Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning

Leaf mass per area (LMA) and leaf equivalent water thickness (EWT) are key leaf functional traits providing information for many applications including ecosystem functioning modeling and fire risk management. In this paper, we investigate two common conclusions generally made for LMA and EWT estimat...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 231; p. 110959
Main Authors Féret, J.-B., le Maire, G., Jay, S., Berveiller, D., Bendoula, R., Hmimina, G., Cheraiet, A., Oliveira, J.C., Ponzoni, F.J., Solanki, T., de Boissieu, F., Chave, J., Nouvellon, Y., Porcar-Castell, A., Proisy, C., Soudani, K., Gastellu-Etchegorry, J.-P., Lefèvre-Fonollosa, M.-J.
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 15.09.2019
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Leaf mass per area (LMA) and leaf equivalent water thickness (EWT) are key leaf functional traits providing information for many applications including ecosystem functioning modeling and fire risk management. In this paper, we investigate two common conclusions generally made for LMA and EWT estimation based on leaf optical properties in the near-infrared (NIR) and shortwave infrared (SWIR) domains: (1) physically-based approaches estimate EWT accurately and LMA poorly, while (2) statistically-based and machine learning (ML) methods provide accurate estimates of both LMA and EWT. Using six experimental datasets including broadleaf species samples of >150 species collected over tropical, temperate and boreal ecosystems, we compared the performances of a physically-based method (PROSPECT model inversion) and a ML algorithm (support vector machine regression, SVM) to infer EWT and LMA based on leaf reflectance and transmittance. We assessed several merit functions to invert PROSPECT based on iterative optimization and investigated the spectral domain to be used for optimal estimation of LMA and EWT. We also tested several strategies to select the training samples used by the SVM, in order to investigate the generalization ability of the derived regression models. We evidenced that using spectral information from 1700 to 2400 nm leads to strong improvement in the estimation of EWT and LMA when performing a PROSPECT inversion, decreasing the LMA and EWT estimation errors by 55% and 33%, respectively. The comparison of various sampling strategies for the training set used with SVM suggests that regression models show limited generalization ability, particularly when the regression model is applied on data fully independent from the training set. Finally, our results demonstrate that, when using an appropriate spectral domain, the PROSPECT inversion outperforms SVM trained with experimental data for the estimation of EWT and LMA. Thus we recommend that estimation of LMA and EWT based on leaf optical properties should be physically-based using inversion of reflectance and transmittance measurements on the 1700 to 2400 nm spectral range. •Limitations of physical modeling for the estimation of LMA need to be understood.•Species samples of >150 boreal, temperate and tropical species are studied.•Performance of PROSPECT inversion is reduced when near infrared is used.•Machine learning trained with experimental data shows poor generalization ability.•LMA and EWT can be accurately estimated with PROSPECT inverted from 1700 to 2400 nm.
AbstractList Leaf mass per area (LMA) and leaf equivalent water thickness (EWT) are key leaf functional traits providing information for many applications including ecosystem functioning modeling and fire risk management. In this paper, we investigate two common conclusions generally made for LMA and EWT estimation based on leaf optical properties in the near-infrared (NIR) and shortwave infrared (SWIR) domains: (1) physically-based approaches estimate EWT accurately and LMA poorly, while (2) statistically-based and machine learning (ML) methods provide accurate estimates of both LMA and EWT.Using six experimental datasets including broadleaf species samples of >150 species collected over tropical, temperate and boreal ecosystems, we compared the performances of a physically-based method (PROSPECT model inversion) and a ML algorithm (support vector machine regression, SVM) to infer EWT and LMA based on leaf reflectance and transmittance. We assessed several merit functions to invert PROSPECT based on iterative optimization and investigated the spectral domain to be used for optimal estimation of LMA and EWT. We also tested several strategies to select the training samples used by the SVM, in order to investigate the generalization ability of the derived regression models.We evidenced that using spectral information from 1700 to 2400 nm leads to strong improvement in the estimation of EWT and LMA when performing a PROSPECT inversion, decreasing the LMA and EWT estimation errors by 55% and 33%, respectively.The comparison of various sampling strategies for the training set used with SVM suggests that regression models show limited generalization ability, particularly when the regression model is applied on data fully independent from the training set. Finally, our results demonstrate that, when using an appropriate spectral domain, the PROSPECT inversion outperforms SVM trained with experimental data for the estimation of EWT and LMA. Thus we recommend that estimation of LMA and EWT based on leaf optical properties should be physically-based using inversion of reflectance and transmittance measurements on the 1700 to 2400 nm spectral range.
Leaf mass per area (LMA) and leaf equivalent water thickness (EWT) are key leaf functional traits providing information for many applications including ecosystem functioning modeling and fire risk management. In this paper, we investigate two common conclusions generally made for LMA and EWT estimation based on leaf optical properties in the near-infrared (NIR) and shortwave infrared (SWIR) domains: (1) physically-based approaches estimate EWT accurately and LMA poorly, while (2) statistically-based and machine learning (ML) methods provide accurate estimates of both LMA and EWT. Using six experimental datasets including broadleaf species samples of >150 species collected over tropical, temperate and boreal ecosystems, we compared the performances of a physically-based method (PROSPECT model inversion) and a ML algorithm (support vector machine regression, SVM) to infer EWT and LMA based on leaf reflectance and transmittance. We assessed several merit functions to invert PROSPECT based on iterative optimization and investigated the spectral domain to be used for optimal estimation of LMA and EWT. We also tested several strategies to select the training samples used by the SVM, in order to investigate the generalization ability of the derived regression models. We evidenced that using spectral information from 1700 to 2400 nm leads to strong improvement in the estimation of EWT and LMA when performing a PROSPECT inversion, decreasing the LMA and EWT estimation errors by 55% and 33%, respectively. The comparison of various sampling strategies for the training set used with SVM suggests that regression models show limited generalization ability, particularly when the regression model is applied on data fully independent from the training set. Finally, our results demonstrate that, when using an appropriate spectral domain, the PROSPECT inversion outperforms SVM trained with experimental data for the estimation of EWT and LMA. Thus we recommend that estimation of LMA and EWT based on leaf optical properties should be physically-based using inversion of reflectance and transmittance measurements on the 1700 to 2400 nm spectral range. •Limitations of physical modeling for the estimation of LMA need to be understood.•Species samples of >150 boreal, temperate and tropical species are studied.•Performance of PROSPECT inversion is reduced when near infrared is used.•Machine learning trained with experimental data shows poor generalization ability.•LMA and EWT can be accurately estimated with PROSPECT inverted from 1700 to 2400 nm.
ArticleNumber 110959
Author le Maire, G.
Cheraiet, A.
Lefèvre-Fonollosa, M.-J.
Jay, S.
de Boissieu, F.
Bendoula, R.
Oliveira, J.C.
Solanki, T.
Ponzoni, F.J.
Féret, J.-B.
Soudani, K.
Berveiller, D.
Nouvellon, Y.
Hmimina, G.
Proisy, C.
Chave, J.
Porcar-Castell, A.
Gastellu-Etchegorry, J.-P.
Author_xml – sequence: 1
  givenname: J.-B.
  orcidid: 0000-0002-0151-1334
  surname: Féret
  fullname: Féret, J.-B.
  email: jean-baptiste.feret@teledetection.fr
  organization: TETIS, Irstea, AgroParisTech, CIRAD, CNRS, Université Montpellier, Montpellier, France
– sequence: 2
  givenname: G.
  surname: le Maire
  fullname: le Maire, G.
  organization: CIRAD, UMR ECO&SOLS, Montpellier, France
– sequence: 3
  givenname: S.
  surname: Jay
  fullname: Jay, S.
  organization: Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France
– sequence: 4
  givenname: D.
  surname: Berveiller
  fullname: Berveiller, D.
  organization: Ecologie Systematique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris Saclay, F-91400 Orsay, France
– sequence: 5
  givenname: R.
  surname: Bendoula
  fullname: Bendoula, R.
  organization: ITAP, Irstea, Montpellier SupAgro, Université Montpellier, Montpellier, France
– sequence: 6
  givenname: G.
  surname: Hmimina
  fullname: Hmimina, G.
  organization: Ecologie Systematique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris Saclay, F-91400 Orsay, France
– sequence: 7
  givenname: A.
  surname: Cheraiet
  fullname: Cheraiet, A.
  organization: Ecologie Systematique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris Saclay, F-91400 Orsay, France
– sequence: 8
  givenname: J.C.
  surname: Oliveira
  fullname: Oliveira, J.C.
  organization: School of Agricultural Engineering - FEAGRI, University of Campinas, São Paulo, Brazil
– sequence: 9
  givenname: F.J.
  surname: Ponzoni
  fullname: Ponzoni, F.J.
  organization: Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos 12227-010, Brazil
– sequence: 10
  givenname: T.
  surname: Solanki
  fullname: Solanki, T.
  organization: Optics of Photosynthesis Laboratory, Institute for Atmosphere and Earth System Research/ Forest Sciences, 00014, University of Helsinki, Finland
– sequence: 11
  givenname: F.
  surname: de Boissieu
  fullname: de Boissieu, F.
  organization: TETIS, Irstea, AgroParisTech, CIRAD, CNRS, Université Montpellier, Montpellier, France
– sequence: 12
  givenname: J.
  surname: Chave
  fullname: Chave, J.
  organization: Laboratoire Evolution et Diversité Biologique UMR 5174, CNRS, Université Paul Sabatier, Toulouse, France
– sequence: 13
  givenname: Y.
  surname: Nouvellon
  fullname: Nouvellon, Y.
  organization: CIRAD, UMR ECO&SOLS, Montpellier, France
– sequence: 14
  givenname: A.
  surname: Porcar-Castell
  fullname: Porcar-Castell, A.
  organization: Optics of Photosynthesis Laboratory, Institute for Atmosphere and Earth System Research/ Forest Sciences, 00014, University of Helsinki, Finland
– sequence: 15
  givenname: C.
  surname: Proisy
  fullname: Proisy, C.
  organization: AMAP, IRD, CIRAD, CNRS, INRA, Univ. Montpellier, Montpellier, France
– sequence: 16
  givenname: K.
  surname: Soudani
  fullname: Soudani, K.
  organization: Ecologie Systematique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris Saclay, F-91400 Orsay, France
– sequence: 17
  givenname: J.-P.
  surname: Gastellu-Etchegorry
  fullname: Gastellu-Etchegorry, J.-P.
  organization: Centre d'Etudes Spatiales de la Biosphère, Toulouse 31400, France
– sequence: 18
  givenname: M.-J.
  surname: Lefèvre-Fonollosa
  fullname: Lefèvre-Fonollosa, M.-J.
  organization: CNES, France
BackLink https://hal.inrae.fr/hal-02939160$$DView record in HAL
BookMark eNp9kcFu1DAQhiNUJLaFB-BmiQscEma8SZzAqaoKrbQSHOBsOc6E9ZLYqe1d1NfhSXGaikMPPVma-f7fM_OfZ2fWWcqytwgFAtYfD4UPVHDApkAsAPiLbIONaHMQUJ5lG4BtmZe8Eq-y8xAOAFg1AjfZ3-sQzaSisb_YSGpgkwqBzeSZ8qSYsj2ju6M5qZFsZH9UTJ24N_q3pcR1KlDPnF2lbo5Gq5HN3iWDaCh8Yt9dTEKTqovVaCYT02fOBuYGNu_vw4Nicj2NywgLNCm9N5YWT29T8XX2clBjoDeP70X288v1j6ubfPft6-3V5S7XFWDMseNNDQCK2qoedN0BdiUXnSBdil50GoUYoC6BoxY1pWZJgARNT6ppFG4vsg-r716NcvbpKv5eOmXkzeVOLjXg7bbFGk4L-35l0653RwpRTiZoGkdlyR2D5CjqbdmIWiT03RP04I7epk0k5y2HSoiaJwpXSnsXgqfh_wQIcklYHmRKWC4JS0SZEk4a8USjH68bvTLjs8rPq5LSPU-GvAzakNXUG086yt6ZZ9T_AF9NxEI
CitedBy_id crossref_primary_10_1214_21_AOAS1576
crossref_primary_10_3390_rs13081428
crossref_primary_10_1016_j_rse_2024_114559
crossref_primary_10_3389_fpls_2024_1470719
crossref_primary_10_1016_j_scienta_2021_110024
crossref_primary_10_3390_rs14153693
crossref_primary_10_3390_plants12061333
crossref_primary_10_3390_agronomy12071497
crossref_primary_10_1038_s41598_024_67283_4
crossref_primary_10_1016_j_ecolind_2024_112818
crossref_primary_10_1016_j_plantsci_2023_111795
crossref_primary_10_1016_j_agwat_2024_109059
crossref_primary_10_1111_nph_18713
crossref_primary_10_1016_j_rse_2020_112131
crossref_primary_10_1111_nph_19807
crossref_primary_10_1016_j_rse_2021_112497
crossref_primary_10_1016_j_jag_2021_102384
crossref_primary_10_1016_j_rse_2023_113612
crossref_primary_10_1016_j_rse_2023_113733
crossref_primary_10_1111_nph_16123
crossref_primary_10_3390_rs14030715
crossref_primary_10_1016_j_rse_2023_113614
crossref_primary_10_1016_j_rse_2021_112406
crossref_primary_10_1016_j_ecolind_2022_108687
crossref_primary_10_1016_j_agrformet_2022_109007
crossref_primary_10_21105_joss_06027
crossref_primary_10_1080_15481603_2023_2168410
crossref_primary_10_1016_j_jag_2022_102719
crossref_primary_10_3390_rs15030791
crossref_primary_10_1016_j_rse_2022_113071
crossref_primary_10_1111_pce_15011
crossref_primary_10_3390_rs14030567
crossref_primary_10_1016_j_rse_2019_111415
crossref_primary_10_1016_j_rse_2021_112761
crossref_primary_10_1016_j_compag_2023_108308
crossref_primary_10_1016_j_rse_2023_113926
crossref_primary_10_1109_TGRS_2021_3123117
crossref_primary_10_1016_j_asr_2025_02_052
crossref_primary_10_3390_rs12233891
crossref_primary_10_3390_rs14051251
crossref_primary_10_1109_TGRS_2024_3357774
crossref_primary_10_3390_geosciences10030105
crossref_primary_10_3390_rs14010226
crossref_primary_10_1016_j_envres_2023_115747
crossref_primary_10_1016_j_jag_2024_103817
crossref_primary_10_3390_rs13163235
crossref_primary_10_1016_j_compag_2024_108745
crossref_primary_10_1016_j_rse_2020_112274
crossref_primary_10_1016_j_rse_2022_113444
crossref_primary_10_1016_j_rse_2021_112352
crossref_primary_10_1016_j_rse_2021_112505
crossref_primary_10_1111_jvs_13220
crossref_primary_10_1016_j_srs_2023_100100
crossref_primary_10_1016_j_isprsjprs_2024_06_007
crossref_primary_10_3389_fpls_2024_1458589
crossref_primary_10_1016_j_rse_2020_111758
crossref_primary_10_5194_bg_17_4523_2020
crossref_primary_10_1016_j_foreco_2023_121461
crossref_primary_10_1016_j_jhydrol_2023_129705
crossref_primary_10_3389_fpls_2024_1459670
crossref_primary_10_1016_j_jag_2024_103963
crossref_primary_10_1080_00387010_2022_2149558
crossref_primary_10_1016_j_compag_2022_106982
crossref_primary_10_1016_j_ecolind_2021_108111
crossref_primary_10_1016_j_gecco_2020_e01201
crossref_primary_10_3390_rs16010029
crossref_primary_10_3390_rs13061189
crossref_primary_10_3390_rs14246330
crossref_primary_10_1111_1365_2745_13389
crossref_primary_10_1016_j_isprsjprs_2025_02_011
crossref_primary_10_1016_j_rse_2020_112170
crossref_primary_10_1016_j_rse_2020_112173
crossref_primary_10_1016_j_rse_2020_112176
crossref_primary_10_3389_fenvs_2024_1430818
crossref_primary_10_3390_s20185394
crossref_primary_10_1186_s13007_021_00816_4
crossref_primary_10_3390_agronomy14092173
crossref_primary_10_1080_01431161_2023_2201384
crossref_primary_10_1016_j_compag_2025_110178
crossref_primary_10_1016_j_agwat_2021_106799
crossref_primary_10_3390_rs15204997
crossref_primary_10_34133_plantphenomics_0243
crossref_primary_10_1016_j_infrared_2023_104921
crossref_primary_10_1029_2024JG008404
crossref_primary_10_1111_jvs_13130
crossref_primary_10_3390_rs16214064
crossref_primary_10_3390_rs13173352
crossref_primary_10_1111_nph_19669
crossref_primary_10_1016_j_rse_2024_114531
crossref_primary_10_1029_2023AV000910
crossref_primary_10_1016_j_compag_2023_107669
crossref_primary_10_1109_TGRS_2020_2982263
crossref_primary_10_1016_j_compag_2022_107401
crossref_primary_10_1080_19475705_2021_2002953
crossref_primary_10_1111_avsc_12586
crossref_primary_10_3390_cells13110952
crossref_primary_10_1016_j_rse_2024_114309
crossref_primary_10_1016_j_rse_2021_112826
crossref_primary_10_1016_j_jag_2021_102602
crossref_primary_10_3390_agriculture15010046
crossref_primary_10_3390_s24196490
crossref_primary_10_1016_j_rse_2024_114140
crossref_primary_10_1117_1_JRS_13_034517
crossref_primary_10_1016_j_eswa_2022_117107
crossref_primary_10_1016_j_compag_2024_108893
crossref_primary_10_1016_j_jag_2024_103905
crossref_primary_10_1016_j_agrformet_2024_110337
crossref_primary_10_3390_agronomy12112832
crossref_primary_10_1038_s41598_024_84052_5
Cites_doi 10.1007/BF00379238
10.1111/j.0030-1299.2007.15559.x
10.1007/s004420100645
10.1111/nph.14766
10.1016/j.rse.2004.05.020
10.1029/2006GL026457
10.1126/science.1231574
10.1016/j.ecolind.2018.01.012
10.1016/S0034-4257(01)00191-2
10.1038/nature02403
10.1016/S0169-5347(01)02283-2
10.1016/j.rse.2015.07.007
10.1016/j.rse.2005.07.005
10.1016/j.rse.2015.03.033
10.1016/j.isprsjprs.2011.08.001
10.1080/014311698215540
10.1080/01431160600762990
10.1016/j.rse.2013.05.029
10.1016/j.gecco.2016.09.010
10.1016/j.rse.2016.02.029
10.1016/j.isprsjprs.2015.05.005
10.1364/JOSA.60.000542
10.1016/j.rse.2003.09.004
10.1086/657037
10.1071/BT98042
10.1016/j.rse.2017.12.013
10.1890/09-1999.1
10.1109/TGRS.2011.2109390
10.1016/j.rse.2014.11.011
10.1007/BF00994018
10.1007/s11099-006-0001-1
10.1080/014311698215441
10.1016/j.rse.2017.03.004
10.1590/S2197-00252013005000001
10.1016/0034-4257(84)90057-9
10.1364/AO.54.005453
10.1016/j.rse.2015.06.012
10.1023/A:1010933404324
10.1093/aob/mcg041
10.3390/rs71013098
10.1016/j.isprsjprs.2017.07.003
10.1371/journal.pone.0148788
10.1016/j.rse.2007.09.005
10.1007/s10586-017-0950-0
10.1016/j.rse.2008.06.005
10.1016/j.rse.2012.06.012
10.1071/BT12225
10.1016/0034-4257(95)00238-3
10.1080/01431161.2010.494641
10.1146/annurev.ecolsys.34.011802.132342
10.1080/01431161.2010.532819
10.1111/gcb.13542
10.1016/0034-4257(90)90100-Z
10.1109/TGRS.2018.2791930
10.1145/1961189.1961199
10.1016/j.isprsjprs.2017.11.010
10.1016/0034-4257(95)00253-7
10.1016/0893-6080(89)90020-8
10.1016/j.rse.2011.05.017
10.1109/TGRS.2009.2023908
10.1364/JOSA.59.001376
10.1080/01431160110069818
10.1109/TGRS.2005.843316
10.1016/j.rse.2011.06.016
10.1016/j.rse.2008.01.026
10.1890/08-0023.1
10.3390/rs70201667
10.1111/gcb.12822
10.1111/j.1469-8137.2009.02830.x
10.1016/j.rse.2008.02.012
10.5735/085.052.0201
10.1016/j.rse.2006.03.002
10.1016/j.jphotobiol.2004.03.003
10.1016/j.rse.2015.08.001
10.1016/j.rse.2014.11.014
10.1071/BT02124
10.1023/A:1019823303951
10.1016/j.rse.2011.05.013
10.1109/36.868891
10.2307/2657068
10.1073/pnas.94.25.13730
10.1007/s004420050471
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright Elsevier BV Sep 15, 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright Elsevier BV Sep 15, 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
1XC
VOOES
DOI 10.1016/j.rse.2018.11.002
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID oai_HAL_hal_02939160v1
10_1016_j_rse_2018_11_002
S0034425718305030
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VOH
WUQ
XOL
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c501t-1b286000ae956fc6b01b427b7ec47d7bc177f064021c76e1b44e01e08dea88a13
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Sat Jun 21 06:33:03 EDT 2025
Fri Jul 11 04:40:51 EDT 2025
Wed Aug 13 09:49:57 EDT 2025
Tue Jul 01 03:51:16 EDT 2025
Thu Apr 24 23:12:13 EDT 2025
Fri Feb 23 02:20:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Leaf spectroscopy
LMA
Radiative transfer model
EWT
Biophysical properties
Vegetation
Support vector machine
OPTICAL PROPERTIES
MODELING
MACHINE LEARNING
ECOSYSTEM
LEAF
RISK MANAGEMENT
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-1b286000ae956fc6b01b427b7ec47d7bc177f064021c76e1b44e01e08dea88a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0151-1334
0000-0002-5227-958X
0000-0002-6645-8837
0000-0002-8287-5825
0000-0002-2185-9952
0000-0002-2794-1252
0000-0002-6718-863X
0000-0001-7461-6420
0000-0003-1920-3847
0000-0002-3468-5648
0000-0001-8488-834X
OpenAccessLink https://hal.inrae.fr/hal-02939160
PQID 2292057762
PQPubID 2045405
ParticipantIDs hal_primary_oai_HAL_hal_02939160v1
proquest_miscellaneous_2176348767
proquest_journals_2292057762
crossref_primary_10_1016_j_rse_2018_11_002
crossref_citationtrail_10_1016_j_rse_2018_11_002
elsevier_sciencedirect_doi_10_1016_j_rse_2018_11_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-15
PublicationDateYYYYMMDD 2019-09-15
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2019
Publisher Elsevier Inc
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
– name: Elsevier
References Brown, Lewis, Gunn (bb0075) 2000; 38
Wang, Skidmore, Wang, Darvishzadeh, Hearne (bb0440) 2015; 168
Chapin (bb0095) 2003; 91
le Maire, François, Dufrêne (bb0280) 2004; 89
Reich, Walters, Ellsworth (bb0360) 1997; 94
Puglielli, Crescente, Frattaroli, Gratani (bb0345) 2015; 52
Gratani, Varone (bb0195) 2006; 44
Lardeux, Frison, Tison, Souyris, Stoll, Fruneau, Rudant (bb0245) 2009; 47
Oren, Schulze, Matyssek, Zimmermann (bb0325) 1986; 70
Gitelson, Keydan, Merzlyak (bb0190) 2006; 33
Dawson, Curran, Plummer (bb0135) 1998; 19
Feilhauer, Schmid, Faude, Sánchez-Carrillo, Cirujano (bb0160) 2018; 88
Jacquemoud, Ustin, Verdebout, Schmuck, Andreoli, Hosgood (bb0220) 1996; 56
Eviner, Chapin (bb0150) 2003; 34
Osnas, Lichstein, Reich, Pacala (bb0330) 2013; 340
Ali, Darvishzadeh, Skidmore, van Duren, Heiden, Heurich (bb0005) 2016; 45
Qiu, Chen, Ju, Wang, Zhang, Fang (bb0350) 2018; 56
Colombo, Meroni, Marchesi, Busetto, Rossini, Giardino, Panigada (bb0105) 2008; 112
de la Riva, Olmo, Poorter, Ubera, Villar (bb0240) 2016; 11
Jay, Bendoula, Hadoux, Féret, Gorretta (bb0230) 2016; 177
Baret, Buis (bb0050) 2008
Rees, Osborne, Woodward, Hulme, Turnbull, Taylor (bb0355) 2010; 176
Merzlyak, Chivkunova, Melø, Naqvi (bb0300) 2002; 72
Schaepman, Jehle, Hueni, D'Odorico, Damm, Weyermann, Schneider, Laurent, Popp, Seidel, Lenhard, Gege, Küchler, Brazile, Kohler, De Vos, Meuleman, Meynart, Schläpfer, Kneubühler, Itten (bb0385) 2015; 158
Li, Wang (bb0260) 2011; 49
Cornelissen, Grootemaat, Verheijen, Cornwell, van Bodegom, van der Wal, Aerts (bb0120) 2017; 216
Jacquemoud, Baret (bb0215) 1990; 34
Antúnez, Retamosa, Villar (bb0020) 2001; 128
Datt (bb0130) 1999; 47
Verrelst, Rivera, Gitelson, Delegido, Moreno, Camps-Valls (bb0425) 2016; 52
Merzlyak, Melø, Razi Naqvi (bb0305) 2004; 74
Li, Cheng, Jia, Zhou, Lu, Yao, Tian, Zhu, Cao (bb0265) 2018; 206
Sun, Shi, Yang, Du, Gong, Chen, Song (bb0410) 2018; 135
Wright, Reich, Westoby, Ackerly, Baruch, Bongers, Cavender-Bares, Chapin, Cornelissen, Diemer, Flexas, Garnier, Groom, Gulias, Hikosaka, Lamont, Lee, Lee, Lusk, Midgley, Navas, Niinemets, Oleksyn, Osada, Poorter, Poot, Prior, Pyankov, Roumet, Thomas, Tjoelker, Veneklaas, Villar (bb0450) 2004; 428
Oliveira, Feret, Ponzoni, Nouvellon, Gastellu-Etchegorry, Campoe, Stape, Rodriguez, le Maire (bb0320) 2017
Verhoef (bb0415) 1984; 16
Cornelissen, Lavorel, Garnier, Díaz, Buchmann, Gurvich, Reich, ter Steege, Morgan, van der Heijden, Pausas, Poorter (bb0115) 2003; 51
Newnham, Burt (bb0315) 2001
Yebra, Dennison, Chuvieco, Riaño, Zylstra, Hunt, Danson, Qi, Jurdao (bb0455) 2013; 136
Reich, Walters, Ellsworth, Vose, Volin, Gresham, Bowman (bb0365) 1998; 114
Réjou-Méchain, Tymen, Blanc, Fauset, Feldpausch, Monteagudo, Phillips, Richard, Chave (bb0370) 2015; 169
Breiman (bb0070) 2001; 45
Asner, Martin, Anderson, Knapp (bb0045) 2015; 158
Chuvieco, Riaño, Aguado, Cocero (bb0100) 2002; 23
Allen, Gausman, Richardson (bb0015) 1970; 60
Malenovský, Albrechtová, Lhotáková, Zurita-Milla, Clevers, Schaepman, Cudlín (bb0295) 2006; 27
Asner, Knapp, Boardman, Green, Kennedy-Bowdoin, Eastwood, Martin, Anderson, Field (bb0040) 2012; 124
Hornik, Stinchcombe, White (bb0205) 1989; 2
Asner, Martin, Tupayachi, Emerson, Martinez, Sinca, Powell, Wright, Lugo (bb0035) 2011; 21
Jetz, Cavender-Bares, Pavlick, Schimel, Davis, Asner, Guralnick, Kattge, Latimer, Moorcroft, Schaepman, Schildhauer, Schneider, Schrodt, Stahl, Ustin (bb0235) 2016; 2
Schimel, Pavlick, Fisher, Asner, Saatchi, Townsend, Miller, Frankenberg, Hibbard, Cox (bb0395) 2015; 21
Féret, François, Gitelson, Asner, Barry, Panigada, Richardson, Jacquemoud (bb0170) 2011; 115
Wang, Qu, Hao, Hunt (bb0435) 2011; 32
Barry, Newnham (bb0055) 2012
Drucker, Burges, Kaufman, C, Kaufman, Smola, Vapnik (bb0145) 1996
Schaepman-Strub, Schaepman, Painter, Dangel, Martonchik (bb0390) 2006; 103
Schmitter, Steinrücken, Römer, Ballvora, Léon, Rascher, Plümer (bb0400) 2017; 131
Main, Cho, Mathieu, O'Kennedy, Ramoelo, Koch (bb0275) 2011; 66
Asner, Martin (bb0025) 2016; 8
Jacquemoud, Verhoef, Baret, Bacour, Zarco-Tejada, Asner, François, Ustin (bb0225) 2009; 113
Allen, Gausman, Richardson, Thomas (bb0010) 1969; 59
le Maire, Marsden, Nouvellon, Grinand, Hakamada, Stape, Laclau (bb0290) 2011; 115
Asner, Martin, Ford, Metcalfe, Liddell (bb0030) 2009; 19
Ceccato, Flasse, Tarantola, Jacquemoud, Grégoire (bb0085) 2001; 77
Violle, Navas, Vile, Kazakou, Fortunel, Hummel, Garnier (bb0430) 2007; 116
Conejo, Frangi, de Rosny (bb0110) 2015; 54
Bousquet, Lachérade, Jacquemoud, Moya (bb0060) 2005; 98
(bb0270) 2005
Stumpf, Kerle (bb0405) 2011; 115
Poorter, Niinemets, Poorter, Wright, Villar (bb0340) 2009; 182
Riano, Vaughan, Chuvieco, Zarco-Tejada, Ustin (bb0375) 2005; 43
Cortes, Vapnik (bb0125) 1995; 20
Gualtieri (bb0200) 2009
Weng, Farrior, Dybzinski, Pacala (bb0445) 2017; 23
Bowyer, Danson (bb0065) 2004; 92
Romero, Aguado, Yebra (bb0380) 2012; 33
Féret, Gitelson, Noble, Jacquemoud (bb0175) 2017; 193
Diaz, Cabido (bb0140) 2001; 16
Mobasheri, Fatemi (bb0310) 2013; 25
Verrelst, Camps-Valls, Muñoz-Marí, Rivera, Veroustraete, Clevers, Moreno (bb0420) 2015; 108
Gastellu-Etchegorry, Demarez, Pinel, Zagolski (bb0180) 1996; 58
Fourty, Baret (bb5000) 1998; 19
Feilhauer, Asner, Martin (bb0155) 2015; 164
Zhang, He, Zhang, Peng, Long (bb0460) 2017; 20
Gastellu-Etchegorry, Yin, Lauret, Cajgfinger, Gregoire, Grau, Féret, Lopes, Guilleux, Dedieu, Malenovský, Cook, Morton, Rubio, Durrieu, Cazanave, Martin, Ristorcelli (bb0185) 2015; 7
Hosgood, Jacquemoud, Andreoli, Verdebout, Pedrini, Schmuck (bb0210) 1994
Féret, François, Asner, Gitelson, Martin, Bidel, Ustin, le Maire, Jacquemoud (bb0165) 2008; 112
le Maire, François, Soudani, Berveiller, Pontailler, Bréda, Genet, Davi, Dufrêne (bb0285) 2008; 112
Carter, Knapp (bb0080) 2001; 88
Chang, Lin (bb0090) 2011; 2
Pérez-Harguindeguy, Díaz, Garnier, Lavorel, Poorter, Jaureguiberry, Bret-Harte, Cornwell, Craine, Gurvich, Urcelay, Veneklaas, Reich, Poorter, Wright, Ray, Enrico, Pausas, de Vos, Buchmann, Funes, Quétier, Hodgson, Thompson, Morgan, ter Steege, Sack, Blonder, Poschlod, Vaieretti, Conti, Staver, Aquino, Cornelissen (bb0335) 2013; 61
Lee, Cable, Hook, Green, Ustin, Mandl, Middleton (bb0250) 2015; 167
Leitão, Schwieder, Suess, Okujeni, Galvão, Linden, Hostert (bb0255) 2015; 7
Eviner (10.1016/j.rse.2018.11.002_bb0150) 2003; 34
Jay (10.1016/j.rse.2018.11.002_bb0230) 2016; 177
Feilhauer (10.1016/j.rse.2018.11.002_bb0155) 2015; 164
Wright (10.1016/j.rse.2018.11.002_bb0450) 2004; 428
Violle (10.1016/j.rse.2018.11.002_bb0430) 2007; 116
Asner (10.1016/j.rse.2018.11.002_bb0040) 2012; 124
Oren (10.1016/j.rse.2018.11.002_bb0325) 1986; 70
Gratani (10.1016/j.rse.2018.11.002_bb0195) 2006; 44
Leitão (10.1016/j.rse.2018.11.002_bb0255) 2015; 7
Réjou-Méchain (10.1016/j.rse.2018.11.002_bb0370) 2015; 169
Féret (10.1016/j.rse.2018.11.002_bb0175) 2017; 193
Wang (10.1016/j.rse.2018.11.002_bb0435) 2011; 32
Merzlyak (10.1016/j.rse.2018.11.002_bb0305) 2004; 74
Oliveira (10.1016/j.rse.2018.11.002_bb0320) 2017
Carter (10.1016/j.rse.2018.11.002_bb0080) 2001; 88
le Maire (10.1016/j.rse.2018.11.002_bb0280) 2004; 89
Feilhauer (10.1016/j.rse.2018.11.002_bb0160) 2018; 88
Asner (10.1016/j.rse.2018.11.002_bb0030) 2009; 19
Diaz (10.1016/j.rse.2018.11.002_bb0140) 2001; 16
Yebra (10.1016/j.rse.2018.11.002_bb0455) 2013; 136
Chang (10.1016/j.rse.2018.11.002_bb0090) 2011; 2
Jacquemoud (10.1016/j.rse.2018.11.002_bb0215) 1990; 34
Fourty (10.1016/j.rse.2018.11.002_bb5000) 1998; 19
Schmitter (10.1016/j.rse.2018.11.002_bb0400) 2017; 131
Gastellu-Etchegorry (10.1016/j.rse.2018.11.002_bb0185) 2015; 7
Gualtieri (10.1016/j.rse.2018.11.002_bb0200) 2009
Mobasheri (10.1016/j.rse.2018.11.002_bb0310) 2013; 25
Hosgood (10.1016/j.rse.2018.11.002_bb0210) 1994
le Maire (10.1016/j.rse.2018.11.002_bb0285) 2008; 112
(10.1016/j.rse.2018.11.002_bb0270) 2005
Romero (10.1016/j.rse.2018.11.002_bb0380) 2012; 33
Asner (10.1016/j.rse.2018.11.002_bb0025) 2016; 8
Newnham (10.1016/j.rse.2018.11.002_bb0315) 2001
Reich (10.1016/j.rse.2018.11.002_bb0365) 1998; 114
Schaepman (10.1016/j.rse.2018.11.002_bb0385) 2015; 158
Verrelst (10.1016/j.rse.2018.11.002_bb0420) 2015; 108
Reich (10.1016/j.rse.2018.11.002_bb0360) 1997; 94
Barry (10.1016/j.rse.2018.11.002_bb0055) 2012
Gitelson (10.1016/j.rse.2018.11.002_bb0190) 2006; 33
Allen (10.1016/j.rse.2018.11.002_bb0015) 1970; 60
le Maire (10.1016/j.rse.2018.11.002_bb0290) 2011; 115
Colombo (10.1016/j.rse.2018.11.002_bb0105) 2008; 112
Cortes (10.1016/j.rse.2018.11.002_bb0125) 1995; 20
Main (10.1016/j.rse.2018.11.002_bb0275) 2011; 66
Malenovský (10.1016/j.rse.2018.11.002_bb0295) 2006; 27
Schaepman-Strub (10.1016/j.rse.2018.11.002_bb0390) 2006; 103
Bowyer (10.1016/j.rse.2018.11.002_bb0065) 2004; 92
Lardeux (10.1016/j.rse.2018.11.002_bb0245) 2009; 47
Baret (10.1016/j.rse.2018.11.002_bb0050) 2008
Datt (10.1016/j.rse.2018.11.002_bb0130) 1999; 47
Brown (10.1016/j.rse.2018.11.002_bb0075) 2000; 38
Allen (10.1016/j.rse.2018.11.002_bb0010) 1969; 59
Breiman (10.1016/j.rse.2018.11.002_bb0070) 2001; 45
Jacquemoud (10.1016/j.rse.2018.11.002_bb0220) 1996; 56
Bousquet (10.1016/j.rse.2018.11.002_bb0060) 2005; 98
Dawson (10.1016/j.rse.2018.11.002_bb0135) 1998; 19
de la Riva (10.1016/j.rse.2018.11.002_bb0240) 2016; 11
Rees (10.1016/j.rse.2018.11.002_bb0355) 2010; 176
Stumpf (10.1016/j.rse.2018.11.002_bb0405) 2011; 115
Wang (10.1016/j.rse.2018.11.002_bb0440) 2015; 168
Conejo (10.1016/j.rse.2018.11.002_bb0110) 2015; 54
Féret (10.1016/j.rse.2018.11.002_bb0165) 2008; 112
Puglielli (10.1016/j.rse.2018.11.002_bb0345) 2015; 52
Lee (10.1016/j.rse.2018.11.002_bb0250) 2015; 167
Zhang (10.1016/j.rse.2018.11.002_bb0460) 2017; 20
Li (10.1016/j.rse.2018.11.002_bb0260) 2011; 49
Weng (10.1016/j.rse.2018.11.002_bb0445) 2017; 23
Cornelissen (10.1016/j.rse.2018.11.002_bb0115) 2003; 51
Jetz (10.1016/j.rse.2018.11.002_bb0235) 2016; 2
Qiu (10.1016/j.rse.2018.11.002_bb0350) 2018; 56
Antúnez (10.1016/j.rse.2018.11.002_bb0020) 2001; 128
Riano (10.1016/j.rse.2018.11.002_bb0375) 2005; 43
Merzlyak (10.1016/j.rse.2018.11.002_bb0300) 2002; 72
Verhoef (10.1016/j.rse.2018.11.002_bb0415) 1984; 16
Sun (10.1016/j.rse.2018.11.002_bb0410) 2018; 135
Schimel (10.1016/j.rse.2018.11.002_bb0395) 2015; 21
Chuvieco (10.1016/j.rse.2018.11.002_bb0100) 2002; 23
Féret (10.1016/j.rse.2018.11.002_bb0170) 2011; 115
Chapin (10.1016/j.rse.2018.11.002_bb0095) 2003; 91
Cornelissen (10.1016/j.rse.2018.11.002_bb0120) 2017; 216
Jacquemoud (10.1016/j.rse.2018.11.002_bb0225) 2009; 113
Pérez-Harguindeguy (10.1016/j.rse.2018.11.002_bb0335) 2013; 61
Li (10.1016/j.rse.2018.11.002_bb0265) 2018; 206
Asner (10.1016/j.rse.2018.11.002_bb0045) 2015; 158
Osnas (10.1016/j.rse.2018.11.002_bb0330) 2013; 340
Verrelst (10.1016/j.rse.2018.11.002_bb0425) 2016; 52
Asner (10.1016/j.rse.2018.11.002_bb0035) 2011; 21
Ceccato (10.1016/j.rse.2018.11.002_bb0085) 2001; 77
Ali (10.1016/j.rse.2018.11.002_bb0005) 2016; 45
Hornik (10.1016/j.rse.2018.11.002_bb0205) 1989; 2
Poorter (10.1016/j.rse.2018.11.002_bb0340) 2009; 182
Gastellu-Etchegorry (10.1016/j.rse.2018.11.002_bb0180) 1996; 58
Drucker (10.1016/j.rse.2018.11.002_bb0145) 1996
References_xml – volume: 34
  start-page: 75
  year: 1990
  end-page: 91
  ident: bb0215
  article-title: PROSPECT: a model of leaf optical properties spectra
  publication-title: Remote Sens. Environ.
– volume: 34
  start-page: 455
  year: 2003
  end-page: 485
  ident: bb0150
  article-title: Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 167
  start-page: 6
  year: 2015
  end-page: 19
  ident: bb0250
  article-title: An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities
  publication-title: Remote Sens. Environ.
– volume: 21
  start-page: 1762
  year: 2015
  end-page: 1776
  ident: bb0395
  article-title: Observing terrestrial ecosystems and the carbon cycle from space
  publication-title: Glob. Chang. Biol.
– start-page: 1
  year: 2017
  end-page: 9
  ident: bb0320
  article-title: Simulating the canopy reflectance of different eucalypt genotypes with the DART 3-D model
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 182
  start-page: 565
  year: 2009
  end-page: 588
  ident: bb0340
  article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis
  publication-title: New Phytol.
– volume: 115
  start-page: 2742
  year: 2011
  end-page: 2750
  ident: bb0170
  article-title: Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling
  publication-title: Remote Sens. Environ.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bb0125
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 2
  year: 2016
  ident: bb0235
  article-title: Monitoring plant functional diversity from space
  publication-title: Nat. Plants
– volume: 136
  start-page: 455
  year: 2013
  end-page: 468
  ident: bb0455
  article-title: A global review of remote sensing of live fuel moisture content for fire danger assessment: moving towards operational products
  publication-title: Remote Sens. Environ.
– volume: 47
  start-page: 4143
  year: 2009
  end-page: 4152
  ident: bb0245
  article-title: Support vector machine for multifrequency SAR polarimetric data classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 115
  start-page: 2613
  year: 2011
  end-page: 2625
  ident: bb0290
  article-title: MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass
  publication-title: Remote Sens. Environ.
– volume: 61
  start-page: 167
  year: 2013
  ident: bb0335
  article-title: New handbook for standardised measurement of plant functional traits worldwide
  publication-title: Aust. J. Bot.
– volume: 114
  start-page: 471
  year: 1998
  end-page: 482
  ident: bb0365
  article-title: Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups
  publication-title: Oecologia
– volume: 19
  start-page: 1433
  year: 1998
  end-page: 1438
  ident: bb0135
  article-title: The biochemical decomposition of slash pine needles from reflectance spectra using neural networks
  publication-title: Int. J. Remote Sens.
– volume: 19
  start-page: 1283
  year: 1998
  end-page: 1297
  ident: bb5000
  article-title: On spectral estimates of fresh leaf biochemistry
  publication-title: Int. J. Remote Sens.
– volume: 340
  start-page: 741
  year: 2013
  end-page: 744
  ident: bb0330
  article-title: Global leaf trait relationships: mass, area, and the leaf economics spectrum
  publication-title: Science
– volume: 32
  start-page: 7097
  year: 2011
  end-page: 7109
  ident: bb0435
  article-title: Estimating dry matter content from spectral reflectance for green leaves of different species
  publication-title: Int. J. Remote Sens.
– volume: 158
  start-page: 15
  year: 2015
  end-page: 27
  ident: bb0045
  article-title: Quantifying forest canopy traits: imaging spectroscopy versus field survey
  publication-title: Remote Sens. Environ.
– volume: 177
  start-page: 220
  year: 2016
  end-page: 236
  ident: bb0230
  article-title: A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy
  publication-title: Remote Sens. Environ.
– year: 1996
  ident: bb0145
  article-title: Support Vector Regression Machines
– volume: 135
  start-page: 74
  year: 2018
  end-page: 83
  ident: bb0410
  article-title: Analyzing the performance of PROSPECT model inversion based on different spectral information for leaf biochemical properties retrieval
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 45
  start-page: 66
  year: 2016
  end-page: 76
  ident: bb0005
  article-title: Estimating leaf functional traits by inversion of PROSPECT: assessing leaf dry matter content and specific leaf area in mixed mountainous forest
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 20
  start-page: 2311
  year: 2017
  end-page: 2321
  ident: bb0460
  article-title: Spectral-spatial multi-feature classification of remote sensing big data based on a random forest classifier for land cover mapping
  publication-title: Clust. Comput.
– volume: 103
  start-page: 27
  year: 2006
  end-page: 42
  ident: bb0390
  article-title: Reflectance quantities in optical remote sensing—definitions and case studies
  publication-title: Remote Sens. Environ.
– volume: 124
  start-page: 454
  year: 2012
  end-page: 465
  ident: bb0040
  article-title: Carnegie Airborne Observatory-2: increasing science data dimensionality via high-fidelity multi-sensor fusion
  publication-title: Remote Sens. Environ.
– volume: 49
  start-page: 2499
  year: 2011
  end-page: 2506
  ident: bb0260
  article-title: Retrieval of leaf biochemical parameters using PROSPECT inversion: a new approach for alleviating ill-posed problems
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 25
  start-page: 196
  year: 2013
  end-page: 202
  ident: bb0310
  article-title: Leaf Equivalent Water Thickness assessment using reflectance at optimum wavelengths
  publication-title: Theor. Exp. Plant Physiol.
– volume: 158
  start-page: 207
  year: 2015
  end-page: 219
  ident: bb0385
  article-title: Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX)
  publication-title: Remote Sens. Environ.
– year: 2005
  ident: bb0270
  publication-title: Kramers-Kronig Relations in Optical Materials Research, Springer Series in Optical Sciences
– volume: 77
  start-page: 22
  year: 2001
  end-page: 33
  ident: bb0085
  article-title: Detecting vegetation leaf water content using reflectance in the optical domain
  publication-title: Remote Sens. Environ.
– volume: 91
  start-page: 455
  year: 2003
  end-page: 463
  ident: bb0095
  article-title: Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change
  publication-title: Ann. Bot.
– volume: 94
  start-page: 13730
  year: 1997
  end-page: 13734
  ident: bb0360
  article-title: From tropics to tundra: global convergence in plant functioning
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 23
  start-page: 2145
  year: 2002
  end-page: 2162
  ident: bb0100
  article-title: Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: applications in fire danger assessment
  publication-title: Int. J. Remote Sens.
– volume: 19
  start-page: 236
  year: 2009
  end-page: 253
  ident: bb0030
  article-title: Leaf chemical and spectral diversity in Australian tropical forests
  publication-title: Ecol. Appl.
– volume: 112
  start-page: 3030
  year: 2008
  end-page: 3043
  ident: bb0165
  article-title: PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments
  publication-title: Remote Sens. Environ.
– volume: 23
  start-page: 2482
  year: 2017
  end-page: 2498
  ident: bb0445
  article-title: Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework
  publication-title: Glob. Chang. Biol.
– volume: 52
  start-page: 554
  year: 2016
  end-page: 567
  ident: bb0425
  article-title: Spectral band selection for vegetation properties retrieval using Gaussian processes regression
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 49
  year: 2009
  end-page: 83
  ident: bb0200
  article-title: The Support Vector Machine (SVM) Algorithm for Supervised Classification of Hyperspectral Remote Sensing Data
  publication-title: Kernel Methods for Remote Sensing Data Analysis
– volume: 128
  start-page: 172
  year: 2001
  end-page: 180
  ident: bb0020
  article-title: Relative growth rate in phylogenetically related deciduous and evergreen woody species
  publication-title: Oecologia
– volume: 428
  start-page: 821
  year: 2004
  end-page: 827
  ident: bb0450
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
– start-page: 173
  year: 2008
  end-page: 201
  ident: bb0050
  article-title: Estimating canopy characteristics from remote sensing observations: review of methods and associated problems
  publication-title: Advances in Land Remote Sensing
– volume: 44
  start-page: 161
  year: 2006
  end-page: 168
  ident: bb0195
  article-title: Long-time variations in leaf mass and area of Mediterranean evergreen broad-leaf and narrow-leaf maquis species
  publication-title: Photosynthetica
– volume: 193
  start-page: 204
  year: 2017
  end-page: 215
  ident: bb0175
  article-title: PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle
  publication-title: Remote Sens. Environ.
– volume: 51
  start-page: 335
  year: 2003
  ident: bb0115
  article-title: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide
  publication-title: Aust. J. Bot.
– volume: 7
  start-page: 13098
  year: 2015
  end-page: 13119
  ident: bb0255
  article-title: Monitoring natural ecosystem and ecological gradients: perspectives with EnMAP
  publication-title: Remote Sens.
– volume: 74
  start-page: 145
  year: 2004
  end-page: 150
  ident: bb0305
  article-title: Estimation of leaf transmittance in the near infrared region through reflectance measurements
  publication-title: J. Photochem. Photobiol. B
– volume: 21
  start-page: 85
  year: 2011
  end-page: 98
  ident: bb0035
  article-title: Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests
  publication-title: Ecol. Appl.
– volume: 89
  start-page: 1
  year: 2004
  end-page: 28
  ident: bb0280
  article-title: Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0070
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 168
  start-page: 205
  year: 2015
  end-page: 218
  ident: bb0440
  article-title: Applicability of the PROSPECT model for estimating protein and cellulose + lignin in fresh leaves
  publication-title: Remote Sens. Environ.
– volume: 98
  start-page: 201
  year: 2005
  end-page: 211
  ident: bb0060
  article-title: Leaf BRDF measurements and model for specular and diffuse components differentiation
  publication-title: Remote Sens. Environ.
– volume: 58
  start-page: 131
  year: 1996
  end-page: 156
  ident: bb0180
  article-title: Modeling radiative transfer in heterogeneous 3-D vegetation canopies
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 1667
  year: 2015
  end-page: 1701
  ident: bb0185
  article-title: Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes
  publication-title: Remote Sens.
– volume: 216
  start-page: 653
  year: 2017
  end-page: 669
  ident: bb0120
  article-title: Are litter decomposition and fire linked through plant species traits?
  publication-title: New Phytol.
– volume: 33
  year: 2006
  ident: bb0190
  article-title: Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves
  publication-title: Geophys. Res. Lett.
– volume: 8
  start-page: 212
  year: 2016
  end-page: 219
  ident: bb0025
  article-title: Spectranomics: emerging science and conservation opportunities at the interface of biodiversity and remote sensing
  publication-title: Glob. Ecol. Conserv.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 27
  ident: bb0090
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 47
  start-page: 909
  year: 1999
  end-page: 923
  ident: bb0130
  article-title: Remote sensing of water content in eucalyptus leaves
  publication-title: Aust. J. Bot.
– volume: 108
  start-page: 273
  year: 2015
  end-page: 290
  ident: bb0420
  article-title: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties – a review
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bb0205
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
– volume: 176
  start-page: E152
  year: 2010
  end-page: E161
  ident: bb0355
  article-title: Partitioning the components of relative growth rate: how important is plant size variation?
  publication-title: Am. Nat.
– start-page: 2976
  year: 2001
  end-page: 2978
  ident: bb0315
  article-title: Validation of a Leaf Reflectance and Transmittance Model for Three Agricultural Crop Species
– volume: 112
  start-page: 1820
  year: 2008
  end-page: 1834
  ident: bb0105
  article-title: Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling
  publication-title: Remote Sens. Environ.
– volume: 206
  start-page: 1
  year: 2018
  end-page: 14
  ident: bb0265
  article-title: PROCWT: coupling PROSPECT with continuous wavelet transform to improve the retrieval of foliar chemistry from leaf bidirectional reflectance spectra
  publication-title: Remote Sens. Environ.
– volume: 72
  start-page: 263
  year: 2002
  end-page: 270
  ident: bb0300
  article-title: Does a leaf absorb radiation in the near infrared (780–900 nm) region? A new approach to quantifying optical reflection, absorption and transmission of leaves
  publication-title: Photosynth. Res.
– volume: 164
  start-page: 57
  year: 2015
  end-page: 65
  ident: bb0155
  article-title: Multi-method ensemble selection of spectral bands related to leaf biochemistry
  publication-title: Remote Sens. Environ.
– volume: 88
  start-page: 232
  year: 2018
  end-page: 240
  ident: bb0160
  article-title: Are remotely sensed traits suitable for ecological analysis? A case study of long-term drought effects on leaf mass per area of wetland vegetation
  publication-title: Ecol. Indic.
– volume: 88
  start-page: 677
  year: 2001
  end-page: 684
  ident: bb0080
  article-title: Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration
  publication-title: Am. J. Bot.
– volume: 38
  start-page: 2346
  year: 2000
  end-page: 2360
  ident: bb0075
  article-title: Linear spectral mixture models and support vector machines for remote sensing
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 56
  start-page: 194
  year: 1996
  end-page: 202
  ident: bb0220
  article-title: Estimating leaf biochemistry using the PROSPECT leaf optical properties model
  publication-title: Remote Sens. Environ.
– volume: 54
  start-page: 5453
  year: 2015
  ident: bb0110
  article-title: Neural network implementation for a reversal procedure for water and dry matter estimation on plant leaves using selected LED wavelengths
  publication-title: Appl. Opt.
– volume: 66
  start-page: 751
  year: 2011
  end-page: 761
  ident: bb0275
  article-title: An investigation into robust spectral indices for leaf chlorophyll estimation
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 52
  start-page: 135
  year: 2015
  end-page: 143
  ident: bb0345
  article-title: Leaf Mass Per Area (LMA) as a possible predictor of adaptive strategies in two species of
  publication-title: Anatomical and Physiological Leaf Traits. Ann. Bot. Fenn.
– volume: 11
  year: 2016
  ident: bb0240
  article-title: Leaf Mass per Area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient
  publication-title: PLoS One
– volume: 112
  start-page: 3846
  year: 2008
  end-page: 3864
  ident: bb0285
  article-title: Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass
  publication-title: Remote Sens. Environ.
– volume: 131
  start-page: 65
  year: 2017
  end-page: 76
  ident: bb0400
  article-title: Unsupervised domain adaptation for early detection of drought stress in hyperspectral images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2012
  ident: bb0055
  article-title: Quantification of chlorophyll and carotenoid pigments in eucalyptus foliage with the radiative transfer model PROSPECT 5 is affected by anthocyanin and epicuticular waxes
  publication-title: Proc. Geospatial Science Research 2 Symposium, GSR 2012, Melbourne, Australia, December 10–12, 2012
– volume: 113
  start-page: S56
  year: 2009
  end-page: S66
  ident: bb0225
  article-title: PROSPECT+ SAIL models: a review of use for vegetation characterization
  publication-title: Remote Sens. Environ.
– volume: 16
  start-page: 125
  year: 1984
  end-page: 141
  ident: bb0415
  article-title: Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model
  publication-title: Remote Sens. Environ.
– volume: 116
  start-page: 882
  year: 2007
  end-page: 892
  ident: bb0430
  article-title: Let the concept of trait be functional!
  publication-title: Oikos
– volume: 60
  start-page: 542
  year: 1970
  end-page: 547
  ident: bb0015
  article-title: Mean effective optical constants of cotton leaves
  publication-title: J. Opt. Soc. Am.
– volume: 70
  start-page: 187
  year: 1986
  end-page: 193
  ident: bb0325
  article-title: Estimating photosynthetic rate and annual carbon gain in conifers from specific leaf weight and leaf biomass
  publication-title: Oecologia
– volume: 56
  start-page: 3119
  year: 2018
  end-page: 3136
  ident: bb0350
  article-title: Improving the PROSPECT model to consider anisotropic scattering of leaf internal materials and its use for retrieving leaf biomass in fresh leaves
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 33
  start-page: 396
  year: 2012
  end-page: 414
  ident: bb0380
  article-title: Estimation of dry matter content in leaves using normalized indexes and PROSPECT model inversion
  publication-title: Int. J. Remote Sens.
– volume: 92
  start-page: 297
  year: 2004
  end-page: 308
  ident: bb0065
  article-title: Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level
  publication-title: Remote Sens. Environ.
– volume: 59
  start-page: 1376
  year: 1969
  end-page: 1379
  ident: bb0010
  article-title: Interaction of isotropic light with a compact plant leaf
  publication-title: J. Opt. Soc. Am.
– volume: 27
  start-page: 5315
  year: 2006
  end-page: 5340
  ident: bb0295
  article-title: Applicability of the PROSPECT model for Norway spruce needles
  publication-title: Int. J. Remote Sens.
– volume: 169
  start-page: 93
  year: 2015
  end-page: 101
  ident: bb0370
  article-title: Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest
  publication-title: Remote Sens. Environ.
– volume: 16
  start-page: 646
  year: 2001
  end-page: 655
  ident: bb0140
  article-title: Vive la diff?rence: plant functional diversity matters to ecosystem processes
  publication-title: Trends Ecol. Evol.
– volume: 115
  start-page: 2564
  year: 2011
  end-page: 2577
  ident: bb0405
  article-title: Object-oriented mapping of landslides using Random Forests
  publication-title: Remote Sens. Environ.
– volume: 43
  start-page: 819
  year: 2005
  end-page: 826
  ident: bb0375
  article-title: Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content: analysis at leaf and canopy level
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 1994
  ident: bb0210
  article-title: Leaf Optical Properties Experiment 93 (LOPEX93) (European Commission No. EUR 16095 EN)
– volume: 70
  start-page: 187
  year: 1986
  ident: 10.1016/j.rse.2018.11.002_bb0325
  article-title: Estimating photosynthetic rate and annual carbon gain in conifers from specific leaf weight and leaf biomass
  publication-title: Oecologia
  doi: 10.1007/BF00379238
– volume: 116
  start-page: 882
  year: 2007
  ident: 10.1016/j.rse.2018.11.002_bb0430
  article-title: Let the concept of trait be functional!
  publication-title: Oikos
  doi: 10.1111/j.0030-1299.2007.15559.x
– volume: 128
  start-page: 172
  year: 2001
  ident: 10.1016/j.rse.2018.11.002_bb0020
  article-title: Relative growth rate in phylogenetically related deciduous and evergreen woody species
  publication-title: Oecologia
  doi: 10.1007/s004420100645
– volume: 216
  start-page: 653
  year: 2017
  ident: 10.1016/j.rse.2018.11.002_bb0120
  article-title: Are litter decomposition and fire linked through plant species traits?
  publication-title: New Phytol.
  doi: 10.1111/nph.14766
– volume: 92
  start-page: 297
  year: 2004
  ident: 10.1016/j.rse.2018.11.002_bb0065
  article-title: Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.05.020
– volume: 52
  start-page: 554
  year: 2016
  ident: 10.1016/j.rse.2018.11.002_bb0425
  article-title: Spectral band selection for vegetation properties retrieval using Gaussian processes regression
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 33
  year: 2006
  ident: 10.1016/j.rse.2018.11.002_bb0190
  article-title: Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL026457
– volume: 340
  start-page: 741
  year: 2013
  ident: 10.1016/j.rse.2018.11.002_bb0330
  article-title: Global leaf trait relationships: mass, area, and the leaf economics spectrum
  publication-title: Science
  doi: 10.1126/science.1231574
– volume: 88
  start-page: 232
  year: 2018
  ident: 10.1016/j.rse.2018.11.002_bb0160
  article-title: Are remotely sensed traits suitable for ecological analysis? A case study of long-term drought effects on leaf mass per area of wetland vegetation
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2018.01.012
– volume: 77
  start-page: 22
  year: 2001
  ident: 10.1016/j.rse.2018.11.002_bb0085
  article-title: Detecting vegetation leaf water content using reflectance in the optical domain
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00191-2
– volume: 428
  start-page: 821
  year: 2004
  ident: 10.1016/j.rse.2018.11.002_bb0450
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
  doi: 10.1038/nature02403
– start-page: 173
  year: 2008
  ident: 10.1016/j.rse.2018.11.002_bb0050
  article-title: Estimating canopy characteristics from remote sensing observations: review of methods and associated problems
– volume: 16
  start-page: 646
  year: 2001
  ident: 10.1016/j.rse.2018.11.002_bb0140
  article-title: Vive la diff?rence: plant functional diversity matters to ecosystem processes
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/S0169-5347(01)02283-2
– volume: 168
  start-page: 205
  year: 2015
  ident: 10.1016/j.rse.2018.11.002_bb0440
  article-title: Applicability of the PROSPECT model for estimating protein and cellulose + lignin in fresh leaves
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.07.007
– volume: 98
  start-page: 201
  year: 2005
  ident: 10.1016/j.rse.2018.11.002_bb0060
  article-title: Leaf BRDF measurements and model for specular and diffuse components differentiation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.07.005
– volume: 164
  start-page: 57
  year: 2015
  ident: 10.1016/j.rse.2018.11.002_bb0155
  article-title: Multi-method ensemble selection of spectral bands related to leaf biochemistry
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.03.033
– volume: 66
  start-page: 751
  year: 2011
  ident: 10.1016/j.rse.2018.11.002_bb0275
  article-title: An investigation into robust spectral indices for leaf chlorophyll estimation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2011.08.001
– volume: 19
  start-page: 1433
  year: 1998
  ident: 10.1016/j.rse.2018.11.002_bb0135
  article-title: The biochemical decomposition of slash pine needles from reflectance spectra using neural networks
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311698215540
– volume: 27
  start-page: 5315
  year: 2006
  ident: 10.1016/j.rse.2018.11.002_bb0295
  article-title: Applicability of the PROSPECT model for Norway spruce needles
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600762990
– volume: 136
  start-page: 455
  year: 2013
  ident: 10.1016/j.rse.2018.11.002_bb0455
  article-title: A global review of remote sensing of live fuel moisture content for fire danger assessment: moving towards operational products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.05.029
– volume: 8
  start-page: 212
  year: 2016
  ident: 10.1016/j.rse.2018.11.002_bb0025
  article-title: Spectranomics: emerging science and conservation opportunities at the interface of biodiversity and remote sensing
  publication-title: Glob. Ecol. Conserv.
  doi: 10.1016/j.gecco.2016.09.010
– volume: 177
  start-page: 220
  year: 2016
  ident: 10.1016/j.rse.2018.11.002_bb0230
  article-title: A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.029
– volume: 108
  start-page: 273
  year: 2015
  ident: 10.1016/j.rse.2018.11.002_bb0420
  article-title: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties – a review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.05.005
– volume: 60
  start-page: 542
  year: 1970
  ident: 10.1016/j.rse.2018.11.002_bb0015
  article-title: Mean effective optical constants of cotton leaves
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.60.000542
– volume: 89
  start-page: 1
  year: 2004
  ident: 10.1016/j.rse.2018.11.002_bb0280
  article-title: Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.09.004
– volume: 176
  start-page: E152
  year: 2010
  ident: 10.1016/j.rse.2018.11.002_bb0355
  article-title: Partitioning the components of relative growth rate: how important is plant size variation?
  publication-title: Am. Nat.
  doi: 10.1086/657037
– volume: 47
  start-page: 909
  year: 1999
  ident: 10.1016/j.rse.2018.11.002_bb0130
  article-title: Remote sensing of water content in eucalyptus leaves
  publication-title: Aust. J. Bot.
  doi: 10.1071/BT98042
– year: 1996
  ident: 10.1016/j.rse.2018.11.002_bb0145
– volume: 206
  start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2018.11.002_bb0265
  article-title: PROCWT: coupling PROSPECT with continuous wavelet transform to improve the retrieval of foliar chemistry from leaf bidirectional reflectance spectra
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.12.013
– volume: 21
  start-page: 85
  year: 2011
  ident: 10.1016/j.rse.2018.11.002_bb0035
  article-title: Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests
  publication-title: Ecol. Appl.
  doi: 10.1890/09-1999.1
– volume: 2
  year: 2016
  ident: 10.1016/j.rse.2018.11.002_bb0235
  article-title: Monitoring plant functional diversity from space
  publication-title: Nat. Plants
– volume: 49
  start-page: 2499
  year: 2011
  ident: 10.1016/j.rse.2018.11.002_bb0260
  article-title: Retrieval of leaf biochemical parameters using PROSPECT inversion: a new approach for alleviating ill-posed problems
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2109390
– volume: 158
  start-page: 15
  year: 2015
  ident: 10.1016/j.rse.2018.11.002_bb0045
  article-title: Quantifying forest canopy traits: imaging spectroscopy versus field survey
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.11.011
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.rse.2018.11.002_bb0125
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 44
  start-page: 161
  year: 2006
  ident: 10.1016/j.rse.2018.11.002_bb0195
  article-title: Long-time variations in leaf mass and area of Mediterranean evergreen broad-leaf and narrow-leaf maquis species
  publication-title: Photosynthetica
  doi: 10.1007/s11099-006-0001-1
– volume: 19
  start-page: 1283
  year: 1998
  ident: 10.1016/j.rse.2018.11.002_bb5000
  article-title: On spectral estimates of fresh leaf biochemistry
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311698215441
– volume: 193
  start-page: 204
  year: 2017
  ident: 10.1016/j.rse.2018.11.002_bb0175
  article-title: PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.004
– volume: 25
  start-page: 196
  year: 2013
  ident: 10.1016/j.rse.2018.11.002_bb0310
  article-title: Leaf Equivalent Water Thickness assessment using reflectance at optimum wavelengths
  publication-title: Theor. Exp. Plant Physiol.
  doi: 10.1590/S2197-00252013005000001
– volume: 16
  start-page: 125
  year: 1984
  ident: 10.1016/j.rse.2018.11.002_bb0415
  article-title: Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(84)90057-9
– volume: 54
  start-page: 5453
  year: 2015
  ident: 10.1016/j.rse.2018.11.002_bb0110
  article-title: Neural network implementation for a reversal procedure for water and dry matter estimation on plant leaves using selected LED wavelengths
  publication-title: Appl. Opt.
  doi: 10.1364/AO.54.005453
– volume: 167
  start-page: 6
  year: 2015
  ident: 10.1016/j.rse.2018.11.002_bb0250
  article-title: An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.06.012
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.rse.2018.11.002_bb0070
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2005
  ident: 10.1016/j.rse.2018.11.002_bb0270
– volume: 91
  start-page: 455
  year: 2003
  ident: 10.1016/j.rse.2018.11.002_bb0095
  article-title: Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcg041
– volume: 7
  start-page: 13098
  year: 2015
  ident: 10.1016/j.rse.2018.11.002_bb0255
  article-title: Monitoring natural ecosystem and ecological gradients: perspectives with EnMAP
  publication-title: Remote Sens.
  doi: 10.3390/rs71013098
– volume: 131
  start-page: 65
  year: 2017
  ident: 10.1016/j.rse.2018.11.002_bb0400
  article-title: Unsupervised domain adaptation for early detection of drought stress in hyperspectral images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.07.003
– volume: 11
  year: 2016
  ident: 10.1016/j.rse.2018.11.002_bb0240
  article-title: Leaf Mass per Area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0148788
– volume: 112
  start-page: 1820
  year: 2008
  ident: 10.1016/j.rse.2018.11.002_bb0105
  article-title: Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.09.005
– volume: 20
  start-page: 2311
  year: 2017
  ident: 10.1016/j.rse.2018.11.002_bb0460
  article-title: Spectral-spatial multi-feature classification of remote sensing big data based on a random forest classifier for land cover mapping
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-017-0950-0
– volume: 112
  start-page: 3846
  year: 2008
  ident: 10.1016/j.rse.2018.11.002_bb0285
  article-title: Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.06.005
– volume: 124
  start-page: 454
  year: 2012
  ident: 10.1016/j.rse.2018.11.002_bb0040
  article-title: Carnegie Airborne Observatory-2: increasing science data dimensionality via high-fidelity multi-sensor fusion
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.06.012
– volume: 61
  start-page: 167
  year: 2013
  ident: 10.1016/j.rse.2018.11.002_bb0335
  article-title: New handbook for standardised measurement of plant functional traits worldwide
  publication-title: Aust. J. Bot.
  doi: 10.1071/BT12225
– volume: 56
  start-page: 194
  year: 1996
  ident: 10.1016/j.rse.2018.11.002_bb0220
  article-title: Estimating leaf biochemistry using the PROSPECT leaf optical properties model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(95)00238-3
– volume: 32
  start-page: 7097
  year: 2011
  ident: 10.1016/j.rse.2018.11.002_bb0435
  article-title: Estimating dry matter content from spectral reflectance for green leaves of different species
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.494641
– volume: 45
  start-page: 66
  year: 2016
  ident: 10.1016/j.rse.2018.11.002_bb0005
  article-title: Estimating leaf functional traits by inversion of PROSPECT: assessing leaf dry matter content and specific leaf area in mixed mountainous forest
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 34
  start-page: 455
  year: 2003
  ident: 10.1016/j.rse.2018.11.002_bb0150
  article-title: Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes
  publication-title: Annu. Rev. Ecol. Evol. Syst.
  doi: 10.1146/annurev.ecolsys.34.011802.132342
– volume: 33
  start-page: 396
  year: 2012
  ident: 10.1016/j.rse.2018.11.002_bb0380
  article-title: Estimation of dry matter content in leaves using normalized indexes and PROSPECT model inversion
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.532819
– volume: 23
  start-page: 2482
  year: 2017
  ident: 10.1016/j.rse.2018.11.002_bb0445
  article-title: Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13542
– volume: 34
  start-page: 75
  year: 1990
  ident: 10.1016/j.rse.2018.11.002_bb0215
  article-title: PROSPECT: a model of leaf optical properties spectra
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(90)90100-Z
– start-page: 2976
  year: 2001
  ident: 10.1016/j.rse.2018.11.002_bb0315
– volume: 56
  start-page: 3119
  year: 2018
  ident: 10.1016/j.rse.2018.11.002_bb0350
  article-title: Improving the PROSPECT model to consider anisotropic scattering of leaf internal materials and its use for retrieving leaf biomass in fresh leaves
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2791930
– volume: 2
  start-page: 1
  year: 2011
  ident: 10.1016/j.rse.2018.11.002_bb0090
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 135
  start-page: 74
  year: 2018
  ident: 10.1016/j.rse.2018.11.002_bb0410
  article-title: Analyzing the performance of PROSPECT model inversion based on different spectral information for leaf biochemical properties retrieval
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.010
– volume: 58
  start-page: 131
  year: 1996
  ident: 10.1016/j.rse.2018.11.002_bb0180
  article-title: Modeling radiative transfer in heterogeneous 3-D vegetation canopies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(95)00253-7
– volume: 2
  start-page: 359
  year: 1989
  ident: 10.1016/j.rse.2018.11.002_bb0205
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– start-page: 49
  year: 2009
  ident: 10.1016/j.rse.2018.11.002_bb0200
  article-title: The Support Vector Machine (SVM) Algorithm for Supervised Classification of Hyperspectral Remote Sensing Data
– volume: 115
  start-page: 2613
  year: 2011
  ident: 10.1016/j.rse.2018.11.002_bb0290
  article-title: MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.05.017
– volume: 47
  start-page: 4143
  year: 2009
  ident: 10.1016/j.rse.2018.11.002_bb0245
  article-title: Support vector machine for multifrequency SAR polarimetric data classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2023908
– volume: 59
  start-page: 1376
  year: 1969
  ident: 10.1016/j.rse.2018.11.002_bb0010
  article-title: Interaction of isotropic light with a compact plant leaf
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.59.001376
– volume: 23
  start-page: 2145
  year: 2002
  ident: 10.1016/j.rse.2018.11.002_bb0100
  article-title: Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: applications in fire danger assessment
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110069818
– volume: 43
  start-page: 819
  year: 2005
  ident: 10.1016/j.rse.2018.11.002_bb0375
  article-title: Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content: analysis at leaf and canopy level
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.843316
– volume: 115
  start-page: 2742
  year: 2011
  ident: 10.1016/j.rse.2018.11.002_bb0170
  article-title: Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.06.016
– volume: 113
  start-page: S56
  year: 2009
  ident: 10.1016/j.rse.2018.11.002_bb0225
  article-title: PROSPECT+ SAIL models: a review of use for vegetation characterization
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.01.026
– volume: 19
  start-page: 236
  year: 2009
  ident: 10.1016/j.rse.2018.11.002_bb0030
  article-title: Leaf chemical and spectral diversity in Australian tropical forests
  publication-title: Ecol. Appl.
  doi: 10.1890/08-0023.1
– year: 1994
  ident: 10.1016/j.rse.2018.11.002_bb0210
– volume: 7
  start-page: 1667
  year: 2015
  ident: 10.1016/j.rse.2018.11.002_bb0185
  article-title: Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes
  publication-title: Remote Sens.
  doi: 10.3390/rs70201667
– volume: 21
  start-page: 1762
  year: 2015
  ident: 10.1016/j.rse.2018.11.002_bb0395
  article-title: Observing terrestrial ecosystems and the carbon cycle from space
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12822
– start-page: 1
  year: 2017
  ident: 10.1016/j.rse.2018.11.002_bb0320
  article-title: Simulating the canopy reflectance of different eucalypt genotypes with the DART 3-D model
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– year: 2012
  ident: 10.1016/j.rse.2018.11.002_bb0055
  article-title: Quantification of chlorophyll and carotenoid pigments in eucalyptus foliage with the radiative transfer model PROSPECT 5 is affected by anthocyanin and epicuticular waxes
– volume: 182
  start-page: 565
  year: 2009
  ident: 10.1016/j.rse.2018.11.002_bb0340
  article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2009.02830.x
– volume: 112
  start-page: 3030
  year: 2008
  ident: 10.1016/j.rse.2018.11.002_bb0165
  article-title: PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.02.012
– volume: 52
  start-page: 135
  year: 2015
  ident: 10.1016/j.rse.2018.11.002_bb0345
  article-title: Leaf Mass Per Area (LMA) as a possible predictor of adaptive strategies in two species of Sesleria (Poaceae): analysis of morphological
  publication-title: Anatomical and Physiological Leaf Traits. Ann. Bot. Fenn.
  doi: 10.5735/085.052.0201
– volume: 103
  start-page: 27
  year: 2006
  ident: 10.1016/j.rse.2018.11.002_bb0390
  article-title: Reflectance quantities in optical remote sensing—definitions and case studies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.03.002
– volume: 74
  start-page: 145
  year: 2004
  ident: 10.1016/j.rse.2018.11.002_bb0305
  article-title: Estimation of leaf transmittance in the near infrared region through reflectance measurements
  publication-title: J. Photochem. Photobiol. B
  doi: 10.1016/j.jphotobiol.2004.03.003
– volume: 169
  start-page: 93
  year: 2015
  ident: 10.1016/j.rse.2018.11.002_bb0370
  article-title: Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.001
– volume: 158
  start-page: 207
  year: 2015
  ident: 10.1016/j.rse.2018.11.002_bb0385
  article-title: Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.11.014
– volume: 51
  start-page: 335
  year: 2003
  ident: 10.1016/j.rse.2018.11.002_bb0115
  article-title: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide
  publication-title: Aust. J. Bot.
  doi: 10.1071/BT02124
– volume: 72
  start-page: 263
  year: 2002
  ident: 10.1016/j.rse.2018.11.002_bb0300
  article-title: Does a leaf absorb radiation in the near infrared (780–900 nm) region? A new approach to quantifying optical reflection, absorption and transmission of leaves
  publication-title: Photosynth. Res.
  doi: 10.1023/A:1019823303951
– volume: 115
  start-page: 2564
  year: 2011
  ident: 10.1016/j.rse.2018.11.002_bb0405
  article-title: Object-oriented mapping of landslides using Random Forests
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.05.013
– volume: 38
  start-page: 2346
  year: 2000
  ident: 10.1016/j.rse.2018.11.002_bb0075
  article-title: Linear spectral mixture models and support vector machines for remote sensing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.868891
– volume: 88
  start-page: 677
  year: 2001
  ident: 10.1016/j.rse.2018.11.002_bb0080
  article-title: Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration
  publication-title: Am. J. Bot.
  doi: 10.2307/2657068
– volume: 94
  start-page: 13730
  year: 1997
  ident: 10.1016/j.rse.2018.11.002_bb0360
  article-title: From tropics to tundra: global convergence in plant functioning
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.94.25.13730
– volume: 114
  start-page: 471
  year: 1998
  ident: 10.1016/j.rse.2018.11.002_bb0365
  article-title: Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups
  publication-title: Oecologia
  doi: 10.1007/s004420050471
SSID ssj0015871
Score 2.613543
Snippet Leaf mass per area (LMA) and leaf equivalent water thickness (EWT) are key leaf functional traits providing information for many applications including...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110959
SubjectTerms Algorithms
Artificial intelligence
Biodiversity and Ecology
Biophysical properties
data collection
Domains
Ecological function
Ecosystem management
Ecosystems
Environmental Sciences
Equivalence
Estimation errors
EWT
Iterative methods
leaf mass
Leaf spectroscopy
Learning algorithms
Leaves
LMA
Machine learning
near-infrared spectroscopy
Optical properties
Optimization
Radiative transfer model
Reflectance
Regression analysis
Regression models
remote sensing
Risk management
Short wave radiation
Spectra
Statistical methods
Support vector machine
Support vector machines
Thickness
Training
Transmittance
Vegetation
Title Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning
URI https://dx.doi.org/10.1016/j.rse.2018.11.002
https://www.proquest.com/docview/2292057762
https://www.proquest.com/docview/2176348767
https://hal.inrae.fr/hal-02939160
Volume 231
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQQvExSmFcZkEE9I2eLErgNv1dRRviYemLQ3y3GcrdAlIW2H9sIfs790d45TBEJ74LH-ktM73_3ufL4DeCWkFbhBEzn5RkaCl3Fk0A6KklxkFsFc6XwGvs_Ho-mJ-HAqTzfgsH8LQ2GVQfZ3Mt1L69ByEP7Ng2Y2oze-qSCOQ6akpCZktwuhiMv3f63DPLjMVFc1LxURje5vNn2MV7ugTJk826dEnsGz8g_ddOecgiT_ktVeAR09hK2AHNm429wj2HDVALYnvx-qYWc4qYsB3A_Vzc-vBnDvnS_fe_UYrid4ogmjVmds7kzJLhA7s8a1zCB4ZKYqmPuxmiH34XrsJ-LQllFA_HcSiIw0XsHqqptaN94Nzhpy57eUl_Ut-1IvKfoIW2mpOT2e6jyCrC5ZE1iC-eo7tAUadOGjOR0L5SvOnsDJ0eTr4TQKVRoiK2O-jHieZIiaYuPQ1CrtKI95LhKVK2eFKlRuuVIl3Rcm3KqRw07hYu7irHAmywxPt2Gzqiu3A0xlZY4CxEqLMM_xIk_TREmLmLaURnExhLinj7bhA6iSxlz3sWrfNJJUE0nRtNFI0iG8Xk9puvwdtw0WPdH1H0yoUb_cNu0lMsh6eUrYPR1_0tQWI5pCAB5f8iHs9vyjg5hY6IRqhUmFCmkIL9bdeMDp1sZUrl7hGI4qAM3KkXr6f9t7Bg_wlw-M43IXNpftyj1HJLXM9_xR2YO74_cfp8c3eGQeVw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NTmi8IChMdAwwiCeksDi168BbNXVkrKt42KS9WY7jbIUuydIWtK_DJ-UucYpAaA-8-p-c3Pnud-fzHcBbIa3ADZrAyQ8yEDwPA4N2UBClIrYI5nLXZOA7nY2Sc_H5Ql5swWH3FobCKr3sb2V6I619y4H_mwfVfE5vfIeCOA6ZkpKaoN2-TdmpZA-2x8cnyWxzmSBj1RbOG4qAJnSXm02YV72kZJk8fk-5PL1z5R_q6d4VxUn-Ja4bHXT0CB568MjG7f4ew5Yr-rA7-f1WDTv9YV32YccXOL-67cP9T00F39sn8HOCh5pganHJFs7k7BrhM6tczQziR2aKjLmb9RwZENdjPxCK1oxi4r-RTGSk9DJWFu3Usmo84awij35NqVk_si_ligKQsJWWWtD7qdYpyMqcVZ4rWFOAh7ZAg66bgE7HfAWLy6dwfjQ5O0wCX6ghsDLkq4CnUYzAKTQOra3cjtKQpyJSqXJWqEylliuV05VhxK0aOewULuQujDNn4tjw4S70irJwz4CpOE9RhlhpEek5nqXDYaSkRVibS6O4GEDY0Udb_wFUTGOhu3C1rxpJqomkaN1oJOkA3m2mVG0Kj7sGi47o-g8-1Khi7pr2Bhlkszzl7E7GU01tIQIqxODhdz6A_Y5_tJcUSx1RuTCpUCcN4PWmG884XdyYwpVrHMNRC6BlOVJ7_7e9V7CTnJ1O9fR4dvIcHmBPEyfH5T70VvXavUBgtUpf-oPzCzI1IQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+leaf+mass+per+area+and+equivalent+water+thickness+based+on+leaf+optical+properties%3A+Potential+and+limitations+of+physical+modeling+and+machine+learning&rft.jtitle=Remote+sensing+of+environment&rft.au=F%C3%A9ret%2C+J.-B.&rft.au=le+Maire%2C+G.&rft.au=Jay%2C+S.&rft.au=Berveiller%2C+D.&rft.date=2019-09-15&rft.issn=0034-4257&rft.volume=231&rft.spage=110959&rft_id=info:doi/10.1016%2Fj.rse.2018.11.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2018_11_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon