Microvascular endothelial cell sodding of ePTFE vascular grafts: improved patency and stability of the cellular lining

Small diameter (< 6 mm) synthetic vascular grafts fail at a clinically unacceptable rate due in large part to their inherent thrombogenicity. The development of a new cellular lining on synthetic vascular grafts would most likely improve the patency rates observed for these grafts in small diamet...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research Vol. 28; no. 2; p. 203
Main Authors Williams, S K, Rose, D G, Jarrell, B E
Format Journal Article
LanguageEnglish
Published United States 01.02.1994
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Small diameter (< 6 mm) synthetic vascular grafts fail at a clinically unacceptable rate due in large part to their inherent thrombogenicity. The development of a new cellular lining on synthetic vascular grafts would most likely improve the patency rates observed for these grafts in small diameter positions. We have evaluated the use of endothelial cell transplantation to accelerate the formation of a cell lining using microvascular endothelial cells derived from canine falciform ligament fat. This source of fat is histologically similar to human liposuction fat and was isolated using a collagenase digestion technique identical to methods used for human liposuction fat microvessel endothelial cell isolation. The isolated fat endothelial cells were sodded onto 4 mm ePTFE grafts using pressure to force the cells onto the luminal surface. This pressure sodding method permitted cell deposition in less then 3 min. Sodded and control (non-cell-treated) grafts were implanted as interpositional paired grafts using end-to-end anastomoses in the carotid arteries of mixed breed dogs. Each dog therefore received a sodded graft on one side and a control graft on the contralateral side. After 12 weeks of implantation all control grafts were occluded while 86% of the cell-sodded grafts remained patent. Statistical evaluation of the data revealed a significant improvement in patency of cell sodded grafts (McNemar's chi 2 P = .02). Morphological evaluation of grafts explanted at 5, 12, 26, and 52 weeks following implantation revealed the presence of a cell lining on sodded grafts which remained stable for a period of at least one year. This new cell lining exhibited morphologic characteristics of a nonthrombogenic endothelial cell lining. The development of this new intima, evaluated 5 weeks-1 year after implantation, was not associated with a progressive intimal hyperplasia. From these data we conclude that microvessel endothelial cells derived from canine falciform ligament fat can be rapidly isolated using an operating room compatible method. Cell deposition on synthetic grafts is subsequently accelerated using a pressure sodding technique. A cellular lining forms on the inner surface and is associated with a statistically significant improvement in the function of sodded grafts in a canine carotid artery model.
AbstractList Small diameter (< 6 mm) synthetic vascular grafts fail at a clinically unacceptable rate due in large part to their inherent thrombogenicity. The development of a new cellular lining on synthetic vascular grafts would most likely improve the patency rates observed for these grafts in small diameter positions. We have evaluated the use of endothelial cell transplantation to accelerate the formation of a cell lining using microvascular endothelial cells derived from canine falciform ligament fat. This source of fat is histologically similar to human liposuction fat and was isolated using a collagenase digestion technique identical to methods used for human liposuction fat microvessel endothelial cell isolation. The isolated fat endothelial cells were sodded onto 4 mm ePTFE grafts using pressure to force the cells onto the luminal surface. This pressure sodding method permitted cell deposition in less then 3 min. Sodded and control (non-cell-treated) grafts were implanted as interpositional paired grafts using end-to-end anastomoses in the carotid arteries of mixed breed dogs. Each dog therefore received a sodded graft on one side and a control graft on the contralateral side. After 12 weeks of implantation all control grafts were occluded while 86% of the cell-sodded grafts remained patent. Statistical evaluation of the data revealed a significant improvement in patency of cell sodded grafts (McNemar's chi 2 P = .02). Morphological evaluation of grafts explanted at 5, 12, 26, and 52 weeks following implantation revealed the presence of a cell lining on sodded grafts which remained stable for a period of at least one year. This new cell lining exhibited morphologic characteristics of a nonthrombogenic endothelial cell lining. The development of this new intima, evaluated 5 weeks-1 year after implantation, was not associated with a progressive intimal hyperplasia. From these data we conclude that microvessel endothelial cells derived from canine falciform ligament fat can be rapidly isolated using an operating room compatible method. Cell deposition on synthetic grafts is subsequently accelerated using a pressure sodding technique. A cellular lining forms on the inner surface and is associated with a statistically significant improvement in the function of sodded grafts in a canine carotid artery model.
Author Jarrell, B E
Williams, S K
Rose, D G
Author_xml – sequence: 1
  givenname: S K
  surname: Williams
  fullname: Williams, S K
  organization: Department of Surgery, University of Arizona Health Sciences Center, Tucson 85724
– sequence: 2
  givenname: D G
  surname: Rose
  fullname: Rose, D G
– sequence: 3
  givenname: B E
  surname: Jarrell
  fullname: Jarrell, B E
BackLink https://www.ncbi.nlm.nih.gov/pubmed/8207032$$D View this record in MEDLINE/PubMed
BookMark eNo9z81OAjEUBeAuMAjo0qVJX2Dwtp1hqDtDAE0wusA1uf3Dkk5nMh1IeHtHJK5ucnPOl5wxGcQ6WkIeGEwZAH86qGo658DnwBkMyKj_sUwKyG_JOKUDAEgp2JAM-1AJgo_I6d3rtj5h0seALbXR1N23DR4D1TYEmmpjfNzT2lH7uV0t6X9036Lr0jP1VdMD1tAGOxv1mWI0NHWofPDd-bfYgxfsUgs-9t4duXEYkr2_3gn5Wi23i9ds87F-W7xsMl0Ag8yVVoI01hQlx9IpV-jSzlS_wTDFBCqpZsa5HAzPBc9n6CQIZAqNBi54wSfk8c9tjqqyZte0vsL2vLvu5z9KHF7a
CitedBy_id crossref_primary_10_1016_S0741_5214_98_70036_9
crossref_primary_10_1016_j_actbio_2013_10_004
crossref_primary_10_3389_fcvm_2020_00159
crossref_primary_10_1039_C6BM00271D
crossref_primary_10_1097_00006534_199911000_00018
crossref_primary_10_1177_096368979500400411
crossref_primary_10_1067_mva_2000_107308
crossref_primary_10_1096_fasebj_12_1_47
crossref_primary_10_1290_1071_2690_2002_038_0208_IACORM_2_0_CO_2
crossref_primary_10_1016_S0169_409X_98_00023_4
crossref_primary_10_1177_096368979600500406
crossref_primary_10_1038_nbt0695_565
crossref_primary_10_1007_s10016_001_0238_x
crossref_primary_10_1111_j_1749_6632_1998_tb10115_x
crossref_primary_10_1007_s10016_005_0026_0
crossref_primary_10_1016_j_biomaterials_2007_10_044
crossref_primary_10_1006_excr_1998_4156
crossref_primary_10_1089_ten_tea_2012_0318
crossref_primary_10_1097_GOX_0000000000002264
crossref_primary_10_1016_j_actbio_2015_06_011
crossref_primary_10_23736_S0021_9509_20_11582_9
crossref_primary_10_2491_jjsth_17_440
crossref_primary_10_1152_ajpheart_00479_2004
crossref_primary_10_3109_08941939409015367
crossref_primary_10_2310_6670_2006_00058
crossref_primary_10_1053_ejvs_2002_1604
crossref_primary_10_1007_s10439_006_9101_0
crossref_primary_10_1038_nm0196_32
crossref_primary_10_1002_mba2_88
crossref_primary_10_1006_jsre_1997_5149
crossref_primary_10_1163_156856298X00686
crossref_primary_10_3727_096020198389799
crossref_primary_10_1089_ten_tea_2009_0427
crossref_primary_10_1089_ten_teb_2013_0285
crossref_primary_10_3109_10739689709146786
crossref_primary_10_1089_ten_1995_1_197
crossref_primary_10_1016_j_addr_2007_03_018
crossref_primary_10_1016_S1051_0443_97_70646_8
crossref_primary_10_1098_rsta_2010_0004
crossref_primary_10_2335_scs_34_445
crossref_primary_10_1007_s10439_007_9380_0
crossref_primary_10_1002_jbm_a_34256
crossref_primary_10_1177_096368970000900606
crossref_primary_10_1096_fsb2fasebj_12_1_47
crossref_primary_10_1016_j_actbio_2011_09_016
crossref_primary_10_1006_mvre_2001_2296
crossref_primary_10_1053_ejvs_2001_1532
crossref_primary_10_1016_S0741_5214_97_70069_7
crossref_primary_10_1021_bc9701609
crossref_primary_10_1161_01_RES_85_12_1115
crossref_primary_10_1002_aic_690440222
crossref_primary_10_1016_S0003_4975_98_00780_2
crossref_primary_10_1111_j_1749_6632_2002_tb03102_x
crossref_primary_10_1163_092050609X12481751806295
crossref_primary_10_1080_10623320601061615
crossref_primary_10_1089_ten_tea_2008_0394
crossref_primary_10_1089_ten_tec_2012_0311
crossref_primary_10_1002_jbm_b_32954
crossref_primary_10_1002__SICI_1097_0290_19970820_55_4_616__AID_BIT4_3_0_CO_2_K
crossref_primary_10_1631_jzus_2005_B0079
crossref_primary_10_1089_ten_1996_2_1
crossref_primary_10_3109_10623329909078494
crossref_primary_10_3109_10731199609117431
crossref_primary_10_2335_scs_36_380
crossref_primary_10_1016_j_actbio_2015_07_039
crossref_primary_10_1002_jbm_a_33138
crossref_primary_10_1007_s100169900176
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1002/jbm.820280210
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Engineering
ExternalDocumentID 8207032
Genre Journal Article
GroupedDBID -~X
.55
.DC
.GA
.GJ
.Y3
10A
1OB
1OC
1ZS
31~
4.4
4ZD
51W
51X
52N
52O
52P
52S
52X
53G
5GY
5RE
66C
7PT
8-1
8-4
8-5
930
AAEVG
AAHHS
AANLZ
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADEOM
ADIZJ
ADMGS
ADOZA
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
BDRZF
BRXPI
BY8
CGR
CS3
CUY
CVF
D-F
DCZOG
DR1
DRFUL
DRSTM
EBS
ECM
EIF
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
GODZA
HBH
HF~
HGLYW
HHY
HVGLF
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
M6K
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
NPM
PALCI
Q11
QB0
QRW
RIWAO
RNS
ROL
RWI
RWM
SAMSI
SUPJJ
TAE
UB1
V8K
VH1
WH7
WIB
WIH
WIK
WQJ
WRC
WTY
WXSBR
X7M
XG1
XOL
XPP
XV2
ZGI
ZXP
ZZTAW
ID FETCH-LOGICAL-c5010-f7e909ded572a7fbf5c7e6b931d1b13ab9b6dff40d243246af903a1badc023252
ISSN 0021-9304
IngestDate Sat Sep 28 07:35:38 EDT 2024
IsPeerReviewed false
IsScholarly false
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5010-f7e909ded572a7fbf5c7e6b931d1b13ab9b6dff40d243246af903a1badc023252
PMID 8207032
ParticipantIDs pubmed_primary_8207032
PublicationCentury 1900
PublicationDate February 1994
PublicationDateYYYYMMDD 1994-02-01
PublicationDate_xml – month: 02
  year: 1994
  text: February 1994
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomedical materials research
PublicationTitleAlternate J Biomed Mater Res
PublicationYear 1994
SSID ssj0009931
Score 1.358871
Snippet Small diameter (< 6 mm) synthetic vascular grafts fail at a clinically unacceptable rate due in large part to their inherent thrombogenicity. The development...
SourceID pubmed
SourceType Index Database
StartPage 203
SubjectTerms Adipose Tissue - blood supply
Animals
Blood Vessel Prosthesis
Dogs
Endothelium, Vascular - cytology
Microcirculation
Microscopy, Electron, Scanning
Polytetrafluoroethylene
Vascular Patency
Title Microvascular endothelial cell sodding of ePTFE vascular grafts: improved patency and stability of the cellular lining
URI https://www.ncbi.nlm.nih.gov/pubmed/8207032
Volume 28
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLYKE6g8TKOA2BiTH3irAo0T58IbYiCEVIREK_WtsmMbgehFkE3afsB-986xnTSwIS4vURs7Vuvz9eTk9DvfIWSPRTLv5TIMeJLxIC44D3KeySDVmcg03NSlxjxk_yI5G8bnIz5qtf40WEs_Srlf_P5vXcl7rArnwK5YJfsGy9aLwgl4DfaFI1gYjq-ycR_ZdDWXVE8VllPdYQ4c8_Hdh5lSntSsLwenJ9166vW9MKUlw93YpAJEnXNR2ipMm0gvnXr3r4pBgMvZC-9sP4lnIlpXym-tDnGw24CuVxOqs87NBM_VIsladXj8vmj2dY4sYv-viC-YUL5eL64YzQuXixyQyPUYrlwuyxrQYk3_aQUP_vXrTif2Vk72IWJhGT6oNufBfs0n1sgwDD6MvTj4RGTbjyyRpTRDP3mBOZ9Kujl3XS2rL-KVWuH9waMP1CYrfpknjyg2VBl8Ih-9ReiRA8w6aelph6w1lCc7ZLXvORUb5OcjFNEGiiianXoU0ZmhFkW0nupQdEgrDFGPIQoYojWG8EJYkFYYog5Dm2R4ejI4Pgt8N46g4MiYMKmGX7XSiqdMpEYaXqQ6kbA5KpRhJGQuE2VM3FMMVR4TYfJeJEIpVAFxIeNsiyxPZ1O9TagRoWZSFVJnSSwZXJ7nEKzxqEABS118Jltu_8ZzJ7ky9hv75bmBHdJegO8r-WAA4HoXwsVSfrPW_AuT2mzE
link.rule.ids 786
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microvascular+endothelial+cell+sodding+of+ePTFE+vascular+grafts%3A+improved+patency+and+stability+of+the+cellular+lining&rft.jtitle=Journal+of+biomedical+materials+research&rft.au=Williams%2C+S+K&rft.au=Rose%2C+D+G&rft.au=Jarrell%2C+B+E&rft.date=1994-02-01&rft.issn=0021-9304&rft.volume=28&rft.issue=2&rft.spage=203&rft_id=info:doi/10.1002%2Fjbm.820280210&rft_id=info%3Apmid%2F8207032&rft_id=info%3Apmid%2F8207032&rft.externalDocID=8207032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9304&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9304&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9304&client=summon