Convergence of three mangrove species towards freeze-tolerant phenotypes at an expanding range edge

Summary Climate change is dramatically altering the distribution and abundance of many species. An examination of traits may elucidate why some species respond more strongly to climate change than others, particularly when ecophysiological thresholds set range limits. Mangrove forests are expanding...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 29; no. 10; pp. 1332 - 1340
Main Authors Cook-Patton, Susan C., Lehmann, Michael, Parker, John D.
Format Journal Article
LanguageEnglish
Published London Wiley 01.10.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Climate change is dramatically altering the distribution and abundance of many species. An examination of traits may elucidate why some species respond more strongly to climate change than others, particularly when ecophysiological thresholds set range limits. Mangrove forests are expanding polewards. Although multiple environmental factors influence mangrove distributions, freeze tolerance is hypothesized to determine their poleward extent. To investigate how trait variation influences mangroves’ responses to a warming climate, we examined how freeze tolerance and associated traits varied along a latitudinal cline for three co‐occurring mangrove species. We sampled individuals along >200 km of Florida, USA's eastern coast, from the mangroves’ most northern populations, where freeze events were historically common, to southern populations where freeze events continue to be rare. We measured a suite of traits in field‐collected adults and their garden‐reared offspring, and assessed their responses to an experimentally imposed freeze event. We asked whether freeze tolerance and other traits varied predictably among species, with latitude, and between life stages. Species and populations varied dramatically in freeze tolerance, with the highest freeze tolerance in the northernmost species and populations, and the lowest freeze tolerance in the southernmost species and populations. Additionally, leaves of all three species were drier, tougher, thicker and more freeze‐tolerant at the range edge. Tolerance to freezing appears to set the range limits for these mangrove species. All three species converged on a similar phenotype at the range edge, but species‐level variation in freezing resistance was conserved. Thus, these species are likely to continue migrating at different rates in response to climate warming, potentially leading to the dissolution of typically co‐occurring species and creating ‘no analogue’ coastal mangrove–marsh communities. Lay Summary
AbstractList Climate change is dramatically altering the distribution and abundance of many species. An examination of traits may elucidate why some species respond more strongly to climate change than others, particularly when ecophysiological thresholds set range limits.Mangrove forests are expanding polewards. Although multiple environmental factors influence mangrove distributions, freeze tolerance is hypothesized to determine their poleward extent. To investigate how trait variation influences mangroves’ responses to a warming climate, we examined how freeze tolerance and associated traits varied along a latitudinal cline for three co‐occurring mangrove species.We sampled individuals along >200 km of Florida, USA's eastern coast, from the mangroves’ most northern populations, where freeze events were historically common, to southern populations where freeze events continue to be rare.We measured a suite of traits in field‐collected adults and their garden‐reared offspring, and assessed their responses to an experimentally imposed freeze event. We asked whether freeze tolerance and other traits varied predictably among species, with latitude, and between life stages.Species and populations varied dramatically in freeze tolerance, with the highest freeze tolerance in the northernmost species and populations, and the lowest freeze tolerance in the southernmost species and populations. Additionally, leaves of all three species were drier, tougher, thicker and more freeze‐tolerant at the range edge.Tolerance to freezing appears to set the range limits for these mangrove species. All three species converged on a similar phenotype at the range edge, but species‐level variation in freezing resistance was conserved. Thus, these species are likely to continue migrating at different rates in response to climate warming, potentially leading to the dissolution of typically co‐occurring species and creating ‘no analogue’ coastal mangrove–marsh communities.
Summary Climate change is dramatically altering the distribution and abundance of many species. An examination of traits may elucidate why some species respond more strongly to climate change than others, particularly when ecophysiological thresholds set range limits. Mangrove forests are expanding polewards. Although multiple environmental factors influence mangrove distributions, freeze tolerance is hypothesized to determine their poleward extent. To investigate how trait variation influences mangroves’ responses to a warming climate, we examined how freeze tolerance and associated traits varied along a latitudinal cline for three co‐occurring mangrove species. We sampled individuals along >200 km of Florida, USA 's eastern coast, from the mangroves’ most northern populations, where freeze events were historically common, to southern populations where freeze events continue to be rare. We measured a suite of traits in field‐collected adults and their garden‐reared offspring, and assessed their responses to an experimentally imposed freeze event. We asked whether freeze tolerance and other traits varied predictably among species, with latitude, and between life stages. Species and populations varied dramatically in freeze tolerance, with the highest freeze tolerance in the northernmost species and populations, and the lowest freeze tolerance in the southernmost species and populations. Additionally, leaves of all three species were drier, tougher, thicker and more freeze‐tolerant at the range edge. Tolerance to freezing appears to set the range limits for these mangrove species. All three species converged on a similar phenotype at the range edge, but species‐level variation in freezing resistance was conserved. Thus, these species are likely to continue migrating at different rates in response to climate warming, potentially leading to the dissolution of typically co‐occurring species and creating ‘no analogue’ coastal mangrove–marsh communities.
Summary Climate change is dramatically altering the distribution and abundance of many species. An examination of traits may elucidate why some species respond more strongly to climate change than others, particularly when ecophysiological thresholds set range limits. Mangrove forests are expanding polewards. Although multiple environmental factors influence mangrove distributions, freeze tolerance is hypothesized to determine their poleward extent. To investigate how trait variation influences mangroves’ responses to a warming climate, we examined how freeze tolerance and associated traits varied along a latitudinal cline for three co‐occurring mangrove species. We sampled individuals along >200 km of Florida, USA's eastern coast, from the mangroves’ most northern populations, where freeze events were historically common, to southern populations where freeze events continue to be rare. We measured a suite of traits in field‐collected adults and their garden‐reared offspring, and assessed their responses to an experimentally imposed freeze event. We asked whether freeze tolerance and other traits varied predictably among species, with latitude, and between life stages. Species and populations varied dramatically in freeze tolerance, with the highest freeze tolerance in the northernmost species and populations, and the lowest freeze tolerance in the southernmost species and populations. Additionally, leaves of all three species were drier, tougher, thicker and more freeze‐tolerant at the range edge. Tolerance to freezing appears to set the range limits for these mangrove species. All three species converged on a similar phenotype at the range edge, but species‐level variation in freezing resistance was conserved. Thus, these species are likely to continue migrating at different rates in response to climate warming, potentially leading to the dissolution of typically co‐occurring species and creating ‘no analogue’ coastal mangrove–marsh communities. Lay Summary
Summary Climate change is dramatically altering the distribution and abundance of many species. An examination of traits may elucidate why some species respond more strongly to climate change than others, particularly when ecophysiological thresholds set range limits. Mangrove forests are expanding polewards. Although multiple environmental factors influence mangrove distributions, freeze tolerance is hypothesized to determine their poleward extent. To investigate how trait variation influences mangroves' responses to a warming climate, we examined how freeze tolerance and associated traits varied along a latitudinal cline for three co-occurring mangrove species. We sampled individuals along >200 km of Florida, USA's eastern coast, from the mangroves' most northern populations, where freeze events were historically common, to southern populations where freeze events continue to be rare. We measured a suite of traits in field-collected adults and their garden-reared offspring, and assessed their responses to an experimentally imposed freeze event. We asked whether freeze tolerance and other traits varied predictably among species, with latitude, and between life stages. Species and populations varied dramatically in freeze tolerance, with the highest freeze tolerance in the northernmost species and populations, and the lowest freeze tolerance in the southernmost species and populations. Additionally, leaves of all three species were drier, tougher, thicker and more freeze-tolerant at the range edge. Tolerance to freezing appears to set the range limits for these mangrove species. All three species converged on a similar phenotype at the range edge, but species-level variation in freezing resistance was conserved. Thus, these species are likely to continue migrating at different rates in response to climate warming, potentially leading to the dissolution of typically co-occurring species and creating 'no analogue' coastal mangrove-marsh communities.
Author Cook-Patton, Susan C.
Parker, John D.
Lehmann, Michael
Author_xml – sequence: 1
  givenname: Susan C.
  surname: Cook-Patton
  fullname: Cook-Patton, Susan C.
– sequence: 2
  givenname: Michael
  surname: Lehmann
  fullname: Lehmann, Michael
– sequence: 3
  givenname: John D.
  surname: Parker
  fullname: Parker, John D.
BookMark eNqFkE1PAjEQhhuDiYCePZk08bzQ75ajIaAmJF703JTd2QUC7douIP56F1GOOpdJZp5nJnl7qOODB4RuKRnQtoaUK5kxweWAMiH4BeqeJx3UJUyNMiMUv0K9lFaEkJFkrIvycfA7iBX4HHAocbOIAHjjfBXDDnCqIV9Cwk3Yu1gkXLbbT8iasIbofIPrBfjQHOoWcQ12HsNH7Xyx9BVu9xVgKCq4RpelWye4-el99DadvI6fstnL4_P4YZblklCeKcMUlaB0ros5SGN4TktSCibmWsHIkDJ3zBRgJJFi7riUrlCOtmRRqFHJeR_dn-7WMbxvITV2FbbRty8t41oQaqgmf1FUU8O0Joy11PBE5TGkFKG0dVxuXDxYSuwxb3tM1x7Ttd95t4Y8GfvlGg7_4XY6Gf96dydvlZoQz54wUitNOf8C2i-M8Q
CODEN FECOE5
CitedBy_id crossref_primary_10_1002_ecs2_2207
crossref_primary_10_1007_s10750_020_04403_x
crossref_primary_10_1016_j_ecss_2021_107607
crossref_primary_10_1007_s12237_023_01279_7
crossref_primary_10_1093_treephys_tpae019
crossref_primary_10_1002_ecy_1625
crossref_primary_10_1016_j_ecss_2018_12_012
crossref_primary_10_1007_s12237_022_01108_3
crossref_primary_10_1111_gcb_15938
crossref_primary_10_1007_s12237_019_00533_1
crossref_primary_10_1111_geb_12826
crossref_primary_10_1016_j_ecss_2024_108690
crossref_primary_10_1002_ecy_3320
crossref_primary_10_1088_2515_7620_ab7a77
crossref_primary_10_1038_s41467_019_11138_4
crossref_primary_10_1073_pnas_1902181116
crossref_primary_10_1002_ecs2_1400
crossref_primary_10_1093_aob_mcad085
crossref_primary_10_1007_s12237_023_01220_y
crossref_primary_10_1002_ecs2_1865
crossref_primary_10_1093_jxb_erad093
crossref_primary_10_1016_j_ecss_2020_107015
crossref_primary_10_1007_s12237_021_00951_0
crossref_primary_10_1007_s12237_017_0334_y
crossref_primary_10_1111_gcb_15563
crossref_primary_10_1016_j_aquabot_2024_103791
crossref_primary_10_1002_ehs2_1211
crossref_primary_10_3389_fcosc_2022_763325
crossref_primary_10_2983_035_036_0119
crossref_primary_10_1007_s10021_022_00796_z
crossref_primary_10_1111_ddi_13119
crossref_primary_10_1111_cobi_13140
crossref_primary_10_1111_1365_2745_13243
crossref_primary_10_1111_1365_2745_13285
crossref_primary_10_1111_1365_2745_14296
crossref_primary_10_3390_rs13142732
crossref_primary_10_1111_1365_2435_12782
crossref_primary_10_1007_s10021_023_00871_z
crossref_primary_10_1007_s13157_018_1067_9
crossref_primary_10_1111_ddi_13400
crossref_primary_10_1007_s12237_023_01209_7
crossref_primary_10_1016_j_ecss_2018_09_006
crossref_primary_10_1111_mec_15365
crossref_primary_10_3390_jmse7090292
crossref_primary_10_1002_ecy_1979
crossref_primary_10_1111_jbi_13990
crossref_primary_10_1016_j_scitotenv_2022_160189
crossref_primary_10_1111_1365_2745_13350
crossref_primary_10_1111_geb_12751
crossref_primary_10_1007_s13157_021_01463_0
crossref_primary_10_1002_ecs2_1455
crossref_primary_10_1002_ecm_1248
crossref_primary_10_1007_s10750_022_04823_x
Cites_doi 10.1111/j.1461-0248.2008.01277.x
10.1007/BF00751605
10.1111/j.1461-0248.2007.01112.x
10.1073/pnas.1315800111
10.1016/j.aquabot.2012.09.006
10.1093/treephys/25.8.1085
10.1016/j.ecss.2012.02.018
10.1007/s12237-010-9358-2
10.1126/science.1206432
10.1016/j.jinsphys.2011.03.011
10.1093/treephys/27.6.817
10.1016/S0304-4165(89)80016-9
10.4324/9781849776608
10.1038/387253a0
10.1111/1365-2435.12255
10.1111/gcb.12181
10.1086/297568
10.1104/pp.12.1.51
10.2307/1934380
10.1007/s11104-010-0672-z
10.1111/gcb.12341
10.1046/j.1469-8137.2003.00880.x
10.1016/j.tree.2006.11.002
10.1146/annurev-ecolsys-110411-160516
10.1111/j.1469-8137.2011.03992.x
10.1139/b82-330
10.1111/j.1469-8137.2006.01938.x
10.1023/A:1010614216256
10.1111/j.1469-8137.2005.01555.x
10.1098/rspb.2014.0846
10.2307/1942495
10.1016/j.aquabot.2007.12.013
10.1111/1365-2745.12261
10.1111/j.2041-210X.2012.00230.x
10.1093/icb/icr048
10.1126/science.1210288
10.1111/j.1558-5646.2010.01131.x
10.1111/j.1461-0248.2006.00928.x
10.1111/j.1365-294X.2007.03456.x
10.1111/j.1365-2486.2009.01900.x
10.1002/j.1537-2197.1914.tb05388.x
10.1023/A:1009868305586
10.1023/A:1008454809778
10.1656/058.013.0104
10.1007/s11852-013-0246-3
10.1111/j.1466-8238.1998.00269.x
10.1890/0012-9658(2002)083[1052:NEIPOA]2.0.CO;2
10.1890/09-0130.1
10.1038/nclimate1627
ContentType Journal Article
Copyright 2015 The Authors. Functional Ecology © 2015 British Ecological Society
Functional Ecology © 2015 British Ecological Society
Copyright_xml – notice: 2015 The Authors. Functional Ecology © 2015 British Ecological Society
– notice: Functional Ecology © 2015 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
DOI 10.1111/1365-2435.12443
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Entomology Abstracts
CrossRef

Entomology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
Editor Field, Katie
Editor_xml – sequence: 1
  givenname: Katie
  surname: Field
  fullname: Field, Katie
EndPage 1340
ExternalDocumentID 3824326371
10_1111_1365_2435_12443
FEC12443
48576713
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: EF1065821
– fundername: National Aeronautics Space Administration
  funderid: NNX‐11AO94G
GroupedDBID .3N
.GA
05W
0R~
10A
1OC
24P
29H
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAJUZ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABLJU
ABPLY
ABPVW
ABTLG
ABWRO
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AGUYK
AHBTC
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
DWIUU
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
ZCA
ZZTAW
~02
~IA
~KM
~WT
.Y3
31~
42X
53G
AAHBH
ABEFU
ABTAH
ADACV
AITYG
AS~
CAG
COF
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
IPSME
MVM
OIG
VOH
ZY4
AAYXX
CITATION
7QG
7SN
7SS
8FD
AHXOZ
AILXY
C1K
FR3
P64
RC3
ID FETCH-LOGICAL-c5013-682615e67c7dbe5883c1f0f424b76e980fca28de85054ba355ad6a1e58dd69f33
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Thu Oct 10 16:31:04 EDT 2024
Mon Nov 04 11:37:57 EST 2024
Fri Aug 23 00:24:07 EDT 2024
Sat Aug 24 01:13:12 EDT 2024
Fri Feb 02 07:49:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5013-682615e67c7dbe5883c1f0f424b76e980fca28de85054ba355ad6a1e58dd69f33
PQID 1718277022
PQPubID 1066355
PageCount 9
ParticipantIDs proquest_journals_2374018170
proquest_journals_1718277022
crossref_primary_10_1111_1365_2435_12443
wiley_primary_10_1111_1365_2435_12443_FEC12443
jstor_primary_48576713
PublicationCentury 2000
PublicationDate October 2015
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: October 2015
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2015
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 1985; 28
2001; 50
2013; 3
1973; 54
1977; 28
1989; 990
2000; 8
2013; 20
1983; 53
2006; 173
1998; 159
2011; 13
2011; 57
1972
2014; 28
2011; 193
2005; 25
2013; 19
2009; 12
2010; 65
2001; 294
2013; 17
1982; 60
2002; 83
2009; 90
1997; 387
1986
2003; 160
2014; 13
1937; 12
2014; 281
2007; 22
2009; 15
2007; 27
1914; 1
2011; 334
2011; 333
2012; 101
2010
2013; 104
2008; 17
1981; 24
2011; 34
1999; 145
2014; 111
2007; 10
1999
2012; 3
2005; 168
2011; 51
2008; 89
1998; 7
2012; 43
2011; 342
2014; 102
e_1_2_8_28_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_45_1
Sherrod C.L. (e_1_2_8_43_1) 1981; 24
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
Tomlinson P.B. (e_1_2_8_51_1) 1986
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Sherrod C.L. (e_1_2_8_44_1) 1985; 28
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
Cook‐Patton S. (e_1_2_8_18_1) 2011; 13
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
Hogarth P.J. (e_1_2_8_24_1) 1999
e_1_2_8_27_1
e_1_2_8_48_1
MacArthur R.H. (e_1_2_8_31_1) 1972
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 12
  start-page: 334
  year: 2009
  end-page: 350
  article-title: Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges
  publication-title: Ecology Letters
– volume: 90
  start-page: 3393
  year: 2009
  end-page: 3405
  article-title: Gross vs. net income: How plant toughness affects performance of an insect herbivore
  publication-title: Ecology
– volume: 51
  start-page: 733
  year: 2011
  end-page: 750
  article-title: Incorporating population‐level variation in thermal performance into predictions of geographic range shifts
  publication-title: Integrative and Comparative Biology
– volume: 43
  start-page: 205
  year: 2012
  end-page: 226
  article-title: Functional and phylogenetic approaches to forecasting species’ responses to climate change
  publication-title: Annual Review Of Ecology And Systematics
– volume: 1
  start-page: 194
  year: 1914
  end-page: 202
  article-title: The role of winter temperatures in determining the distribution of plants
  publication-title: American Journal of Botany
– volume: 168
  start-page: 597
  year: 2005
  end-page: 612
  article-title: Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of co‐occurring Mediterranean oaks that differ in leaf lifespan
  publication-title: New Phytologist
– volume: 990
  start-page: 87
  year: 1989
  end-page: 92
  article-title: The relationship between quantum yield and photosynthetic electron‐transport and quenching of chlorophyll fluorescence
  publication-title: Biochimica et Biophysica Acta
– volume: 102
  start-page: 972
  year: 2014
  end-page: 980
  article-title: Decoupled evolution of foliar freezing resistance, temperature‐niche and morphological leaf traits in Chilean Myrceugenia
  publication-title: Journal of Ecology
– volume: 17
  start-page: 483
  year: 2013
  end-page: 491
  article-title: Genetic diversity and relatedness of the mangrove Rhizophora mangle L. (Rhizophoraceae) using amplified fragment polymorphisms (AFLP) among locations in Florida, USA and the Caribbean
  publication-title: Journal of Coastal Conservation
– volume: 57
  start-page: 1136
  year: 2011
  end-page: 1146
  article-title: Physiological and biochemical analysis of overwintering and cold tolerance in two Central European populations of the spruce bark beetle, Ips typographus
  publication-title: Journal of Insect Physiology
– volume: 294
  start-page: 151
  year: 2001
  end-page: 154
  article-title: Constraint to adaptive evolution in response to global warming
  publication-title: Science
– volume: 53
  start-page: 209
  year: 1983
  end-page: 234
  article-title: Herbivory and defensive characteristics of tree species in a lowland tropical forest
  publication-title: Ecological Monographs
– volume: 159
  start-page: 513
  year: 1998
  end-page: 521
  article-title: Comparative methods of estimating freezing temperatures and freezing injury in leaves of chaparral shrubs
  publication-title: International Journal Of Plant Sciences
– volume: 101
  start-page: 44
  year: 2012
  end-page: 53
  article-title: Southern limit of the Western South Atlantic mangroves: Assessment of the potential effects of global warming from a biogeographical perspective
  publication-title: Estuarine, Coastal and Shelf Science
– year: 1986
– volume: 160
  start-page: 337
  year: 2003
  end-page: 347
  article-title: Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: congeneric species from desert and coastal environments
  publication-title: New Phytologist
– volume: 54
  start-page: 118
  year: 1973
  end-page: 126
  article-title: Freezing resistance of trees in North America with reference to tree regions
  publication-title: Ecology
– volume: 10
  start-page: 1154
  year: 2007
  end-page: 1163
  article-title: Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients
  publication-title: Ecology Letters
– volume: 28
  start-page: 269
  year: 1977
  end-page: 287
  article-title: Limiting effects of low leaf‐water content on nitrogen utilization, energy budget, and larval growth of (Lepidoptera: Saturniidae)
  publication-title: Oecologia
– volume: 15
  start-page: 1817
  year: 2009
  end-page: 1832
  article-title: Chilling damage in a changing climate in coastal landscapes of the subtropical zone: a case study from south Florida
  publication-title: Global Change Biology
– volume: 7
  start-page: 27
  year: 1998
  end-page: 47
  article-title: Factors influencing biodiversity and distribution gradients in mangroves
  publication-title: Global Ecology and Biogeography Letters
– volume: 333
  start-page: 1024
  year: 2011
  end-page: 1026
  article-title: Rapid range shifts of species associated with high levels of climate warming
  publication-title: Science
– year: 1972
– volume: 27
  start-page: 817
  year: 2007
  end-page: 825
  article-title: Variation in cold hardiness and carbohydrate concentration from dormancy induction to bud burst among provenances of three European oak species
  publication-title: Tree Physiology
– volume: 28
  start-page: 129
  year: 1985
  end-page: 140
  article-title: The distributional history and ecology of mangrove vegetation along the northern gulf of Mexico coastal region
  publication-title: Contributions in Marine Science
– volume: 34
  start-page: 824
  year: 2011
  end-page: 830
  article-title: Temperature tolerance of early life history stages of black mangrove avicennia germinans: implications for range expansion
  publication-title: Estuaries and Coasts
– volume: 20
  start-page: 147
  year: 2013
  end-page: 157
  article-title: Mangrove expansion and salt marsh decline at mangrove poleward limits
  publication-title: Global Change Biology
– volume: 334
  start-page: 652
  year: 2011
  end-page: 655
  article-title: The pace of shifting climate in marine and terrestrial ecosystems
  publication-title: Science
– volume: 22
  start-page: 140
  year: 2007
  end-page: 147
  article-title: Limits to evolution at range margins: when and why does adaptation fail?
  publication-title: Trends in Ecology & Evolution
– volume: 173
  start-page: 576
  year: 2006
  end-page: 583
  article-title: The role of freezing in setting the latitudinal limits of mangrove forests
  publication-title: New Phytologist
– volume: 193
  start-page: 730
  year: 2011
  end-page: 744
  article-title: Evidence for a freezing tolerance‐growth rate trade‐off in the live oaks (Quercus series Virentes) across the tropical‐temperate divide
  publication-title: New Phytologist
– volume: 17
  start-page: 351
  year: 2008
  end-page: 360
  article-title: The evolutionary consequences of biological invasions
  publication-title: Molecular Ecology
– volume: 342
  start-page: 105
  year: 2011
  end-page: 115
  article-title: Influence of frost on nutrient resorption during leaf senescence in a mangrove at its latitudinal limit of distribution
  publication-title: Plant and Soil
– volume: 145
  start-page: 197
  year: 1999
  end-page: 208
  article-title: Leaf size zonation pattern of woody species along an altitudinal gradient Mt. Pulog, Philippines
  publication-title: Plant Ecology
– volume: 111
  start-page: 723
  year: 2014
  end-page: 727
  article-title: Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events
  publication-title: Proceedings of the National Academy of Sciences
– volume: 60
  start-page: 2704
  year: 1982
  end-page: 2715
  article-title: Latitudinal differentiation in response to chilling temperatures among populations of three mangroves, , , and from the western tropical Atlantic and Pacific Panama
  publication-title: Canadian Journal of Botany‐Revue Canadienne De Botanique
– volume: 19
  start-page: 1645
  year: 2013
  end-page: 1661
  article-title: Potential for evolutionary responses to climate change – evidence from tree populations
  publication-title: Global Change Biology
– volume: 281
  start-page: 20140846
  year: 2014
  article-title: The tropicalization of temperate marine ecosystems: climate‐mediated changes in herbivory and community phase shifts
  publication-title: Proceedings of the Royal Society of London Series B‐Biological Sciences
– volume: 13
  start-page: 527
  year: 2011
  end-page: 542
  article-title: Relatedness predicts phenotypic plasticity in plants better than weediness
  publication-title: Evolutionary Ecology Research
– volume: 83
  start-page: 1052
  year: 2002
  end-page: 1064
  article-title: Nutrient enhancement increases performance of a marine herbivore via quality of its food alga
  publication-title: Ecology
– volume: 8
  start-page: 233
  year: 2000
  end-page: 242
  article-title: Diversity and distribution of the mangrove forests in Taiwan
  publication-title: Wetlands Ecology and Management
– volume: 24
  start-page: 115
  year: 1981
  end-page: 131
  article-title: Black mangrove, , in Texas ‐ past and present distribution
  publication-title: Contributions in Marine Science
– volume: 25
  start-page: 1085
  year: 2005
  end-page: 1090
  article-title: Low temperature during winter elicits differential responses among populations of the Mediterranean evergreen cork oak ( )
  publication-title: Tree Physiology
– volume: 3
  start-page: 880
  year: 2012
  end-page: 888
  article-title: Rapid determination of comparative drought tolerance traits: using an osmometer to predict turgor loss point
  publication-title: Methods in Ecology and Evolution
– year: 2010
– volume: 12
  start-page: 51
  year: 1937
  end-page: 78
  article-title: The frost‐hardening mechanism of plant cells
  publication-title: Plant Physiology
– volume: 13
  start-page: 56
  year: 2014
  end-page: 63
  article-title: Record northernmost endemic mangroves on the United States Atlantic Coast with a note on latitudinal migration
  publication-title: Southeastern Naturalist
– volume: 65
  start-page: 108
  year: 2010
  end-page: 124
  article-title: Plant responses to climate in the Cape Floristic Region of South Africa: evidence for adaptive differentiation in the Proteaceae
  publication-title: Evolution
– volume: 89
  start-page: 138
  year: 2008
  end-page: 154
  article-title: Molecular ecology and biogeography of mangrove trees towards conceptual insights on gene flow and barriers: A review
  publication-title: Aquatic Botany
– volume: 3
  start-page: 78
  year: 2013
  end-page: 82
  article-title: An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot
  publication-title: Nature Climate Change
– volume: 28
  start-page: 1166
  year: 2014
  end-page: 1174
  article-title: Rapid acclimation to cold allows the cane toad to invade montane areas within its Australian range
  publication-title: Functional Ecology
– volume: 387
  start-page: 253
  year: 1997
  end-page: 260
  article-title: The value of the world's ecosystem services and natural capital
  publication-title: Nature
– volume: 104
  start-page: 55
  year: 2013
  end-page: 59
  article-title: Effects of competition and nutrient enrichment on in the salt marsh‐mangrove ecotone
  publication-title: Aquatic Botany
– year: 1999
– volume: 50
  start-page: 355
  year: 2001
  end-page: 376
  article-title: Physiologic plasticity, evolution, and impacts of a changing climate on
  publication-title: Climatic Change
– ident: e_1_2_8_26_1
  doi: 10.1111/j.1461-0248.2008.01277.x
– ident: e_1_2_8_42_1
  doi: 10.1007/BF00751605
– ident: e_1_2_8_30_1
  doi: 10.1111/j.1461-0248.2007.01112.x
– ident: e_1_2_8_13_1
  doi: 10.1073/pnas.1315800111
– ident: e_1_2_8_46_1
  doi: 10.1016/j.aquabot.2012.09.006
– ident: e_1_2_8_5_1
  doi: 10.1093/treephys/25.8.1085
– volume-title: The Biology of Mangroves
  year: 1999
  ident: e_1_2_8_24_1
  contributor:
    fullname: Hogarth P.J.
– ident: e_1_2_8_47_1
  doi: 10.1016/j.ecss.2012.02.018
– ident: e_1_2_8_36_1
  doi: 10.1007/s12237-010-9358-2
– ident: e_1_2_8_15_1
  doi: 10.1126/science.1206432
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jinsphys.2011.03.011
– ident: e_1_2_8_34_1
  doi: 10.1093/treephys/27.6.817
– ident: e_1_2_8_22_1
  doi: 10.1016/S0304-4165(89)80016-9
– ident: e_1_2_8_48_1
  doi: 10.4324/9781849776608
– volume: 24
  start-page: 115
  year: 1981
  ident: e_1_2_8_43_1
  article-title: Black mangrove, Avicennia germinans, in Texas ‐ past and present distribution
  publication-title: Contributions in Marine Science
  contributor:
    fullname: Sherrod C.L.
– ident: e_1_2_8_19_1
  doi: 10.1038/387253a0
– ident: e_1_2_8_33_1
  doi: 10.1111/1365-2435.12255
– ident: e_1_2_8_2_1
  doi: 10.1111/gcb.12181
– ident: e_1_2_8_7_1
  doi: 10.1086/297568
– ident: e_1_2_8_41_1
  doi: 10.1104/pp.12.1.51
– ident: e_1_2_8_40_1
  doi: 10.2307/1934380
– ident: e_1_2_8_54_1
  doi: 10.1007/s11104-010-0672-z
– ident: e_1_2_8_39_1
  doi: 10.1111/gcb.12341
– ident: e_1_2_8_27_1
  doi: 10.1046/j.1469-8137.2003.00880.x
– ident: e_1_2_8_8_1
  doi: 10.1016/j.tree.2006.11.002
– ident: e_1_2_8_9_1
  doi: 10.1146/annurev-ecolsys-110411-160516
– ident: e_1_2_8_28_1
  doi: 10.1111/j.1469-8137.2011.03992.x
– ident: e_1_2_8_32_1
  doi: 10.1139/b82-330
– ident: e_1_2_8_49_1
  doi: 10.1111/j.1469-8137.2006.01938.x
– ident: e_1_2_8_37_1
  doi: 10.1023/A:1010614216256
– volume-title: The Botany of Mangroves
  year: 1986
  ident: e_1_2_8_51_1
  contributor:
    fullname: Tomlinson P.B.
– ident: e_1_2_8_14_1
  doi: 10.1111/j.1469-8137.2005.01555.x
– ident: e_1_2_8_53_1
  doi: 10.1098/rspb.2014.0846
– ident: e_1_2_8_17_1
  doi: 10.2307/1942495
– ident: e_1_2_8_52_1
  doi: 10.1016/j.aquabot.2007.12.013
– ident: e_1_2_8_35_1
  doi: 10.1111/1365-2745.12261
– volume-title: Patterns in the Distribution of Species
  year: 1972
  ident: e_1_2_8_31_1
  contributor:
    fullname: MacArthur R.H.
– volume: 28
  start-page: 129
  year: 1985
  ident: e_1_2_8_44_1
  article-title: The distributional history and ecology of mangrove vegetation along the northern gulf of Mexico coastal region
  publication-title: Contributions in Marine Science
  contributor:
    fullname: Sherrod C.L.
– ident: e_1_2_8_6_1
  doi: 10.1111/j.2041-210X.2012.00230.x
– ident: e_1_2_8_4_1
  doi: 10.1093/icb/icr048
– ident: e_1_2_8_11_1
  doi: 10.1126/science.1210288
– ident: e_1_2_8_12_1
  doi: 10.1111/j.1558-5646.2010.01131.x
– ident: e_1_2_8_21_1
  doi: 10.1111/j.1461-0248.2006.00928.x
– ident: e_1_2_8_50_1
  doi: 10.1111/j.1365-294X.2007.03456.x
– ident: e_1_2_8_38_1
  doi: 10.1111/j.1365-2486.2009.01900.x
– ident: e_1_2_8_45_1
  doi: 10.1002/j.1537-2197.1914.tb05388.x
– ident: e_1_2_8_10_1
  doi: 10.1023/A:1009868305586
– ident: e_1_2_8_25_1
  doi: 10.1023/A:1008454809778
– ident: e_1_2_8_56_1
  doi: 10.1656/058.013.0104
– ident: e_1_2_8_3_1
  doi: 10.1007/s11852-013-0246-3
– ident: e_1_2_8_20_1
  doi: 10.1111/j.1466-8238.1998.00269.x
– ident: e_1_2_8_23_1
  doi: 10.1890/0012-9658(2002)083[1052:NEIPOA]2.0.CO;2
– volume: 13
  start-page: 527
  year: 2011
  ident: e_1_2_8_18_1
  article-title: Relatedness predicts phenotypic plasticity in plants better than weediness
  publication-title: Evolutionary Ecology Research
  contributor:
    fullname: Cook‐Patton S.
– ident: e_1_2_8_16_1
  doi: 10.1890/09-0130.1
– ident: e_1_2_8_55_1
  doi: 10.1038/nclimate1627
SSID ssj0009522
Score 2.4340522
Snippet Summary Climate change is dramatically altering the distribution and abundance of many species. An examination of traits may elucidate why some species respond...
Summary Climate change is dramatically altering the distribution and abundance of many species. An examination of traits may elucidate why some species respond...
Climate change is dramatically altering the distribution and abundance of many species. An examination of traits may elucidate why some species respond more...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Publisher
StartPage 1332
SubjectTerms Avicennia germinans
Climate change
Cold tolerance
Community ecology
Convergence
Environmental factors
freeze tolerance
Freezing
Geographical distribution
Global warming
Laguncularia racemosa
latitudinal limits
mangrove
Mangrove swamps
Mangroves
Marshes
Offspring
Phenotypes
Populations
Rhizophora mangle
Species
Yeast
Title Convergence of three mangrove species towards freeze-tolerant phenotypes at an expanding range edge
URI https://www.jstor.org/stable/48576713
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12443
https://www.proquest.com/docview/1718277022
https://www.proquest.com/docview/2374018170
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4iCF58L64vcvDgpcumSR97lHUXEfQgCt5K0k48qK1su6Ke_An-Rn-JM02rqwgi3gJJaJuZyTeTfjNhbF_EgDjkB54N-9pTAyM8bZT1qJa5QcS2MqNE4dOz8PhSnVwFLZuQcmFcfYiPAzeyjHq_JgPXppwxcsfPQrTvEURRvU8hIyJ1HZ37M2V33X8EPxx4iLSyKe5DXJ5v87_gkqMmfnE6Z13XGnvGy8y0b-0oJze9aWV66fO3go7_-qwVttR4pvzQqdIqm4N8jS24uyqfsDVKm1Zn9JkchxOa3aFcZzAkCnudzQm8sLxCPQF-p_PrSfEAnJI6MS7nVc3ULbnF3md4e3mtiltAyKw48c0KOhQuua64zjk83ru0Gz6hJAhOh38b7HI8uhgee801Dl4a0N0RIUYwIoAwSqPMQBDHMhW2b5WvTBTCIO7bVPtxBjE6Y8podIB0FmqBI7MsHFgpO2w-L3LYZFxCZhWgMgURUGCqMTSQGAIKK6xRsemyg1aIyb2r1pG0UQ4tbEILm9QL22WdWsgf41SMoReG7F2200o9aey5TARCuB9F6PD82O1LutiQah12mZPub49PxqNh3dj664RttohOW-AIhTtsvppMYRcdo8rs1br_DgRiAYo
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RECoXoNAVy6s-9MAlq03sPPZYLbtanocKJG6RnYw5AAnaDVXhxE_gN_JLOhNnYUFIVdWbJcd52B5_30zmAfDdT5BwKAg9G3W1p3rG97RR1uNc5oYQ28qcA4VPTqPRuTq8CC9mYmFcfogXgxtLRn1es4CzQXpGyp2DFsF9hzFKfoIFEnrJ5Rv2fwYziXfdn4Qg6nmEtbJJ78PePO9u8AaZnHPiG9o5S15r9BmuQDZ9b-d0ctW5q0wne3iX0vH_PmwVlhtyKn643fQF5rBYg0VXrvKeWoOsabUGr_FxNKA5ICbrgH32Yq8DOlGUVlS0VVDc6OJyXP5CwXGdpJqLqnbWnQhLvQ_4_PhUlddIqFkJdjkr2S48EboSuhD4-9ZF3ogxx0EItv99hfPh4Kw_8ppKDl4WcvmIiJQYP8QozuLcYJgkMvNt16pAmTjCXtK1mQ6SHBPiY8po4kA6j7RPV-Z51LNStmC-KAvcACExtwppP4Uxsm6qSTuQpAX61rdGJaYNe9NVTG9dwo50qujwxKY8sWk9sW1o1av8cp1KSPsirb0N29NlTxuRnqQ-oXgQx8R5PuwOJNc25HSHbXDL-7fHp8NBv25s_uuAb_B5dHZynB4fnB5twRJxuND5F27DfDW-wx3iSZXZrQXhDx2aBaI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKioufdCu2Ja2PvTAJatN7DjZI9ruir4QQkXiFtnJmAOQrHYDopz6E_iN_BJm4oQuqFJVcbPkOA_b4-8b55sxwKcwRcKhKA6cHppAjWwYGKtcwLnMLSG2kwUHCv_Y07uH6utR3KkJORbG54e423Bjy2jWazbwWeGWjNzrswjtBwxRcgWeKk38l3nRQbSUd9f_SIj0KCColW12HxbzPLjBPWDy2sR7rHOZuzbgM30Btnttrzk5GZzXdpBfPcjo-KjvegnPW2oqdvxcegVPsNyANX9Y5S8qTfK21Jv8iY6jBu3ysHgNOGYNexPOiaJyoqaJguLMlMfz6gIFR3WSYy7qRqq7EI5qr_Dm93VdnSJhZi1YcFbxrvBCmFqYUuDlzMfdiDlHQQje_XsDh9PJz_Fu0J7jEOQxHx6hyYUJY9RJnhQW4zSVeeiGTkXKJhpH6dDlJkoLTImNKWuIAZlCm5CuLAo9clL2YLWsStwEIbFwCmk2xQmyZ2rIN5DkA4YudFaltg_b3SBmM5-uI-vcHO7YjDs2azq2D71mkO-uUyn5XuSz92GrG_WsNehFFhKGR0lCjOev1ZHkkw052WEf_Oj-6_HZdDJuCm__t8FHeLb_eZp9_7L37R2sE4GLvbhwC1br-Tm-J5JU2w-NGdwC_EsEUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+of+three+mangrove+species+towards+freeze-tolerant+phenotypes+at+an+expanding+range+edge&rft.jtitle=Functional+ecology&rft.au=Cook-Patton%2C+Susan+C.&rft.au=Lehmann%2C+Michael&rft.au=Parker%2C+John+D.&rft.date=2015-10-01&rft.pub=Wiley&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=29&rft.issue=10&rft.spage=1332&rft.epage=1340&rft_id=info:doi/10.1111%2F1365-2435.12443&rft.externalDocID=48576713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon