Deciphering the molecular mechanism of FLT3 resistance mutations

FMS‐like tyrosine kinase 3 (FLT3) has been found to be mutated in ~ 30% of acute myeloid leukaemia patients. Small‐molecule inhibitors targeting FLT3 that are currently approved or still undergoing clinical trials are subject to drug resistance due to FLT3 mutations. How these mutations lead to drug...

Full description

Saved in:
Bibliographic Details
Published inThe FEBS journal Vol. 287; no. 15; pp. 3200 - 3220
Main Authors Georgoulia, Panagiota S., Bjelic, Sinisa, Friedman, Ran
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract FMS‐like tyrosine kinase 3 (FLT3) has been found to be mutated in ~ 30% of acute myeloid leukaemia patients. Small‐molecule inhibitors targeting FLT3 that are currently approved or still undergoing clinical trials are subject to drug resistance due to FLT3 mutations. How these mutations lead to drug resistance is hitherto poorly understood. Herein, we studied the molecular mechanism of the drug resistance mutations D835N, Y842S and M664I, which confer resistance against the most advanced inhibitors, quizartinib and PLX3397 (pexidartinib), using enzyme kinetics and computer simulations. In vitro kinase assays were performed to measure the comparative catalytic activity of the native protein and the mutants, using a bacterial expression system developed to this aim. Our results reveal that the differential drug sensitivity profiles can be rationalised by the dynamics of the protein–drug interactions and perturbation of the intraprotein contacts upon mutations. Drug binding induced a single conformation in the native protein, whereas multiple conformations were observed otherwise (in the mutants or in the absence of drugs). The end‐point kinetics measurements indicated that the three resistant mutants conferred catalytic activity that is at least as high as that of the reference without such mutations. Overall, our calculations and measurements suggest that the structural dynamics of the drug‐resistant mutants that affect the active state and the increased conformational freedom of the remaining inactive drug‐bound population are the two major factors that contribute to drug resistance in FLT3 harbouring cancer cells. Our results explain the mechanism of drug resistance mutations and can aid to the design of more effective tyrosine kinase inhibitors. FMS‐like tyrosine kinase 3 (FLT3) is a kinase that is an important drug target in leukaemias, but resistance to therapies directed at FLT3 occurs often due to mutations. We used enzymatic experiments and computer simulations to study how mutations lead to resistance, and found that the main effect is increased activity, which is explained by structural and dynamic changes to the active conformation.
AbstractList FMS‐like tyrosine kinase 3 (FLT3) has been found to be mutated in ~ 30% of acute myeloid leukaemia patients. Small‐molecule inhibitors targeting FLT3 that are currently approved or still undergoing clinical trials are subject to drug resistance due to FLT3 mutations. How these mutations lead to drug resistance is hitherto poorly understood. Herein, we studied the molecular mechanism of the drug resistance mutations D835N, Y842S and M664I, which confer resistance against the most advanced inhibitors, quizartinib and PLX3397 (pexidartinib), using enzyme kinetics and computer simulations. In vitro kinase assays were performed to measure the comparative catalytic activity of the native protein and the mutants, using a bacterial expression system developed to this aim. Our results reveal that the differential drug sensitivity profiles can be rationalised by the dynamics of the protein–drug interactions and perturbation of the intraprotein contacts upon mutations. Drug binding induced a single conformation in the native protein, whereas multiple conformations were observed otherwise (in the mutants or in the absence of drugs). The end‐point kinetics measurements indicated that the three resistant mutants conferred catalytic activity that is at least as high as that of the reference without such mutations. Overall, our calculations and measurements suggest that the structural dynamics of the drug‐resistant mutants that affect the active state and the increased conformational freedom of the remaining inactive drug‐bound population are the two major factors that contribute to drug resistance in FLT3 harbouring cancer cells. Our results explain the mechanism of drug resistance mutations and can aid to the design of more effective tyrosine kinase inhibitors.
FMS‐like tyrosine kinase 3 (FLT3) has been found to be mutated in ~ 30% of acute myeloid leukaemia patients. Small‐molecule inhibitors targeting FLT3 that are currently approved or still undergoing clinical trials are subject to drug resistance due to FLT3 mutations. How these mutations lead to drug resistance is hitherto poorly understood. Herein, we studied the molecular mechanism of the drug resistance mutations D835N, Y842S and M664I, which confer resistance against the most advanced inhibitors, quizartinib and PLX3397 (pexidartinib), using enzyme kinetics and computer simulations. In vitro kinase assays were performed to measure the comparative catalytic activity of the native protein and the mutants, using a bacterial expression system developed to this aim. Our results reveal that the differential drug sensitivity profiles can be rationalised by the dynamics of the protein–drug interactions and perturbation of the intraprotein contacts upon mutations. Drug binding induced a single conformation in the native protein, whereas multiple conformations were observed otherwise (in the mutants or in the absence of drugs). The end‐point kinetics measurements indicated that the three resistant mutants conferred catalytic activity that is at least as high as that of the reference without such mutations. Overall, our calculations and measurements suggest that the structural dynamics of the drug‐resistant mutants that affect the active state and the increased conformational freedom of the remaining inactive drug‐bound population are the two major factors that contribute to drug resistance in FLT3 harbouring cancer cells. Our results explain the mechanism of drug resistance mutations and can aid to the design of more effective tyrosine kinase inhibitors.
FMS-like tyrosine kinase 3 (FLT3) has been found to be mutated in ~30% of acute myeloid leukaemia patients. Small-molecule inhibitors targeting FLT3 that are currently approved or still undergoing clinical trials are subject to drug resistance due to FLT3 mutations. How these mutations lead to drug resistance is hitherto poorly understood. Herein, we studied the molecular mechanism of the drug resistance mutations D835N, Y842S and M664I, which confer resistance against the most advanced inhibitors, quizartinib and PLX3397 (pexidartinib), using enzyme kinetics and computer simulations. Invitro kinase assays were performed to measure the comparative catalytic activity of the native protein and the mutants, using a bacterial expression system developed to this aim. Our results reveal that the differential drug sensitivity profiles can be rationalised by the dynamics of the protein–drug interactions and perturbation of the intraprotein contacts upon mutations. Drug binding induced a single conformation in the native protein, whereas multiple conformations were observed otherwise (in the mutants or in the absence of drugs). The end-point kinetics measurements indicated that the three resistant mutants conferred catalytic activity that is at least as high as that of the reference without such mutations. Overall, our calculations and measurements suggest that the structural dynamics of the drug-resistant mutants that affect the active state and the increased conformational freedom of the remaining inactive drug-bound population are the two major factors that contribute to drug resistance in FLT3 harbouring cancer cells. Our results explain the mechanism of drug resistance mutations and can aid to the design of more effective tyrosine kinase inhibitors.
FMS-like tyrosine kinase 3 (FLT3) has been found to be mutated in ~ 30% of acute myeloid leukaemia patients. Small-molecule inhibitors targeting FLT3 that are currently approved or still undergoing clinical trials are subject to drug resistance due to FLT3 mutations. How these mutations lead to drug resistance is hitherto poorly understood. Herein, we studied the molecular mechanism of the drug resistance mutations D835N, Y842S and M664I, which confer resistance against the most advanced inhibitors, quizartinib and PLX3397 (pexidartinib), using enzyme kinetics and computer simulations. In vitro kinase assays were performed to measure the comparative catalytic activity of the native protein and the mutants, using a bacterial expression system developed to this aim. Our results reveal that the differential drug sensitivity profiles can be rationalised by the dynamics of the protein-drug interactions and perturbation of the intraprotein contacts upon mutations. Drug binding induced a single conformation in the native protein, whereas multiple conformations were observed otherwise (in the mutants or in the absence of drugs). The end-point kinetics measurements indicated that the three resistant mutants conferred catalytic activity that is at least as high as that of the reference without such mutations. Overall, our calculations and measurements suggest that the structural dynamics of the drug-resistant mutants that affect the active state and the increased conformational freedom of the remaining inactive drug-bound population are the two major factors that contribute to drug resistance in FLT3 harbouring cancer cells. Our results explain the mechanism of drug resistance mutations and can aid to the design of more effective tyrosine kinase inhibitors.
FMS-like tyrosine kinase 3 (FLT3) has been found to be mutated in ~ 30% of acute myeloid leukaemia patients. Small-molecule inhibitors targeting FLT3 that are currently approved or still undergoing clinical trials are subject to drug resistance due to FLT3 mutations. How these mutations lead to drug resistance is hitherto poorly understood. Herein, we studied the molecular mechanism of the drug resistance mutations D835N, Y842S and M664I, which confer resistance against the most advanced inhibitors, quizartinib and PLX3397 (pexidartinib), using enzyme kinetics and computer simulations. In vitro kinase assays were performed to measure the comparative catalytic activity of the native protein and the mutants, using a bacterial expression system developed to this aim. Our results reveal that the differential drug sensitivity profiles can be rationalised by the dynamics of the protein-drug interactions and perturbation of the intraprotein contacts upon mutations. Drug binding induced a single conformation in the native protein, whereas multiple conformations were observed otherwise (in the mutants or in the absence of drugs). The end-point kinetics measurements indicated that the three resistant mutants conferred catalytic activity that is at least as high as that of the reference without such mutations. Overall, our calculations and measurements suggest that the structural dynamics of the drug-resistant mutants that affect the active state and the increased conformational freedom of the remaining inactive drug-bound population are the two major factors that contribute to drug resistance in FLT3 harbouring cancer cells. Our results explain the mechanism of drug resistance mutations and can aid to the design of more effective tyrosine kinase inhibitors.FMS-like tyrosine kinase 3 (FLT3) has been found to be mutated in ~ 30% of acute myeloid leukaemia patients. Small-molecule inhibitors targeting FLT3 that are currently approved or still undergoing clinical trials are subject to drug resistance due to FLT3 mutations. How these mutations lead to drug resistance is hitherto poorly understood. Herein, we studied the molecular mechanism of the drug resistance mutations D835N, Y842S and M664I, which confer resistance against the most advanced inhibitors, quizartinib and PLX3397 (pexidartinib), using enzyme kinetics and computer simulations. In vitro kinase assays were performed to measure the comparative catalytic activity of the native protein and the mutants, using a bacterial expression system developed to this aim. Our results reveal that the differential drug sensitivity profiles can be rationalised by the dynamics of the protein-drug interactions and perturbation of the intraprotein contacts upon mutations. Drug binding induced a single conformation in the native protein, whereas multiple conformations were observed otherwise (in the mutants or in the absence of drugs). The end-point kinetics measurements indicated that the three resistant mutants conferred catalytic activity that is at least as high as that of the reference without such mutations. Overall, our calculations and measurements suggest that the structural dynamics of the drug-resistant mutants that affect the active state and the increased conformational freedom of the remaining inactive drug-bound population are the two major factors that contribute to drug resistance in FLT3 harbouring cancer cells. Our results explain the mechanism of drug resistance mutations and can aid to the design of more effective tyrosine kinase inhibitors.
FMS‐like tyrosine kinase 3 (FLT3) has been found to be mutated in ~ 30% of acute myeloid leukaemia patients. Small‐molecule inhibitors targeting FLT3 that are currently approved or still undergoing clinical trials are subject to drug resistance due to FLT3 mutations. How these mutations lead to drug resistance is hitherto poorly understood. Herein, we studied the molecular mechanism of the drug resistance mutations D835N, Y842S and M664I, which confer resistance against the most advanced inhibitors, quizartinib and PLX3397 (pexidartinib), using enzyme kinetics and computer simulations. In vitro kinase assays were performed to measure the comparative catalytic activity of the native protein and the mutants, using a bacterial expression system developed to this aim. Our results reveal that the differential drug sensitivity profiles can be rationalised by the dynamics of the protein–drug interactions and perturbation of the intraprotein contacts upon mutations. Drug binding induced a single conformation in the native protein, whereas multiple conformations were observed otherwise (in the mutants or in the absence of drugs). The end‐point kinetics measurements indicated that the three resistant mutants conferred catalytic activity that is at least as high as that of the reference without such mutations. Overall, our calculations and measurements suggest that the structural dynamics of the drug‐resistant mutants that affect the active state and the increased conformational freedom of the remaining inactive drug‐bound population are the two major factors that contribute to drug resistance in FLT3 harbouring cancer cells. Our results explain the mechanism of drug resistance mutations and can aid to the design of more effective tyrosine kinase inhibitors. FMS‐like tyrosine kinase 3 (FLT3) is a kinase that is an important drug target in leukaemias, but resistance to therapies directed at FLT3 occurs often due to mutations. We used enzymatic experiments and computer simulations to study how mutations lead to resistance, and found that the main effect is increased activity, which is explained by structural and dynamic changes to the active conformation.
Author Georgoulia, Panagiota S.
Friedman, Ran
Bjelic, Sinisa
Author_xml – sequence: 1
  givenname: Panagiota S.
  orcidid: 0000-0003-4573-8052
  surname: Georgoulia
  fullname: Georgoulia, Panagiota S.
  organization: Linnæus University
– sequence: 2
  givenname: Sinisa
  orcidid: 0000-0002-9300-614X
  surname: Bjelic
  fullname: Bjelic, Sinisa
  organization: Linnæus University
– sequence: 3
  givenname: Ran
  orcidid: 0000-0001-8696-3104
  surname: Friedman
  fullname: Friedman, Ran
  email: ran.friedman@lnu.se
  organization: Linnæus University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31943770$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-92295$$DView record from Swedish Publication Index
https://gup.ub.gu.se/publication/348878$$DView record from Swedish Publication Index
BookMark eNqF0ktv1DAQAGALFdEHXPgBKBKXCjXFzzi-0dcC0kocKIib5TiTXVdJHOxYVf89blP2UPHwxZb9zWjkmUO0N_oREHpN8CnJ630HTTwlgmL1DB0QyWnJK1Hv7c78xz46jPEGYya4Ui_QPiOKMynxAfpwCdZNWwhu3BTzForB92BTb0IxgN2a0cWh8F2xWl-zIkB0cTajzSzNZnZ-jC_R8870EV497kfo2-rq-uJTuf7y8fPF2bq0AhNVMiu5ZLiyqmltSzurgDPcGGpZW2NVt3V-BamEELauBAcJDcYGFOUdVrhhR6hc8sZbmFKjp-AGE-60N05v0qTz1SbpCJrxupZ19id_9Zfu-5n2YaP7MWlFqRKZHy98Cv5ngjjrwUULfW9G8ClqKihnVAhK_08ZU1KRuqoyffuE3vgUxvxPmnKqslASZ_XmUaVmgHZX6u8uZfBuATb4GAN0O0Kwvh8BfT8C-mEEMsZPsHVLr-ZgXP_nELKE3Loe7v6RXK-uzr8uMb8AuZPBdw
CitedBy_id crossref_primary_10_1039_D2CP05549J
crossref_primary_10_1186_s12935_021_01856_5
crossref_primary_10_1038_s41598_021_89785_1
crossref_primary_10_1021_acs_jcim_0c00544
crossref_primary_10_1039_D0CC02164D
crossref_primary_10_1016_j_jmb_2021_166964
crossref_primary_10_1016_j_bbrep_2024_101894
crossref_primary_10_2147_OTT_S384293
crossref_primary_10_1039_D4CP01571A
crossref_primary_10_3390_ijms25063419
crossref_primary_10_1002_fsn3_3420
crossref_primary_10_1186_s12935_023_03000_x
crossref_primary_10_1007_s11033_024_09452_2
crossref_primary_10_1016_j_bbcan_2021_188666
crossref_primary_10_1002_wcms_1563
crossref_primary_10_1021_acs_jpcb_9b01567
crossref_primary_10_1093_bioinformatics_btaa1071
Cites_doi 10.1002/cncr.28705
10.1002/jcc.20291
10.1182/blood-2004-03-0891
10.1021/jm9007533
10.1110/ps.051750905
10.1093/jb/mvq015
10.1158/0008-5472.CAN-05-2788
10.1016/0925-5710(95)00389-A
10.1517/13543784.12.12.1951
10.1002/prot.25368
10.1038/leu.2015.165
10.1182/blood-2003-06-1845
10.1038/sj.leu.2401130
10.18632/oncotarget.7459
10.1002/jcc.20084
10.1182/blood-2003-05-1653
10.1182/blood-2009-05-222034
10.1006/jmbi.1993.1626
10.1016/B978-0-12-381270-4.00019-6
10.1021/jp973084f
10.1016/0092-8674(91)90010-V
10.1002/jcc.540130805
10.1002/jcc.20482
10.1039/C7RA04099G
10.1016/S1535-6108(02)00080-6
10.1063/1.445869
10.1371/journal.pone.0121177
10.1126/science.1062538
10.1158/2159-8290.CD-15-0060
10.1016/j.clml.2016.06.002
10.1016/j.pharmthera.2018.06.016
10.1002/jcc.20082
10.1007/s00018-004-4274-x
10.1182/blood.V80.10.2584.2584
10.1016/j.exphem.2007.07.008
10.1038/nature11016
10.3324/haematol.2012.069781
10.2217/fon.15.314
10.1063/1.464397
10.1074/jbc.M113.474072
10.1002/jcc.21816
10.1182/blood-2002-02-0492
10.1016/j.bbagen.2019.01.011
10.1111/ejh.12841
10.1038/nrc1169
10.1016/j.drup.2009.04.001
10.1038/onc.2010.273
10.1182/blood-2005-06-2596
10.1063/1.328693
10.1111/j.1365-2141.2000.02317.x
10.1126/science.289.5486.1938
10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
10.1093/bioinformatics/btl461
10.1182/blood-2005-06-2469
10.1182/blood-2002-11-3441
10.1016/S1097-2765(03)00505-7
10.1158/0008-5472.CAN-08-2923
10.1063/1.470117
10.1182/blood-2004-02-0660
10.1056/NEJMoa1411366
10.1038/sj.leu.2400756
10.1182/blood-2002-05-1440
10.1182/blood.V97.8.2434
10.1074/jbc.M010161200
10.1182/blood.V87.3.1089.bloodjournal8731089
10.1007/s12185-013-1334-8
10.1021/acs.jpcb.9b01567
10.1007/s11899-017-0381-2
10.1158/1535-7163.MCT-16-0876
10.1073/pnas.82.2.488
10.1182/blood.V99.12.4326
10.1016/j.molcel.2016.06.012
10.1182/blood-2012-07-442871
10.1063/1.448118
10.1007/s002800100301
10.1073/pnas.1320661111
10.1111/febs.13365
10.1063/1.2408420
10.1182/blood-2003-12-4446
10.1073/pnas.0812413106
10.1038/s41598-018-27044-6
10.1016/S0092-8674(02)00741-9
10.1182/blood.V98.6.1752
10.1016/j.tibs.2016.08.006
10.1093/nar/gkf436
10.1038/sj.leu.2403838
10.1007/s00018-017-2494-0
10.1016/0010-4655(95)00042-E
ContentType Journal Article
Copyright 2020 Federation of European Biochemical Societies
2020 Federation of European Biochemical Societies.
Copyright © 2020 Federation of European Biochemical Societies
Copyright_xml – notice: 2020 Federation of European Biochemical Societies
– notice: 2020 Federation of European Biochemical Societies.
– notice: Copyright © 2020 Federation of European Biochemical Societies
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ADTPV
AOWAS
D92
F1U
DOI 10.1111/febs.15209
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Linnéuniversitetet
SWEPUB Göteborgs universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

MEDLINE

MEDLINE - Academic

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1742-4658
EndPage 3220
ExternalDocumentID oai_gup_ub_gu_se_348878
oai_DiVA_org_lnu_92295
31943770
10_1111_febs_15209
FEBS15209
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Crafoord Foundation
  funderid: 20160653
– fundername: Swedish Cancer Society
  funderid: 2015/387
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EAD
EAP
EAS
EAU
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EST
ESX
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HH5
HZI
HZ~
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OK1
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RNS
ROL
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIJ
WIK
WIN
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
Y6R
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ADTPV
AOWAS
D92
F1U
ID FETCH-LOGICAL-c5019-3c747306c9bdcd2fc9e430ba2c3d8098d8730e79555c8654e7eb00ae924f090b3
IEDL.DBID DR2
ISSN 1742-464X
1742-4658
IngestDate Thu Aug 21 06:25:13 EDT 2025
Thu Aug 21 06:26:04 EDT 2025
Fri Jul 11 18:33:35 EDT 2025
Thu Jul 10 22:43:02 EDT 2025
Fri Jul 25 19:39:18 EDT 2025
Thu Apr 03 06:57:21 EDT 2025
Thu Apr 24 23:04:27 EDT 2025
Tue Jul 01 03:06:51 EDT 2025
Wed Jan 22 16:34:36 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords leukaemia
kinase inhibitors
molecular dynamics
FLT3
enzyme kinetics
Language English
License 2020 Federation of European Biochemical Societies.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5019-3c747306c9bdcd2fc9e430ba2c3d8098d8730e79555c8654e7eb00ae924f090b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4573-8052
0000-0002-9300-614X
0000-0001-8696-3104
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/febs.15209
PMID 31943770
PQID 2429663970
PQPubID 28478
PageCount 21
ParticipantIDs swepub_primary_oai_gup_ub_gu_se_348878
swepub_primary_oai_DiVA_org_lnu_92295
proquest_miscellaneous_2524325522
proquest_miscellaneous_2339791866
proquest_journals_2429663970
pubmed_primary_31943770
crossref_primary_10_1111_febs_15209
crossref_citationtrail_10_1111_febs_15209
wiley_primary_10_1111_febs_15209_FEBS15209
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The FEBS journal
PublicationTitleAlternate FEBS J
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2017; 7
2017; 85
2004; 61
2012; 485
2010; 147
2004; 25
2002; 99
2013; 288
2001; 48
1992; 13
2013; 121
2005; 26
2007; 35
2009; 114
2012; 97
2019; 123
2003; 12
2009; 12
1995; 62
2017; 74
2018; 8
2011; 487
2009; 52
2001; 293
1997; 11
2000; 289
2010; 29
2006; 66
2006; 22
2006; 27
2002; 100
2005; 105
2013; 97
2015; 373
2003; 3
1997; 18
2016; 41
2002; 109
2014; 120
1998; 12
2001; 97
2001; 98
2007; 126
1992; 80
2009; 69
2015; 282
2004; 104
2015; 5
2004; 103
1836; 1–14
1995; 91
1984; 81
2002; 30
2015; 10
2002; 1
2011; 32
2000; 111
1985; 82
2002
2014; 111
2016; 16
2018; 191
1996; 10
1983; 79
2016; 12
2019; 1863
2001; 276
2003; Chapter 2
2016; 7
2005; 19
2015; 29
1991; 65
2017; 16
2017; 98
1993; 98
2004; 13
2017; 12
2016; 63
1995; 103
1993; 234
2003; 102
2006; 107
1998; 102
1981; 52
1996; 87
2009; 106
2005; 14
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_90_1
e_1_2_9_92_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_91_1
e_1_2_9_93_1
e_1_2_9_70_1
Friedman R (e_1_2_9_68_1) 1836; 1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
Drexler HG (e_1_2_9_6_1) 1996; 10
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
Nakao M (e_1_2_9_11_1) 1996; 10
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
Thompson JD (e_1_2_9_76_1) 2003; 2
References_xml – volume: 81
  start-page: 3684
  year: 1984
  end-page: 3690
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: J Chem Phys
– volume: 82
  start-page: 488
  year: 1985
  end-page: 492
  article-title: Rapid and efficient site‐specific mutagenesis without phenotypic selection
  publication-title: Proc Natl Acad Sci USA
– volume: 13
  start-page: 169
  year: 2004
  end-page: 178
  article-title: The structural basis for autoinhibition of t3 by the juxtamembrane domain
  publication-title: Mol Cell
– volume: 41
  start-page: 938
  year: 2016
  end-page: 953
  article-title: How do protein kinases take a sele (autophosphorylate)?
  publication-title: Trends Biochem Sci
– volume: 13
  start-page: 952
  year: 1992
  end-page: 962
  article-title: SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models
  publication-title: J Comp Chem
– volume: 91
  start-page: 43
  year: 1995
  end-page: 56
  article-title: Gromacs‐a message‐passing parallel molecular‐dynamics implementation
  publication-title: Comput Phys Commun
– volume: 22
  start-page: 2695
  year: 2006
  end-page: 2696
  article-title: Bio3d: an R package for the comparative analysis of protein structures
  publication-title: Bioinformatics
– volume: 282
  start-page: 3528
  year: 2015
  end-page: 3542
  article-title: Oncogenic mutations weaken the interactions that stabilize the p110α‐p85 α heterodimer in phosphatidylinositol 3‐kinase α
  publication-title: FEBS J
– volume: 61
  start-page: 2932
  year: 2004
  end-page: 2938
  article-title: Normal and oncogenic t3
  publication-title: Cell Mol Life Sci
– volume: 1–14
  start-page: 2013
  year: 1836
  article-title: Molecular modelling and simulations in cancer research
  publication-title: Biochim Biophys Acta
– volume: 27
  start-page: 1765
  year: 2006
  end-page: 1768
  article-title: Software news and updates carma: amolecular dynamics analysis program
  publication-title: J Comput Chem
– volume: 276
  start-page: 10049
  year: 2001
  end-page: 10055
  article-title: Crystallographic and solution studies of an activation loop mutant of the insulin receptor tyrosine kinase insights into kinase mechanism
  publication-title: J Biol Chem
– volume: 74
  start-page: 2679
  year: 2017
  end-page: 2688
  article-title: Tyrosine 842 in the activation loop is required for full transformation by the oncogenic mutant t3‐itd
  publication-title: Cell Mol Life Sci
– volume: 7
  start-page: 11746
  year: 2016
  article-title: Drug resistance in cancer: molecular evolution and compensatory proliferation
  publication-title: Oncotarget
– volume: 289
  start-page: 1938
  year: 2000
  end-page: 1942
  article-title: Structural mechanism for sti‐571 inhibition of abelson tyrosine kinase
  publication-title: Science
– volume: 3
  start-page: 650
  year: 2003
  article-title: The role of t3 in haematopoietic malignancies
  publication-title: Nat Rev Cancer
– volume: Chapter 2
  start-page: Unit 2.3
  year: 2003
  article-title: Multiple sequence alignment using clustalw and clustalx
  publication-title: Curr Protoc Bioinformatics
– volume: 98
  start-page: 10089
  year: 1993
  end-page: 10092
  article-title: Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems
  publication-title: J Chem Phys
– volume: 87
  start-page: 1089
  year: 1996
  end-page: 1096
  article-title: Expression of the hematopoietic growth factor receptor t3 (stk‐1/k2) in human leukemias
  publication-title: Blood
– volume: 107
  start-page: 293
  year: 2006
  end-page: 300
  article-title: Clinical resistance to the kinase inhibitor pkc412 in acute myeloid leukemia by mutation of asn‐676 in the t3 tyrosine kinase domain
  publication-title: Blood
– volume: 111
  start-page: 5319
  year: 2014
  end-page: 5424
  article-title: Crenolanib is a selective type i pan‐t3 inhibitor
  publication-title: Proc Natl Acad Sci USA
– volume: 288
  start-page: 22460
  year: 2013
  end-page: 22468
  article-title: Phosphorylation of the activation loop tyrosine 823 in c‐kit is crucial for cell survival and proliferation
  publication-title: J Biol Chem
– volume: 29
  start-page: 5120
  year: 2010
  article-title: Drug resistance in mutant t3‐positive AML
  publication-title: Oncogene
– volume: 126
  start-page: 014101
  year: 2007
  article-title: Canonical sampling through velocity‐rescaling
  publication-title: J Chem Phys
– volume: 30
  start-page: 3059
  year: 2002
  end-page: 3066
  article-title: Mat: a novel method for rapid multiple sequence alignment based on fast Fourier transform
  publication-title: Nucleic Acids Res
– volume: 103
  start-page: 1901
  year: 2004
  end-page: 1908
  article-title: Biologic and clinical significance of the t3 transcript level in acute myeloid leukemia
  publication-title: Blood
– volume: 16
  start-page: 991
  year: 2017
  end-page: 1001
  article-title: Flt3 inhibitors in acute myeloid leukemia: current status and future directions
  publication-title: Mol Cancer Ther
– volume: 485
  start-page: 260
  year: 2012
  article-title: Validation of itd mutations in t3 as a therapeutic target in human acute myeloid leukaemia
  publication-title: Nature
– volume: 1863
  start-page: 732
  year: 2019
  end-page: 741
  article-title: The catalytic activity of abl1 single and compound mutations: implications for the mechanism of drug resistance mutations in chronic myeloid leukaemia
  publication-title: Biochim Biophys Acta
– volume: 10
  start-page: 1911
  year: 1996
  end-page: 1918
  article-title: Internal tandem duplication of the t3 gene found in acute myeloid leukemia
  publication-title: Leukemia
– volume: 111
  start-page: 190
  year: 2000
  end-page: 195
  article-title: Flt3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high‐risk group
  publication-title: Br J Haematol
– volume: 105
  start-page: 335
  year: 2005
  end-page: 340
  article-title: Identification of a novel activating mutation (y842c) within the activation loop of t3 in patients with acute myeloid leukemia (AML)
  publication-title: Blood
– volume: 62
  start-page: 63
  year: 1995
  end-page: 73
  article-title: Biology of t3 ligand and receptor
  publication-title: Int J Hematol
– volume: 293
  start-page: 876
  year: 2001
  end-page: 880
  article-title: Clinical resistance to sti‐571 cancer therapy caused by bcr‐abl gene mutation or amplification
  publication-title: Science
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  article-title: Ucsf chimera—a visualization system for exploratory research and analysis
  publication-title: J Comput Chem
– volume: 99
  start-page: 4326
  year: 2002
  end-page: 4335
  article-title: Analysis of t3‐activating mutations in 979 patients with acute myelogenous leukemia: association with fab subtypes and identification of subgroups with poor prognosis: presented in part at the 42nd annual meeting of the American Society of Hematology, December 1–5, 2000, San Francisco, CA (abstract 2334)
  publication-title: Blood
– volume: 120
  start-page: 2142
  year: 2014
  end-page: 2149
  article-title: Treatment with t3 inhibitor in patients with t3‐mutated acute myeloid leukemia is associated with development of secondary t3–tyrosine kinase domain mutations
  publication-title: Cancer
– volume: 26
  start-page: 1701
  year: 2005
  end-page: 1718
  article-title: GROMACS: fast, flexible, and free
  publication-title: J Comput Chem
– volume: 8
  start-page: 15544
  year: 2018
  article-title: Insights into the mechanism of the PIK3CA E545K activating mutation using MD simulations
  publication-title: Sci Rep
– volume: 234
  start-page: 779
  year: 1993
  end-page: 815
  article-title: Comparative protein modelling by satisfaction of spatial restraints
  publication-title: J Mol Biol
– volume: 80
  start-page: 2584
  year: 1992
  end-page: 2593
  article-title: Expression of the fms/kit‐like gene t3 in human acute leukemias of the myeloid and lymphoid lineages
  publication-title: Blood
– volume: 97
  start-page: 1773
  year: 2012
  article-title: The n676d and g697r mutations in the kinase domain of t3 confer resistance to the inhibitor ac220
  publication-title: Haematologica
– volume: 69
  start-page: 3032
  year: 2009
  end-page: 3041
  article-title: Fms‐like tyrosine kinase 3–internal tandem duplication tyrosine kinase inhibitors display a nonoverlapping profile of resistance mutations
  publication-title: Can Res
– volume: 11
  start-page: 1447
  year: 1997
  article-title: Internal tandem duplication of t3 associated with leukocytosis in acute promyelocytic leukemia
  publication-title: Leukemia
– volume: 98
  start-page: 330
  year: 2017
  end-page: 336
  article-title: The role of t3 inhibitors in the treatment of t 3‐mutated acute myeloid leukemia
  publication-title: Eur J Haematol
– volume: 100
  start-page: 1532
  year: 2002
  end-page: 1542
  article-title: The roles of t3 in hematopoiesis and leukemia
  publication-title: Blood
– volume: 106
  start-page: 1542
  year: 2009
  end-page: 1547
  article-title: KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients
  publication-title: Proc Natl Acad Sci
– volume: 52
  start-page: 7808
  year: 2009
  end-page: 7816
  article-title: and Shripad S Bhagwat. Identification of n‐(5‐tert‐butyl‐isoxazol‐3‐yl)‐n’‐{4‐[7‐(2‐morpholin‐4‐yl‐ethoxy) imidazo [2, 1‐b][1, 3] benzothiazol‐2‐yl] phenyl} urea dihydrochloride (ac220), a uniquely potent, selective, and ecacious fms‐like tyrosine kinase‐3 (t3) inhibitor
  publication-title: J Med Chem
– volume: 487
  start-page: 545
  year: 2011
  end-page: 574
  article-title: Rosetta3: an object‐oriented software suite for the simulation and design of macromolecules
  publication-title: Methods Enzymol
– volume: 10
  start-page: 588
  year: 1996
  end-page: 599
  article-title: Expression of t3 receptor and response to t3 ligand by leukemic cells
  publication-title: Leukemia
– volume: 12
  start-page: 827
  year: 2016
  end-page: 838
  article-title: Molecularly targeted therapy in acute myeloid leukemia
  publication-title: Future Oncol
– volume: 12
  start-page: 153
  year: 2017
  end-page: 167
  article-title: The future of targeting t3 activation in AML
  publication-title: Curr Hematol Malig Rep
– volume: 98
  start-page: 1752
  year: 2001
  end-page: 1759
  article-title: The presence of a t3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the RST cycle of chemotherapy: analysis of 854 patients from the united kingdom medical research council AML 10 and 12 trials
  publication-title: Blood
– volume: 16
  start-page: 543
  year: 2016
  end-page: 549
  article-title: Flt3 inhibitors for treating acute myeloid leukemia
  publication-title: Clin Lymphoma Myeloma Leuk
– volume: 107
  start-page: 3700
  year: 2006
  end-page: 3707
  article-title: Point mutations in the juxtamembrane domain of t3 dene a new class of activating mutations in AML
  publication-title: Blood
– volume: 114
  start-page: 2984
  year: 2009
  end-page: 2992
  article-title: Ac220 is a uniquely potent and selective inhibitor of t3 for the treatment of acute myeloid leukemia (AML)
  publication-title: Blood
– volume: 121
  start-page: 3165
  year: 2013
  end-page: 3171
  article-title: Activity of ponatinib against clinically‐relevant ac220‐resistant kinase domain mutants of t3‐itd
  publication-title: Blood
– volume: 19
  start-page: 1345
  year: 2005
  article-title: Prognostic significance of t3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta‐analysis
  publication-title: Leukemia
– volume: 102
  start-page: 3586
  year: 1998
  end-page: 3616
  article-title: All‐atom empirical potential formolecularmodeling and dynamics studies of proteins
  publication-title: J Phys Chem B
– volume: 12
  start-page: 81
  year: 2009
  end-page: 89
  article-title: Flt3 inhibition and mechanisms of drug resistance in mutant t3‐positive AML
  publication-title: Drug Resist Updates
– volume: 85
  start-page: 2143
  year: 2017
  end-page: 2152
  article-title: The molecular mechanism behind resistance of the kinase t3 to the inhibitor quizartinib
  publication-title: Proteins
– volume: 14
  start-page: 3135
  year: 2005
  end-page: 3139
  article-title: High yield bacterial expression of active c‐Abl and c‐Src tyrosine kinases
  publication-title: Protein Sci
– volume: 373
  start-page: 428
  year: 2015
  end-page: 437
  article-title: Structure‐guided blockade of csf1r kinase in tenosynovial giant‐cell tumor
  publication-title: N Engl J Med
– volume: 100
  start-page: 4372
  year: 2002
  end-page: 4380
  article-title: Prognostic significance of activating t3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML study group ULM
  publication-title: Blood
– volume: 25
  start-page: 1584
  year: 2004
  end-page: 1604
  article-title: Empirical force fields for biological macromolecules: overview and issues
  publication-title: J Comput Chem
– volume: 105
  start-page: 54
  year: 2005
  end-page: 60
  article-title: Patients with acute myeloid leukemia and an activating mutation in t3 respond to a small‐molecule t3 tyrosine kinase inhibitor, pkc412
  publication-title: Blood
– volume: 103
  start-page: 8577
  year: 1995
  end-page: 8593
  article-title: A smooth particle mesh Ewald method
  publication-title: J Chem Phys
– volume: 7
  start-page: 29871
  year: 2017
  end-page: 29881
  article-title: A molecular dynamics simulation study for variant drug responses due to fms‐like tyrosine kinase 3 g697r mutation
  publication-title: RSC Adv
– volume: 52
  start-page: 7182
  year: 1981
  end-page: 7190
  article-title: Polymorphic transitions in single crystals: a new molecular dynamics method
  publication-title: J Appl Phys
– volume: 102
  start-page: 646
  year: 2003
  end-page: 651
  article-title: Sensitivity toward tyrosine kinase inhibitors varies between dierent activating mutations of the t3 receptor
  publication-title: Blood
– volume: 66
  start-page: 1007
  year: 2006
  end-page: 1014
  article-title: Kuriyan. Structure of the kinase domain of an imatinib‐resistant abl mutant in complex with the aurora kinase inhibitor vx–680
  publication-title: Can Res
– volume: 109
  start-page: 275
  year: 2002
  end-page: 282
  article-title: The conformational plasticity of protein kinases
  publication-title: Cell
– volume: 104
  start-page: 2867
  year: 2004
  end-page: 2872
  article-title: Variable sensitivity of t3 activation loop mutations to the small molecule tyrosine kinase inhibitor mln518
  publication-title: Blood
– volume: 29
  start-page: 2390
  year: 2015
  article-title: Flt3 d835 mutations confer dierential resistance to type ii t3 inhibitors
  publication-title: Leukemia
– volume: 123
  start-page: 5385
  year: 2019
  end-page: 5394
  article-title: Activation and inactivation of the t3 kinase: Pathway intermediates and the free energy of transition
  publication-title: J Phys Chem B
– volume: 63
  start-page: 337
  year: 2016
  end-page: 346
  article-title: Automated structure‐and sequence‐based design of proteins for high bacterial expression and stability
  publication-title: Mol Cell
– volume: 103
  start-page: 2266
  year: 2004
  end-page: 2275
  article-title: Mutations in the tyrosine kinase domain of t3 dene a new molecular mechanism of acquired drug resistance to ptk inhibitors in t3‐itd–transformed hematopoietic cells
  publication-title: Blood
– volume: 65
  start-page: 1143
  year: 1991
  end-page: 1152
  article-title: A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell‐enriched populations
  publication-title: Cell
– year: 2002
– volume: 32
  start-page: 2359
  year: 2011
  end-page: 2368
  article-title: Swissparam: a fast force field generation tool for small organic molecules
  publication-title: J Comput Chem
– volume: 1
  start-page: 413
  year: 2002
  end-page: 415
  article-title: Finding the next gleevec: Flt3 targeted kinase inhibitor therapy for acute myeloid leukemia
  publication-title: Cancer Cell
– volume: 97
  start-page: 683
  year: 2013
  end-page: 694
  article-title: Flt3 inhibitors for acute myeloid leukemia: a review of their efficacy and mechanisms of resistance
  publication-title: Int J Hematol
– volume: 12
  start-page: 1951
  year: 2003
  end-page: 1962
  article-title: Novel t3 tyrosine kinase inhibitors
  publication-title: Expert Opin Investig Drugs
– volume: 35
  start-page: 1522
  year: 2007
  end-page: 1526
  article-title: Sensitivity toward sorafenib and sunitinib varies between dierent activating and drug‐resistant t3‐itd mutations
  publication-title: Exp Hematol
– volume: 5
  start-page: 668
  year: 2015
  end-page: 679
  article-title: Characterizing and overriding the structural mechanism of the quizartinib‐resistant t3" gatekeeper" f691l mutation with plx3397
  publication-title: Cancer Discov
– volume: 97
  start-page: 2434
  year: 2001
  end-page: 2439
  article-title: Activating mutation of d835 within the activation loop of t3 in human hematologic malignancies
  publication-title: Blood
– volume: 10
  year: 2015
  article-title: Crystal structure of the t3 kinase domain bound to the inhibitor quizartinib (ac220)
  publication-title: PLoS ONE
– volume: 48
  start-page: S27
  year: 2001
  end-page: S30
  article-title: Flt3 tyrosine kinase as a target molecule for selective antileukemia therapy
  publication-title: Cancer Chemother Pharmacol
– volume: 191
  start-page: 123
  year: 2018
  end-page: 134
  article-title: Structural and clinical consequences of activation loop mutations in class iii receptor tyrosine kinases
  publication-title: Pharmacol Ther
– volume: 79
  start-page: 926
  year: 1983
  end-page: 935
  article-title: Comparison of simple potential functions for simulating liquid water
  publication-title: J Chem Phys
– volume: 12
  start-page: 1333
  year: 1998
  article-title: Naoe. Internal tandem duplication of the t3 gene is a novel modality of elongation mutation which causes constitutive activation of the product
  publication-title: Leukemia
– volume: 147
  start-page: 601
  year: 2010
  end-page: 609
  article-title: Function of activation loop tyrosine phosphorylation in the mechanism of c‐Kit auto‐activation and its implication in sunitinib resistance
  publication-title: J Biochem
– volume: 18
  start-page: 1463
  year: 1997
  end-page: 1472
  article-title: LINCS: a linear constraint solver for molecular simualtions
  publication-title: J Comput Chem
– ident: e_1_2_9_57_1
  doi: 10.1002/cncr.28705
– ident: e_1_2_9_79_1
  doi: 10.1002/jcc.20291
– ident: e_1_2_9_27_1
  doi: 10.1182/blood-2004-03-0891
– ident: e_1_2_9_46_1
  doi: 10.1021/jm9007533
– ident: e_1_2_9_61_1
  doi: 10.1110/ps.051750905
– ident: e_1_2_9_56_1
  doi: 10.1093/jb/mvq015
– volume: 1
  start-page: 2013
  year: 1836
  ident: e_1_2_9_68_1
  article-title: Molecular modelling and simulations in cancer research
  publication-title: Biochim Biophys Acta
– ident: e_1_2_9_59_1
  doi: 10.1158/0008-5472.CAN-05-2788
– ident: e_1_2_9_3_1
  doi: 10.1016/0925-5710(95)00389-A
– ident: e_1_2_9_26_1
  doi: 10.1517/13543784.12.12.1951
– ident: e_1_2_9_58_1
  doi: 10.1002/prot.25368
– ident: e_1_2_9_44_1
  doi: 10.1038/leu.2015.165
– ident: e_1_2_9_8_1
  doi: 10.1182/blood-2003-06-1845
– ident: e_1_2_9_13_1
  doi: 10.1038/sj.leu.2401130
– ident: e_1_2_9_34_1
  doi: 10.18632/oncotarget.7459
– ident: e_1_2_9_75_1
  doi: 10.1002/jcc.20084
– ident: e_1_2_9_39_1
  doi: 10.1182/blood-2003-05-1653
– ident: e_1_2_9_47_1
  doi: 10.1182/blood-2009-05-222034
– ident: e_1_2_9_72_1
  doi: 10.1006/jmbi.1993.1626
– ident: e_1_2_9_93_1
  doi: 10.1016/B978-0-12-381270-4.00019-6
– ident: e_1_2_9_80_1
  doi: 10.1021/jp973084f
– ident: e_1_2_9_2_1
  doi: 10.1016/0092-8674(91)90010-V
– ident: e_1_2_9_89_1
  doi: 10.1002/jcc.540130805
– ident: e_1_2_9_90_1
  doi: 10.1002/jcc.20482
– ident: e_1_2_9_45_1
  doi: 10.1039/C7RA04099G
– ident: e_1_2_9_25_1
  doi: 10.1016/S1535-6108(02)00080-6
– ident: e_1_2_9_82_1
  doi: 10.1063/1.445869
– ident: e_1_2_9_60_1
  doi: 10.1371/journal.pone.0121177
– volume: 2
  start-page: Unit 2.3
  year: 2003
  ident: e_1_2_9_76_1
  article-title: Multiple sequence alignment using clustalw and clustalx
  publication-title: Curr Protoc Bioinformatics
– ident: e_1_2_9_38_1
  doi: 10.1126/science.1062538
– ident: e_1_2_9_51_1
  doi: 10.1158/2159-8290.CD-15-0060
– ident: e_1_2_9_30_1
  doi: 10.1016/j.clml.2016.06.002
– ident: e_1_2_9_54_1
  doi: 10.1016/j.pharmthera.2018.06.016
– ident: e_1_2_9_81_1
  doi: 10.1002/jcc.20082
– ident: e_1_2_9_4_1
  doi: 10.1007/s00018-004-4274-x
– ident: e_1_2_9_5_1
  doi: 10.1182/blood.V80.10.2584.2584
– volume: 10
  start-page: 1911
  year: 1996
  ident: e_1_2_9_11_1
  article-title: Internal tandem duplication of the t3 gene found in acute myeloid leukemia
  publication-title: Leukemia
– ident: e_1_2_9_42_1
  doi: 10.1016/j.exphem.2007.07.008
– ident: e_1_2_9_43_1
  doi: 10.1038/nature11016
– ident: e_1_2_9_48_1
  doi: 10.3324/haematol.2012.069781
– ident: e_1_2_9_29_1
  doi: 10.2217/fon.15.314
– ident: e_1_2_9_86_1
  doi: 10.1063/1.464397
– ident: e_1_2_9_65_1
  doi: 10.1074/jbc.M113.474072
– ident: e_1_2_9_74_1
  doi: 10.1002/jcc.21816
– ident: e_1_2_9_9_1
  doi: 10.1182/blood-2002-02-0492
– ident: e_1_2_9_69_1
  doi: 10.1016/j.bbagen.2019.01.011
– ident: e_1_2_9_31_1
  doi: 10.1111/ejh.12841
– ident: e_1_2_9_10_1
  doi: 10.1038/nrc1169
– ident: e_1_2_9_35_1
  doi: 10.1016/j.drup.2009.04.001
– ident: e_1_2_9_37_1
  doi: 10.1038/onc.2010.273
– ident: e_1_2_9_41_1
  doi: 10.1182/blood-2005-06-2596
– ident: e_1_2_9_85_1
  doi: 10.1063/1.328693
– ident: e_1_2_9_19_1
  doi: 10.1111/j.1365-2141.2000.02317.x
– ident: e_1_2_9_66_1
  doi: 10.1126/science.289.5486.1938
– ident: e_1_2_9_88_1
  doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
– ident: e_1_2_9_92_1
  doi: 10.1093/bioinformatics/btl461
– ident: e_1_2_9_40_1
  doi: 10.1182/blood-2005-06-2469
– ident: e_1_2_9_16_1
  doi: 10.1182/blood-2002-11-3441
– ident: e_1_2_9_14_1
  doi: 10.1016/S1097-2765(03)00505-7
– ident: e_1_2_9_36_1
  doi: 10.1158/0008-5472.CAN-08-2923
– ident: e_1_2_9_87_1
  doi: 10.1063/1.470117
– ident: e_1_2_9_18_1
  doi: 10.1182/blood-2004-02-0660
– ident: e_1_2_9_73_1
  doi: 10.1056/NEJMoa1411366
– ident: e_1_2_9_12_1
  doi: 10.1038/sj.leu.2400756
– ident: e_1_2_9_21_1
  doi: 10.1182/blood-2002-05-1440
– ident: e_1_2_9_15_1
  doi: 10.1182/blood.V97.8.2434
– volume: 10
  start-page: 588
  year: 1996
  ident: e_1_2_9_6_1
  article-title: Expression of t3 receptor and response to t3 ligand by leukemic cells
  publication-title: Leukemia
– ident: e_1_2_9_63_1
  doi: 10.1074/jbc.M010161200
– ident: e_1_2_9_7_1
  doi: 10.1182/blood.V87.3.1089.bloodjournal8731089
– ident: e_1_2_9_28_1
  doi: 10.1007/s12185-013-1334-8
– ident: e_1_2_9_91_1
– ident: e_1_2_9_52_1
  doi: 10.1021/acs.jpcb.9b01567
– ident: e_1_2_9_32_1
  doi: 10.1007/s11899-017-0381-2
– ident: e_1_2_9_33_1
  doi: 10.1158/1535-7163.MCT-16-0876
– ident: e_1_2_9_94_1
  doi: 10.1073/pnas.82.2.488
– ident: e_1_2_9_22_1
  doi: 10.1182/blood.V99.12.4326
– ident: e_1_2_9_62_1
  doi: 10.1016/j.molcel.2016.06.012
– ident: e_1_2_9_50_1
  doi: 10.1182/blood-2012-07-442871
– ident: e_1_2_9_84_1
  doi: 10.1063/1.448118
– ident: e_1_2_9_24_1
  doi: 10.1007/s002800100301
– ident: e_1_2_9_49_1
  doi: 10.1073/pnas.1320661111
– ident: e_1_2_9_70_1
  doi: 10.1111/febs.13365
– ident: e_1_2_9_83_1
  doi: 10.1063/1.2408420
– ident: e_1_2_9_17_1
  doi: 10.1182/blood-2003-12-4446
– ident: e_1_2_9_55_1
  doi: 10.1073/pnas.0812413106
– ident: e_1_2_9_71_1
  doi: 10.1038/s41598-018-27044-6
– ident: e_1_2_9_53_1
  doi: 10.1016/S0092-8674(02)00741-9
– ident: e_1_2_9_20_1
  doi: 10.1182/blood.V98.6.1752
– ident: e_1_2_9_64_1
  doi: 10.1016/j.tibs.2016.08.006
– ident: e_1_2_9_77_1
  doi: 10.1093/nar/gkf436
– ident: e_1_2_9_23_1
  doi: 10.1038/sj.leu.2403838
– ident: e_1_2_9_67_1
  doi: 10.1007/s00018-017-2494-0
– ident: e_1_2_9_78_1
  doi: 10.1016/0010-4655(95)00042-E
SSID ssj0035499
Score 2.422108
Snippet FMS‐like tyrosine kinase 3 (FLT3) has been found to be mutated in ~ 30% of acute myeloid leukaemia patients. Small‐molecule inhibitors targeting FLT3 that are...
FMS-like tyrosine kinase 3 (FLT3) has been found to be mutated in ~ 30% of acute myeloid leukaemia patients. Small-molecule inhibitors targeting FLT3 that are...
FMS‐like tyrosine kinase 3 (FLT3) has been found to be mutated in ~ 30% of acute myeloid leukaemia patients. Small‐molecule inhibitors targeting FLT3 that are...
FMS-like tyrosine kinase 3 (FLT3) has been found to be mutated in ~ 30% of acute myeloid leukaemia patients. Small-molecule inhibitors targeting FLT3 that are...
FMS-like tyrosine kinase 3 (FLT3) has been found to be mutated in 30% of acute myeloid leukaemia patients. Small-molecule inhibitors targeting FLT3 that are...
FMS-like tyrosine kinase 3 (FLT3) has been found to be mutated in ~30% of acute myeloid leukaemia patients. Small-molecule inhibitors targeting FLT3 that are...
SourceID swepub
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3200
SubjectTerms Acute myeloid leukemia
Aminopyridines - pharmacology
Benzothiazoles - pharmacology
Biochemistry
Biokemi
Catalytic activity
Clinical trials
Computer simulation
computers
Drug development
Drug resistance
Drug Resistance, Neoplasm - genetics
drugs
Enzyme kinetics
FLT3
fms-Like Tyrosine Kinase 3 - chemistry
fms-Like Tyrosine Kinase 3 - genetics
fms-Like Tyrosine Kinase 3 - metabolism
Humans
Inhibitors
kinase inhibitors
Kinases
Kinetics
leukaemia
Leukemia
Mathematical models
Molecular Biology
molecular dynamics
Molekylärbiologi
Mutation
myeloid leukemia
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - pathology
Perturbation
Phenylurea Compounds - pharmacology
Protein Conformation
Protein Kinase Inhibitors - pharmacology
Protein structure
Protein-tyrosine kinase
Proteins
Pyrroles - pharmacology
Reaction kinetics
Resistant mutant
Tyrosine
Title Deciphering the molecular mechanism of FLT3 resistance mutations
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.15209
https://www.ncbi.nlm.nih.gov/pubmed/31943770
https://www.proquest.com/docview/2429663970
https://www.proquest.com/docview/2339791866
https://www.proquest.com/docview/2524325522
https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-92295
https://gup.ub.gu.se/publication/348878
Volume 287
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VvcAFSssjtFRGQCWQUrlxvIklDmwfqwoBB2jRXpAVO85qRZNdNZsD_HpmnEcpVJXgtlrPahNnxv4-Z-YbgJepMSpzOcdAMi6M8wOMOe5UaBC7iihLhDN03vHx0-j0PH4_ldM1eNvXwrT6EMOBG0WGX68pwDNT_xbkhTM1de_x1XuUrEWI6POgHSWI-LTVkFEYj-Jpp01KaTxXP72-G_0FMQf90OvQ1e89k_vwrb_qNuXk-36zMvv25x-Cjv97WxtwrwOlbNx60QNYc9UmbI0rJOTlD7bHfJqoP3_fhDtHfYu4LXh37Ox86SsIZwyRJCv7ZrusdFRSPK9LtijY5MOZYMjrCauik7GyaRMA6odwPjk5OzoNu5YMoZUIBkNhkX4gy7DK5DaPCqtcLLjJIivylKs0T3HUJUpKadORjF1CvYkyhyyv4Iob8QjWq0XlngDLhUlFEQlZxDY2kmeFNdwWDqm-sgc2CuB1_2i07fTKqW3Ghe55C02V9lMVwIvBdtmqdNxotdM_Yd1Faq0RoiDjQ1TGA3g-DOM80ouTrHKLBm0Evf0kacBbbGSEzi0RzgbwuPWe4VJwmYtFQv_wqnWnYYTEvY_nX8d6cTnTF1WjFbVXD2DvBrtZs9T41azRtdMCF94kDeCN96VbblpPTg6_-E9P_8V4G-5GdLLgUx13YH112bhnCL9WZteH2S5tgfIXUDEs8Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hcigXHi2PQAEjoBJIqdI43sQ3lm5XC2x7gC3amxU7zmpFk101mwP8emacBxSqSnCL4okSOzPON5OZbwBeJVrL1GYBGpK2fpQdos0FVvoasSsP05hbTfGOk9PB5Cz6OBfzNjeHamEafog-4EaW4fZrMnAKSP9m5bnVFbXvofK9m9TSm6jzR5979ihOrk9TDxn60SCat-yklMjz69rL36O_QGbPIHoZvLqvz_hO02K1cqSFlHTy7aDe6APz4w9Kx_-e2F243eJSNmwU6R7csOUO7A5L9MmL72yfuUxRF4Lfge2jrkvcLrwbWbNcuyLCBUMwyYqu3y4rLFUVL6uCrXI2ns44Q9ee4CrqGSvqJgegug9n4-PZ0cRvuzL4RiAe9LlBDwQdDSN1ZrIwN9JGPNBpaHiWBDLJEhy1sRRCmGQgIhtTe6LUoqOXBzLQ_AFslavSPgKWcZ3wPOQij0ykRZDmRgcmt-jtS3NoQg_edO9GmZaynDpnnKvOdaGlUm6pPHjZy64boo4rpfa6V6xaY60UohR0-hCYBR686IdxHenfSVraVY0ynH6AEjvgNTIiRP0WiGg9eNioT_8ouNNFPKY7vG70qR8hfu_R8utQrS4W6ryslaQO6x7sXyG3qNcKTy1qVVnFce-NEw_eOmW6ZtJqfPz-izt6_C_Cz2F7MjuZqumH009P4FZIgQaX-bgHW5uL2j5FNLbRz5zN_QTnmzAn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5NQwJeBmz8CAwwAiaBlCmL7SaReKCsiwaMCcE29QVZseNU1Za0WpoH-Ou5c5rAYJoEb1V9VRP7zvk-5-47gBex1klm8wADSVtf5DsYc4FNfI3YlYdZxK2m845Ph4P9Y_FhLMcr8KarhWn1IfoDN4oMt19TgM_z4rcgL6yuqXsPVe9dE4MgocYNoy-9eBQn5tOWQ4a-GIjxUpyU8nh-_fbi4-gvjNkLiF7Eru7hk96Cb91ltzknp9vNQm-bH38oOv7vfd2GtSUqZcPWje7Aiq3WYWNYISMvv7Mt5vJE3QH8OtzY7XrEbcDbkTXTuSshnDCEkqzsuu2y0lJN8bQu2axg6cERZ0jsCayil7GyaTMA6rtwnO4d7e77y54MvpGIBn1ukH8gzTCJzk0eFiaxggc6Cw3P4yCJ8xhHbZRIKU08kMJG1Jwos0jzClwize_BajWr7ANgOdcxL0IuC2GElkFWGB2YwiLXT8yOCT141S2NMkvBcuqbcaY64kJTpdxUefC8t523Mh2XWm12K6yWoVorxChI-RCWBR4864dxHunNSVbZWYM2nF5_kjbgFTYyRO-WiGc9uN96T38puM8JHtE_vGzdqR8hde_R9GSoZucTdVY1KqH-6h5sXWI3aeYKv5o0qraK484bxR68dr50xU2rdO_dV_fp4b8YP4Xrn0epOnh_-PER3AzplMGlPW7C6uK8sY8Rii30ExdxPwE2yC7W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deciphering+the+molecular+mechanism+of+FLT3+resistance+mutations&rft.jtitle=The+FEBS+journal&rft.au=Georgoulia%2C+Panagiota+S&rft.au=Bjelic%2C+Sinisa&rft.au=Friedman%2C+Ran&rft.date=2020-08-01&rft.issn=1742-464X&rft.volume=287&rft.issue=15+p.3200-3220&rft.spage=3200&rft.epage=3220&rft_id=info:doi/10.1111%2Ffebs.15209&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon