The essential roles of m6A RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma

Background Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Patient prognosis is poor, and the existing therapeutic strategies for LUAD are far from satisfactory. Recently, targeting N6-methyladenosine (m.sup.6A) modification of RNA has been suggested as a potential strategy to...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental & clinical cancer research Vol. 41; no. 1; pp. 1 - 21
Main Authors Ma, Lifang, Xue, Xiangfei, Zhang, Xiao, Yu, Keke, Xu, Xin, Tian, Xiaoting, Miao, Yayou, Meng, Fanyu, Liu, Xiaoxin, Guo, Susu, Qiu, Shiyu, Wang, Yikun, Cui, Jiangtao, Guo, Wanxin, Li, You, Xia, Jinjing, Yu, Yongchun, Wang, Jiayi
Format Journal Article
LanguageEnglish
Published London BioMed Central Ltd 25.01.2022
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Patient prognosis is poor, and the existing therapeutic strategies for LUAD are far from satisfactory. Recently, targeting N6-methyladenosine (m.sup.6A) modification of RNA has been suggested as a potential strategy to impede tumor progression. However, the roles of m.sup.6A modification in LUAD tumorigenesis is unknown. Methods Global m.sup.6A levels and expressions of m.sup.6A writers, erasers and readers were evaluated by RNA methylation assay, dot blot, immunoblotting, immunohistochemistry and ELISA in human LUAD, mouse models and cell lines. Cell viability, 3D-spheroid generation, in vivo LUAD formation, experiments in cell- and patient-derived xenograft mice and survival analysis were conducted to explore the impact of m.sup.6A on LUAD. The RNA-protein interactions, translation, putative m.sup.6A sites and glycolysis were explored in the investigation of the mechanism underlying how m.sup.6A stimulates tumorigenesis. Results The elevation of global m.sup.6A level in most human LUAD specimens resulted from the combined upregulation of m.sup.6A writer methyltransferase 3 (METTL3) and downregulation of eraser alkB homolog 5 (ALKBH5). Elevated global m.sup.6A level was associated with a poor overall survival in LUAD patients. Reducing m.sup.6A levels by knocking out METTL3 and overexpressing ALKBH5 suppressed 3D-spheroid generation in LUAD cells and intra-pulmonary tumor formation in mice. Mechanistically, m.sup.6A-dependent stimulation of glycolysis and tumorigenesis occurred via enolase 1 (ENO1). ENO1 mRNA was m.sup.6A methylated at 359 A, which facilitated it's binding with the m.sup.6A reader YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) and resulted in enhanced translation of ENO1. ENO1 positively correlated with METTL3 and global m.sup.6A levels, and negatively correlated with ALKBH5 in human LUAD. In addition, m.sup.6A-dependent elevation of ENO1 was associated with LUAD progression. In preclinical models, tumors with a higher global m.sup.6A level showed a more sensitive response to the inhibition of pan-methylation, glycolysis and ENO activity in LUAD. Conclusions The m.sup.6A-dependent stimulation of glycolysis and tumorigenesis in LUAD is at least partially orchestrated by the upregulation of METTL3, downregulation of ALKBH5, and stimulation of YTHDF1-mediated ENO1 translation. Blocking this mechanism may represent a potential treatment strategy for m.sup.6A-dependent LUAD. Keywords: METTL3, ALKBH5, YTHDF1, translation, lung cancer, RNA-protein interaction
AbstractList Background Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Patient prognosis is poor, and the existing therapeutic strategies for LUAD are far from satisfactory. Recently, targeting N6-methyladenosine (m.sup.6A) modification of RNA has been suggested as a potential strategy to impede tumor progression. However, the roles of m.sup.6A modification in LUAD tumorigenesis is unknown. Methods Global m.sup.6A levels and expressions of m.sup.6A writers, erasers and readers were evaluated by RNA methylation assay, dot blot, immunoblotting, immunohistochemistry and ELISA in human LUAD, mouse models and cell lines. Cell viability, 3D-spheroid generation, in vivo LUAD formation, experiments in cell- and patient-derived xenograft mice and survival analysis were conducted to explore the impact of m.sup.6A on LUAD. The RNA-protein interactions, translation, putative m.sup.6A sites and glycolysis were explored in the investigation of the mechanism underlying how m.sup.6A stimulates tumorigenesis. Results The elevation of global m.sup.6A level in most human LUAD specimens resulted from the combined upregulation of m.sup.6A writer methyltransferase 3 (METTL3) and downregulation of eraser alkB homolog 5 (ALKBH5). Elevated global m.sup.6A level was associated with a poor overall survival in LUAD patients. Reducing m.sup.6A levels by knocking out METTL3 and overexpressing ALKBH5 suppressed 3D-spheroid generation in LUAD cells and intra-pulmonary tumor formation in mice. Mechanistically, m.sup.6A-dependent stimulation of glycolysis and tumorigenesis occurred via enolase 1 (ENO1). ENO1 mRNA was m.sup.6A methylated at 359 A, which facilitated it's binding with the m.sup.6A reader YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) and resulted in enhanced translation of ENO1. ENO1 positively correlated with METTL3 and global m.sup.6A levels, and negatively correlated with ALKBH5 in human LUAD. In addition, m.sup.6A-dependent elevation of ENO1 was associated with LUAD progression. In preclinical models, tumors with a higher global m.sup.6A level showed a more sensitive response to the inhibition of pan-methylation, glycolysis and ENO activity in LUAD. Conclusions The m.sup.6A-dependent stimulation of glycolysis and tumorigenesis in LUAD is at least partially orchestrated by the upregulation of METTL3, downregulation of ALKBH5, and stimulation of YTHDF1-mediated ENO1 translation. Blocking this mechanism may represent a potential treatment strategy for m.sup.6A-dependent LUAD. Keywords: METTL3, ALKBH5, YTHDF1, translation, lung cancer, RNA-protein interaction
Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Patient prognosis is poor, and the existing therapeutic strategies for LUAD are far from satisfactory. Recently, targeting N6-methyladenosine (m6A) modification of RNA has been suggested as a potential strategy to impede tumor progression. However, the roles of m6A modification in LUAD tumorigenesis is unknown.BACKGROUNDLung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Patient prognosis is poor, and the existing therapeutic strategies for LUAD are far from satisfactory. Recently, targeting N6-methyladenosine (m6A) modification of RNA has been suggested as a potential strategy to impede tumor progression. However, the roles of m6A modification in LUAD tumorigenesis is unknown.Global m6A levels and expressions of m6A writers, erasers and readers were evaluated by RNA methylation assay, dot blot, immunoblotting, immunohistochemistry and ELISA in human LUAD, mouse models and cell lines. Cell viability, 3D-spheroid generation, in vivo LUAD formation, experiments in cell- and patient-derived xenograft mice and survival analysis were conducted to explore the impact of m6A on LUAD. The RNA-protein interactions, translation, putative m6A sites and glycolysis were explored in the investigation of the mechanism underlying how m6A stimulates tumorigenesis.METHODSGlobal m6A levels and expressions of m6A writers, erasers and readers were evaluated by RNA methylation assay, dot blot, immunoblotting, immunohistochemistry and ELISA in human LUAD, mouse models and cell lines. Cell viability, 3D-spheroid generation, in vivo LUAD formation, experiments in cell- and patient-derived xenograft mice and survival analysis were conducted to explore the impact of m6A on LUAD. The RNA-protein interactions, translation, putative m6A sites and glycolysis were explored in the investigation of the mechanism underlying how m6A stimulates tumorigenesis.The elevation of global m6A level in most human LUAD specimens resulted from the combined upregulation of m6A writer methyltransferase 3 (METTL3) and downregulation of eraser alkB homolog 5 (ALKBH5). Elevated global m6A level was associated with a poor overall survival in LUAD patients. Reducing m6A levels by knocking out METTL3 and overexpressing ALKBH5 suppressed 3D-spheroid generation in LUAD cells and intra-pulmonary tumor formation in mice. Mechanistically, m6A-dependent stimulation of glycolysis and tumorigenesis occurred via enolase 1 (ENO1). ENO1 mRNA was m6A methylated at 359 A, which facilitated it's binding with the m6A reader YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) and resulted in enhanced translation of ENO1. ENO1 positively correlated with METTL3 and global m6A levels, and negatively correlated with ALKBH5 in human LUAD. In addition, m6A-dependent elevation of ENO1 was associated with LUAD progression. In preclinical models, tumors with a higher global m6A level showed a more sensitive response to the inhibition of pan-methylation, glycolysis and ENO activity in LUAD.RESULTSThe elevation of global m6A level in most human LUAD specimens resulted from the combined upregulation of m6A writer methyltransferase 3 (METTL3) and downregulation of eraser alkB homolog 5 (ALKBH5). Elevated global m6A level was associated with a poor overall survival in LUAD patients. Reducing m6A levels by knocking out METTL3 and overexpressing ALKBH5 suppressed 3D-spheroid generation in LUAD cells and intra-pulmonary tumor formation in mice. Mechanistically, m6A-dependent stimulation of glycolysis and tumorigenesis occurred via enolase 1 (ENO1). ENO1 mRNA was m6A methylated at 359 A, which facilitated it's binding with the m6A reader YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) and resulted in enhanced translation of ENO1. ENO1 positively correlated with METTL3 and global m6A levels, and negatively correlated with ALKBH5 in human LUAD. In addition, m6A-dependent elevation of ENO1 was associated with LUAD progression. In preclinical models, tumors with a higher global m6A level showed a more sensitive response to the inhibition of pan-methylation, glycolysis and ENO activity in LUAD.The m6A-dependent stimulation of glycolysis and tumorigenesis in LUAD is at least partially orchestrated by the upregulation of METTL3, downregulation of ALKBH5, and stimulation of YTHDF1-mediated ENO1 translation. Blocking this mechanism may represent a potential treatment strategy for m6A-dependent LUAD.CONCLUSIONSThe m6A-dependent stimulation of glycolysis and tumorigenesis in LUAD is at least partially orchestrated by the upregulation of METTL3, downregulation of ALKBH5, and stimulation of YTHDF1-mediated ENO1 translation. Blocking this mechanism may represent a potential treatment strategy for m6A-dependent LUAD.
Abstract Background Lung adenocarcinoma (LUAD)  is the most common subtype of lung cancer. Patient prognosis is poor, and the existing therapeutic strategies for LUAD are far from satisfactory. Recently, targeting N6-methyladenosine (m6A) modification of RNA has been suggested as a potential strategy to impede tumor progression. However, the roles of m6A modification in LUAD tumorigenesis is unknown. Methods Global m6A levels and expressions of m6A writers, erasers and readers were evaluated by RNA methylation assay, dot blot, immunoblotting, immunohistochemistry and ELISA in human LUAD, mouse models and cell lines. Cell viability, 3D-spheroid generation, in vivo LUAD formation, experiments in cell- and patient-derived xenograft mice and survival analysis were conducted to explore the impact of m6A on LUAD. The RNA-protein interactions, translation, putative m6A sites and glycolysis were explored in the investigation of the mechanism underlying how m6A stimulates tumorigenesis. Results The elevation of global m6A level in most human LUAD specimens resulted from the combined upregulation of m6A writer methyltransferase 3 (METTL3) and downregulation of eraser alkB homolog 5 (ALKBH5). Elevated global m6A level was associated with a poor overall survival in LUAD patients. Reducing m6A levels by knocking out METTL3 and overexpressing ALKBH5 suppressed 3D-spheroid generation in LUAD cells and intra-pulmonary tumor formation in mice. Mechanistically, m6A-dependent stimulation of glycolysis and tumorigenesis occurred via enolase 1 (ENO1). ENO1 mRNA was m6A methylated at 359 A, which facilitated it’s binding with the m6A reader YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) and resulted in enhanced translation of ENO1. ENO1 positively correlated with METTL3 and global m6A levels, and negatively correlated with ALKBH5 in human LUAD. In addition, m6A-dependent elevation of ENO1 was associated with LUAD progression. In preclinical models, tumors with a higher global m6A level showed a more sensitive response to the inhibition of pan-methylation, glycolysis and ENO activity in LUAD. Conclusions The m6A-dependent stimulation of glycolysis and tumorigenesis in LUAD is at least partially orchestrated by the upregulation of METTL3, downregulation of ALKBH5, and stimulation of YTHDF1-mediated ENO1 translation. Blocking this mechanism may represent a potential treatment strategy for m6A-dependent LUAD.
Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Patient prognosis is poor, and the existing therapeutic strategies for LUAD are far from satisfactory. Recently, targeting N6-methyladenosine (m.sup.6A) modification of RNA has been suggested as a potential strategy to impede tumor progression. However, the roles of m.sup.6A modification in LUAD tumorigenesis is unknown. Global m.sup.6A levels and expressions of m.sup.6A writers, erasers and readers were evaluated by RNA methylation assay, dot blot, immunoblotting, immunohistochemistry and ELISA in human LUAD, mouse models and cell lines. Cell viability, 3D-spheroid generation, in vivo LUAD formation, experiments in cell- and patient-derived xenograft mice and survival analysis were conducted to explore the impact of m.sup.6A on LUAD. The RNA-protein interactions, translation, putative m.sup.6A sites and glycolysis were explored in the investigation of the mechanism underlying how m.sup.6A stimulates tumorigenesis. The elevation of global m.sup.6A level in most human LUAD specimens resulted from the combined upregulation of m.sup.6A writer methyltransferase 3 (METTL3) and downregulation of eraser alkB homolog 5 (ALKBH5). Elevated global m.sup.6A level was associated with a poor overall survival in LUAD patients. Reducing m.sup.6A levels by knocking out METTL3 and overexpressing ALKBH5 suppressed 3D-spheroid generation in LUAD cells and intra-pulmonary tumor formation in mice. Mechanistically, m.sup.6A-dependent stimulation of glycolysis and tumorigenesis occurred via enolase 1 (ENO1). ENO1 mRNA was m.sup.6A methylated at 359 A, which facilitated it's binding with the m.sup.6A reader YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) and resulted in enhanced translation of ENO1. ENO1 positively correlated with METTL3 and global m.sup.6A levels, and negatively correlated with ALKBH5 in human LUAD. In addition, m.sup.6A-dependent elevation of ENO1 was associated with LUAD progression. In preclinical models, tumors with a higher global m.sup.6A level showed a more sensitive response to the inhibition of pan-methylation, glycolysis and ENO activity in LUAD. The m.sup.6A-dependent stimulation of glycolysis and tumorigenesis in LUAD is at least partially orchestrated by the upregulation of METTL3, downregulation of ALKBH5, and stimulation of YTHDF1-mediated ENO1 translation. Blocking this mechanism may represent a potential treatment strategy for m.sup.6A-dependent LUAD.
Background Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Patient prognosis is poor, and the existing therapeutic strategies for LUAD are far from satisfactory. Recently, targeting N6-methyladenosine (m6A) modification of RNA has been suggested as a potential strategy to impede tumor progression. However, the roles of m6A modification in LUAD tumorigenesis is unknown. Methods Global m6A levels and expressions of m6A writers, erasers and readers were evaluated by RNA methylation assay, dot blot, immunoblotting, immunohistochemistry and ELISA in human LUAD, mouse models and cell lines. Cell viability, 3D-spheroid generation, in vivo LUAD formation, experiments in cell- and patient-derived xenograft mice and survival analysis were conducted to explore the impact of m6A on LUAD. The RNA-protein interactions, translation, putative m6A sites and glycolysis were explored in the investigation of the mechanism underlying how m6A stimulates tumorigenesis. Results The elevation of global m6A level in most human LUAD specimens resulted from the combined upregulation of m6A writer methyltransferase 3 (METTL3) and downregulation of eraser alkB homolog 5 (ALKBH5). Elevated global m6A level was associated with a poor overall survival in LUAD patients. Reducing m6A levels by knocking out METTL3 and overexpressing ALKBH5 suppressed 3D-spheroid generation in LUAD cells and intra-pulmonary tumor formation in mice. Mechanistically, m6A-dependent stimulation of glycolysis and tumorigenesis occurred via enolase 1 (ENO1). ENO1 mRNA was m6A methylated at 359 A, which facilitated it’s binding with the m6A reader YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) and resulted in enhanced translation of ENO1. ENO1 positively correlated with METTL3 and global m6A levels, and negatively correlated with ALKBH5 in human LUAD. In addition, m6A-dependent elevation of ENO1 was associated with LUAD progression. In preclinical models, tumors with a higher global m6A level showed a more sensitive response to the inhibition of pan-methylation, glycolysis and ENO activity in LUAD. Conclusions The m6A-dependent stimulation of glycolysis and tumorigenesis in LUAD is at least partially orchestrated by the upregulation of METTL3, downregulation of ALKBH5, and stimulation of YTHDF1-mediated ENO1 translation. Blocking this mechanism may represent a potential treatment strategy for m6A-dependent LUAD.
ArticleNumber 36
Audience Academic
Author Xue, Xiangfei
Miao, Yayou
Wang, Jiayi
Xu, Xin
Guo, Wanxin
Li, You
Cui, Jiangtao
Guo, Susu
Wang, Yikun
Zhang, Xiao
Tian, Xiaoting
Liu, Xiaoxin
Meng, Fanyu
Xia, Jinjing
Qiu, Shiyu
Yu, Keke
Yu, Yongchun
Ma, Lifang
Author_xml – sequence: 1
  givenname: Lifang
  surname: Ma
  fullname: Ma, Lifang
– sequence: 2
  givenname: Xiangfei
  surname: Xue
  fullname: Xue, Xiangfei
– sequence: 3
  givenname: Xiao
  surname: Zhang
  fullname: Zhang, Xiao
– sequence: 4
  givenname: Keke
  surname: Yu
  fullname: Yu, Keke
– sequence: 5
  givenname: Xin
  surname: Xu
  fullname: Xu, Xin
– sequence: 6
  givenname: Xiaoting
  surname: Tian
  fullname: Tian, Xiaoting
– sequence: 7
  givenname: Yayou
  surname: Miao
  fullname: Miao, Yayou
– sequence: 8
  givenname: Fanyu
  surname: Meng
  fullname: Meng, Fanyu
– sequence: 9
  givenname: Xiaoxin
  surname: Liu
  fullname: Liu, Xiaoxin
– sequence: 10
  givenname: Susu
  surname: Guo
  fullname: Guo, Susu
– sequence: 11
  givenname: Shiyu
  surname: Qiu
  fullname: Qiu, Shiyu
– sequence: 12
  givenname: Yikun
  surname: Wang
  fullname: Wang, Yikun
– sequence: 13
  givenname: Jiangtao
  surname: Cui
  fullname: Cui, Jiangtao
– sequence: 14
  givenname: Wanxin
  surname: Guo
  fullname: Guo, Wanxin
– sequence: 15
  givenname: You
  surname: Li
  fullname: Li, You
– sequence: 16
  givenname: Jinjing
  surname: Xia
  fullname: Xia, Jinjing
– sequence: 17
  givenname: Yongchun
  surname: Yu
  fullname: Yu, Yongchun
– sequence: 18
  givenname: Jiayi
  orcidid: 0000-0003-1688-2864
  surname: Wang
  fullname: Wang, Jiayi
BookMark eNp9Ul1rFDEUHaRiP_QP-BQQxJepSWby9SIspa2F0oLU55DmYzZLJlmTGWHxz5vdLdotIiHccO855-Ym57Q5iinapnmP4DlCnH4uqIM9bSFGdWMIW_KqOUGM0FYISo-enY-b01JWEFIkkHjTHHcEMk4gOWl-PSwtsKXYOHkVQE7BFpAcGOkCfLtbgDEZ77xWk08RTAmUyY9zUJMFl3f3qDV2baOpZDCEjU5hU3wBKhowzWPKfrDRbjM-gjDHAagKTVpl7WMa1dvmtVOh2HdP8az5fnX5cPG1vb2_vrlY3LaaQDS1CNUonLKYEkYhwoJzrqmj1GHRcdVDox1zthYJxYZjpCnlqH80WHHMXHfW3Ox1TVIruc5-VHkjk_Jyl0h5kCpPXgcrK1sbrGFXxXvktGCih12nKIPMkY5VrS97rfX8OFqj6-hZhQPRw0r0Szmkn5IzziETVeDTk0BOP2ZbJjn6om0IKto0F4kpxoIwzmCFfngBXaU5x_pUFVW_nnWI4L-oQdUBfHSp9tVbUbmgoiOoZ7u25_9A1WXs6HX1lfM1f0D4-IywtCpMy5LCvDVCOQTiPVDnVEq27s9jICi3PpV7n8rqU7nzqSSVxF-QtJ92JqvX8uF_1N_DLurE
CitedBy_id crossref_primary_10_1038_s41416_023_02246_6
crossref_primary_10_1016_j_mtbio_2022_100503
crossref_primary_10_1016_j_ymthe_2022_12_013
crossref_primary_10_1038_s41420_024_02092_2
crossref_primary_10_1186_s12964_023_01360_5
crossref_primary_10_1038_s41417_023_00661_8
crossref_primary_10_1016_j_cellin_2022_100075
crossref_primary_10_1002_ctm2_70192
crossref_primary_10_1016_j_bcp_2024_116220
crossref_primary_10_1002_1878_0261_13326
crossref_primary_10_1186_s11658_022_00404_x
crossref_primary_10_18632_aging_204371
crossref_primary_10_1186_s13046_024_03181_x
crossref_primary_10_1016_j_gene_2023_147975
crossref_primary_10_1038_s41598_023_51108_x
crossref_primary_10_2174_1566523222666220830150446
crossref_primary_10_1186_s43556_024_00229_4
crossref_primary_10_1002_ddr_70004
crossref_primary_10_1016_j_yexcr_2023_113778
crossref_primary_10_3389_fgene_2022_993322
crossref_primary_10_3390_molecules29010140
crossref_primary_10_1002_mc_23826
crossref_primary_10_1186_s13045_023_01477_7
crossref_primary_10_1186_s40364_023_00483_8
crossref_primary_10_1002_wrna_1829
crossref_primary_10_1002_tox_24272
crossref_primary_10_1038_s42003_024_06755_9
crossref_primary_10_1016_j_ecoenv_2023_115288
crossref_primary_10_3389_fimmu_2024_1464042
crossref_primary_10_1007_s13402_023_00864_z
crossref_primary_10_3390_genes13122381
crossref_primary_10_1038_s41571_023_00774_x
crossref_primary_10_1016_j_aca_2023_341796
crossref_primary_10_1038_s41420_024_02133_w
crossref_primary_10_1186_s12935_024_03528_6
crossref_primary_10_1016_j_bbrc_2024_150011
crossref_primary_10_1093_narcan_zcae009
crossref_primary_10_1186_s40001_025_02407_8
crossref_primary_10_3390_biom13020243
crossref_primary_10_1016_j_canlet_2024_217002
crossref_primary_10_1186_s12943_022_01704_8
crossref_primary_10_1038_s41401_024_01264_1
crossref_primary_10_1021_acs_analchem_4c01610
crossref_primary_10_1186_s12964_023_01401_z
crossref_primary_10_1186_s12943_023_01841_8
crossref_primary_10_1002_jcla_24636
crossref_primary_10_1021_acsnano_3c03050
crossref_primary_10_1186_s13578_024_01194_9
crossref_primary_10_1002_mco2_70042
crossref_primary_10_1038_s41392_024_01777_5
crossref_primary_10_1016_j_ijbiomac_2023_127769
crossref_primary_10_1016_j_lfs_2024_123146
crossref_primary_10_1186_s12967_024_05847_8
crossref_primary_10_1038_s41388_024_02992_8
crossref_primary_10_3724_abbs_2024109
crossref_primary_10_1016_j_biopha_2024_116479
crossref_primary_10_2174_0929867331666230901110629
crossref_primary_10_3389_fimmu_2023_1162607
crossref_primary_10_3389_fimmu_2023_1231898
crossref_primary_10_1002_ctm2_1784
crossref_primary_10_1111_cas_16394
crossref_primary_10_1186_s11658_024_00622_5
Cites_doi 10.1016/j.molcel.2019.04.025
10.1016/j.tranon.2020.100910
10.1158/0008-5472.CAN-05-0453
10.1186/s12935-020-01679-w
10.3389/fonc.2020.01561
10.1186/1476-4598-13-14
10.1053/j.gastro.2012.03.037
10.1007/s11684-018-0654-8
10.1073/pnas.71.10.3971
10.3389/fphar.2020.572627
10.1186/s13059-018-1435-z
10.1111/jcmm.15997
10.1186/s12943-020-01204-7
10.1186/s12943-019-1088-x
10.1016/j.ccell.2018.01.010
10.1038/s41467-019-12801-6
10.1016/S0014-5793(00)01494-0
10.1016/j.tig.2019.10.011
10.1038/nchembio.2195
10.3390/ijms22115518
10.1038/s41467-018-06376-x
10.1038/nature22334
10.1158/0008-5472.CAN-20-3543
10.1016/j.molcel.2020.06.003
10.1371/journal.pone.0012961
10.1186/s13045-015-0117-5
10.1186/s13045-021-01123-0
10.1038/s41419-021-03739-z
10.1186/s12943-019-1109-9
10.1186/s13045-020-00872-8
10.1016/j.cell.2018.12.040
10.1186/s12943-020-01249-8
10.1016/j.omtn.2020.12.001
10.1111/cas.13998
10.1186/s12943-020-01190-w
10.1038/s41422-018-0034-6
10.1038/s41588-020-0644-z
10.1136/gutjnl-2019-319639
10.1016/j.tibs.2015.12.001
10.1093/nar/gkz157
10.1186/s12943-019-1099-7
10.1111/jcmm.14763
10.1039/D0SC03628E
10.1074/jbc.M111.267294
10.1038/ncomms15737
10.1016/j.freeradbiomed.2021.03.023
10.4110/in.2015.15.6.291
10.1074/jbc.274.27.18981
10.1186/s13287-021-02160-9
10.1038/s41419-021-03763-z
10.3892/or.2021.8114
10.1038/s41556-020-00580-y
10.1016/j.ccr.2012.02.014
10.3322/caac.21660
10.1038/s41419-019-2127-7
10.1016/j.molcel.2016.03.021
10.1016/j.csbj.2021.07.014
10.1158/2159-8290.CD-20-0331
10.1038/s41419-018-0376-5
10.1016/j.redox.2020.101801
10.3389/fcell.2019.00061
10.1186/s12943-020-01161-1
10.7150/thno.40860
10.1038/s41586-018-0666-1
ContentType Journal Article
Copyright COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
The Author(s) 2022
Copyright_xml – notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
– notice: The Author(s) 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13046-021-02200-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1756-9966
EndPage 21
ExternalDocumentID oai_doaj_org_article_d82cd2c0366f41fc9794033a6707f537
PMC8788079
A693514779
10_1186_s13046_021_02200_5
GeographicLocations China
United States--US
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: ;
  grantid: Project of Clinical Research Supporting System, Clinical Medicine First-class Discipline
– fundername: ;
  grantid: Talent training plan of shanghai chest hospital in 2020
– fundername: ;
  grantid: 19YF1444800
– fundername: ;
  grantid: 21140902800
– fundername: ;
  grantid: 2021YNZYJ01, 2021YNZYY02, 2021YNZYY01
– fundername: ;
  grantid: 81871907, 81822029, 82173015, 82102792, 81872288, 81902315, 81902869, 81774291
– fundername: ;
  grantid: 20191834
GroupedDBID ---
0R~
29K
2WC
4.4
5GY
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
D-I
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
TR2
TUS
UKHRP
~8M
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c501t-11c509fae265760129888c6f66f2938a40dcf7fe576562d821c66814bd2a827f3
IEDL.DBID M48
ISSN 1756-9966
0392-9078
IngestDate Wed Aug 27 01:31:38 EDT 2025
Thu Aug 21 13:51:22 EDT 2025
Fri Jul 11 15:20:03 EDT 2025
Fri Jul 25 03:38:14 EDT 2025
Tue Jun 17 21:28:31 EDT 2025
Tue Jun 10 20:29:35 EDT 2025
Thu May 22 21:23:29 EDT 2025
Thu Apr 24 23:11:32 EDT 2025
Tue Jul 01 02:26:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-11c509fae265760129888c6f66f2938a40dcf7fe576562d821c66814bd2a827f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1688-2864
OpenAccessLink https://www.proquest.com/docview/2630473152?pq-origsite=%requestingapplication%
PMID 35078505
PQID 2630473152
PQPubID 105475
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_d82cd2c0366f41fc9794033a6707f537
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8788079
proquest_miscellaneous_2622957870
proquest_journals_2630473152
gale_infotracmisc_A693514779
gale_infotracacademiconefile_A693514779
gale_healthsolutions_A693514779
crossref_primary_10_1186_s13046_021_02200_5
crossref_citationtrail_10_1186_s13046_021_02200_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-25
PublicationDateYYYYMMDD 2022-01-25
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of experimental & clinical cancer research
PublicationYear 2022
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References T Wang (2200_CR9) 2020; 19
M Zhuang (2200_CR62) 2019; 47
R Jia (2200_CR22) 2019; 18
Y Shen (2200_CR43) 2021; 25
ES Birkeland (2200_CR17) 2020; 10
D Chiluiza (2200_CR39) 2011; 286
Q Wang (2200_CR21) 2020; 69
RT Mertens (2200_CR20) 2020; 11
BB Hu (2200_CR37) 2019; 18
S Feo (2200_CR50) 2000; 473
L Wang (2200_CR19) 2019; 11
2200_CR47
J Choi (2200_CR30) 2015; 15
Y Li (2200_CR45) 2021; 12
Y Zhao (2200_CR12) 2020; 13
L He (2200_CR7) 2019; 18
H Huang (2200_CR8) 2020; 22
D Dixit (2200_CR35) 2021; 11
Z Zhu (2200_CR65) 2005; 65
2200_CR54
J Dai (2200_CR31) 2018; 9
S Chen (2200_CR51) 2018; 9
C Shen (2200_CR14) 2020; 19
S Xie (2200_CR15) 2020; 20
2200_CR18
H Shi (2200_CR61) 2018; 563
H Shi (2200_CR6) 2019; 74
B Czogalla (2200_CR29) 2021; 14
C Ma (2200_CR11) 2018; 19
C Cheng (2200_CR42) 2021; 23
L Ma (2200_CR23) 2021; 168
X Yang (2200_CR59) 2021; 12
R Desrosiers (2200_CR40) 1974; 71
D Jin (2200_CR44) 2020; 19
J Tong (2200_CR13) 2018; 12
PG Leonard (2200_CR32) 2016; 12
X Shu (2200_CR55) 2021; 12
X Deng (2200_CR10) 2018; 28
L Li (2200_CR58) 2018; 33
H Sung (2200_CR1) 2021; 71
X Qian (2200_CR41) 2021; 14
R Chen (2200_CR56) 2020; 24
S Lin (2200_CR46) 2016; 62
H Huang (2200_CR4) 2020; 36
L Ma (2200_CR24) 2021; 38
M Lo Presti (2200_CR49) 2010; 5
SY Jeong (2200_CR64) 1999; 274
QF Fu (2200_CR53) 2015; 8
M Wang (2200_CR5) 2020; 19
Z Zhang (2200_CR34) 2020; 52
Y Lin (2200_CR38) 2020; 79
B Gyorffy (2200_CR27) 2021; 19
L Kan (2200_CR36) 2017; 8
C Jin (2200_CR26) 2019; 176
T Hu (2200_CR52) 2020; 10
M Didiasova (2200_CR28) 2019; 7
MV Liberti (2200_CR57) 2016; 41
L Wang (2200_CR2) 2019; 110
R Li (2200_CR3) 2020; 11
NA Manieri (2200_CR60) 2012; 143
Y Shi (2200_CR63) 2019; 10
RA Vaughan (2200_CR33) 2014; 13
PS Ward (2200_CR16) 2012; 21
T Tammela (2200_CR25) 2017; 545
J Zhou (2200_CR48) 2019; 10
References_xml – volume: 74
  start-page: 640
  year: 2019
  ident: 2200_CR6
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2019.04.025
– volume: 14
  start-page: 100910
  year: 2021
  ident: 2200_CR29
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2020.100910
– volume: 65
  start-page: 7023
  year: 2005
  ident: 2200_CR65
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-0453
– volume: 20
  start-page: 585
  year: 2020
  ident: 2200_CR15
  publication-title: Cancer Cell Int
  doi: 10.1186/s12935-020-01679-w
– volume: 10
  start-page: 1561
  year: 2020
  ident: 2200_CR17
  publication-title: Front Oncol
  doi: 10.3389/fonc.2020.01561
– volume: 13
  start-page: 14
  year: 2014
  ident: 2200_CR33
  publication-title: Mol Cancer
  doi: 10.1186/1476-4598-13-14
– volume: 143
  start-page: 110-21 e10
  year: 2012
  ident: 2200_CR60
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2012.03.037
– volume: 12
  start-page: 481
  year: 2018
  ident: 2200_CR13
  publication-title: Front Med
  doi: 10.1007/s11684-018-0654-8
– volume: 71
  start-page: 3971
  year: 1974
  ident: 2200_CR40
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.71.10.3971
– volume: 11
  start-page: 572627
  year: 2020
  ident: 2200_CR3
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2020.572627
– volume: 19
  start-page: 68
  year: 2018
  ident: 2200_CR11
  publication-title: Genome Biol
  doi: 10.1186/s13059-018-1435-z
– volume: 25
  start-page: 284
  year: 2021
  ident: 2200_CR43
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.15997
– volume: 19
  start-page: 88
  year: 2020
  ident: 2200_CR9
  publication-title: Mol Cancer
  doi: 10.1186/s12943-020-01204-7
– volume: 18
  start-page: 161
  year: 2019
  ident: 2200_CR22
  publication-title: Mol Cancer
  doi: 10.1186/s12943-019-1088-x
– volume: 33
  start-page: 368-85 e7
  year: 2018
  ident: 2200_CR58
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.01.010
– volume: 10
  start-page: 4892
  year: 2019
  ident: 2200_CR63
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12801-6
– volume: 11
  start-page: 4470
  year: 2019
  ident: 2200_CR19
  publication-title: Am J Transl Res
– volume: 473
  start-page: 47
  year: 2000
  ident: 2200_CR50
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(00)01494-0
– volume: 36
  start-page: 44
  year: 2020
  ident: 2200_CR4
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2019.10.011
– volume: 12
  start-page: 1053
  year: 2016
  ident: 2200_CR32
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2195
– ident: 2200_CR18
  doi: 10.3390/ijms22115518
– volume: 9
  start-page: 3850
  year: 2018
  ident: 2200_CR31
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06376-x
– volume: 545
  start-page: 355
  year: 2017
  ident: 2200_CR25
  publication-title: Nature
  doi: 10.1038/nature22334
– ident: 2200_CR54
  doi: 10.1158/0008-5472.CAN-20-3543
– volume: 79
  start-page: 575-87 e7
  year: 2020
  ident: 2200_CR38
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2020.06.003
– volume: 5
  start-page: e12961
  year: 2010
  ident: 2200_CR49
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012961
– volume: 8
  start-page: 22
  year: 2015
  ident: 2200_CR53
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-015-0117-5
– volume: 14
  start-page: 112
  year: 2021
  ident: 2200_CR41
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-021-01123-0
– volume: 12
  start-page: 462
  year: 2021
  ident: 2200_CR59
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-021-03739-z
– volume: 18
  start-page: 176
  year: 2019
  ident: 2200_CR7
  publication-title: Mol Cancer
  doi: 10.1186/s12943-019-1109-9
– volume: 13
  start-page: 35
  year: 2020
  ident: 2200_CR12
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-020-00872-8
– volume: 176
  start-page: 998-1013 e16
  year: 2019
  ident: 2200_CR26
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.040
– volume: 19
  start-page: 130
  year: 2020
  ident: 2200_CR5
  publication-title: Mol Cancer
  doi: 10.1186/s12943-020-01249-8
– volume: 23
  start-page: 487
  year: 2021
  ident: 2200_CR42
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2020.12.001
– volume: 110
  start-page: 1609
  year: 2019
  ident: 2200_CR2
  publication-title: Cancer Sci
  doi: 10.1111/cas.13998
– volume: 19
  start-page: 72
  year: 2020
  ident: 2200_CR14
  publication-title: Mol Cancer
  doi: 10.1186/s12943-020-01190-w
– volume: 28
  start-page: 507
  year: 2018
  ident: 2200_CR10
  publication-title: Cell Res
  doi: 10.1038/s41422-018-0034-6
– volume: 52
  start-page: 939
  year: 2020
  ident: 2200_CR34
  publication-title: Nat Genet
  doi: 10.1038/s41588-020-0644-z
– volume: 69
  start-page: 1193
  year: 2020
  ident: 2200_CR21
  publication-title: Gut
  doi: 10.1136/gutjnl-2019-319639
– volume: 41
  start-page: 211
  year: 2016
  ident: 2200_CR57
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2015.12.001
– volume: 47
  start-page: 4765
  year: 2019
  ident: 2200_CR62
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz157
– volume: 18
  start-page: 178
  year: 2019
  ident: 2200_CR37
  publication-title: Mol Cancer
  doi: 10.1186/s12943-019-1099-7
– volume: 24
  start-page: 2123
  year: 2020
  ident: 2200_CR56
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.14763
– volume: 11
  start-page: 10465
  year: 2020
  ident: 2200_CR20
  publication-title: Chem Sci
  doi: 10.1039/D0SC03628E
– volume: 286
  start-page: 31288
  year: 2011
  ident: 2200_CR39
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.267294
– volume: 8
  start-page: 15737
  year: 2017
  ident: 2200_CR36
  publication-title: Nat Commun
  doi: 10.1038/ncomms15737
– volume: 168
  start-page: 25
  year: 2021
  ident: 2200_CR23
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2021.03.023
– volume: 15
  start-page: 291
  year: 2015
  ident: 2200_CR30
  publication-title: Immune Netw
  doi: 10.4110/in.2015.15.6.291
– volume: 274
  start-page: 18981
  year: 1999
  ident: 2200_CR64
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.27.18981
– volume: 12
  start-page: 119
  year: 2021
  ident: 2200_CR55
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-021-02160-9
– volume: 12
  start-page: 479
  year: 2021
  ident: 2200_CR45
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-021-03763-z
– ident: 2200_CR47
  doi: 10.3892/or.2021.8114
– volume: 22
  start-page: 1288
  year: 2020
  ident: 2200_CR8
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-020-00580-y
– volume: 21
  start-page: 297
  year: 2012
  ident: 2200_CR16
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.02.014
– volume: 71
  start-page: 209
  year: 2021
  ident: 2200_CR1
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21660
– volume: 10
  start-page: 885
  year: 2019
  ident: 2200_CR48
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-019-2127-7
– volume: 62
  start-page: 335
  year: 2016
  ident: 2200_CR46
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2016.03.021
– volume: 19
  start-page: 4101
  year: 2021
  ident: 2200_CR27
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2021.07.014
– volume: 11
  start-page: 480
  year: 2021
  ident: 2200_CR35
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-20-0331
– volume: 9
  start-page: 347
  year: 2018
  ident: 2200_CR51
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-018-0376-5
– volume: 38
  start-page: 101801
  year: 2021
  ident: 2200_CR24
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2020.101801
– volume: 7
  start-page: 61
  year: 2019
  ident: 2200_CR28
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2019.00061
– volume: 19
  start-page: 40
  year: 2020
  ident: 2200_CR44
  publication-title: Mol Cancer
  doi: 10.1186/s12943-020-01161-1
– volume: 10
  start-page: 4056
  year: 2020
  ident: 2200_CR52
  publication-title: Theranostics
  doi: 10.7150/thno.40860
– volume: 563
  start-page: 249
  year: 2018
  ident: 2200_CR61
  publication-title: Nature
  doi: 10.1038/s41586-018-0666-1
SSID ssj0061919
Score 2.5468123
Snippet Background Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Patient prognosis is poor, and the existing therapeutic strategies for LUAD...
Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Patient prognosis is poor, and the existing therapeutic strategies for LUAD are far from...
Abstract Background Lung adenocarcinoma (LUAD)  is the most common subtype of lung cancer. Patient prognosis is poor, and the existing therapeutic strategies...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Adenocarcinoma
ALKBH5
Analysis
Animal experimentation
Cloning
Development and progression
Efficiency
Enzyme-linked immunosorbent assay
Experiments
Glucose
Glucose metabolism
Health aspects
Lung cancer
Methylation
Methyltransferases
METTL3
Plasmids
Prognosis
Protein binding
Proteins
RNA
RNA-protein interaction
translation
Tumorigenesis
Tumors
YTHDF1
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3JatwwVJQcSi-lK3WbpCoUeigilmwtPk5CQihkCqWB3IRGSxsY2yHjOZT-fN7zMsQptJeeDNYTtt7-0FsI-ZhiArMKnpvB0QHlSkhmguQsgblPyoHFTFg7fLFU55fllyt5dW_UF-aEDe2BB8QdBSN8EB4UrUolT74CBsqLwimd6ySLvo4cbN4UTA06GKICXk0lMkYdbTheADJMR8DK0pzJmRnqu_X_qZMf5kneMzxnz8jT0WOki-FPn5NHsXlBHl-Md-IvyW-gNMUO4A0I65piuuCGtonWakG_LRe0bgOmA_UUoF1LQaZrnNkV6enyK2fTFNyO_lj_Aq7ADiXUNYF22xqnZqEuhDfXDV2DXqAOQMH83cK329q9Ipdnp99Pztk4UoF5mfOOcQ7PKrkolMRsGFFBBOxVAuSC3TeuzINPOkVYBMcIcM-9UoaXqyCcAboVr8le0zbxDaFayKBdwVMlQimcc6uocq-9Et4HCBszwicMWz_2G8exF2vbxx1G2YEqFqhie6pYmZHPuz03Q7eNv0IfI-F2kNgpu38B_GNH_rH_4p-MvEey26HsdCfvdqEqLHLQusrIpx4CJR4O4N1YuABowN5ZM8j9GSRIqp8vT6xlR02xsULhxWcBblRGPuyWcSdmvzWx3SIMDl1H1ZoRPWPJ2dnnK831z75buNGgonX19n8g6x15IrD8I-dMyH2y191u4wE4Zd3qsJe_O01PMYI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96gvgifmK9UyMIPki4Jm2S9klWueMQbgXxYN9CNmnOg2177nYf5P55Z7LpahXuqdBMKclkfjOTzAch70ITQK2C5VZh64ByKSSrvOQsgLoPyoLGDJg7fD5XZxfll4VcpAO3TQqrHDExArXvHZ6RHwuFF0QFqJuP1z8Zdo3C29XUQuMuuYelyzCkSy_2Dhf4BrGxB2hIxdCuH5NmKnW84XglyDBAAXNNcyYniinW7_8fpf-NnPxLFZ0-Ig-TDUlnO6Y_Jnea7gm5f55uyZ-SG-A9xZrgHYjvimIA4Yb2gbZqRr_NZ7TtPQYIRZ7Qoacg5S128WroyfwrZ2Nf3IFern7BPsGaJdR2ng7bFlcE0RHeXHV0BUhBLZCCQlzDv_vWPiMXpyffP5-x1GSBOZnzgXEOzzrYRiiJ8TGiBp_YqaBUAEugsmXuXdChgUEwlXwluFOq4uXSC1sBJ4vn5KDru-YFoVpIr23BQy18Kay1y0blTjslnPPgSGaEjytsXKpAjo0wViZ6IpUyO64Y4IqJXDEyIx_231zv6m_cSv0JGbenxNrZ8UW_vjRJFA3MwXnhQHWrUPLgaoCkvCis0rkOstAZeYNsN7tE1D0CmJmqMe1B6zoj7yMFYgBMwNmUygDLgNW0JpRHE0qQXTcdHreWSdixMX92ekbe7ofxS4yH65p-izTYhh3BNiN6siUnc5-OdFc_Yv3wSgNo6_rl7T8_JA8EpnrknAl5RA6G9bZ5BQbYsHwdpew3Q-Ir2A
  priority: 102
  providerName: ProQuest
Title The essential roles of m6A RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma
URI https://www.proquest.com/docview/2630473152
https://www.proquest.com/docview/2622957870
https://pubmed.ncbi.nlm.nih.gov/PMC8788079
https://doaj.org/article/d82cd2c0366f41fc9794033a6707f537
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9NAEB_uA8QX8ROjZ11B8EGi2U2ymzyItNLjEFqlWDh8Wbab7N1Bm2ibgof_vDPbpBg97qWF7KTtZr67M_MDeO1Kh24VI7eMoAOShUjDrEh56NDdO2nQYzrqHZ5M5dk8-Xyenh9AB3fUPsDNjakd4UnN18t3v35ef0SF_-AVPpPvN5yO90IqNqC-0ShMD-EYPZMiRZ0k-1MFzBU80EeEMUGISWHWNdHc-Bk9R-Xn-f9vtf-tpPzLNZ3eh3ttTMmGOyF4AAdl9RDuTNpT80fwG2WB0YzwCtV5yaigcMNqx1ZyyGbTIVvVBRUMeR6xpmao9StC9SrZePqFhx1ObsMultcoNzTDhJmqYM12RbhaZC3xylXFlmg5mEFSdJBr_O56ZR7D_HT87dNZ2IIuhDaNeBNyju-5M6WQKdXLiBxzZCudlA4jg8wkUWGdciUuYuhUZIJbKTOeLAphMuRs_ASOqroqnwJTIi2UibnLRZEIY8yilJFVVgprC0wsA-DdE9a2nUhOwBhL7TOTTOodVzRyRXuu6DSAt_t7fuzmcdxKPSLG7Slplra_UK8vdKuaGvdgC2HRlUuXcGdzNFFRHBupIuXSWAXwktiud42pe4ughzKnNgil8gDeeAqSUtyANW1rAz4Gmq7VozzpUaIu2_5yJ1q6UwUtJB2NxhhoBfBqv0x3Un1cVdZboiFYdjK-AaieSPb23l-pri79PPFMoRFX-bPbf9tzuCuo9SPioUhP4KhZb8sXGJA1iwEcqnM1gOPRePp1NvB_awy85uHrbPT9D2_bMzw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviE8RGMxIIB6QtdhJ7OQBoQ46dWwtaNqkvXmuHY9JbTLaVGjif-Jv5C5NCgFpb3uqFF-aOnf-_Xz1fRDy2uceaBV2bim2DognImGpSzjzQPdeGmBMj7nDo7EcnsSfT5PTDfKrzYXBsMoWE2ugdqXF_8h3hMQDogjo5sPld4Zdo_B0tW2hsTKLg_zqB7hsi_f7n0C_b4TYGxx_HLKmqwCzScgrxjl8Zt7kQiYYECIycAKt9FJ6oL7UxKGzXvkcBmFv4FLBrZQpjydOmBR-egTfe4tsxhHc2yObu4Px16MW-8EbqVuJACdLhp5Em6aTyp0Fx0NIhiERmN0asqRDhXXHgP954d9Yzb_Ib-8-udfsWml_ZWYPyEZePCS3R825_CPyE6yNYhXyAgBjSjFkcUFLT2eyT4_GfTorHYYk1VZAq5ICrsywb1hOB-MvnLWdeCt6Pr0Cy8QqKdQUjlbLGeoA8RiuXBR0CthEDYgCBc_h2eXMPCYnN6KAJ6RXlEX-lFAlEqdMxH0mXCyMMZNchlZZKax14LoGhLdvWNum5jm23pjq2vdJpV5pRYNWdK0VnQTk3fqey1XFj2uld1Fxa0ms1l1fKOfnuln8GuZgnbCwWZA-5t5mAIJhFBmpQuWTSAVkG9WuV6mva8zRfZlhooVSWUDe1hKIOjABa5rkCXgNWL-rI7nVkQS0sN3h1rR0g1YL_WdtBeTVehjvxAi8Ii-XKION3xHeA6I6JtmZe3ekuPhWVyxPFdCEyp5d__Btcmd4PDrUh_vjg-fkrsBEk5AzkWyRXjVf5i9g-1dNXjZrjpKzm17mvwGzxWgr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+essential+roles+of+m6A+RNA+modification+to+stimulate+ENO1-dependent+glycolysis+and+tumorigenesis+in+lung+adenocarcinoma&rft.jtitle=Journal+of+experimental+%26+clinical+cancer+research&rft.au=Ma%2C+Lifang&rft.au=Xue%2C+Xiangfei&rft.au=Zhang%2C+Xiao&rft.au=Yu%2C+Keke&rft.date=2022-01-25&rft.pub=BioMed+Central+Ltd&rft.issn=0392-9078&rft.volume=41&rft.issue=1&rft_id=info:doi/10.1186%2Fs13046-021-02200-5&rft.externalDocID=A693514779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-9966&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-9966&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-9966&client=summon