 2015 end-page: 19 ident: bb0250 article-title: An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities publication-title: Remote Sens. Environ. – volume: 21 start-page: 1762 year: 2015 end-page: 1776 ident: bb0395 article-title: Observing terrestrial ecosystems and the carbon cycle from space publication-title: Glob. Chang. Biol. – start-page: 1 year: 2017 end-page: 9 ident: bb0320 article-title: Simulating the canopy reflectance of different eucalypt genotypes with the DART 3-D model publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 182 start-page: 565 year: 2009 end-page: 588 ident: bb0340 article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis publication-title: New Phytol. – volume: 115 start-page: 2742 year: 2011 end-page: 2750 ident: bb0170 article-title: Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling publication-title: Remote Sens. Environ. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bb0125 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 2 year: 2016 ident: bb0235 article-title: Monitoring plant functional diversity from space publication-title: Nat. Plants – volume: 136 start-page: 455 year: 2013 end-page: 468 ident: bb0455 article-title: A global review of remote sensing of live fuel moisture content for fire danger assessment: moving towards operational products publication-title: Remote Sens. Environ. – volume: 47 start-page: 4143 year: 2009 end-page: 4152 ident: bb0245 article-title: Support vector machine for multifrequency SAR polarimetric data classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 115 start-page: 2613 year: 2011 end-page: 2625 ident: bb0290 article-title: MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass publication-title: Remote Sens. Environ. – volume: 61 start-page: 167 year: 2013 ident: bb0335 article-title: New handbook for standardised measurement of plant functional traits worldwide publication-title: Aust. J. Bot. – volume: 114 start-page: 471 year: 1998 end-page: 482 ident: bb0365 article-title: Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups publication-title: Oecologia – volume: 19 start-page: 1433 year: 1998 end-page: 1438 ident: bb0135 article-title: The biochemical decomposition of slash pine needles from reflectance spectra using neural networks publication-title: Int. J. Remote Sens. – volume: 19 start-page: 1283 year: 1998 end-page: 1297 ident: bb5000 article-title: On spectral estimates of fresh leaf biochemistry publication-title: Int. J. Remote Sens. – volume: 340 start-page: 741 year: 2013 end-page: 744 ident: bb0330 article-title: Global leaf trait relationships: mass, area, and the leaf economics spectrum publication-title: Science – volume: 32 start-page: 7097 year: 2011 end-page: 7109 ident: bb0435 article-title: Estimating dry matter content from spectral reflectance for green leaves of different species publication-title: Int. J. Remote Sens. – volume: 158 start-page: 15 year: 2015 end-page: 27 ident: bb0045 article-title: Quantifying forest canopy traits: imaging spectroscopy versus field survey publication-title: Remote Sens. Environ. – volume: 177 start-page: 220 year: 2016 end-page: 236 ident: bb0230 article-title: A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy publication-title: Remote Sens. Environ. – year: 1996 ident: bb0145 article-title: Support Vector Regression Machines – volume: 135 start-page: 74 year: 2018 end-page: 83 ident: bb0410 article-title: Analyzing the performance of PROSPECT model inversion based on different spectral information for leaf biochemical properties retrieval publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 45 start-page: 66 year: 2016 end-page: 76 ident: bb0005 article-title: Estimating leaf functional traits by inversion of PROSPECT: assessing leaf dry matter content and specific leaf area in mixed mountainous forest publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 20 start-page: 2311 year: 2017 end-page: 2321 ident: bb0460 article-title: Spectral-spatial multi-feature classification of remote sensing big data based on a random forest classifier for land cover mapping publication-title: Clust. Comput. – volume: 103 start-page: 27 year: 2006 end-page: 42 ident: bb0390 article-title: Reflectance quantities in optical remote sensing—definitions and case studies publication-title: Remote Sens. Environ. – volume: 124 start-page: 454 year: 2012 end-page: 465 ident: bb0040 article-title: Carnegie Airborne Observatory-2: increasing science data dimensionality via high-fidelity multi-sensor fusion publication-title: Remote Sens. Environ. – volume: 49 start-page: 2499 year: 2011 end-page: 2506 ident: bb0260 article-title: Retrieval of leaf biochemical parameters using PROSPECT inversion: a new approach for alleviating ill-posed problems publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 25 start-page: 196 year: 2013 end-page: 202 ident: bb0310 article-title: Leaf Equivalent Water Thickness assessment using reflectance at optimum wavelengths publication-title: Theor. Exp. Plant Physiol. – volume: 158 start-page: 207 year: 2015 end-page: 219 ident: bb0385 article-title: Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX) publication-title: Remote Sens. Environ. – year: 2005 ident: bb0270 publication-title: Kramers-Kronig Relations in Optical Materials Research, Springer Series in Optical Sciences – volume: 77 start-page: 22 year: 2001 end-page: 33 ident: bb0085 article-title: Detecting vegetation leaf water content using reflectance in the optical domain publication-title: Remote Sens. Environ. – volume: 91 start-page: 455 year: 2003 end-page: 463 ident: bb0095 article-title: Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change publication-title: Ann. Bot. – volume: 94 start-page: 13730 year: 1997 end-page: 13734 ident: bb0360 article-title: From tropics to tundra: global convergence in plant functioning publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 23 start-page: 2145 year: 2002 end-page: 2162 ident: bb0100 article-title: Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: applications in fire danger assessment publication-title: Int. J. Remote Sens. – volume: 19 start-page: 236 year: 2009 end-page: 253 ident: bb0030 article-title: Leaf chemical and spectral diversity in Australian tropical forests publication-title: Ecol. Appl. – volume: 112 start-page: 3030 year: 2008 end-page: 3043 ident: bb0165 article-title: PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments publication-title: Remote Sens. Environ. – volume: 23 start-page: 2482 year: 2017 end-page: 2498 ident: bb0445 article-title: Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework publication-title: Glob. Chang. Biol. – volume: 52 start-page: 554 year: 2016 end-page: 567 ident: bb0425 article-title: Spectral band selection for vegetation properties retrieval using Gaussian processes regression publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 49 year: 2009 end-page: 83 ident: bb0200 article-title: The Support Vector Machine (SVM) Algorithm for Supervised Classification of Hyperspectral Remote Sensing Data publication-title: Kernel Methods for Remote Sensing Data Analysis – volume: 128 start-page: 172 year: 2001 end-page: 180 ident: bb0020 article-title: Relative growth rate in phylogenetically related deciduous and evergreen woody species publication-title: Oecologia – volume: 428 start-page: 821 year: 2004 end-page: 827 ident: bb0450 article-title: The worldwide leaf economics spectrum publication-title: Nature – start-page: 173 year: 2008 end-page: 201 ident: bb0050 article-title: Estimating canopy characteristics from remote sensing observations: review of methods and associated problems publication-title: Advances in Land Remote Sensing – volume: 44 start-page: 161 year: 2006 end-page: 168 ident: bb0195 article-title: Long-time variations in leaf mass and area of Mediterranean evergreen broad-leaf and narrow-leaf maquis species publication-title: Photosynthetica – volume: 193 start-page: 204 year: 2017 end-page: 215 ident: bb0175 article-title: PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle publication-title: Remote Sens. Environ. – volume: 51 start-page: 335 year: 2003 ident: bb0115 article-title: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide publication-title: Aust. J. Bot. – volume: 7 start-page: 13098 year: 2015 end-page: 13119 ident: bb0255 article-title: Monitoring natural ecosystem and ecological gradients: perspectives with EnMAP publication-title: Remote Sens. – volume: 74 start-page: 145 year: 2004 end-page: 150 ident: bb0305 article-title: Estimation of leaf transmittance in the near infrared region through reflectance measurements publication-title: J. Photochem. Photobiol. B – volume: 21 start-page: 85 year: 2011 end-page: 98 ident: bb0035 article-title: Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests publication-title: Ecol. Appl. – volume: 89 start-page: 1 year: 2004 end-page: 28 ident: bb0280 article-title: Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements publication-title: Remote Sens. Environ. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0070 article-title: Random forests publication-title: Mach. Learn. – volume: 168 start-page: 205 year: 2015 end-page: 218 ident: bb0440 article-title: Applicability of the PROSPECT model for estimating protein and cellulose + lignin in fresh leaves publication-title: Remote Sens. Environ. – volume: 98 start-page: 201 year: 2005 end-page: 211 ident: bb0060 article-title: Leaf BRDF measurements and model for specular and diffuse components differentiation publication-title: Remote Sens. Environ. – volume: 58 start-page: 131 year: 1996 end-page: 156 ident: bb0180 article-title: Modeling radiative transfer in heterogeneous 3-D vegetation canopies publication-title: Remote Sens. Environ. – volume: 7 start-page: 1667 year: 2015 end-page: 1701 ident: bb0185 article-title: Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes publication-title: Remote Sens. – volume: 216 start-page: 653 year: 2017 end-page: 669 ident: bb0120 article-title: Are litter decomposition and fire linked through plant species traits? publication-title: New Phytol. – volume: 33 year: 2006 ident: bb0190 article-title: Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves publication-title: Geophys. Res. Lett. – volume: 8 start-page: 212 year: 2016 end-page: 219 ident: bb0025 article-title: Spectranomics: emerging science and conservation opportunities at the interface of biodiversity and remote sensing publication-title: Glob. Ecol. Conserv. – volume: 2 start-page: 1 year: 2011 end-page: 27 ident: bb0090 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. – volume: 47 start-page: 909 year: 1999 end-page: 923 ident: bb0130 article-title: Remote sensing of water content in eucalyptus leaves publication-title: Aust. J. Bot. – volume: 108 start-page: 273 year: 2015 end-page: 290 ident: bb0420 article-title: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties – a review publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: bb0205 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. – volume: 176 start-page: E152 year: 2010 end-page: E161 ident: bb0355 article-title: Partitioning the components of relative growth rate: how important is plant size variation? publication-title: Am. Nat. – start-page: 2976 year: 2001 end-page: 2978 ident: bb0315 article-title: Validation of a Leaf Reflectance and Transmittance Model for Three Agricultural Crop Species – volume: 112 start-page: 1820 year: 2008 end-page: 1834 ident: bb0105 article-title: Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling publication-title: Remote Sens. Environ. – volume: 206 start-page: 1 year: 2018 end-page: 14 ident: bb0265 article-title: PROCWT: coupling PROSPECT with continuous wavelet transform to improve the retrieval of foliar chemistry from leaf bidirectional reflectance spectra publication-title: Remote Sens. Environ. – volume: 72 start-page: 263 year: 2002 end-page: 270 ident: bb0300 article-title: Does a leaf absorb radiation in the near infrared (780–900 nm) region? A new approach to quantifying optical reflection, absorption and transmission of leaves publication-title: Photosynth. Res. – volume: 164 start-page: 57 year: 2015 end-page: 65 ident: bb0155 article-title: Multi-method ensemble selection of spectral bands related to leaf biochemistry publication-title: Remote Sens. Environ. – volume: 88 start-page: 232 year: 2018 end-page: 240 ident: bb0160 article-title: Are remotely sensed traits suitable for ecological analysis? A case study of long-term drought effects on leaf mass per area of wetland vegetation publication-title: Ecol. Indic. – volume: 88 start-page: 677 year: 2001 end-page: 684 ident: bb0080 article-title: Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration publication-title: Am. J. Bot. – volume: 38 start-page: 2346 year: 2000 end-page: 2360 ident: bb0075 article-title: Linear spectral mixture models and support vector machines for remote sensing publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 56 start-page: 194 year: 1996 end-page: 202 ident: bb0220 article-title: Estimating leaf biochemistry using the PROSPECT leaf optical properties model publication-title: Remote Sens. Environ. – volume: 54 start-page: 5453 year: 2015 ident: bb0110 article-title: Neural network implementation for a reversal procedure for water and dry matter estimation on plant leaves using selected LED wavelengths publication-title: Appl. Opt. – volume: 66 start-page: 751 year: 2011 end-page: 761 ident: bb0275 article-title: An investigation into robust spectral indices for leaf chlorophyll estimation publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 52 start-page: 135 year: 2015 end-page: 143 ident: bb0345 article-title: Leaf Mass Per Area (LMA) as a possible predictor of adaptive strategies in two species of publication-title: Anatomical and Physiological Leaf Traits. Ann. Bot. Fenn. – volume: 11 year: 2016 ident: bb0240 article-title: Leaf Mass per Area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient publication-title: PLoS One – volume: 112 start-page: 3846 year: 2008 end-page: 3864 ident: bb0285 article-title: Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass publication-title: Remote Sens. Environ. – volume: 131 start-page: 65 year: 2017 end-page: 76 ident: bb0400 article-title: Unsupervised domain adaptation for early detection of drought stress in hyperspectral images publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2012 ident: bb0055 article-title: Quantification of chlorophyll and carotenoid pigments in eucalyptus foliage with the radiative transfer model PROSPECT 5 is affected by anthocyanin and epicuticular waxes publication-title: Proc. Geospatial Science Research 2 Symposium, GSR 2012, Melbourne, Australia, December 10–12, 2012 – volume: 113 start-page: S56 year: 2009 end-page: S66 ident: bb0225 article-title: PROSPECT+ SAIL models: a review of use for vegetation characterization publication-title: Remote Sens. Environ. – volume: 16 start-page: 125 year: 1984 end-page: 141 ident: bb0415 article-title: Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model publication-title: Remote Sens. Environ. – volume: 116 start-page: 882 year: 2007 end-page: 892 ident: bb0430 article-title: Let the concept of trait be functional! publication-title: Oikos – volume: 60 start-page: 542 year: 1970 end-page: 547 ident: bb0015 article-title: Mean effective optical constants of cotton leaves publication-title: J. Opt. Soc. Am. – volume: 70 start-page: 187 year: 1986 end-page: 193 ident: bb0325 article-title: Estimating photosynthetic rate and annual carbon gain in conifers from specific leaf weight and leaf biomass publication-title: Oecologia – volume: 56 start-page: 3119 year: 2018 end-page: 3136 ident: bb0350 article-title: Improving the PROSPECT model to consider anisotropic scattering of leaf internal materials and its use for retrieving leaf biomass in fresh leaves publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 33 start-page: 396 year: 2012 end-page: 414 ident: bb0380 article-title: Estimation of dry matter content in leaves using normalized indexes and PROSPECT model inversion publication-title: Int. J. Remote Sens. – volume: 92 start-page: 297 year: 2004 end-page: 308 ident: bb0065 article-title: Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level publication-title: Remote Sens. Environ. – volume: 59 start-page: 1376 year: 1969 end-page: 1379 ident: bb0010 article-title: Interaction of isotropic light with a compact plant leaf publication-title: J. Opt. Soc. Am. – volume: 27 start-page: 5315 year: 2006 end-page: 5340 ident: bb0295 article-title: Applicability of the PROSPECT model for Norway spruce needles publication-title: Int. J. Remote Sens. – volume: 169 start-page: 93 year: 2015 end-page: 101 ident: bb0370 article-title: Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest publication-title: Remote Sens. Environ. – volume: 16 start-page: 646 year: 2001 end-page: 655 ident: bb0140 article-title: Vive la diff?rence: plant functional diversity matters to ecosystem processes publication-title: Trends Ecol. Evol. – volume: 115 start-page: 2564 year: 2011 end-page: 2577 ident: bb0405 article-title: Object-oriented mapping of landslides using Random Forests publication-title: Remote Sens. Environ. – volume: 43 start-page: 819 year: 2005 end-page: 826 ident: bb0375 article-title: Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content: analysis at leaf and canopy level publication-title: IEEE Trans. Geosci. Remote Sens. – year: 1994 ident: bb0210 article-title: Leaf Optical Properties Experiment 93 (LOPEX93) (European Commission No. EUR 16095 EN) – volume: 70 start-page: 187 year: 1986 ident: 10.1016/j.rse.2018.11.002_bb0325 article-title: Estimating photosynthetic rate and annual carbon gain in conifers from specific leaf weight and leaf biomass publication-title: Oecologia doi: 10.1007/BF00379238 – volume: 116 start-page: 882 year: 2007 ident: 10.1016/j.rse.2018.11.002_bb0430 article-title: Let the concept of trait be functional! publication-title: Oikos doi: 10.1111/j.0030-1299.2007.15559.x – volume: 128 start-page: 172 year: 2001 ident: 10.1016/j.rse.2018.11.002_bb0020 article-title: Relative growth rate in phylogenetically related deciduous and evergreen woody species publication-title: Oecologia doi: 10.1007/s004420100645 – volume: 216 start-page: 653 year: 2017 ident: 10.1016/j.rse.2018.11.002_bb0120 article-title: Are litter decomposition and fire linked through plant species traits? publication-title: New Phytol. doi: 10.1111/nph.14766 – volume: 92 start-page: 297 year: 2004 ident: 10.1016/j.rse.2018.11.002_bb0065 article-title: Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.05.020 – volume: 52 start-page: 554 year: 2016 ident: 10.1016/j.rse.2018.11.002_bb0425 article-title: Spectral band selection for vegetation properties retrieval using Gaussian processes regression publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 33 year: 2006 ident: 10.1016/j.rse.2018.11.002_bb0190 article-title: Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL026457 – volume: 340 start-page: 741 year: 2013 ident: 10.1016/j.rse.2018.11.002_bb0330 article-title: Global leaf trait relationships: mass, area, and the leaf economics spectrum publication-title: Science doi: 10.1126/science.1231574 – volume: 88 start-page: 232 year: 2018 ident: 10.1016/j.rse.2018.11.002_bb0160 article-title: Are remotely sensed traits suitable for ecological analysis? A case study of long-term drought effects on leaf mass per area of wetland vegetation publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.01.012 – volume: 77 start-page: 22 year: 2001 ident: 10.1016/j.rse.2018.11.002_bb0085 article-title: Detecting vegetation leaf water content using reflectance in the optical domain publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00191-2 – volume: 428 start-page: 821 year: 2004 ident: 10.1016/j.rse.2018.11.002_bb0450 article-title: The worldwide leaf economics spectrum publication-title: Nature doi: 10.1038/nature02403 – start-page: 173 year: 2008 ident: 10.1016/j.rse.2018.11.002_bb0050 article-title: Estimating canopy characteristics from remote sensing observations: review of methods and associated problems – volume: 16 start-page: 646 year: 2001 ident: 10.1016/j.rse.2018.11.002_bb0140 article-title: Vive la diff?rence: plant functional diversity matters to ecosystem processes publication-title: Trends Ecol. Evol. doi: 10.1016/S0169-5347(01)02283-2 – volume: 168 start-page: 205 year: 2015 ident: 10.1016/j.rse.2018.11.002_bb0440 article-title: Applicability of the PROSPECT model for estimating protein and cellulose + lignin in fresh leaves publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.07.007 – volume: 98 start-page: 201 year: 2005 ident: 10.1016/j.rse.2018.11.002_bb0060 article-title: Leaf BRDF measurements and model for specular and diffuse components differentiation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.07.005 – volume: 164 start-page: 57 year: 2015 ident: 10.1016/j.rse.2018.11.002_bb0155 article-title: Multi-method ensemble selection of spectral bands related to leaf biochemistry publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.03.033 – volume: 66 start-page: 751 year: 2011 ident: 10.1016/j.rse.2018.11.002_bb0275 article-title: An investigation into robust spectral indices for leaf chlorophyll estimation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2011.08.001 – volume: 19 start-page: 1433 year: 1998 ident: 10.1016/j.rse.2018.11.002_bb0135 article-title: The biochemical decomposition of slash pine needles from reflectance spectra using neural networks publication-title: Int. J. Remote Sens. doi: 10.1080/014311698215540 – volume: 27 start-page: 5315 year: 2006 ident: 10.1016/j.rse.2018.11.002_bb0295 article-title: Applicability of the PROSPECT model for Norway spruce needles publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600762990 – volume: 136 start-page: 455 year: 2013 ident: 10.1016/j.rse.2018.11.002_bb0455 article-title: A global review of remote sensing of live fuel moisture content for fire danger assessment: moving towards operational products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.05.029 – volume: 8 start-page: 212 year: 2016 ident: 10.1016/j.rse.2018.11.002_bb0025 article-title: Spectranomics: emerging science and conservation opportunities at the interface of biodiversity and remote sensing publication-title: Glob. Ecol. Conserv. doi: 10.1016/j.gecco.2016.09.010 – volume: 177 start-page: 220 year: 2016 ident: 10.1016/j.rse.2018.11.002_bb0230 article-title: A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.029 – volume: 108 start-page: 273 year: 2015 ident: 10.1016/j.rse.2018.11.002_bb0420 article-title: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties – a review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.05.005 – volume: 60 start-page: 542 year: 1970 ident: 10.1016/j.rse.2018.11.002_bb0015 article-title: Mean effective optical constants of cotton leaves publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.60.000542 – volume: 89 start-page: 1 year: 2004 ident: 10.1016/j.rse.2018.11.002_bb0280 article-title: Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.09.004 – volume: 176 start-page: E152 year: 2010 ident: 10.1016/j.rse.2018.11.002_bb0355 article-title: Partitioning the components of relative growth rate: how important is plant size variation? publication-title: Am. Nat. doi: 10.1086/657037 – volume: 47 start-page: 909 year: 1999 ident: 10.1016/j.rse.2018.11.002_bb0130 article-title: Remote sensing of water content in eucalyptus leaves publication-title: Aust. J. Bot. doi: 10.1071/BT98042 – year: 1996 ident: 10.1016/j.rse.2018.11.002_bb0145 – volume: 206 start-page: 1 year: 2018 ident: 10.1016/j.rse.2018.11.002_bb0265 article-title: PROCWT: coupling PROSPECT with continuous wavelet transform to improve the retrieval of foliar chemistry from leaf bidirectional reflectance spectra publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.12.013 – volume: 21 start-page: 85 year: 2011 ident: 10.1016/j.rse.2018.11.002_bb0035 article-title: Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests publication-title: Ecol. Appl. doi: 10.1890/09-1999.1 – volume: 2 year: 2016 ident: 10.1016/j.rse.2018.11.002_bb0235 article-title: Monitoring plant functional diversity from space publication-title: Nat. Plants – volume: 49 start-page: 2499 year: 2011 ident: 10.1016/j.rse.2018.11.002_bb0260 article-title: Retrieval of leaf biochemical parameters using PROSPECT inversion: a new approach for alleviating ill-posed problems publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2109390 – volume: 158 start-page: 15 year: 2015 ident: 10.1016/j.rse.2018.11.002_bb0045 article-title: Quantifying forest canopy traits: imaging spectroscopy versus field survey publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.11.011 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.rse.2018.11.002_bb0125 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 44 start-page: 161 year: 2006 ident: 10.1016/j.rse.2018.11.002_bb0195 article-title: Long-time variations in leaf mass and area of Mediterranean evergreen broad-leaf and narrow-leaf maquis species publication-title: Photosynthetica doi: 10.1007/s11099-006-0001-1 – volume: 19 start-page: 1283 year: 1998 ident: 10.1016/j.rse.2018.11.002_bb5000 article-title: On spectral estimates of fresh leaf biochemistry publication-title: Int. J. Remote Sens. doi: 10.1080/014311698215441 – volume: 193 start-page: 204 year: 2017 ident: 10.1016/j.rse.2018.11.002_bb0175 article-title: PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.004 – volume: 25 start-page: 196 year: 2013 ident: 10.1016/j.rse.2018.11.002_bb0310 article-title: Leaf Equivalent Water Thickness assessment using reflectance at optimum wavelengths publication-title: Theor. Exp. Plant Physiol. doi: 10.1590/S2197-00252013005000001 – volume: 16 start-page: 125 year: 1984 ident: 10.1016/j.rse.2018.11.002_bb0415 article-title: Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(84)90057-9 – volume: 54 start-page: 5453 year: 2015 ident: 10.1016/j.rse.2018.11.002_bb0110 article-title: Neural network implementation for a reversal procedure for water and dry matter estimation on plant leaves using selected LED wavelengths publication-title: Appl. Opt. doi: 10.1364/AO.54.005453 – volume: 167 start-page: 6 year: 2015 ident: 10.1016/j.rse.2018.11.002_bb0250 article-title: An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.06.012 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.rse.2018.11.002_bb0070 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2005 ident: 10.1016/j.rse.2018.11.002_bb0270 – volume: 91 start-page: 455 year: 2003 ident: 10.1016/j.rse.2018.11.002_bb0095 article-title: Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change publication-title: Ann. Bot. doi: 10.1093/aob/mcg041 – volume: 7 start-page: 13098 year: 2015 ident: 10.1016/j.rse.2018.11.002_bb0255 article-title: Monitoring natural ecosystem and ecological gradients: perspectives with EnMAP publication-title: Remote Sens. doi: 10.3390/rs71013098 – volume: 131 start-page: 65 year: 2017 ident: 10.1016/j.rse.2018.11.002_bb0400 article-title: Unsupervised domain adaptation for early detection of drought stress in hyperspectral images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.07.003 – volume: 11 year: 2016 ident: 10.1016/j.rse.2018.11.002_bb0240 article-title: Leaf Mass per Area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient publication-title: PLoS One doi: 10.1371/journal.pone.0148788 – volume: 112 start-page: 1820 year: 2008 ident: 10.1016/j.rse.2018.11.002_bb0105 article-title: Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.09.005 – volume: 20 start-page: 2311 year: 2017 ident: 10.1016/j.rse.2018.11.002_bb0460 article-title: Spectral-spatial multi-feature classification of remote sensing big data based on a random forest classifier for land cover mapping publication-title: Clust. Comput. doi: 10.1007/s10586-017-0950-0 – volume: 112 start-page: 3846 year: 2008 ident: 10.1016/j.rse.2018.11.002_bb0285 article-title: Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.06.005 – volume: 124 start-page: 454 year: 2012 ident: 10.1016/j.rse.2018.11.002_bb0040 article-title: Carnegie Airborne Observatory-2: increasing science data dimensionality via high-fidelity multi-sensor fusion publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.06.012 – volume: 61 start-page: 167 year: 2013 ident: 10.1016/j.rse.2018.11.002_bb0335 article-title: New handbook for standardised measurement of plant functional traits worldwide publication-title: Aust. J. Bot. doi: 10.1071/BT12225 – volume: 56 start-page: 194 year: 1996 ident: 10.1016/j.rse.2018.11.002_bb0220 article-title: Estimating leaf biochemistry using the PROSPECT leaf optical properties model publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(95)00238-3 – volume: 32 start-page: 7097 year: 2011 ident: 10.1016/j.rse.2018.11.002_bb0435 article-title: Estimating dry matter content from spectral reflectance for green leaves of different species publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.494641 – volume: 45 start-page: 66 year: 2016 ident: 10.1016/j.rse.2018.11.002_bb0005 article-title: Estimating leaf functional traits by inversion of PROSPECT: assessing leaf dry matter content and specific leaf area in mixed mountainous forest publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 34 start-page: 455 year: 2003 ident: 10.1016/j.rse.2018.11.002_bb0150 article-title: Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev.ecolsys.34.011802.132342 – volume: 33 start-page: 396 year: 2012 ident: 10.1016/j.rse.2018.11.002_bb0380 article-title: Estimation of dry matter content in leaves using normalized indexes and PROSPECT model inversion publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.532819 – volume: 23 start-page: 2482 year: 2017 ident: 10.1016/j.rse.2018.11.002_bb0445 article-title: Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13542 – volume: 34 start-page: 75 year: 1990 ident: 10.1016/j.rse.2018.11.002_bb0215 article-title: PROSPECT: a model of leaf optical properties spectra publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(90)90100-Z – start-page: 2976 year: 2001 ident: 10.1016/j.rse.2018.11.002_bb0315 – volume: 56 start-page: 3119 year: 2018 ident: 10.1016/j.rse.2018.11.002_bb0350 article-title: Improving the PROSPECT model to consider anisotropic scattering of leaf internal materials and its use for retrieving leaf biomass in fresh leaves publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2791930 – volume: 2 start-page: 1 year: 2011 ident: 10.1016/j.rse.2018.11.002_bb0090 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 135 start-page: 74 year: 2018 ident: 10.1016/j.rse.2018.11.002_bb0410 article-title: Analyzing the performance of PROSPECT model inversion based on different spectral information for leaf biochemical properties retrieval publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.010 – volume: 58 start-page: 131 year: 1996 ident: 10.1016/j.rse.2018.11.002_bb0180 article-title: Modeling radiative transfer in heterogeneous 3-D vegetation canopies publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(95)00253-7 – volume: 2 start-page: 359 year: 1989 ident: 10.1016/j.rse.2018.11.002_bb0205 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – start-page: 49 year: 2009 ident: 10.1016/j.rse.2018.11.002_bb0200 article-title: The Support Vector Machine (SVM) Algorithm for Supervised Classification of Hyperspectral Remote Sensing Data – volume: 115 start-page: 2613 year: 2011 ident: 10.1016/j.rse.2018.11.002_bb0290 article-title: MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.05.017 – volume: 47 start-page: 4143 year: 2009 ident: 10.1016/j.rse.2018.11.002_bb0245 article-title: Support vector machine for multifrequency SAR polarimetric data classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2023908 – volume: 59 start-page: 1376 year: 1969 ident: 10.1016/j.rse.2018.11.002_bb0010 article-title: Interaction of isotropic light with a compact plant leaf publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.59.001376 – volume: 23 start-page: 2145 year: 2002 ident: 10.1016/j.rse.2018.11.002_bb0100 article-title: Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: applications in fire danger assessment publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110069818 – volume: 43 start-page: 819 year: 2005 ident: 10.1016/j.rse.2018.11.002_bb0375 article-title: Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content: analysis at leaf and canopy level publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.843316 – volume: 115 start-page: 2742 year: 2011 ident: 10.1016/j.rse.2018.11.002_bb0170 article-title: Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.06.016 – volume: 113 start-page: S56 year: 2009 ident: 10.1016/j.rse.2018.11.002_bb0225 article-title: PROSPECT+ SAIL models: a review of use for vegetation characterization publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.01.026 – volume: 19 start-page: 236 year: 2009 ident: 10.1016/j.rse.2018.11.002_bb0030 article-title: Leaf chemical and spectral diversity in Australian tropical forests publication-title: Ecol. Appl. doi: 10.1890/08-0023.1 – year: 1994 ident: 10.1016/j.rse.2018.11.002_bb0210 – volume: 7 start-page: 1667 year: 2015 ident: 10.1016/j.rse.2018.11.002_bb0185 article-title: Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes publication-title: Remote Sens. doi: 10.3390/rs70201667 – volume: 21 start-page: 1762 year: 2015 ident: 10.1016/j.rse.2018.11.002_bb0395 article-title: Observing terrestrial ecosystems and the carbon cycle from space publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12822 – start-page: 1 year: 2017 ident: 10.1016/j.rse.2018.11.002_bb0320 article-title: Simulating the canopy reflectance of different eucalypt genotypes with the DART 3-D model publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – year: 2012 ident: 10.1016/j.rse.2018.11.002_bb0055 article-title: Quantification of chlorophyll and carotenoid pigments in eucalyptus foliage with the radiative transfer model PROSPECT 5 is affected by anthocyanin and epicuticular waxes – volume: 182 start-page: 565 year: 2009 ident: 10.1016/j.rse.2018.11.002_bb0340 article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis publication-title: New Phytol. doi: 10.1111/j.1469-8137.2009.02830.x – volume: 112 start-page: 3030 year: 2008 ident: 10.1016/j.rse.2018.11.002_bb0165 article-title: PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.02.012 – volume: 52 start-page: 135 year: 2015 ident: 10.1016/j.rse.2018.11.002_bb0345 article-title: Leaf Mass Per Area (LMA) as a possible predictor of adaptive strategies in two species of Sesleria (Poaceae): analysis of morphological publication-title: Anatomical and Physiological Leaf Traits. Ann. Bot. Fenn. doi: 10.5735/085.052.0201 – volume: 103 start-page: 27 year: 2006 ident: 10.1016/j.rse.2018.11.002_bb0390 article-title: Reflectance quantities in optical remote sensing—definitions and case studies publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.03.002 – volume: 74 start-page: 145 year: 2004 ident: 10.1016/j.rse.2018.11.002_bb0305 article-title: Estimation of leaf transmittance in the near infrared region through reflectance measurements publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2004.03.003 – volume: 169 start-page: 93 year: 2015 ident: 10.1016/j.rse.2018.11.002_bb0370 article-title: Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.08.001 – volume: 158 start-page: 207 year: 2015 ident: 10.1016/j.rse.2018.11.002_bb0385 article-title: Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.11.014 – volume: 51 start-page: 335 year: 2003 ident: 10.1016/j.rse.2018.11.002_bb0115 article-title: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide publication-title: Aust. J. Bot. doi: 10.1071/BT02124 – volume: 72 start-page: 263 year: 2002 ident: 10.1016/j.rse.2018.11.002_bb0300 article-title: Does a leaf absorb radiation in the near infrared (780–900 nm) region? A new approach to quantifying optical reflection, absorption and transmission of leaves publication-title: Photosynth. Res. doi: 10.1023/A:1019823303951 – volume: 115 start-page: 2564 year: 2011 ident: 10.1016/j.rse.2018.11.002_bb0405 article-title: Object-oriented mapping of landslides using Random Forests publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.05.013 – volume: 38 start-page: 2346 year: 2000 ident: 10.1016/j.rse.2018.11.002_bb0075 article-title: Linear spectral mixture models and support vector machines for remote sensing publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.868891 – volume: 88 start-page: 677 year: 2001 ident: 10.1016/j.rse.2018.11.002_bb0080 article-title: Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration publication-title: Am. J. Bot. doi: 10.2307/2657068 – volume: 94 start-page: 13730 year: 1997 ident: 10.1016/j.rse.2018.11.002_bb0360 article-title: From tropics to tundra: global convergence in plant functioning publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.94.25.13730 – volume: 114 start-page: 471 year: 1998 ident: 10.1016/j.rse.2018.11.002_bb0365 article-title: Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups publication-title: Oecologia doi: 10.1007/s004420050471 |
SSID | ssj0015871 |
Score | 2.613543 |
Snippet | Leaf mass per area (LMA) and leaf equivalent water thickness (EWT) are key leaf functional traits providing information for many applications including... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110959 |
SubjectTerms | Algorithms Artificial intelligence Biodiversity and Ecology Biophysical properties data collection Domains Ecological function Ecosystem management Ecosystems Environmental Sciences Equivalence Estimation errors EWT Iterative methods leaf mass Leaf spectroscopy Learning algorithms Leaves LMA Machine learning near-infrared spectroscopy Optical properties Optimization Radiative transfer model Reflectance Regression analysis Regression models remote sensing Risk management Short wave radiation Spectra Statistical methods Support vector machine Support vector machines Thickness Training Transmittance Vegetation |
Title | Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning |
URI | https://dx.doi.org/10.1016/j.rse.2018.11.002 https://www.proquest.com/docview/2292057762 https://www.proquest.com/docview/2176348767 https://hal.inrae.fr/hal-02939160 |
Volume | 231 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQQvExSmFcZkEE9I2eLErgNv1dRRviYemLQ3y3GcrdAlIW2H9sIfs790d45TBEJ74LH-ktM73_3ufL4DeCWkFbhBEzn5RkaCl3Fk0A6KklxkFsFc6XwGvs_Ho-mJ-HAqTzfgsH8LQ2GVQfZ3Mt1L69ByEP7Ng2Y2oze-qSCOQ6akpCZktwuhiMv3f63DPLjMVFc1LxURje5vNn2MV7ugTJk826dEnsGz8g_ddOecgiT_ktVeAR09hK2AHNm429wj2HDVALYnvx-qYWc4qYsB3A_Vzc-vBnDvnS_fe_UYrid4ogmjVmds7kzJLhA7s8a1zCB4ZKYqmPuxmiH34XrsJ-LQllFA_HcSiIw0XsHqqptaN94Nzhpy57eUl_Ut-1IvKfoIW2mpOT2e6jyCrC5ZE1iC-eo7tAUadOGjOR0L5SvOnsDJ0eTr4TQKVRoiK2O-jHieZIiaYuPQ1CrtKI95LhKVK2eFKlRuuVIl3Rcm3KqRw07hYu7irHAmywxPt2Gzqiu3A0xlZY4CxEqLMM_xIk_TREmLmLaURnExhLinj7bhA6iSxlz3sWrfNJJUE0nRtNFI0iG8Xk9puvwdtw0WPdH1H0yoUb_cNu0lMsh6eUrYPR1_0tQWI5pCAB5f8iHs9vyjg5hY6IRqhUmFCmkIL9bdeMDp1sZUrl7hGI4qAM3KkXr6f9t7Bg_wlw-M43IXNpftyj1HJLXM9_xR2YO74_cfp8c3eGQeVw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NTmi8IChMdAwwiCeksDi168BbNXVkrKt42KS9WY7jbIUuydIWtK_DJ-UucYpAaA-8-p-c3Pnud-fzHcBbIa3ADZrAyQ8yEDwPA4N2UBClIrYI5nLXZOA7nY2Sc_H5Ql5swWH3FobCKr3sb2V6I619y4H_mwfVfE5vfIeCOA6ZkpKaoN2-TdmpZA-2x8cnyWxzmSBj1RbOG4qAJnSXm02YV72kZJk8fk-5PL1z5R_q6d4VxUn-Ja4bHXT0CB568MjG7f4ew5Yr-rA7-f1WDTv9YV32YccXOL-67cP9T00F39sn8HOCh5pganHJFs7k7BrhM6tczQziR2aKjLmb9RwZENdjPxCK1oxi4r-RTGSk9DJWFu3Usmo84awij35NqVk_si_ligKQsJWWWtD7qdYpyMqcVZ4rWFOAh7ZAg66bgE7HfAWLy6dwfjQ5O0wCX6ghsDLkq4CnUYzAKTQOra3cjtKQpyJSqXJWqEylliuV05VhxK0aOewULuQujDNn4tjw4S70irJwz4CpOE9RhlhpEek5nqXDYaSkRVibS6O4GEDY0Udb_wFUTGOhu3C1rxpJqomkaN1oJOkA3m2mVG0Kj7sGi47o-g8-1Khi7pr2Bhlkszzl7E7GU01tIQIqxODhdz6A_Y5_tJcUSx1RuTCpUCcN4PWmG884XdyYwpVrHMNRC6BlOVJ7_7e9V7CTnJ1O9fR4dvIcHmBPEyfH5T70VvXavUBgtUpf-oPzCzI1IQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+leaf+mass+per+area+and+equivalent+water+thickness+based+on+leaf+optical+properties%3A+Potential+and+limitations+of+physical+modeling+and+machine+learning&rft.jtitle=Remote+sensing+of+environment&rft.au=F%C3%A9ret%2C+J.-B.&rft.au=le+Maire%2C+G.&rft.au=Jay%2C+S.&rft.au=Berveiller%2C+D.&rft.date=2019-09-15&rft.issn=0034-4257&rft.volume=231&rft.spage=110959&rft_id=info:doi/10.1016%2Fj.rse.2018.11.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2018_11_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |