Fitting correlated residual error structures in nonlinear mixed-effects models using SAS PROC NLMIXED

Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated me...

Full description

Saved in:
Bibliographic Details
Published inBehavior research methods Vol. 46; no. 2; pp. 372 - 384
Main Authors Harring, Jeffrey R., Blozis, Shelley A.
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.06.2014
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1554-3528
1554-351X
1554-3528
DOI10.3758/s13428-013-0397-z

Cover

Loading…
Abstract Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The covariance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, σ 2 I n i , not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module.
AbstractList Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The covariance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, [Formula: see text], not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module.Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The covariance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, [Formula: see text], not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module.
Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The covariance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, σ 2 I n i , not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module.
Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The co-variance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, σ^sup 2^I^sub ni^ , not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module.
Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The covariance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, $ {\sigma} arrow up {\mathbf{I}}_{n_i} $ , not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module.
Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The covariance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, [Formula: see text], not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module.
Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The covariance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, σ2Ini, not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module.
Author Harring, Jeffrey R.
Blozis, Shelley A.
Author_xml – sequence: 1
  givenname: Jeffrey R.
  surname: Harring
  fullname: Harring, Jeffrey R.
  email: harring@umd.edu
  organization: Measurement, Statistics and Evaluation, University of Maryland
– sequence: 2
  givenname: Shelley A.
  surname: Blozis
  fullname: Blozis, Shelley A.
  organization: University of California, Davis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24114379$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1rFTEUxYNU7If-AW4k4MbNaJKbj5lleW218LRiFdyFvMydkjKTqUkGtH-9ebwWSsG6Srj8zsm5OYdkL84RCXnN2Xswqv2QOUjRNoxDw6Azze0zcsCVkg0o0e49uO-Tw5yvGYNWcPmC7AvJuQTTHRA8C6WEeEX9nBKOrmBPE-bQL26kmNKcaC5p8WWpUxoirRHGENElOoXf2Dc4DOhLptPc45jpkrdml8eX9Ou3ixX9sv58_vP05CV5Prgx46u784j8ODv9vvrUrC8-nq-O141XjJVmGMAwrwQzG0DRtb5VqE2r5EYa6YXpZJ0yZrzWgJ1mDkBjxbSDjQHh4Ii82_nepPnXgrnYKWSP4-gizku2XEkmwEBd_v-oaAFk_eCKvn2EXs9LinURK7RWeouap6j6bM1uNNeVenNHLZsJe3uTwuTSH3vfSAXMDvBpzjnhYH0oroQ5luTCaDmz2-7trntbu7fb7u1tVfJHynvzpzRip8mVjVeYHoT-p-gvKD29zA
CitedBy_id crossref_primary_10_1177_0962280220981747
crossref_primary_10_1177_0049124118789718
crossref_primary_10_1002_sim_7989
crossref_primary_10_1007_s11577_014_0262_9
crossref_primary_10_1016_j_dcn_2023_101281
crossref_primary_10_1590_s0100_204x2017001200013
crossref_primary_10_1016_j_funbio_2021_05_007
crossref_primary_10_3758_s13428_023_02133_1
crossref_primary_10_1016_j_jclinepi_2021_12_007
crossref_primary_10_1177_0013164416653789
crossref_primary_10_1111_rssa_12864
crossref_primary_10_1016_j_cej_2018_08_203
crossref_primary_10_1080_00220973_2022_2044280
crossref_primary_10_1080_10705511_2016_1190932
crossref_primary_10_5558_tfc2017_008
crossref_primary_10_1007_s10742_020_00220_w
crossref_primary_10_1080_10705511_2022_2138893
crossref_primary_10_3102_10769986251318028
crossref_primary_10_1080_00273171_2016_1253451
crossref_primary_10_3758_s13428_019_01292_4
crossref_primary_10_1016_j_jbusres_2019_02_017
crossref_primary_10_1177_0013164416652441
crossref_primary_10_1007_s42519_022_00304_5
crossref_primary_10_1080_03610918_2020_1804581
crossref_primary_10_1007_s10260_022_00667_w
crossref_primary_10_1080_00273171_2016_1239522
Cites_doi 10.1002/9780470316757
10.1016/S0893-9659(03)80051-4
10.1080/00273170903187657
10.1109/TAC.1974.1100705
10.1002/0471725315
10.2307/1400366
10.1146/annurev.psych.58.110405.085520
10.1093/comjnl/7.4.308
10.2307/2532087
10.1080/03610919308813143
10.2307/2529876
10.1016/S0167-9473(97)00012-1
10.1207/s15328007sem1202_2
10.1037/0021-9010.74.4.657
10.2307/2532602
10.1198/1085711032697
10.1093/biomet/80.4.791
10.1002/9780470316436
10.1080/01621459.1989.10478790
10.2307/2530695
10.1080/00273170701540537
10.1207/s15327906mbr3103_6
10.1007/978-1-4419-0318-1
10.1002/9781119513469
10.1080/10618600.1995.10474663
10.1525/9780520355408
10.1207/S15327906MBR3703_4
ContentType Journal Article
Copyright Psychonomic Society, Inc. 2013
Copyright Springer Science & Business Media Jun 2014
Psychonomic Society, Inc. 2013.
Copyright_xml – notice: Psychonomic Society, Inc. 2013
– notice: Copyright Springer Science & Business Media Jun 2014
– notice: Psychonomic Society, Inc. 2013.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
0-V
3V.
4T-
7TK
7X7
7XB
88E
88G
88J
8AO
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2M
M2O
M2R
MBDVC
PADUT
PHGZM
PHGZT
PJZUB
PKEHL
POGQB
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
7X8
7QO
8FD
FR3
P64
DOI 10.3758/s13428-013-0397-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
Docstoc
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Social Science Database (Alumni Edition)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Proquest Medical Database
Psychology Database
Research Library
Proquest Social Science Journals
Research Library (Corporate)
Research Library China
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Social Science Journals (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Pharma Collection
Sociology & Social Sciences Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
Social Science Premium Collection
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Social Science Journals
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
Docstoc
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic

ProQuest One Psychology
Engineering Research Database
MEDLINE
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1554-3528
EndPage 384
ExternalDocumentID 3382945231
24114379
10_3758_s13428_013_0397_z
Genre Journal Article
GroupedDBID ---
-55
-5G
-BR
-DZ
-EM
-ET
-~C
-~X
0-V
06D
0R~
0VY
199
1N0
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40E
53G
5GY
7X7
875
88E
8AO
8FI
8FJ
8G5
8TC
8UJ
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABIVO
ABJNI
ABJOX
ABJUD
ABKCH
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFFNX
AFKRA
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BAWUL
BENPR
BGNMA
BPHCQ
BVXVI
C1A
CAG
CCPQU
COF
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DWQXO
E3Z
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ3
GQ6
GQ7
GUQSH
H13
HF~
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
H~9
IAO
IHR
IKXTQ
INH
IPY
IRVIT
ITC
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M1P
M2M
M2O
M2R
M4Y
MVM
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OHT
OK1
P2P
P9L
PADUT
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
R9I
RIG
ROL
RPV
RSV
S16
S1Z
S27
S3B
SBS
SBU
SCLPG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TN5
TR2
TSG
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UPT
UTJUX
UZXMN
VFIZW
VXZ
W48
WH7
WK8
XJT
XOL
XSW
Z7R
Z7S
Z7W
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZOVNA
ZUP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PRQQA
4T-
7TK
7XB
8FK
K9.
MBDVC
PKEHL
POGQB
PQEST
PQUKI
PRINS
Q9U
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c500t-ff370c5207b3e298c85e67854b474c2794e29007c663e960a336e98c6a3b732a3
IEDL.DBID 7X7
ISSN 1554-3528
1554-351X
IngestDate Thu Jul 10 19:10:25 EDT 2025
Tue Aug 05 10:47:10 EDT 2025
Fri Jul 25 08:10:29 EDT 2025
Fri Jul 25 06:33:56 EDT 2025
Mon Jul 21 05:36:44 EDT 2025
Tue Jul 01 01:05:50 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Fri Feb 21 02:45:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nonlinear mixed-effects model
Intraindividual variation
Serial correlation
Random effects
Subject-specific
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-ff370c5207b3e298c85e67854b474c2794e29007c663e960a336e98c6a3b732a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24114379
PQID 1547947616
PQPubID 976348
PageCount 13
ParticipantIDs proquest_miscellaneous_1540237314
proquest_miscellaneous_1528334342
proquest_journals_2665615287
proquest_journals_1547947616
pubmed_primary_24114379
crossref_citationtrail_10_3758_s13428_013_0397_z
crossref_primary_10_3758_s13428_013_0397_z
springer_journals_10_3758_s13428_013_0397_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: United States
– name: New York
PublicationTitle Behavior research methods
PublicationTitleAbbrev Behav Res
PublicationTitleAlternate Behav Res Methods
PublicationYear 2014
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Wolfinger (CR34) 1993; 80
Nelder, Mead (CR24) 1965; 7
Verbeke, Molenberghs (CR32) 2000
Chi, Reinsel (CR5) 1989; 84
Grenander, Szegö (CR17) 1958
Cudeck, Harring (CR9) 2007; 58
Akaike (CR1) 1974; AC-19
Beal, Sheiner (CR3) 1982; 8
Schott (CR28) 1983
Pinheiro, Bates (CR26) 2000
Seber, Wild (CR29) 1989
Sivo, Fan, Witta (CR30) 2005; 12
Laird, Ware (CR21) 1982; 38
Sutradhar, Kumar (CR31) 2003; 16
Fitzmaurice, Laird, Ware (CR15) 2011
Cudeck (CR8) 1996; 31
Choi, Harring, Hancock (CR6) 2009; 44
Kwok, West, Green (CR20) 2007; 42
Kanfer, Ackerman (CR19) 1989; 74
Crowder, Hand (CR7) 1990
Wolfinger, Lin (CR36) 1997; 25
Wolfinger (CR35) 1996; 1
Davidian, Giltinan (CR10) 1993; 49
Jennrich, Schluchter (CR18) 1986; 42
Pinheiro, Bates (CR25) 1995; 4
Graybill (CR16) 1983
Rao (CR27) 1973
Bates, Watts (CR2) 1988
Ferron, Dailey, Yi (CR14) 2002; 37
Lindstrom, Bates (CR22) 1990; 46
Littell, Milliken, Stroup, Wolfinger (CR23) 1996
Davidian, Giltinan (CR11) 1995
Wolfinger (CR33) 1993; 22
Diggle, Heagerty, Liang, Zeger (CR13) 2001
Browne, Cuadras, Rao (CR4) 1993
Davidian, Giltinan (CR12) 2003; 8
DM Bates (397_CR2) 1988
GM Fitzmaurice (397_CR15) 2011
RD Wolfinger (397_CR33) 1993; 22
RD Wolfinger (397_CR35) 1996; 1
R Cudeck (397_CR8) 1996; 31
JC Pinheiro (397_CR25) 1995; 4
SL Beal (397_CR3) 1982; 8
BC Sutradhar (397_CR31) 2003; 16
U Grenander (397_CR17) 1958
PJ Diggle (397_CR13) 2001
R Kanfer (397_CR19) 1989; 74
JA Nelder (397_CR24) 1965; 7
RI Jennrich (397_CR18) 1986; 42
G Verbeke (397_CR32) 2000
CR Rao (397_CR27) 1973
GAF Seber (397_CR29) 1989
MJ Crowder (397_CR7) 1990
FA Graybill (397_CR16) 1983
M Davidian (397_CR10) 1993; 49
S Sivo (397_CR30) 2005; 12
MW Browne (397_CR4) 1993
MJ Lindstrom (397_CR22) 1990; 46
JR Schott (397_CR28) 1983
RD Wolfinger (397_CR36) 1997; 25
NM Laird (397_CR21) 1982; 38
R Cudeck (397_CR9) 2007; 58
M Davidian (397_CR12) 2003; 8
J Choi (397_CR6) 2009; 44
EM Chi (397_CR5) 1989; 84
RD Wolfinger (397_CR34) 1993; 80
JC Pinheiro (397_CR26) 2000
M Davidian (397_CR11) 1995
RC Littell (397_CR23) 1996
J. Ferron (397_CR14) 2002; 37
O Kwok (397_CR20) 2007; 42
H Akaike (397_CR1) 1974; AC-19
References_xml – year: 1988
  ident: CR2
  publication-title: Nonlinear regression analysis and its applications
  doi: 10.1002/9780470316757
– volume: 16
  start-page: 317
  year: 2003
  end-page: 321
  ident: CR31
  article-title: The inversion of a correlation matrix for MA(1) process
  publication-title: Applied Mathematics Letters
  doi: 10.1016/S0893-9659(03)80051-4
– volume: 44
  start-page: 620
  year: 2009
  end-page: 645
  ident: CR6
  article-title: Latent growth modeling for logistic response functions
  publication-title: Multivariate Behavioral Research
  doi: 10.1080/00273170903187657
– year: 1990
  ident: CR7
  publication-title: Analysis of repeated measures
– year: 2001
  ident: CR13
  publication-title: Analysis of longitudinal data
– volume: AC-19
  start-page: 716
  year: 1974
  end-page: 723
  ident: CR1
  article-title: A new look at the statistical model identification
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1974.1100705
– year: 1989
  ident: CR29
  publication-title: Nonlinear regression
  doi: 10.1002/0471725315
– start-page: 171
  year: 1993
  end-page: 197
  ident: CR4
  article-title: Structured latent curve models
  publication-title: Multivariate analysis: Future directions
– volume: 1
  start-page: 205
  year: 1996
  end-page: 230
  ident: CR35
  article-title: Heterogeneous variance: Covariance structures for repeated measures
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
  doi: 10.2307/1400366
– volume: 58
  start-page: 615
  year: 2007
  end-page: 637
  ident: CR9
  article-title: Analysis of nonlinear patterns of change with random coefficient models
  publication-title: Annual Review of Psychology
  doi: 10.1146/annurev.psych.58.110405.085520
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  ident: CR24
  article-title: A simplex method for function minimization
  publication-title: Computer Journal
  doi: 10.1093/comjnl/7.4.308
– year: 1983
  ident: CR28
  publication-title: Matrix analysis for statistics
– volume: 46
  start-page: 673
  year: 1990
  end-page: 687
  ident: CR22
  article-title: Nonlinear mixed effects models for repeated measures data
  publication-title: Biometrics
  doi: 10.2307/2532087
– volume: 4
  start-page: 12
  year: 1995
  end-page: 35
  ident: CR25
  article-title: Approximations to the loglikelihood function in the nonlinear mixed effects model
  publication-title: Journal of Computational and Graphical Statistics
– year: 1996
  ident: CR23
  publication-title: SAS system for mixed models
– volume: 22
  start-page: 1079
  year: 1993
  end-page: 1106
  ident: CR33
  article-title: Covariance structure selection in general mixed models
  publication-title: Communications in Statistics, Simulation and Computation
  doi: 10.1080/03610919308813143
– year: 2011
  ident: CR15
  publication-title: Applied longitudinal analysis
– volume: 38
  start-page: 963
  year: 1982
  end-page: 974
  ident: CR21
  article-title: Random-effects models for longitudinal data
  publication-title: Biometrics
  doi: 10.2307/2529876
– volume: 25
  start-page: 465
  year: 1997
  end-page: 490
  ident: CR36
  article-title: Two taylor-series approximation methods for nonlinear mixed models
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/S0167-9473(97)00012-1
– year: 2000
  ident: CR32
  publication-title: Linear mixed models for longitudinal data
– volume: 12
  start-page: 215
  year: 2005
  end-page: 231
  ident: CR30
  article-title: The biasing effects of unmodeled ARMA time series processes on latent growth curve model estimates
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
  doi: 10.1207/s15328007sem1202_2
– year: 1995
  ident: CR11
  publication-title: Nonlinear models for repeated measurement data
– volume: 74
  start-page: 657
  year: 1989
  end-page: 690
  ident: CR19
  article-title: Motivation and cognitive abilities: An integrative/aptitude-treatment interaction approach to skill acquisition
  publication-title: Journal of Applied Psychology
  doi: 10.1037/0021-9010.74.4.657
– year: 1983
  ident: CR16
  publication-title: Matrices with applications in statistics
– volume: 49
  start-page: 59
  year: 1993
  end-page: 73
  ident: CR10
  article-title: Some simple methods for estimating intra-individual variability in nonlinear mixed effects models
  publication-title: Biometrics
  doi: 10.2307/2532602
– volume: 8
  start-page: 387
  year: 2003
  end-page: 419
  ident: CR12
  article-title: Nonlinear models for repeated measures data: An overview and update
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
  doi: 10.1198/1085711032697
– volume: 80
  start-page: 791
  year: 1993
  end-page: 795
  ident: CR34
  article-title: Laplace’s approximation for nonlinear mixed models
  publication-title: Biometrika
  doi: 10.1093/biomet/80.4.791
– year: 1973
  ident: CR27
  publication-title: Linear statistical inference and its applications
  doi: 10.1002/9780470316436
– volume: 84
  start-page: 452
  year: 1989
  end-page: 459
  ident: CR5
  article-title: Models for longitudinal data with random effects and AR(1) errors
  publication-title: Journal of the American Staistical Association
  doi: 10.1080/01621459.1989.10478790
– volume: 42
  start-page: 805
  year: 1986
  end-page: 820
  ident: CR18
  article-title: Unbalanced repeated measures models with structured covariance matrices
  publication-title: Biometrics
  doi: 10.2307/2530695
– volume: 42
  start-page: 557
  year: 2007
  end-page: 592
  ident: CR20
  article-title: The impact of misspecifying the within-subject covariance structure in multiwave longitudinal multilevel models: A monte carlo study
  publication-title: Multivariate Behavioral Research
  doi: 10.1080/00273170701540537
– volume: 31
  start-page: 371
  year: 1996
  end-page: 403
  ident: CR8
  article-title: Mixed-effects models in the study of individual differences with repeated measures
  publication-title: Multivariate Behavioral Research
  doi: 10.1207/s15327906mbr3103_6
– volume: 37
  start-page: 379
  year: 2002
  end-page: 403
  ident: CR14
  article-title: Effects of misspecifying the first-level error structure in two-level models of change
  publication-title: Multivariate Behavioral Research
– volume: 8
  start-page: 195
  year: 1982
  end-page: 222
  ident: CR3
  article-title: Estimating population kinetics
  publication-title: CRC Critical Reviews in Biomedical Engineering
– year: 1958
  ident: CR17
  publication-title: Toeplitz forms and their applications
– year: 2000
  ident: CR26
  publication-title: Mixed effects models in S and S-plus
  doi: 10.1007/978-1-4419-0318-1
– volume-title: Analysis of longitudinal data
  year: 2001
  ident: 397_CR13
– volume: 80
  start-page: 791
  year: 1993
  ident: 397_CR34
  publication-title: Biometrika
  doi: 10.1093/biomet/80.4.791
– volume-title: Nonlinear regression analysis and its applications
  year: 1988
  ident: 397_CR2
  doi: 10.1002/9780470316757
– volume-title: Applied longitudinal analysis
  year: 2011
  ident: 397_CR15
  doi: 10.1002/9781119513469
– volume-title: Nonlinear regression
  year: 1989
  ident: 397_CR29
  doi: 10.1002/0471725315
– volume: 25
  start-page: 465
  year: 1997
  ident: 397_CR36
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/S0167-9473(97)00012-1
– volume: 44
  start-page: 620
  year: 2009
  ident: 397_CR6
  publication-title: Multivariate Behavioral Research
  doi: 10.1080/00273170903187657
– volume: 4
  start-page: 12
  year: 1995
  ident: 397_CR25
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.1995.10474663
– volume: 8
  start-page: 195
  year: 1982
  ident: 397_CR3
  publication-title: CRC Critical Reviews in Biomedical Engineering
– start-page: 171
  volume-title: Multivariate analysis: Future directions
  year: 1993
  ident: 397_CR4
– volume: 38
  start-page: 963
  year: 1982
  ident: 397_CR21
  publication-title: Biometrics
  doi: 10.2307/2529876
– volume-title: Matrix analysis for statistics
  year: 1983
  ident: 397_CR28
– volume-title: Toeplitz forms and their applications
  year: 1958
  ident: 397_CR17
  doi: 10.1525/9780520355408
– volume-title: SAS system for mixed models
  year: 1996
  ident: 397_CR23
– volume: 42
  start-page: 805
  year: 1986
  ident: 397_CR18
  publication-title: Biometrics
  doi: 10.2307/2530695
– volume-title: Analysis of repeated measures
  year: 1990
  ident: 397_CR7
– volume: 12
  start-page: 215
  year: 2005
  ident: 397_CR30
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
  doi: 10.1207/s15328007sem1202_2
– volume: 8
  start-page: 387
  year: 2003
  ident: 397_CR12
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
  doi: 10.1198/1085711032697
– volume-title: Linear mixed models for longitudinal data
  year: 2000
  ident: 397_CR32
– volume: 46
  start-page: 673
  year: 1990
  ident: 397_CR22
  publication-title: Biometrics
  doi: 10.2307/2532087
– volume-title: Linear statistical inference and its applications
  year: 1973
  ident: 397_CR27
  doi: 10.1002/9780470316436
– volume: 22
  start-page: 1079
  year: 1993
  ident: 397_CR33
  publication-title: Communications in Statistics, Simulation and Computation
  doi: 10.1080/03610919308813143
– volume: 49
  start-page: 59
  year: 1993
  ident: 397_CR10
  publication-title: Biometrics
  doi: 10.2307/2532602
– volume: 42
  start-page: 557
  year: 2007
  ident: 397_CR20
  publication-title: Multivariate Behavioral Research
  doi: 10.1080/00273170701540537
– volume: 37
  start-page: 379
  year: 2002
  ident: 397_CR14
  publication-title: Multivariate Behavioral Research
  doi: 10.1207/S15327906MBR3703_4
– volume: 58
  start-page: 615
  year: 2007
  ident: 397_CR9
  publication-title: Annual Review of Psychology
  doi: 10.1146/annurev.psych.58.110405.085520
– volume: AC-19
  start-page: 716
  year: 1974
  ident: 397_CR1
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1974.1100705
– volume: 31
  start-page: 371
  year: 1996
  ident: 397_CR8
  publication-title: Multivariate Behavioral Research
  doi: 10.1207/s15327906mbr3103_6
– volume-title: Matrices with applications in statistics
  year: 1983
  ident: 397_CR16
– volume: 84
  start-page: 452
  year: 1989
  ident: 397_CR5
  publication-title: Journal of the American Staistical Association
  doi: 10.1080/01621459.1989.10478790
– volume: 16
  start-page: 317
  year: 2003
  ident: 397_CR31
  publication-title: Applied Mathematics Letters
  doi: 10.1016/S0893-9659(03)80051-4
– volume: 7
  start-page: 308
  year: 1965
  ident: 397_CR24
  publication-title: Computer Journal
  doi: 10.1093/comjnl/7.4.308
– volume: 74
  start-page: 657
  year: 1989
  ident: 397_CR19
  publication-title: Journal of Applied Psychology
  doi: 10.1037/0021-9010.74.4.657
– volume-title: Mixed effects models in S and S-plus
  year: 2000
  ident: 397_CR26
  doi: 10.1007/978-1-4419-0318-1
– volume: 1
  start-page: 205
  year: 1996
  ident: 397_CR35
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
  doi: 10.2307/1400366
– volume-title: Nonlinear models for repeated measurement data
  year: 1995
  ident: 397_CR11
SSID ssj0038214
Score 2.241251
Snippet Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 372
SubjectTerms Behavioral Science and Psychology
Cognitive Psychology
Data Display
Data Interpretation, Statistical
Dimensional Measurement Accuracy
Humans
Individuality
Likelihood Functions
Logistic Models
Models, Statistical
Nonlinear Dynamics
Psychology
Random Allocation
Research Design
Software
Task Performance and Analysis
Variation
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60XnoR364vInhSFnc3yT6OpbaoaBVrobdlNxulUKu0FtRf75d9FKUqeE0mu8lkkvmGmcwQHfkqlWnCYamGWWQLpSI7Mp7CDOBZAsJ6aZ5n-7rjn_fEZV_2y3fckyravXJJ5je1sSsBak8nLhcmm7KpRgAlan8s0pI0pjuEuOc1quuXh54rCvflz8O-K6A5VDnnEc0VTXuFlkuEyBrFlq7Sgh6tUX12Ub2vk24P8mhlpkxpjSHQYsZgNefPqpgej5_HrEgLO0UrG4zYqMiHkYzZ0-BNZ3YZxMHyMjgTZmLfH1m30WW3dzdN1rm6vui3zjao127dN8_tslyCraTjvNoPDzxwFFgSpFx7UahCqaGKpEhFIJSHg4dWQAIFkKFhuCSc-xpkfsLTgHsJ36Qa5qO3iSVZ4KvQydJQKWFIfRlwqWXoqcgEglnkVDyMVZlL3JS0GMawKQzb44LtMdgeG7bHHxYdz4a8FIk0_iLeqzYmLs_UJAbYwxoC3_V_7AbSABaUsAAtOpx147AYD0gy0s9T8wmgKS7wt79oYFLzgLvCoq1CJmYTBtxxTQJHi04qIfkyv99Ws_Mv6l2qA5SJIhxtj2qQF70P4POaHuSC_gnK3fmP
  priority: 102
  providerName: Springer Nature
Title Fitting correlated residual error structures in nonlinear mixed-effects models using SAS PROC NLMIXED
URI https://link.springer.com/article/10.3758/s13428-013-0397-z
https://www.ncbi.nlm.nih.gov/pubmed/24114379
https://www.proquest.com/docview/1547947616
https://www.proquest.com/docview/2665615287
https://www.proquest.com/docview/1528334342
https://www.proquest.com/docview/1540237314
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5RuHCpeLV1eWiROLWycLy7fpxQgIRXSRE0UjhZ9nqpIkECCUjAr-cb2zFF0Jwsrcf27uzszjc74xmircBkOkslLNUoj11lTOzG7CnMAZ41IKyfFXm2TzvBYVcd93SvOnAbV2GVkz2x2KjzoeEz8m2oeogOjO5g5_bO5apR7F2tSmh8ojlOXcYhXWGvNrhk5DdU6cmUgMXb44ZUnI-Z6xlADbvPb3XRO4D5zjla6Jz2An2uwKJolrO7SDN2sETz9Z71tEy23S8Cl4XhKhvXAI65gAFd_GEl7Gg0HIkyQ-wDWkV_IAZlaox0JG76jzZ3q3gOUVTEGQsOg_8rLpoX4uz8957o_Do96rX2V6jbbv3ZO3Srygmu0Z53715dydAz2vfCTFo_jkykLbSSVpkKlfHBSLQCHRjgDQsbJpUysCALUpmF0k_lF5pFf-w3EmkeBiby8iwyRjFpoEOprY58E3NMmEPehIeJqdKKc3WL6wTmBbM9KdmegO0Jsz15duhH_chtmVNjGvHaZGKSanmNk1dh-PA2QAdgoYYx6NBmfRvrhp0h6cAOH_gVAFZS4WvTaGBdy1A2lENfS5moOwzk0-Bcjg79nAjJP_3732i-Tx_NKs0DkKkyFG2NZiEgdh2g5z7bKCR7g-aaB5cnLVx3W52zc7R2_eYLbXwAlg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9EAvqOXpPmCR4AKy6uzDjwNCpU2U0CRUfUi5ufZ6iyKVpE1aQfuj-I1867UDqJBbr7tje3c8O_ONZzxD9CbUucozAU81LhJfap34iY0UFgDPChCW52Wd7f4g7JzIz0M1XKKf9b8wNq2y1omloi4m2n4j34aph-jA6Q4_Xlz6tmuUja7WLTScWOybm-9w2WYfunt4v285b7eOdzt-1VXA1yoIrvyzMxEFWvEgyoXhSaxjZaCxlcxlJDXHQzAKy6lhiw3wfSZEaEAWZiKPBM8E7vuAlqWAK9Og5U-twcFhrftFzJvSxU4FgPj2rCmkrQBtOyjA8Pu3f1u_O5D2Tji2tHLtVXpUwVO24-RpjZbM-DGtzLXkzRMy7VGZKs207etxDqhaMLjs5T9dzEynkylzNWmvMcpGYzZ2xTiyKfs2-mEKv8ogYWUPnhmzifdf2dHOETs4_LLLBr1-d9jae0on98LVZ9TAeswLYlkRhToOijzWWlrSUEVCGRVzndgsNI-CmoeprgqZ234a5ykcGsv21LE9BdtTy_b01qN380suXBWPRcSb9YtJqwM9S3-L3z-nAXMARBXcT49ez6dxUm34JRubybW9BaCckHjaIhr48yISTenRcycT8wUDazVt9UiP3tdC8sf6_reb9cW7eUUPO8f9XtrrDvY3aAVwULpEuE1qQFjMFiDXVf6yknNGp_d9tH4B-M44Zg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gJoYXg98F1DXRF01zbXe3Hw_GEI4LJ3ASkeTelna7Zy7BO7iDKPxp_nX-ttsWDHpvvO5u293pfPymM50hehvrQhY5h6ealpkvtM78zEYKS4BnCQgbFVWd7f1BvHMkPg_lcIl-N__C2LTKRidWirqcavuNvANTD9aB0x13RnVaxEG39-n0zLcdpGyktWmn4Vhk11z-hPs2_9jv4l2_i6Le9retHb_uMOBrGQTn_mjEk0DLKEgKbqIs1ak00N5SFCIROsIDMQorqmGXDbB-znlssCzOeZHwKOe47z26n3AZWhlLhq2zx9MoFC6KygHJO_OQC1sL2vZSAATwr_62g7fA7a3AbGXveqv0sAaqbNNx1iNaMpPHtNLqy8snZHrjKmmaadvh4wSgtWRw3qu_u5iZzaYz5qrTXmCUjSds4spy5DP2Y_zLlH6dS8KqbjxzZlPwv7PDzUN28PXLFhvs7feH292ndHQnNH1Gy9iPeUEsL5NYp0FZpFoLuzSWILWRaaQzm4_mUdDQUOm6pLntrHGi4NpYsitHdgWyK0t2deXR-_aSU1fPY9HijebFqFq05-qaEf85DcADSCrhiHr0pp2GzNpATD4x0wt7C4A6LvC0RWvg2fOEh8Kj544n2g0DdYW2jqRHHxomubG__51mbfFpXtMDCJTa6w9212kFuFC4jLgNWgavmJfAXufFq4rJGR3ftVT9AVXUOzY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fitting+correlated+residual+error+structures+in+nonlinear+mixed-effects+models+using+SAS+PROC+NLMIXED&rft.jtitle=Behavior+research+methods&rft.au=Harring%2C+Jeffrey+R&rft.au=Blozis%2C+Shelley+A&rft.date=2014-06-01&rft.issn=1554-3528&rft.eissn=1554-3528&rft.volume=46&rft.issue=2&rft.spage=372&rft_id=info:doi/10.3758%2Fs13428-013-0397-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon