Fitting correlated residual error structures in nonlinear mixed-effects models using SAS PROC NLMIXED
Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated me...
Saved in:
Published in | Behavior research methods Vol. 46; no. 2; pp. 372 - 384 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.06.2014
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1554-3528 1554-351X 1554-3528 |
DOI | 10.3758/s13428-013-0397-z |
Cover
Loading…
Abstract | Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The covariance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances,
σ
2
I
n
i
, not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module. |
---|---|
AbstractList | Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The covariance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, [Formula: see text], not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module.Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The covariance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, [Formula: see text], not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module. Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The covariance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, σ 2 I n i , not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module. Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The co-variance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, σ^sup 2^I^sub ni^ , not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module. Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The covariance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, $ {\sigma} arrow up {\mathbf{I}}_{n_i} $ , not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module. Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The covariance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, [Formula: see text], not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module. Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The covariance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, σ2Ini, not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module. |
Author | Harring, Jeffrey R. Blozis, Shelley A. |
Author_xml | – sequence: 1 givenname: Jeffrey R. surname: Harring fullname: Harring, Jeffrey R. email: harring@umd.edu organization: Measurement, Statistics and Evaluation, University of Maryland – sequence: 2 givenname: Shelley A. surname: Blozis fullname: Blozis, Shelley A. organization: University of California, Davis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24114379$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1rFTEUxYNU7If-AW4k4MbNaJKbj5lleW218LRiFdyFvMydkjKTqUkGtH-9ebwWSsG6Srj8zsm5OYdkL84RCXnN2Xswqv2QOUjRNoxDw6Azze0zcsCVkg0o0e49uO-Tw5yvGYNWcPmC7AvJuQTTHRA8C6WEeEX9nBKOrmBPE-bQL26kmNKcaC5p8WWpUxoirRHGENElOoXf2Dc4DOhLptPc45jpkrdml8eX9Ou3ixX9sv58_vP05CV5Prgx46u784j8ODv9vvrUrC8-nq-O141XjJVmGMAwrwQzG0DRtb5VqE2r5EYa6YXpZJ0yZrzWgJ1mDkBjxbSDjQHh4Ii82_nepPnXgrnYKWSP4-gizku2XEkmwEBd_v-oaAFk_eCKvn2EXs9LinURK7RWeouap6j6bM1uNNeVenNHLZsJe3uTwuTSH3vfSAXMDvBpzjnhYH0oroQ5luTCaDmz2-7trntbu7fb7u1tVfJHynvzpzRip8mVjVeYHoT-p-gvKD29zA |
CitedBy_id | crossref_primary_10_1177_0962280220981747 crossref_primary_10_1177_0049124118789718 crossref_primary_10_1002_sim_7989 crossref_primary_10_1007_s11577_014_0262_9 crossref_primary_10_1016_j_dcn_2023_101281 crossref_primary_10_1590_s0100_204x2017001200013 crossref_primary_10_1016_j_funbio_2021_05_007 crossref_primary_10_3758_s13428_023_02133_1 crossref_primary_10_1016_j_jclinepi_2021_12_007 crossref_primary_10_1177_0013164416653789 crossref_primary_10_1111_rssa_12864 crossref_primary_10_1016_j_cej_2018_08_203 crossref_primary_10_1080_00220973_2022_2044280 crossref_primary_10_1080_10705511_2016_1190932 crossref_primary_10_5558_tfc2017_008 crossref_primary_10_1007_s10742_020_00220_w crossref_primary_10_1080_10705511_2022_2138893 crossref_primary_10_3102_10769986251318028 crossref_primary_10_1080_00273171_2016_1253451 crossref_primary_10_3758_s13428_019_01292_4 crossref_primary_10_1016_j_jbusres_2019_02_017 crossref_primary_10_1177_0013164416652441 crossref_primary_10_1007_s42519_022_00304_5 crossref_primary_10_1080_03610918_2020_1804581 crossref_primary_10_1007_s10260_022_00667_w crossref_primary_10_1080_00273171_2016_1239522 |
Cites_doi | 10.1002/9780470316757 10.1016/S0893-9659(03)80051-4 10.1080/00273170903187657 10.1109/TAC.1974.1100705 10.1002/0471725315 10.2307/1400366 10.1146/annurev.psych.58.110405.085520 10.1093/comjnl/7.4.308 10.2307/2532087 10.1080/03610919308813143 10.2307/2529876 10.1016/S0167-9473(97)00012-1 10.1207/s15328007sem1202_2 10.1037/0021-9010.74.4.657 10.2307/2532602 10.1198/1085711032697 10.1093/biomet/80.4.791 10.1002/9780470316436 10.1080/01621459.1989.10478790 10.2307/2530695 10.1080/00273170701540537 10.1207/s15327906mbr3103_6 10.1007/978-1-4419-0318-1 10.1002/9781119513469 10.1080/10618600.1995.10474663 10.1525/9780520355408 10.1207/S15327906MBR3703_4 |
ContentType | Journal Article |
Copyright | Psychonomic Society, Inc. 2013 Copyright Springer Science & Business Media Jun 2014 Psychonomic Society, Inc. 2013. |
Copyright_xml | – notice: Psychonomic Society, Inc. 2013 – notice: Copyright Springer Science & Business Media Jun 2014 – notice: Psychonomic Society, Inc. 2013. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 0-V 3V. 4T- 7TK 7X7 7XB 88E 88G 88J 8AO 8FI 8FJ 8FK 8G5 ABUWG AFKRA ALSLI AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2M M2O M2R MBDVC PADUT PHGZM PHGZT PJZUB PKEHL POGQB PPXIY PQEST PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U 7X8 7QO 8FD FR3 P64 |
DOI | 10.3758/s13428-013-0397-z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) Docstoc Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Social Science Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Proquest Medical Database Psychology Database Research Library Proquest Social Science Journals Research Library (Corporate) Research Library China ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Social Science Journals (Alumni Edition) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Pharma Collection Sociology & Social Sciences Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) Social Science Premium Collection ProQuest One Social Sciences ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Social Science Journals ProQuest Medical Library ProQuest Psychology Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition Docstoc ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology Engineering Research Database MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology |
EISSN | 1554-3528 |
EndPage | 384 |
ExternalDocumentID | 3382945231 24114379 10_3758_s13428_013_0397_z |
Genre | Journal Article |
GroupedDBID | --- -55 -5G -BR -DZ -EM -ET -~C -~X 0-V 06D 0R~ 0VY 199 1N0 203 23N 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 3V. 4.4 406 408 40E 53G 5GY 7X7 875 88E 8AO 8FI 8FJ 8G5 8TC 8UJ 95. 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABIVO ABJNI ABJOX ABJUD ABKCH ABMQK ABNWP ABPLI ABPPZ ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABXPI ACAOD ACBXY ACDTI ACGFS ACHQT ACHSB ACHXU ACIWK ACKIV ACKNC ACMDZ ACMLO ACNCT ACOKC ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFFNX AFKRA AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BAWUL BENPR BGNMA BPHCQ BVXVI C1A CAG CCPQU COF CSCUP DDRTE DIK DNIVK DPUIP DWQXO E3Z EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ3 GQ6 GQ7 GUQSH H13 HF~ HMCUK HMJXF HRMNR HVGLF HZ~ H~9 IAO IHR IKXTQ INH IPY IRVIT ITC ITM IWAJR J-C JBSCW JZLTJ KOV LLZTM M1P M2M M2O M2R M4Y MVM N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9J OHT OK1 P2P P9L PADUT PF- PQQKQ PROAC PSQYO PSYQQ PT4 R9I RIG ROL RPV RSV S16 S1Z S27 S3B SBS SBU SCLPG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TN5 TR2 TSG TUC TUS U2A U9L UG4 UKHRP UOJIU UPT UTJUX UZXMN VFIZW VXZ W48 WH7 WK8 XJT XOL XSW Z7R Z7S Z7W Z81 Z83 Z88 Z8N Z92 ZMTXR ZOVNA ZUP AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PRQQA 4T- 7TK 7XB 8FK K9. MBDVC PKEHL POGQB PQEST PQUKI PRINS Q9U 7X8 7QO 8FD FR3 P64 |
ID | FETCH-LOGICAL-c500t-ff370c5207b3e298c85e67854b474c2794e29007c663e960a336e98c6a3b732a3 |
IEDL.DBID | 7X7 |
ISSN | 1554-3528 1554-351X |
IngestDate | Thu Jul 10 19:10:25 EDT 2025 Tue Aug 05 10:47:10 EDT 2025 Fri Jul 25 08:10:29 EDT 2025 Fri Jul 25 06:33:56 EDT 2025 Mon Jul 21 05:36:44 EDT 2025 Tue Jul 01 01:05:50 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Fri Feb 21 02:45:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Nonlinear mixed-effects model Intraindividual variation Serial correlation Random effects Subject-specific |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c500t-ff370c5207b3e298c85e67854b474c2794e29007c663e960a336e98c6a3b732a3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24114379 |
PQID | 1547947616 |
PQPubID | 976348 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1540237314 proquest_miscellaneous_1528334342 proquest_journals_2665615287 proquest_journals_1547947616 pubmed_primary_24114379 crossref_citationtrail_10_3758_s13428_013_0397_z crossref_primary_10_3758_s13428_013_0397_z springer_journals_10_3758_s13428_013_0397_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: United States – name: New York |
PublicationTitle | Behavior research methods |
PublicationTitleAbbrev | Behav Res |
PublicationTitleAlternate | Behav Res Methods |
PublicationYear | 2014 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Wolfinger (CR34) 1993; 80 Nelder, Mead (CR24) 1965; 7 Verbeke, Molenberghs (CR32) 2000 Chi, Reinsel (CR5) 1989; 84 Grenander, Szegö (CR17) 1958 Cudeck, Harring (CR9) 2007; 58 Akaike (CR1) 1974; AC-19 Beal, Sheiner (CR3) 1982; 8 Schott (CR28) 1983 Pinheiro, Bates (CR26) 2000 Seber, Wild (CR29) 1989 Sivo, Fan, Witta (CR30) 2005; 12 Laird, Ware (CR21) 1982; 38 Sutradhar, Kumar (CR31) 2003; 16 Fitzmaurice, Laird, Ware (CR15) 2011 Cudeck (CR8) 1996; 31 Choi, Harring, Hancock (CR6) 2009; 44 Kwok, West, Green (CR20) 2007; 42 Kanfer, Ackerman (CR19) 1989; 74 Crowder, Hand (CR7) 1990 Wolfinger, Lin (CR36) 1997; 25 Wolfinger (CR35) 1996; 1 Davidian, Giltinan (CR10) 1993; 49 Jennrich, Schluchter (CR18) 1986; 42 Pinheiro, Bates (CR25) 1995; 4 Graybill (CR16) 1983 Rao (CR27) 1973 Bates, Watts (CR2) 1988 Ferron, Dailey, Yi (CR14) 2002; 37 Lindstrom, Bates (CR22) 1990; 46 Littell, Milliken, Stroup, Wolfinger (CR23) 1996 Davidian, Giltinan (CR11) 1995 Wolfinger (CR33) 1993; 22 Diggle, Heagerty, Liang, Zeger (CR13) 2001 Browne, Cuadras, Rao (CR4) 1993 Davidian, Giltinan (CR12) 2003; 8 DM Bates (397_CR2) 1988 GM Fitzmaurice (397_CR15) 2011 RD Wolfinger (397_CR33) 1993; 22 RD Wolfinger (397_CR35) 1996; 1 R Cudeck (397_CR8) 1996; 31 JC Pinheiro (397_CR25) 1995; 4 SL Beal (397_CR3) 1982; 8 BC Sutradhar (397_CR31) 2003; 16 U Grenander (397_CR17) 1958 PJ Diggle (397_CR13) 2001 R Kanfer (397_CR19) 1989; 74 JA Nelder (397_CR24) 1965; 7 RI Jennrich (397_CR18) 1986; 42 G Verbeke (397_CR32) 2000 CR Rao (397_CR27) 1973 GAF Seber (397_CR29) 1989 MJ Crowder (397_CR7) 1990 FA Graybill (397_CR16) 1983 M Davidian (397_CR10) 1993; 49 S Sivo (397_CR30) 2005; 12 MW Browne (397_CR4) 1993 MJ Lindstrom (397_CR22) 1990; 46 JR Schott (397_CR28) 1983 RD Wolfinger (397_CR36) 1997; 25 NM Laird (397_CR21) 1982; 38 R Cudeck (397_CR9) 2007; 58 M Davidian (397_CR12) 2003; 8 J Choi (397_CR6) 2009; 44 EM Chi (397_CR5) 1989; 84 RD Wolfinger (397_CR34) 1993; 80 JC Pinheiro (397_CR26) 2000 M Davidian (397_CR11) 1995 RC Littell (397_CR23) 1996 J. Ferron (397_CR14) 2002; 37 O Kwok (397_CR20) 2007; 42 H Akaike (397_CR1) 1974; AC-19 |
References_xml | – year: 1988 ident: CR2 publication-title: Nonlinear regression analysis and its applications doi: 10.1002/9780470316757 – volume: 16 start-page: 317 year: 2003 end-page: 321 ident: CR31 article-title: The inversion of a correlation matrix for MA(1) process publication-title: Applied Mathematics Letters doi: 10.1016/S0893-9659(03)80051-4 – volume: 44 start-page: 620 year: 2009 end-page: 645 ident: CR6 article-title: Latent growth modeling for logistic response functions publication-title: Multivariate Behavioral Research doi: 10.1080/00273170903187657 – year: 1990 ident: CR7 publication-title: Analysis of repeated measures – year: 2001 ident: CR13 publication-title: Analysis of longitudinal data – volume: AC-19 start-page: 716 year: 1974 end-page: 723 ident: CR1 article-title: A new look at the statistical model identification publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.1974.1100705 – year: 1989 ident: CR29 publication-title: Nonlinear regression doi: 10.1002/0471725315 – start-page: 171 year: 1993 end-page: 197 ident: CR4 article-title: Structured latent curve models publication-title: Multivariate analysis: Future directions – volume: 1 start-page: 205 year: 1996 end-page: 230 ident: CR35 article-title: Heterogeneous variance: Covariance structures for repeated measures publication-title: Journal of Agricultural, Biological, and Environmental Statistics doi: 10.2307/1400366 – volume: 58 start-page: 615 year: 2007 end-page: 637 ident: CR9 article-title: Analysis of nonlinear patterns of change with random coefficient models publication-title: Annual Review of Psychology doi: 10.1146/annurev.psych.58.110405.085520 – volume: 7 start-page: 308 year: 1965 end-page: 313 ident: CR24 article-title: A simplex method for function minimization publication-title: Computer Journal doi: 10.1093/comjnl/7.4.308 – year: 1983 ident: CR28 publication-title: Matrix analysis for statistics – volume: 46 start-page: 673 year: 1990 end-page: 687 ident: CR22 article-title: Nonlinear mixed effects models for repeated measures data publication-title: Biometrics doi: 10.2307/2532087 – volume: 4 start-page: 12 year: 1995 end-page: 35 ident: CR25 article-title: Approximations to the loglikelihood function in the nonlinear mixed effects model publication-title: Journal of Computational and Graphical Statistics – year: 1996 ident: CR23 publication-title: SAS system for mixed models – volume: 22 start-page: 1079 year: 1993 end-page: 1106 ident: CR33 article-title: Covariance structure selection in general mixed models publication-title: Communications in Statistics, Simulation and Computation doi: 10.1080/03610919308813143 – year: 2011 ident: CR15 publication-title: Applied longitudinal analysis – volume: 38 start-page: 963 year: 1982 end-page: 974 ident: CR21 article-title: Random-effects models for longitudinal data publication-title: Biometrics doi: 10.2307/2529876 – volume: 25 start-page: 465 year: 1997 end-page: 490 ident: CR36 article-title: Two taylor-series approximation methods for nonlinear mixed models publication-title: Computational Statistics and Data Analysis doi: 10.1016/S0167-9473(97)00012-1 – year: 2000 ident: CR32 publication-title: Linear mixed models for longitudinal data – volume: 12 start-page: 215 year: 2005 end-page: 231 ident: CR30 article-title: The biasing effects of unmodeled ARMA time series processes on latent growth curve model estimates publication-title: Structural Equation Modeling: A Multidisciplinary Journal doi: 10.1207/s15328007sem1202_2 – year: 1995 ident: CR11 publication-title: Nonlinear models for repeated measurement data – volume: 74 start-page: 657 year: 1989 end-page: 690 ident: CR19 article-title: Motivation and cognitive abilities: An integrative/aptitude-treatment interaction approach to skill acquisition publication-title: Journal of Applied Psychology doi: 10.1037/0021-9010.74.4.657 – year: 1983 ident: CR16 publication-title: Matrices with applications in statistics – volume: 49 start-page: 59 year: 1993 end-page: 73 ident: CR10 article-title: Some simple methods for estimating intra-individual variability in nonlinear mixed effects models publication-title: Biometrics doi: 10.2307/2532602 – volume: 8 start-page: 387 year: 2003 end-page: 419 ident: CR12 article-title: Nonlinear models for repeated measures data: An overview and update publication-title: Journal of Agricultural, Biological, and Environmental Statistics doi: 10.1198/1085711032697 – volume: 80 start-page: 791 year: 1993 end-page: 795 ident: CR34 article-title: Laplace’s approximation for nonlinear mixed models publication-title: Biometrika doi: 10.1093/biomet/80.4.791 – year: 1973 ident: CR27 publication-title: Linear statistical inference and its applications doi: 10.1002/9780470316436 – volume: 84 start-page: 452 year: 1989 end-page: 459 ident: CR5 article-title: Models for longitudinal data with random effects and AR(1) errors publication-title: Journal of the American Staistical Association doi: 10.1080/01621459.1989.10478790 – volume: 42 start-page: 805 year: 1986 end-page: 820 ident: CR18 article-title: Unbalanced repeated measures models with structured covariance matrices publication-title: Biometrics doi: 10.2307/2530695 – volume: 42 start-page: 557 year: 2007 end-page: 592 ident: CR20 article-title: The impact of misspecifying the within-subject covariance structure in multiwave longitudinal multilevel models: A monte carlo study publication-title: Multivariate Behavioral Research doi: 10.1080/00273170701540537 – volume: 31 start-page: 371 year: 1996 end-page: 403 ident: CR8 article-title: Mixed-effects models in the study of individual differences with repeated measures publication-title: Multivariate Behavioral Research doi: 10.1207/s15327906mbr3103_6 – volume: 37 start-page: 379 year: 2002 end-page: 403 ident: CR14 article-title: Effects of misspecifying the first-level error structure in two-level models of change publication-title: Multivariate Behavioral Research – volume: 8 start-page: 195 year: 1982 end-page: 222 ident: CR3 article-title: Estimating population kinetics publication-title: CRC Critical Reviews in Biomedical Engineering – year: 1958 ident: CR17 publication-title: Toeplitz forms and their applications – year: 2000 ident: CR26 publication-title: Mixed effects models in S and S-plus doi: 10.1007/978-1-4419-0318-1 – volume-title: Analysis of longitudinal data year: 2001 ident: 397_CR13 – volume: 80 start-page: 791 year: 1993 ident: 397_CR34 publication-title: Biometrika doi: 10.1093/biomet/80.4.791 – volume-title: Nonlinear regression analysis and its applications year: 1988 ident: 397_CR2 doi: 10.1002/9780470316757 – volume-title: Applied longitudinal analysis year: 2011 ident: 397_CR15 doi: 10.1002/9781119513469 – volume-title: Nonlinear regression year: 1989 ident: 397_CR29 doi: 10.1002/0471725315 – volume: 25 start-page: 465 year: 1997 ident: 397_CR36 publication-title: Computational Statistics and Data Analysis doi: 10.1016/S0167-9473(97)00012-1 – volume: 44 start-page: 620 year: 2009 ident: 397_CR6 publication-title: Multivariate Behavioral Research doi: 10.1080/00273170903187657 – volume: 4 start-page: 12 year: 1995 ident: 397_CR25 publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.1995.10474663 – volume: 8 start-page: 195 year: 1982 ident: 397_CR3 publication-title: CRC Critical Reviews in Biomedical Engineering – start-page: 171 volume-title: Multivariate analysis: Future directions year: 1993 ident: 397_CR4 – volume: 38 start-page: 963 year: 1982 ident: 397_CR21 publication-title: Biometrics doi: 10.2307/2529876 – volume-title: Matrix analysis for statistics year: 1983 ident: 397_CR28 – volume-title: Toeplitz forms and their applications year: 1958 ident: 397_CR17 doi: 10.1525/9780520355408 – volume-title: SAS system for mixed models year: 1996 ident: 397_CR23 – volume: 42 start-page: 805 year: 1986 ident: 397_CR18 publication-title: Biometrics doi: 10.2307/2530695 – volume-title: Analysis of repeated measures year: 1990 ident: 397_CR7 – volume: 12 start-page: 215 year: 2005 ident: 397_CR30 publication-title: Structural Equation Modeling: A Multidisciplinary Journal doi: 10.1207/s15328007sem1202_2 – volume: 8 start-page: 387 year: 2003 ident: 397_CR12 publication-title: Journal of Agricultural, Biological, and Environmental Statistics doi: 10.1198/1085711032697 – volume-title: Linear mixed models for longitudinal data year: 2000 ident: 397_CR32 – volume: 46 start-page: 673 year: 1990 ident: 397_CR22 publication-title: Biometrics doi: 10.2307/2532087 – volume-title: Linear statistical inference and its applications year: 1973 ident: 397_CR27 doi: 10.1002/9780470316436 – volume: 22 start-page: 1079 year: 1993 ident: 397_CR33 publication-title: Communications in Statistics, Simulation and Computation doi: 10.1080/03610919308813143 – volume: 49 start-page: 59 year: 1993 ident: 397_CR10 publication-title: Biometrics doi: 10.2307/2532602 – volume: 42 start-page: 557 year: 2007 ident: 397_CR20 publication-title: Multivariate Behavioral Research doi: 10.1080/00273170701540537 – volume: 37 start-page: 379 year: 2002 ident: 397_CR14 publication-title: Multivariate Behavioral Research doi: 10.1207/S15327906MBR3703_4 – volume: 58 start-page: 615 year: 2007 ident: 397_CR9 publication-title: Annual Review of Psychology doi: 10.1146/annurev.psych.58.110405.085520 – volume: AC-19 start-page: 716 year: 1974 ident: 397_CR1 publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.1974.1100705 – volume: 31 start-page: 371 year: 1996 ident: 397_CR8 publication-title: Multivariate Behavioral Research doi: 10.1207/s15327906mbr3103_6 – volume-title: Matrices with applications in statistics year: 1983 ident: 397_CR16 – volume: 84 start-page: 452 year: 1989 ident: 397_CR5 publication-title: Journal of the American Staistical Association doi: 10.1080/01621459.1989.10478790 – volume: 16 start-page: 317 year: 2003 ident: 397_CR31 publication-title: Applied Mathematics Letters doi: 10.1016/S0893-9659(03)80051-4 – volume: 7 start-page: 308 year: 1965 ident: 397_CR24 publication-title: Computer Journal doi: 10.1093/comjnl/7.4.308 – volume: 74 start-page: 657 year: 1989 ident: 397_CR19 publication-title: Journal of Applied Psychology doi: 10.1037/0021-9010.74.4.657 – volume-title: Mixed effects models in S and S-plus year: 2000 ident: 397_CR26 doi: 10.1007/978-1-4419-0318-1 – volume: 1 start-page: 205 year: 1996 ident: 397_CR35 publication-title: Journal of Agricultural, Biological, and Environmental Statistics doi: 10.2307/1400366 – volume-title: Nonlinear models for repeated measurement data year: 1995 ident: 397_CR11 |
SSID | ssj0038214 |
Score | 2.241251 |
Snippet | Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 372 |
SubjectTerms | Behavioral Science and Psychology Cognitive Psychology Data Display Data Interpretation, Statistical Dimensional Measurement Accuracy Humans Individuality Likelihood Functions Logistic Models Models, Statistical Nonlinear Dynamics Psychology Random Allocation Research Design Software Task Performance and Analysis Variation |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60XnoR364vInhSFnc3yT6OpbaoaBVrobdlNxulUKu0FtRf75d9FKUqeE0mu8lkkvmGmcwQHfkqlWnCYamGWWQLpSI7Mp7CDOBZAsJ6aZ5n-7rjn_fEZV_2y3fckyravXJJ5je1sSsBak8nLhcmm7KpRgAlan8s0pI0pjuEuOc1quuXh54rCvflz8O-K6A5VDnnEc0VTXuFlkuEyBrFlq7Sgh6tUX12Ub2vk24P8mhlpkxpjSHQYsZgNefPqpgej5_HrEgLO0UrG4zYqMiHkYzZ0-BNZ3YZxMHyMjgTZmLfH1m30WW3dzdN1rm6vui3zjao127dN8_tslyCraTjvNoPDzxwFFgSpFx7UahCqaGKpEhFIJSHg4dWQAIFkKFhuCSc-xpkfsLTgHsJ36Qa5qO3iSVZ4KvQydJQKWFIfRlwqWXoqcgEglnkVDyMVZlL3JS0GMawKQzb44LtMdgeG7bHHxYdz4a8FIk0_iLeqzYmLs_UJAbYwxoC3_V_7AbSABaUsAAtOpx147AYD0gy0s9T8wmgKS7wt79oYFLzgLvCoq1CJmYTBtxxTQJHi04qIfkyv99Ws_Mv6l2qA5SJIhxtj2qQF70P4POaHuSC_gnK3fmP priority: 102 providerName: Springer Nature |
Title | Fitting correlated residual error structures in nonlinear mixed-effects models using SAS PROC NLMIXED |
URI | https://link.springer.com/article/10.3758/s13428-013-0397-z https://www.ncbi.nlm.nih.gov/pubmed/24114379 https://www.proquest.com/docview/1547947616 https://www.proquest.com/docview/2665615287 https://www.proquest.com/docview/1528334342 https://www.proquest.com/docview/1540237314 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5RuHCpeLV1eWiROLWycLy7fpxQgIRXSRE0UjhZ9nqpIkECCUjAr-cb2zFF0Jwsrcf27uzszjc74xmircBkOkslLNUoj11lTOzG7CnMAZ41IKyfFXm2TzvBYVcd93SvOnAbV2GVkz2x2KjzoeEz8m2oeogOjO5g5_bO5apR7F2tSmh8ojlOXcYhXWGvNrhk5DdU6cmUgMXb44ZUnI-Z6xlADbvPb3XRO4D5zjla6Jz2An2uwKJolrO7SDN2sETz9Z71tEy23S8Cl4XhKhvXAI65gAFd_GEl7Gg0HIkyQ-wDWkV_IAZlaox0JG76jzZ3q3gOUVTEGQsOg_8rLpoX4uz8957o_Do96rX2V6jbbv3ZO3Srygmu0Z53715dydAz2vfCTFo_jkykLbSSVpkKlfHBSLQCHRjgDQsbJpUysCALUpmF0k_lF5pFf-w3EmkeBiby8iwyRjFpoEOprY58E3NMmEPehIeJqdKKc3WL6wTmBbM9KdmegO0Jsz15duhH_chtmVNjGvHaZGKSanmNk1dh-PA2QAdgoYYx6NBmfRvrhp0h6cAOH_gVAFZS4WvTaGBdy1A2lENfS5moOwzk0-Bcjg79nAjJP_3732i-Tx_NKs0DkKkyFG2NZiEgdh2g5z7bKCR7g-aaB5cnLVx3W52zc7R2_eYLbXwAlg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9EAvqOXpPmCR4AKy6uzDjwNCpU2U0CRUfUi5ufZ6iyKVpE1aQfuj-I1867UDqJBbr7tje3c8O_ONZzxD9CbUucozAU81LhJfap34iY0UFgDPChCW52Wd7f4g7JzIz0M1XKKf9b8wNq2y1omloi4m2n4j34aph-jA6Q4_Xlz6tmuUja7WLTScWOybm-9w2WYfunt4v285b7eOdzt-1VXA1yoIrvyzMxEFWvEgyoXhSaxjZaCxlcxlJDXHQzAKy6lhiw3wfSZEaEAWZiKPBM8E7vuAlqWAK9Og5U-twcFhrftFzJvSxU4FgPj2rCmkrQBtOyjA8Pu3f1u_O5D2Tji2tHLtVXpUwVO24-RpjZbM-DGtzLXkzRMy7VGZKs207etxDqhaMLjs5T9dzEynkylzNWmvMcpGYzZ2xTiyKfs2-mEKv8ogYWUPnhmzifdf2dHOETs4_LLLBr1-d9jae0on98LVZ9TAeswLYlkRhToOijzWWlrSUEVCGRVzndgsNI-CmoeprgqZ234a5ykcGsv21LE9BdtTy_b01qN380suXBWPRcSb9YtJqwM9S3-L3z-nAXMARBXcT49ez6dxUm34JRubybW9BaCckHjaIhr48yISTenRcycT8wUDazVt9UiP3tdC8sf6_reb9cW7eUUPO8f9XtrrDvY3aAVwULpEuE1qQFjMFiDXVf6yknNGp_d9tH4B-M44Zg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gJoYXg98F1DXRF01zbXe3Hw_GEI4LJ3ASkeTelna7Zy7BO7iDKPxp_nX-ttsWDHpvvO5u293pfPymM50hehvrQhY5h6ealpkvtM78zEYKS4BnCQgbFVWd7f1BvHMkPg_lcIl-N__C2LTKRidWirqcavuNvANTD9aB0x13RnVaxEG39-n0zLcdpGyktWmn4Vhk11z-hPs2_9jv4l2_i6Le9retHb_uMOBrGQTn_mjEk0DLKEgKbqIs1ak00N5SFCIROsIDMQorqmGXDbB-znlssCzOeZHwKOe47z26n3AZWhlLhq2zx9MoFC6KygHJO_OQC1sL2vZSAATwr_62g7fA7a3AbGXveqv0sAaqbNNx1iNaMpPHtNLqy8snZHrjKmmaadvh4wSgtWRw3qu_u5iZzaYz5qrTXmCUjSds4spy5DP2Y_zLlH6dS8KqbjxzZlPwv7PDzUN28PXLFhvs7feH292ndHQnNH1Gy9iPeUEsL5NYp0FZpFoLuzSWILWRaaQzm4_mUdDQUOm6pLntrHGi4NpYsitHdgWyK0t2deXR-_aSU1fPY9HijebFqFq05-qaEf85DcADSCrhiHr0pp2GzNpATD4x0wt7C4A6LvC0RWvg2fOEh8Kj544n2g0DdYW2jqRHHxomubG__51mbfFpXtMDCJTa6w9212kFuFC4jLgNWgavmJfAXufFq4rJGR3ftVT9AVXUOzY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fitting+correlated+residual+error+structures+in+nonlinear+mixed-effects+models+using+SAS+PROC+NLMIXED&rft.jtitle=Behavior+research+methods&rft.au=Harring%2C+Jeffrey+R&rft.au=Blozis%2C+Shelley+A&rft.date=2014-06-01&rft.issn=1554-3528&rft.eissn=1554-3528&rft.volume=46&rft.issue=2&rft.spage=372&rft_id=info:doi/10.3758%2Fs13428-013-0397-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon |