Integration of canal and otolith inputs by central vestibular neurons is subadditive for both active and passive self-motion: implication for perception

Traditionally, the neural encoding of vestibular information is studied by applying either passive rotations or translations in isolation. However, natural vestibular stimuli are typically more complex. During everyday life, our self-motion is generally not restricted to one dimension, but rather co...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 35; no. 8; pp. 3555 - 3565
Main Authors Carriot, Jerome, Jamali, Mohsen, Brooks, Jessica X, Cullen, Kathleen E
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 25.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditionally, the neural encoding of vestibular information is studied by applying either passive rotations or translations in isolation. However, natural vestibular stimuli are typically more complex. During everyday life, our self-motion is generally not restricted to one dimension, but rather comprises both rotational and translational motion that will simultaneously stimulate receptors in the semicircular canals and otoliths. In addition, natural self-motion is the result of self-generated and externally generated movements. However, to date, it remains unknown how information about rotational and translational components of self-motion is integrated by vestibular pathways during active and/or passive motion. Accordingly, here, we compared the responses of neurons at the first central stage of vestibular processing to rotation, translation, and combined motion. Recordings were made in alert macaques from neurons in the vestibular nuclei involved in postural control and self-motion perception. In response to passive stimulation, neurons did not combine canal and otolith afferent information linearly. Instead, inputs were subadditively integrated with a weighting that was frequency dependent. Although canal inputs were more heavily weighted at low frequencies, the weighting of otolith input increased with frequency. In response to active stimulation, neuronal modulation was significantly attenuated (∼ 70%) relative to passive stimulation for rotations and translations and even more profoundly attenuated for combined motion due to subadditive input integration. Together, these findings provide insights into neural computations underlying the integration of semicircular canal and otolith inputs required for accurate posture and motor control, as well as perceptual stability, during everyday life.
AbstractList Traditionally, the neural encoding of vestibular information is studied by applying either passive rotations or translations in isolation. However, natural vestibular stimuli are typically more complex. During everyday life, our self-motion is generally not restricted to one dimension, but rather comprises both rotational and translational motion that will simultaneously stimulate receptors in the semicircular canals and otoliths. In addition, natural self-motion is the result of self-generated and externally generated movements. However, to date, it remains unknown how information about rotational and translational components of self-motion is integrated by vestibular pathways during active and/or passive motion. Accordingly, here, we compared the responses of neurons at the first central stage of vestibular processing to rotation, translation, and combined motion. Recordings were made in alert macaques from neurons in the vestibular nuclei involved in postural control and self-motion perception. In response to passive stimulation, neurons did not combine canal and otolith afferent information linearly. Instead, inputs were subadditively integrated with a weighting that was frequency dependent. Although canal inputs were more heavily weighted at low frequencies, the weighting of otolith input increased with frequency. In response to active stimulation, neuronal modulation was significantly attenuated (∼ 70%) relative to passive stimulation for rotations and translations and even more profoundly attenuated for combined motion due to subadditive input integration. Together, these findings provide insights into neural computations underlying the integration of semicircular canal and otolith inputs required for accurate posture and motor control, as well as perceptual stability, during everyday life.
Traditionally, the neural encoding of vestibular information is studied by applying either passive rotations or translations in isolation. However, natural vestibular stimuli are typically more complex. During everyday life, our self-motion is generally not restricted to one dimension, but rather comprises both rotational and translational motion that will simultaneously stimulate receptors in the semicircular canals and otoliths. In addition, natural self-motion is the result of self-generated and externally generated movements. However, to date, it remains unknown how information about rotational and translational components of self-motion is integrated by vestibular pathways during active and/or passive motion. Accordingly, here, we compared the responses of neurons at the first central stage of vestibular processing to rotation, translation, and combined motion. Recordings were made in alert macaques from neurons in the vestibular nuclei involved in postural control and self-motion perception. In response to passive stimulation, neurons did not combine canal and otolith afferent information linearly. Instead, inputs were subadditively integrated with a weighting that was frequency dependent. Although canal inputs were more heavily weighted at low frequencies, the weighting of otolith input increased with frequency. In response to active stimulation, neuronal modulation was significantly attenuated (∼70%) relative to passive stimulation for rotations and translations and even more profoundly attenuated for combined motion due to subadditive input integration. Together, these findings provide insights into neural computations underlying the integration of semicircular canal and otolith inputs required for accurate posture and motor control, as well as perceptual stability, during everyday life.
Traditionally, the neural encoding of vestibular information is studied by applying either passive rotations or translations in isolation. However, natural vestibular stimuli are typically more complex. During everyday life, our self-motion is generally not restricted to one dimension, but rather comprises both rotational and translational motion that will simultaneously stimulate receptors in the semicircular canals and otoliths. In addition, natural self-motion is the result of self-generated and externally generated movements. However, to date, it remains unknown how information about rotational and translational components of self-motion is integrated by vestibular pathways during active and/or passive motion. Accordingly, here, we compared the responses of neurons at the first central stage of vestibular processing to rotation, translation, and combined motion. Recordings were made in alert macaques from neurons in the vestibular nuclei involved in postural control and self-motion perception. In response to passive stimulation, neurons did not combine canal and otolith afferent information linearly. Instead, inputs were subadditively integrated with a weighting that was frequency dependent. Although canal inputs were more heavily weighted at low frequencies, the weighting of otolith input increased with frequency. In response to active stimulation, neuronal modulation was significantly attenuated (~70%) relative to passive stimulation for rotations and translations and even more profoundly attenuated for combined motion due to subadditive input integration. Together, these findings provide insights into neural computations underlying the integration of semicircular canal and otolith inputs required for accurate posture and motor control, as well as perceptual stability, during everyday life.
Author Brooks, Jessica X
Cullen, Kathleen E
Carriot, Jerome
Jamali, Mohsen
Author_xml – sequence: 1
  givenname: Jerome
  surname: Carriot
  fullname: Carriot, Jerome
  organization: Department of Physiology McGill University, Montreal, Quebec, Canada H3G 1Y6
– sequence: 2
  givenname: Mohsen
  surname: Jamali
  fullname: Jamali, Mohsen
  organization: Department of Physiology McGill University, Montreal, Quebec, Canada H3G 1Y6
– sequence: 3
  givenname: Jessica X
  surname: Brooks
  fullname: Brooks, Jessica X
  organization: Department of Physiology McGill University, Montreal, Quebec, Canada H3G 1Y6
– sequence: 4
  givenname: Kathleen E
  orcidid: 0000-0002-9348-0933
  surname: Cullen
  fullname: Cullen, Kathleen E
  email: kathleen.cullen@mcgill.ca
  organization: Department of Physiology McGill University, Montreal, Quebec, Canada H3G 1Y6 kathleen.cullen@mcgill.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25716854$$D View this record in MEDLINE/PubMed
BookMark eNqFUstu1DAUtVArOi38QuUlmwx-5sECCY1aGFRRqY-15TjXrVFiBzsZqX_C5-IwwwhWrHyv7jnnPnzO0YkPHhC6pGRNJePvv367ery7vd9s11wKUlCxZoTKV2iVq03BBKEnaEVYRYpSVOIMnaf0nRBSEVq9RmdMVrSspVihn1s_wVPUkwseB4uN9rrH2nc4TKF30zN2fpynhNsXbMBPMVd3kCbXzr2O2MMcg0_YJZzmVnedm9wOsA0RtyGTtfmdL3qjTmmJE_S2GMLS8AN2w9g7s---kEaIBsYlfYNOre4TvD28F-jx-uph86W4uf283Xy6KYwkZCoARNfVNWkqCjUwxmmdD1AaVjPOeUNMHgparSnh1FrLmJWsJlbaTlNNreAX6ONed5zbAbrDjmqMbtDxRQXt1L8V757VU9gpkeV5SbLAu4NADD_mfBo1uGSg77WHMCdFq1I2NZNU_h-akRktmyZDyz3UxJBSBHuciBK1OEAdHaAWBygq1OKATLz8e58j7c-X81-L4rRP
CitedBy_id crossref_primary_10_1152_jn_00073_2016
crossref_primary_10_7554_eLife_26179
crossref_primary_10_3389_fneur_2021_635305
crossref_primary_10_1016_j_cub_2019_07_006
crossref_primary_10_1016_j_cub_2023_09_047
crossref_primary_10_1007_s11517_017_1618_x
crossref_primary_10_7224_1537_2073_2016_027
crossref_primary_10_1007_s10162_018_0657_9
crossref_primary_10_1016_j_neuroimage_2016_07_029
crossref_primary_10_1016_j_celrep_2016_03_089
crossref_primary_10_1152_jn_00382_2017
crossref_primary_10_1007_s12070_021_02867_4
crossref_primary_10_3389_fncel_2018_00456
crossref_primary_10_3389_fneur_2018_00489
crossref_primary_10_1007_s10439_022_02947_8
crossref_primary_10_3389_fneur_2015_00269
crossref_primary_10_1080_07420528_2016_1215993
crossref_primary_10_1097_AUD_0000000000000619
crossref_primary_10_3389_fneur_2023_1266345
crossref_primary_10_1093_cercor_bhx325
crossref_primary_10_1007_s00221_022_06393_9
crossref_primary_10_1007_s00415_015_7909_y
crossref_primary_10_1109_ACCESS_2020_3022554
crossref_primary_10_7554_eLife_43019
crossref_primary_10_1038_nn_4658
crossref_primary_10_1371_journal_pcbi_1007489
crossref_primary_10_3389_fneur_2018_00979
crossref_primary_10_3389_fneur_2023_1266513
crossref_primary_10_1152_jn_00350_2019
crossref_primary_10_1038_s41583_019_0153_1
crossref_primary_10_1016_j_bpsc_2019_06_003
crossref_primary_10_1002_bem_22417
crossref_primary_10_1016_j_conb_2018_04_004
crossref_primary_10_1097_WCO_0000000000001228
crossref_primary_10_3389_fneur_2019_00063
crossref_primary_10_1109_ACCESS_2020_2997643
crossref_primary_10_3758_s13414_019_01691_x
Cites_doi 10.1007/s00422-001-0289-7
10.1007/s00221-011-2568-4
10.1016/j.conb.2011.05.022
10.1152/jn.1999.82.1.416
10.1007/s002210000575
10.1152/jn.01067.2009
10.1016/j.neuron.2009.11.010
10.1152/jn.91066.2008
10.1007/s002210050496
10.1152/jn.1992.68.1.244
10.1152/jn.1993.70.2.828
10.1152/jn.01234.2003
10.1007/s00422-001-0290-1
10.1152/jn.1999.82.1.34
10.1038/nature02754
10.1152/jn.00710.2009
10.1523/JNEUROSCI.4690-06.2007
10.1523/JNEUROSCI.23-28-09265.2003
10.1007/s00221-006-0486-7
10.1152/jn.1988.60.5.1753
10.1523/JNEUROSCI.21-06-02131.2001
10.1523/JNEUROSCI.19-01-00316.1999
10.1016/S0361-9230(98)00007-0
10.1152/jn.00018.2007
10.1152/jn.00518.2002
10.1038/nrn2331
10.1007/978-1-4757-3054-8_29
10.1152/jn.00926.2004
10.1016/j.tins.2011.12.001
10.1523/JNEUROSCI.0692-14.2014
10.1152/jn.00459.2005
10.1007/s002210050495
10.1007/s002210050033
10.1523/JNEUROSCI.2646-06.2007
10.1152/jn.00829.2006
10.1371/journal.pbio.1001365
10.1007/s00221-011-2717-9
10.1111/j.1469-7793.1997.223bl.x
10.1523/JNEUROSCI.3051-13.2013
10.1038/19303
10.1016/j.neuron.2008.06.024
10.1523/JNEUROSCI.3437-09.2009
10.1007/s00221-005-2341-7
10.1146/annurev.neuro.31.060407.125555
10.1038/1619
10.1016/j.jneumeth.2008.05.021
10.1016/j.neuroscience.2011.06.070
10.1201/9780203735701-46
10.1111/j.1749-6632.2001.tb03776.x
10.1523/JNEUROSCI.1937-09.2009
10.1152/jn.1999.82.5.2612
10.1007/BF00161093
10.1038/nn.2191
10.1016/0957-4271(95)02039-X
10.1523/JNEUROSCI.22-11-j0002.2002
10.1523/JNEUROSCI.3988-03.2004
ContentType Journal Article
Copyright Copyright © 2015 the authors 0270-6474/15/353555-11$15.00/0.
Copyright © 2015 the authors 0270-6474/15/353555-11$15.00/0 2015
Copyright_xml – notice: Copyright © 2015 the authors 0270-6474/15/353555-11$15.00/0.
– notice: Copyright © 2015 the authors 0270-6474/15/353555-11$15.00/0 2015
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7TK
5PM
DOI 10.1523/JNEUROSCI.3540-14.2015
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE

Neurosciences Abstracts
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 3565
ExternalDocumentID 10_1523_JNEUROSCI_3540_14_2015
25716854
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Canadian Institutes of Health Research
– fundername: NIDCD NIH HHS
  grantid: DC2390
– fundername: NIDCD NIH HHS
  grantid: R01 DC002390
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
AENEX
AETEA
AFCFT
AFHIN
AFOSN
AHWXS
AIZTS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
GX1
HYE
H~9
KQ8
L7B
NPM
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
ZA5
AAYXX
CITATION
H13
7X8
7TK
5PM
ID FETCH-LOGICAL-c500t-ee4dd880971e8e223185296c28233390cbadebaa1031fff22f5280f5fda1a1f43
IEDL.DBID RPM
ISSN 0270-6474
IngestDate Tue Sep 17 21:28:06 EDT 2024
Fri Aug 16 10:40:02 EDT 2024
Thu Jul 25 11:25:31 EDT 2024
Fri Aug 23 02:33:48 EDT 2024
Thu May 23 23:48:00 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords translation
sensory integration
head motion
voluntary
vestibular nuclei
rotation
Language English
License Copyright © 2015 the authors 0270-6474/15/353555-11$15.00/0.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-ee4dd880971e8e223185296c28233390cbadebaa1031fff22f5280f5fda1a1f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: J.C., M.J., and K.E.C. designed research; J.C. and J.X.B. performed research; J.C. and M.J. analyzed data; J.C., M.J., and K.E.C. wrote the paper.
J.C. and M.J. contributed equally to this work.
ORCID 0000-0002-9348-0933
OpenAccessLink https://www.jneurosci.org/content/jneuro/35/8/3555.full.pdf
PMID 25716854
PQID 1659765599
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4339360
proquest_miscellaneous_1765982515
proquest_miscellaneous_1659765599
crossref_primary_10_1523_JNEUROSCI_3540_14_2015
pubmed_primary_25716854
PublicationCentury 2000
PublicationDate 2015-02-25
PublicationDateYYYYMMDD 2015-02-25
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2015
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References Cullen (2023041304154581000_35.8.3555.18) 2002; 22
2023041304154581000_35.8.3555.27
2023041304154581000_35.8.3555.28
2023041304154581000_35.8.3555.23
2023041304154581000_35.8.3555.22
2023041304154581000_35.8.3555.25
2023041304154581000_35.8.3555.24
2023041304154581000_35.8.3555.30
2023041304154581000_35.8.3555.32
2023041304154581000_35.8.3555.31
Hayes (2023041304154581000_35.8.3555.29) 1982; 2
2023041304154581000_35.8.3555.19
2023041304154581000_35.8.3555.16
2023041304154581000_35.8.3555.15
2023041304154581000_35.8.3555.59
2023041304154581000_35.8.3555.12
2023041304154581000_35.8.3555.56
2023041304154581000_35.8.3555.11
2023041304154581000_35.8.3555.14
2023041304154581000_35.8.3555.58
2023041304154581000_35.8.3555.13
2023041304154581000_35.8.3555.57
2023041304154581000_35.8.3555.21
2023041304154581000_35.8.3555.20
McCrea (2023041304154581000_35.8.3555.38) 1999; 82
Roy (2023041304154581000_35.8.3555.44) 2001; 21
Scudder (2023041304154581000_35.8.3555.51) 1992; 68
2023041304154581000_35.8.3555.1
Kasper (2023041304154581000_35.8.3555.33) 1988; 60
2023041304154581000_35.8.3555.2
2023041304154581000_35.8.3555.5
2023041304154581000_35.8.3555.4
2023041304154581000_35.8.3555.7
2023041304154581000_35.8.3555.6
Angelaki (2023041304154581000_35.8.3555.3) 1999; 19
2023041304154581000_35.8.3555.9
Green (2023041304154581000_35.8.3555.26) 2003; 23
2023041304154581000_35.8.3555.49
2023041304154581000_35.8.3555.8
2023041304154581000_35.8.3555.48
Sylvestre (2023041304154581000_35.8.3555.55) 1999; 82
2023041304154581000_35.8.3555.45
2023041304154581000_35.8.3555.47
2023041304154581000_35.8.3555.46
2023041304154581000_35.8.3555.10
2023041304154581000_35.8.3555.54
2023041304154581000_35.8.3555.53
Mittelstaedt (2023041304154581000_35.8.3555.40) 1991; 95
Siebold (2023041304154581000_35.8.3555.52) 1999; 82
Cullen (2023041304154581000_35.8.3555.17) 1993; 70
Schneider (2023041304154581000_35.8.3555.50) 2013; 43
2023041304154581000_35.8.3555.37
2023041304154581000_35.8.3555.39
2023041304154581000_35.8.3555.34
2023041304154581000_35.8.3555.36
2023041304154581000_35.8.3555.35
2023041304154581000_35.8.3555.41
2023041304154581000_35.8.3555.43
2023041304154581000_35.8.3555.42
References_xml – ident: 2023041304154581000_35.8.3555.10
  doi: 10.1007/s00422-001-0289-7
– ident: 2023041304154581000_35.8.3555.34
  doi: 10.1007/s00221-011-2568-4
– ident: 2023041304154581000_35.8.3555.15
  doi: 10.1016/j.conb.2011.05.022
– volume: 82
  start-page: 416
  year: 1999
  ident: 2023041304154581000_35.8.3555.38
  article-title: Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eye-movement related neurons
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1999.82.1.416
  contributor:
    fullname: McCrea
– ident: 2023041304154581000_35.8.3555.53
  doi: 10.1007/s002210000575
– ident: 2023041304154581000_35.8.3555.35
  doi: 10.1152/jn.01067.2009
– volume: 2
  start-page: 1
  year: 1982
  ident: 2023041304154581000_35.8.3555.29
  article-title: A UNIX-based multiple process system for real-time data acquisition and control
  publication-title: WESCON Conf Proc
  contributor:
    fullname: Hayes
– ident: 2023041304154581000_35.8.3555.5
  doi: 10.1016/j.neuron.2009.11.010
– ident: 2023041304154581000_35.8.3555.31
  doi: 10.1152/jn.91066.2008
– ident: 2023041304154581000_35.8.3555.7
  doi: 10.1007/s002210050496
– volume: 68
  start-page: 244
  year: 1992
  ident: 2023041304154581000_35.8.3555.51
  article-title: Physiological and behavioral identification of vestibular nucleus neurons mediating the horizontal vestibuloocular reflex in trained rhesus monkeys
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1992.68.1.244
  contributor:
    fullname: Scudder
– volume: 70
  start-page: 828
  year: 1993
  ident: 2023041304154581000_35.8.3555.17
  article-title: Firing behavior of brain stem neurons during voluntary cancellation of the horizontal vestibuloocular reflex. I. Secondary vestibular neurons
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1993.70.2.828
  contributor:
    fullname: Cullen
– ident: 2023041304154581000_35.8.3555.27
  doi: 10.1152/jn.01234.2003
– ident: 2023041304154581000_35.8.3555.59
  doi: 10.1007/s00422-001-0290-1
– volume: 82
  start-page: 34
  year: 1999
  ident: 2023041304154581000_35.8.3555.52
  article-title: Fastigial nucleus activity during different frequencies and orientations of vertical vestibular stimulation in the monkey
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1999.82.1.34
  contributor:
    fullname: Siebold
– ident: 2023041304154581000_35.8.3555.4
  doi: 10.1038/nature02754
– ident: 2023041304154581000_35.8.3555.49
  doi: 10.1152/jn.00710.2009
– ident: 2023041304154581000_35.8.3555.48
  doi: 10.1523/JNEUROSCI.4690-06.2007
– volume: 23
  start-page: 9265
  year: 2003
  ident: 2023041304154581000_35.8.3555.26
  article-title: Resolution of sensory ambiguities for gaze stabilization requires a second neural integrator
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-28-09265.2003
  contributor:
    fullname: Green
– ident: 2023041304154581000_35.8.3555.32
  doi: 10.1007/s00221-006-0486-7
– volume: 60
  start-page: 1753
  year: 1988
  ident: 2023041304154581000_35.8.3555.33
  article-title: Response of vestibular neurons to head rotations in vertical planes. I. Response to vestibular stimulation
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1988.60.5.1753
  contributor:
    fullname: Kasper
– volume: 21
  start-page: 2131
  year: 2001
  ident: 2023041304154581000_35.8.3555.44
  article-title: Selective processing of vestibular reafference during self-generated head motion
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-06-02131.2001
  contributor:
    fullname: Roy
– volume: 19
  start-page: 316
  year: 1999
  ident: 2023041304154581000_35.8.3555.3
  article-title: Computation of inertial motion: neural strategies to resolve ambiguous otolith information
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.19-01-00316.1999
  contributor:
    fullname: Angelaki
– ident: 2023041304154581000_35.8.3555.22
  doi: 10.1016/S0361-9230(98)00007-0
– ident: 2023041304154581000_35.8.3555.1
  doi: 10.1152/jn.00018.2007
– ident: 2023041304154581000_35.8.3555.21
  doi: 10.1152/jn.00518.2002
– ident: 2023041304154581000_35.8.3555.54
  doi: 10.1038/nrn2331
– ident: 2023041304154581000_35.8.3555.9
  doi: 10.1007/978-1-4757-3054-8_29
– ident: 2023041304154581000_35.8.3555.42
  doi: 10.1152/jn.00926.2004
– ident: 2023041304154581000_35.8.3555.16
  doi: 10.1016/j.tins.2011.12.001
– volume: 95
  start-page: 427
  year: 1991
  ident: 2023041304154581000_35.8.3555.40
  article-title: Idiothetic navigation in gerbils and humans
  publication-title: Zool Jahrb Allg Zool
  contributor:
    fullname: Mittelstaedt
– ident: 2023041304154581000_35.8.3555.13
  doi: 10.1523/JNEUROSCI.0692-14.2014
– ident: 2023041304154581000_35.8.3555.58
  doi: 10.1152/jn.00459.2005
– ident: 2023041304154581000_35.8.3555.8
  doi: 10.1007/s002210050495
– ident: 2023041304154581000_35.8.3555.25
  doi: 10.1007/s002210050033
– ident: 2023041304154581000_35.8.3555.6
  doi: 10.1523/JNEUROSCI.2646-06.2007
– ident: 2023041304154581000_35.8.3555.47
  doi: 10.1152/jn.00829.2006
– ident: 2023041304154581000_35.8.3555.36
  doi: 10.1371/journal.pbio.1001365
– ident: 2023041304154581000_35.8.3555.23
  doi: 10.1007/s00221-011-2717-9
– ident: 2023041304154581000_35.8.3555.30
  doi: 10.1111/j.1469-7793.1997.223bl.x
– ident: 2023041304154581000_35.8.3555.12
  doi: 10.1523/JNEUROSCI.3051-13.2013
– ident: 2023041304154581000_35.8.3555.39
  doi: 10.1038/19303
– ident: 2023041304154581000_35.8.3555.41
  doi: 10.1016/j.neuron.2008.06.024
– ident: 2023041304154581000_35.8.3555.20
  doi: 10.1523/JNEUROSCI.3437-09.2009
– ident: 2023041304154581000_35.8.3555.57
  doi: 10.1007/s00221-005-2341-7
– ident: 2023041304154581000_35.8.3555.2
  doi: 10.1146/annurev.neuro.31.060407.125555
– ident: 2023041304154581000_35.8.3555.43
  doi: 10.1038/1619
– ident: 2023041304154581000_35.8.3555.14
  doi: 10.1016/j.jneumeth.2008.05.021
– ident: 2023041304154581000_35.8.3555.37
  doi: 10.1016/j.neuroscience.2011.06.070
– ident: 2023041304154581000_35.8.3555.24
  doi: 10.1201/9780203735701-46
– ident: 2023041304154581000_35.8.3555.45
  doi: 10.1111/j.1749-6632.2001.tb03776.x
– ident: 2023041304154581000_35.8.3555.11
  doi: 10.1523/JNEUROSCI.1937-09.2009
– volume: 43
  start-page: 265.04
  year: 2013
  ident: 2023041304154581000_35.8.3555.50
  article-title: Statistics of natural vestibular stimuli in monkey: implications for coding
  publication-title: Soc Neurosci Abstr
  contributor:
    fullname: Schneider
– volume: 82
  start-page: 2612
  year: 1999
  ident: 2023041304154581000_35.8.3555.55
  article-title: Quantitative analysis of abducens neuron discharge dynamics during saccadic and slow eye movements
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1999.82.5.2612
  contributor:
    fullname: Sylvestre
– ident: 2023041304154581000_35.8.3555.19
  doi: 10.1007/BF00161093
– ident: 2023041304154581000_35.8.3555.28
  doi: 10.1038/nn.2191
– ident: 2023041304154581000_35.8.3555.56
  doi: 10.1016/0957-4271(95)02039-X
– volume: 22
  start-page: RC226
  year: 2002
  ident: 2023041304154581000_35.8.3555.18
  article-title: Semicircular canal afferents similarly encode active and passive head-on-body rotations: implications for the role of vestibular efference
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-11-j0002.2002
  contributor:
    fullname: Cullen
– ident: 2023041304154581000_35.8.3555.46
  doi: 10.1523/JNEUROSCI.3988-03.2004
SSID ssj0007017
Score 2.4040596
Snippet Traditionally, the neural encoding of vestibular information is studied by applying either passive rotations or translations in isolation. However, natural...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 3555
SubjectTerms Action Potentials
Animals
Head Movements
Macaca
Macaca mulatta
Male
Otolithic Membrane - physiology
Semicircular Canals - physiology
Sensory Receptor Cells - physiology
Space Perception
Vestibular Nuclei - cytology
Vestibular Nuclei - physiology
Title Integration of canal and otolith inputs by central vestibular neurons is subadditive for both active and passive self-motion: implication for perception
URI https://www.ncbi.nlm.nih.gov/pubmed/25716854
https://search.proquest.com/docview/1659765599
https://search.proquest.com/docview/1765982515
https://pubmed.ncbi.nlm.nih.gov/PMC4339360
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF01PXFBQPlIKdUgIW6O19n1esMtRFR1UUpQKerNste7aqVkEzXOof-En8vMxg4EJA7cImXt2HmT9bzJmzeMvSMbMeeGMuLlyEVSkQigrnXkFPVB2tSJigr600t1fi0vbtKbA5Z2vTBBtG-qu4GfLwb-7jZoK1cLE3c6sXg2nUghRkLxuMd6mRAdRW-334yHMbtIt5AXyUy2bcFIuOKLS5LHXU3yAVU7ooRqKgnNrsG4TZRO5f7D6a-M80_h5G9PorMn7HGbQsJ4e6lP2YH1z9jR2CN9XjzAewiizlAtP2I_8tYOAr9-WDogM4I5lL6GLw0p324h96tNs4bqAdpCL3wn442K5KkQrDv8GvI14A5D2iPaHQETXfiIEMM47JbhfDPMwun1lZ27aBpmA32A_JdePRw028lonrPrs0_fJudRO4whMinnTWStRAw1WU5ZbTGpoK7rkTJI2QTCwQ1ehK3KksZGOER_6NKh5i51dZmUiZPiBTv0S29fMVCJqdPEZpprI0VlK66l4NIYoZWzRvRZ3KFQrLaeGwVxFYSw2EFYEIRIXAqCsM_edmAV-POg_zxKb5ebdZEoZEyKbNX-sQYXjKiFF8_zcgvw7nO7yOizbA_63QKy595_B6M22HS3UXr830e-Zo_o5kIDfXrCDpv7jX2DKVBTnbLe56_6NAT-T9X_B-k
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW5QAXXsujPAcJcUvq1I6TcisVq2bZlkr70N6ixLG1K1q3oulh-SX8XGbcpNBFQoJbpThp3Xx25pt88w1j78hGzNqeDHjRt4FUJAKoqjSwiuogTWxFSQn98USNzuTRRXyxx-K2FsaL9nV5FbrZPHRXl15buZzrbqsT607HQylEXyjevcVu43rtJS1JbzbghPtGu0i4kBnJRDaFwUi5ukcTEsidDLOQ8h1BRFmViLrXIHIjlcZy9_H0R8x5Uzr527Po8D47b2exkaB8Ddd1GervNwwe_3maD9i9JjqFwebwQ7Zn3CN2MHDIzOfX8B68XtQn4g_Yj6xxmsA7CwsL5HMwg8JV8KUmUd0lZG65rldQXkOTQ4Zz8vQoSfkK3hXErSBbAW5eJGuijRcwhoaPiB4Y-I3YX2-KAT59PjEzG4x926EPkP2SwvuTpluFzmN2dvjpdDgKmj4PgY45rwNjJMIjJTcrkxqMV6igu680skGBfwHX-CNMWRTUkcIisHo27qXcxrYqoiKyUjxh-27hzDMGKtJVHJkk5amWojQlT6XgUmuRKmu06LBue3vz5cbOIycahNjIt9jICRvIiXLCRoe9bVGQ48qj1ymFM4v1Ko8UkjFFjm1_GYMD-lQdjNd5ukHO9ntbyHVYsoOp7QBy_t49gkjxDuANMp7_95lv2J3R6fg4P84mn1-wuzRRX6cfv2T79be1eYWRVl2-9uvqJ_ifKOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVgkRAXvhaW8jlIiFsap3bchFspVJuFlkrLohWXKHFs7YrWrWh6WH4JP5cZNynbReKwt0pxkrp5duZN37xh7A3ZiFnbkwEvUhtIRSKAqkoCq6gO0sRWlJTQH0_U4Yk8Oo1PL7X68qJ9XZ533WzedednXlu5nOuw1YmF0_FQCpEKxcNlZcOb7Bau2V7aEvVmE-5z32wXSReyI9mXTXEw0q7waEIiueNh1qWcRxBRZiWiDjaI3kglsdx9Rf0Td16VT156H43use_tTDYylB_ddV129a8rJo_Xmup9dreJUmGwGfKA3TDuIdsfOGTo8wt4C1436hPy--x31jhO4BOGhQXyO5hB4Sr4UpO47gwyt1zXKygvoMklwzfy9ihJAQveHcStIFsBbmIkb6INGDCWhveIIhj4Ddlfb4qBPn0-NjMbjH37oXeQ_ZXE-5OmW6XOI3Yy-vh1eBg0_R4CHXNeB8ZIhElCrlYmMRi3UGF3qjSyQoE_A9f4JUxZFNSZwiLAejbuJdzGtiqiIrJSPGZ7buHMEwYq0lUcmX7CEy1FaUqeSMGl1iJR1mjRYWH7iPPlxtYjJzqE-Mi3-MgJH8iNcsJHh71ukZDjCqS_VQpnFutVHikkZYqc2_4zBgekVCWM1znYoGd73xZ2HdbfwdV2ADmA7x5BtHgn8AYdT6995it2e_phlH_OJp-esTs0T1-uHz9ne_XPtXmBAVddvvRL6w8vsito
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+canal+and+otolith+inputs+by+central+vestibular+neurons+is+subadditive+for+both+active+and+passive+self-motion%3A+implication+for+perception&rft.jtitle=The+Journal+of+neuroscience&rft.au=Carriot%2C+Jerome&rft.au=Jamali%2C+Mohsen&rft.au=Brooks%2C+Jessica+X&rft.au=Cullen%2C+Kathleen+E&rft.date=2015-02-25&rft.eissn=1529-2401&rft.volume=35&rft.issue=8&rft.spage=3555&rft_id=info:doi/10.1523%2FJNEUROSCI.3540-14.2015&rft_id=info%3Apmid%2F25716854&rft.externalDocID=25716854
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon